1
|
Chen C, Li M, Guo A, Guo P, Zhang W, Gu C, Wen G, Zhou H, Tao P. Addressing unexpected bacterial RNA safety concerns of E. coli produced influenza NP through CpG loaded mutant. NPJ Vaccines 2025; 10:32. [PMID: 39955275 PMCID: PMC11829966 DOI: 10.1038/s41541-025-01087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Influenza virus nucleoprotein (NP) is a promising target for universal influenza vaccines due to its conservation and high immunogenicity. Here, we uncovered a previously unknown factor that E. coli-produced NP carries bacterial RNA, which is crucial for its high immunogenicity but may pose safety and consistency concerns due to batch variability. To address these concerns, we developed a NP mutant (NPmut) that lacks RNA binding activity but can be loaded with CpG1826, a synthetic oligodeoxynucleotide adjuvant that has been used in the FDA-approved Hepatitis B vaccine. The CpG1826-loaded NPmut induced immune responses comparable to RNA-bound NP while eliminating safety risks. Additionally, the mixture of CpG1826-loaded NPmut and 3M2e protein (three tandem copies of the ectodomain of influenza M2 protein) provided enhanced protection against influenza viruses challenge. Our findings highlight the adjuvant activity of bacterial RNA in E. coli-produced NP and propose a safer strategy for developing universal influenza vaccines.
Collapse
Affiliation(s)
- Cen Chen
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Aili Guo
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Pengju Guo
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Wanpo Zhang
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changqin Gu
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| |
Collapse
|
2
|
Li Z, Yu Y, Cao X, Wang Y, Lu J, Feng Y, Jiang Y, Lu Y. Mechanism of Ca 2+ overload caused by STIM1/ORAI1 activation of store-operated Ca 2+ entry (SOCE) in hydrogen peroxide-induced mitochondrial damage and apoptosis in human primary melanocytes. Mol Biol Rep 2025; 52:223. [PMID: 39937331 DOI: 10.1007/s11033-025-10329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Vitiligo is a common depigmentation disorder. Oxidative stress in melanocytes is thought to be the primary cause of vitiligo. Imbalances in cellular calcium ion (Ca2+) levels may be associated with the onset and progression of various diseases through a process that has been linked to oxidative stress. The purpose of this study was to investigate the regulatory mechanism by which Ca2+ levels change in normal human melanocytes (NHMs) under oxidative stress, thereby providing new insights and potential clinical therapeutic targets for the pathogenesis and treatment of vitiligo. METHODS AND RESULTS Single-cell RNA sequencing data from vitiligo patients were analyzed using bioinformatics techniques. NHMs were treated with hydrogen peroxide (H2O2), store-operated Ca2+ entry (SOCE) blocker BTP2, and SOCE agonist cyclopiazonic acid. Flow cytometry was used to detect Ca2+ levels, apoptosis rates, intra-mitochondrial reactive oxygen species (ROS) levels, and mitochondrial membrane potential (MMP) damage. The expression levels of target proteins were detected using immunofluorescence, quantitative real-time PCR, and western blotting. We found that H2O2-induced oxidative stress resulted in significantly increased intracellular Ca2+ levels, upregulation of stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel protein (ORAI1), and mitochondrial dysfunction. Inhibition of SOCE and small interfering RNA-mediated silencing of STIM1/ORAI1 expression lowered mitochondrial levels of ROS and oxidative stress-induced intracellular Ca2+ overload and restored MMP, ultimately terminating oxidative stress-induced apoptosis. CONCLUSIONS Oxidative stress upregulates STIM1/ORAI1 expression, leading to melanocyte apoptosis via increased Ca2+ influx, whereas inhibition of SOCE protects melanocytes against oxidative stress-induced damage.
Collapse
Affiliation(s)
- Ziyu Li
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongkai Yu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuechen Cao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yidan Wang
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiawei Lu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yifei Feng
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Xinjiang Uygur Autonomous Region, Xinjiang, 835000, China.
| | - Yan Lu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Kosuru R, Romito O, Sharma GP, Ferraresso F, Ghadrdoost Nakhchi B, Yang K, Mammoto T, Mammoto A, Kastrup CJ, Zhang DX, Goldspink PH, Trebak M, Chrzanowska M. Rap1A Modulates Store-Operated Calcium Entry in the Lung Endothelium: A Novel Mechanism Controlling NFAT-Mediated Vascular Inflammation and Permeability. Arterioscler Thromb Vasc Biol 2024; 44:2271-2287. [PMID: 39324266 PMCID: PMC11495542 DOI: 10.1161/atvbaha.124.321458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Store-operated calcium entry mediated by STIM (stromal interaction molecule)-1-Orai1 (calcium release-activated calcium modulator 1) is essential in endothelial cell (EC) functions, affecting signaling, NFAT (nuclear factor for activated T cells)-induced transcription, and metabolic programs. While the small GTPase Rap1 (Ras-proximate-1) isoforms, including the predominant Rap1B, are known for their role in cadherin-mediated adhesion, EC deletion of Rap1A after birth uniquely disrupts lung endothelial barrier function. Here, we elucidate the specific mechanisms by which Rap1A modulates lung vascular integrity and inflammation. METHODS The role of EC Rap1A in lung inflammation and permeability was examined using in vitro and in vivo approaches. RESULTS We explored Ca2+ signaling in human ECs following siRNA-mediated knockdown of Rap1A or Rap1B. Rap1A knockdown, unlike Rap1B, significantly increased store-operated calcium entry in response to a GPCR (G-protein-coupled receptor) agonist, ATP (500 µmol/L), or thapsigargin (250 nmol/L). This enhancement was attenuated by Orai1 channel blockers 10 μmol/L BTP2 (N-[4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-1,2,3-thiadiazole-5-carboxamide), 10 μmol/L GSK-7975A, and 5 μmol/L Gd3+. Whole-cell patch clamp measurements revealed enhanced Ca2+ release-activated Ca2+ current density in siRap1A ECs. Rap1A depletion in ECs led to increased NFAT1 nuclear translocation and activity and elevated levels of proinflammatory cytokines (CXCL1 [C-X-C motif chemokine ligand 1], CXCL11 [C-X-C motif chemokine 11], CCL5 [chemokine (C-C motif) ligand 5], and IL-6 [interleukin-6]). Notably, reducing Orai1 expression in siRap1A ECs normalized store-operated calcium entry, NFAT activity, and endothelial hyperpermeability in vitro. EC-specific Rap1A knockout (Rap1AiΔEC) mice displayed an inflammatory lung phenotype with increased lung permeability and inflammation markers, along with higher Orai1 expression. Delivery of siRNA against Orai1 to lung endothelium using lipid nanoparticles effectively normalized Orai1 levels in lung ECs, consequently reducing hyperpermeability and inflammation in Rap1AiΔEC mice. CONCLUSIONS Our findings uncover a novel role of Rap1A in regulating Orai1-mediated Ca2+ entry and expression, crucial for NFAT-mediated transcription and endothelial inflammation. This study distinguishes the unique function of Rap1A from that of the predominant Rap1B isoform and highlights the importance of normalizing Orai1 expression in maintaining lung vascular integrity and modulating endothelial functions.
Collapse
Affiliation(s)
- Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | - Olivier Romito
- Department of Pharmacology and Chemical Biology (O.R., M.T.), University of Pittsburgh School of Medicine, PA
| | - Guru Prasad Sharma
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | - Francesca Ferraresso
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | | | - Kai Yang
- Data Science Institute (K.Y.), Medical College of Wisconsin, Milwaukee
| | - Tadanori Mammoto
- Department of Pediatrics (T.M., A.M.), Medical College of Wisconsin, Milwaukee
| | - Akiko Mammoto
- Department of Pediatrics (T.M., A.M.), Medical College of Wisconsin, Milwaukee
| | - Christian J. Kastrup
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
| | - David X. Zhang
- Department of Medicine (D.X.Z.), Medical College of Wisconsin, Milwaukee
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, University of Illinois Chicago (P.H.G.)
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology (O.R., M.T.), University of Pittsburgh School of Medicine, PA
- Vascular Medicine Institute (M.T.), University of Pittsburgh School of Medicine, PA
- UPMC Hillman Cancer Center (M.T.), University of Pittsburgh School of Medicine, PA
| | - Magdalena Chrzanowska
- Versiti Blood Research Institute, Milwaukee, WI (R.K., G.P.S., F.F., B.G.N., C.J.K., M.C.)
- Department of Pharmacology and Toxicology (M.C.), Medical College of Wisconsin, Milwaukee
- Cardiovascular Center (M.C.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
4
|
Zhang H, Feng Y, Si Y, Lu C, Wang J, Wang S, Li L, Xie W, Yue Z, Yong J, Dai S, Zhang L, Li X. Shank3 ameliorates neuronal injury after cerebral ischemia/reperfusion via inhibiting oxidative stress and inflammation. Redox Biol 2024; 69:102983. [PMID: 38064762 PMCID: PMC10755590 DOI: 10.1016/j.redox.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024] Open
Abstract
Shank3, a key molecule related to the development and deterioration of autism, has recently been found to downregulate in the murine brain after ischemia/reperfusion (I/R). Despite this discovery, however, its effects on neuronal injury and the mechanism underlying the effects remain to be clarified. To address this, in this study, based on genetically modified mice models, we revealed that the expression of Shank3 showed a time-dependent change in murine hippocampal neurons after I/R, and that conditional knockout (cko) of Shank3 in neurons resulted in aggravated neuronal injuries. The protective effects of Shank3 against oxidative stress and inflammation after I/R were achieved through direct binding STIM1 and subsequent proteasome-mediated degradation of STIM1. The STIM1 downregulation induced the phosphorylation of downstream Nrf2 Ser40, which subsequently translocated to the nucleus, and further increased the expression of antioxidant genes such as NQO1 and HO-1 in HT22 cells. In vivo, the study has further confirmed that double knockout of Shank3 and Stim1 alleviated oxidative stress and inflammation after I/R in Shank3cko mice. In conclusion, the present study has demonstrated that Shank3 interacts with STIM1 and inhibits post-I/R neuronal oxidative stress and inflammatory response via the Nrf2 pathway. This interaction can potentially contribute to the development of a promising method for I/R treatment.
Collapse
Affiliation(s)
- Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Feng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yanfang Si
- Department of Ophthalmology, The Eighth Medical Center, Affiliated to the Senior Department of Ophthalmology, The Third Medical Center, Chinese People's Liberation Army General Hospital, Beijing, 100091, China
| | - Chuanhao Lu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juan Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiquan Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenyu Xie
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheming Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Yong
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Yang Q, Saaoud F, Lu Y, Pu Y, Xu K, Shao Y, Jiang X, Wu S, Yang L, Tian Y, Liu X, Gillespie A, Luo JJ, Shi XM, Zhao H, Martinez L, Vazquez-Padron R, Wang H, Yang X. Innate immunity of vascular smooth muscle cells contributes to two-wave inflammation in atherosclerosis, twin-peak inflammation in aortic aneurysms and trans-differentiation potential into 25 cell types. Front Immunol 2024; 14:1348238. [PMID: 38327764 PMCID: PMC10847266 DOI: 10.3389/fimmu.2023.1348238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Vascular smooth muscle cells (VSMCs) are the predominant cell type in the medial layer of the aorta, which plays a critical role in aortic diseases. Innate immunity is the main driving force for cardiovascular diseases. Methods To determine the roles of innate immunity in VSMC and aortic pathologies, we performed transcriptome analyses on aortas from ApoE-/- angiotensin II (Ang II)-induced aortic aneurysm (AAA) time course, and ApoE-/- atherosclerosis time course, as well as VSMCs stimulated with danger-associated molecular patterns (DAMPs). Results We made significant findings: 1) 95% and 45% of the upregulated innate immune pathways (UIIPs, based on data of 1226 innate immune genes) in ApoE-/- Ang II-induced AAA at 7 days were different from that of 14 and 28 days, respectively; and AAA showed twin peaks of UIIPs with a major peak at 7 days and a minor peak at 28 days; 2) all the UIIPs in ApoE-/- atherosclerosis at 6 weeks were different from that of 32 and 78 weeks (two waves); 3) analyses of additional 12 lists of innate immune-related genes with 1325 cytokine and chemokine genes, 2022 plasma membrane protein genes, 373 clusters of differentiation (CD) marker genes, 280 nuclear membrane protein genes, 1425 nucleoli protein genes, 6750 nucleoplasm protein genes, 1496 transcription factors (TFs) including 15 pioneer TFs, 164 histone modification enzymes, 102 oxidative cell death genes, 68 necrotic cell death genes, and 47 efferocytosis genes confirmed two-wave inflammation in atherosclerosis and twin-peak inflammation in AAA; 4) DAMPs-stimulated VSMCs were innate immune cells as judged by the upregulation of innate immune genes and genes from 12 additional lists; 5) DAMPs-stimulated VSMCs increased trans-differentiation potential by upregulating not only some of 82 markers of 7 VSMC-plastic cell types, including fibroblast, osteogenic, myofibroblast, macrophage, adipocyte, foam cell, and mesenchymal cell, but also 18 new cell types (out of 79 human cell types with 8065 cell markers); 6) analysis of gene deficient transcriptomes indicated that the antioxidant transcription factor NRF2 suppresses, however, the other five inflammatory transcription factors and master regulators, including AHR, NF-KB, NOX (ROS enzyme), PERK, and SET7 promote the upregulation of twelve lists of innate immune genes in atherosclerosis, AAA, and DAMP-stimulated VSMCs; and 7) both SET7 and trained tolerance-promoting metabolite itaconate contributed to twin-peak upregulation of cytokines in AAA. Discussion Our findings have provided novel insights on the roles of innate immune responses and nuclear stresses in the development of AAA, atherosclerosis, and VSMC immunology and provided novel therapeutic targets for treating those significant cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Qiaoxi Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Beloit College, Beloit, WI, United States
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yujiang Pu
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sheng Wu
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ling Yang
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Tian
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jin Jun Luo
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xinghua Mindy Shi
- Department of Computer and Information Sciences, College of Science and Technology at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Hong Wang
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research and Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Moccia F, Brunetti V, Soda T, Berra-Romani R, Scarpellino G. Cracking the Endothelial Calcium (Ca 2+) Code: A Matter of Timing and Spacing. Int J Mol Sci 2023; 24:16765. [PMID: 38069089 PMCID: PMC10706333 DOI: 10.3390/ijms242316765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
A monolayer of endothelial cells lines the innermost surface of all blood vessels, thereby coming into close contact with every region of the body and perceiving signals deriving from both the bloodstream and parenchymal tissues. An increase in intracellular Ca2+ concentration ([Ca2+]i) is the main mechanism whereby vascular endothelial cells integrate the information conveyed by local and circulating cues. Herein, we describe the dynamics and spatial distribution of endothelial Ca2+ signals to understand how an array of spatially restricted (at both the subcellular and cellular levels) Ca2+ signals is exploited by the vascular intima to fulfill this complex task. We then illustrate how local endothelial Ca2+ signals affect the most appropriate vascular function and are integrated to transmit this information to more distant sites to maintain cardiovascular homeostasis. Vasorelaxation and sprouting angiogenesis were selected as an example of functions that are finely tuned by the variable spatio-temporal profile endothelial Ca2+ signals. We further highlighted how distinct Ca2+ signatures regulate the different phases of vasculogenesis, i.e., proliferation and migration, in circulating endothelial precursors.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
7
|
Kwok ML, Geyer M, Chan WC, Zhao S, Gu L, Huang F, Vogel SM, Petukhov PA, Komarova Y. Targeting EB3-IP 3R3 Interface with Cognate Peptide Protects from Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2023; 69:391-403. [PMID: 37290041 PMCID: PMC10557916 DOI: 10.1165/rcmb.2022-0217oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2022] [Accepted: 06/08/2023] [Indexed: 06/10/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a lung disease characterized by acute onset of noncardiogenic pulmonary edema, hypoxemia, and respiratory insufficiency. The current treatment for ARDS is mainly supportive in nature, providing a critical need for targeted pharmacological management. We addressed this medical problem by developing a pharmacological treatment for pulmonary vascular leakage, a culprit of alveolar damage and lung inflammation. Our novel therapeutic target is the microtubule accessory factor EB3 (end binding protein 3), which contributes to pulmonary vascular leakage by amplifying pathological calcium signaling in endothelial cells in response to inflammatory stimuli. EB3 interacts with IP3R3 (inositol 1,4,5-trisphosphate receptor 3) and orchestrates calcium release from endoplasmic reticulum stores. Here, we designed and tested the therapeutic benefits of a 14-aa peptide named CIPRI (cognate IP3 receptor inhibitor), which disrupted EB3-IP3R3 interaction in vitro and in lungs of mice challenged with endotoxin. Treatment with CIPRI or depletion of IP3R3 in lung microvascular endothelial monolayers mitigated calcium release from endoplasmic reticulum stores and prevented a disassembly of vascular endothelial cadherin junctions in response to the proinflammatory mediator α-thrombin. Furthermore, intravenous administration of CIPRI in mice mitigated inflammation-induced lung injury, blocked pulmonary microvascular leakage, prevented activation of NFAT (nuclear factor of activated T cells) signaling, and reduced production of proinflammatory cytokines in the lung tissue. CIPRI also improved survival of mice from endotoxemia and polymicrobial sepsis. Together, these data demonstrate that targeting EB3-IP3R3 interaction with a cognate peptide is a promising strategy to address hyperpermeability of microvessels in inflammatory lung diseases.
Collapse
Affiliation(s)
- Man Long Kwok
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Melissa Geyer
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Wan Ching Chan
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Shuangping Zhao
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Lianzhi Gu
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Fei Huang
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Steven M. Vogel
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Yulia Komarova
- Department of Pharmacology and Regenerative Medicine, College of Medicine, and
| |
Collapse
|
8
|
Feng B, Feng X, Yu Y, Xu H, Ye Q, Hu R, Fang X, Gao F, Wu J, Pan Q, Yu J, Lang G, Li L, Cao H. Mesenchymal stem cells shift the pro-inflammatory phenotype of neutrophils to ameliorate acute lung injury. Stem Cell Res Ther 2023; 14:197. [PMID: 37553691 PMCID: PMC10408228 DOI: 10.1186/s13287-023-03438-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2022] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) treatment plays a major role in the management of acute lung injury (ALI), and neutrophils are the initial line of defense against ALI. However, the effect of MSCs on neutrophils in ALI remains mostly unknown. METHODS We investigated the characteristics of neutrophils in lung tissue of ALI mice induced by lipopolysaccharide after treatment with MSCs using single-cell RNA sequencing. Neutrophils separated from lung tissue in ALI were co-cultured with MSCs, and then samples were collected for reverse transcription-polymerase chain reaction and flow cytometry. RESULTS During inflammation, six clusters of neutrophils were identified, annotated as activated, aged, and circulatory neutrophils. Activated neutrophils had higher chemotaxis, reactive oxygen species (ROS) production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase scores than aged neutrophils. Circulatory neutrophils occurred mainly in healthy tissue and were characterized by higher expression of Cxcr2 and Sell. Activated neutrophils tended to exhibit higher expression of Cxcl10 and Cd47, and lower expression of Cd24a, while aged neutrophils expressed a lower level of Cd47 and higher level of Cd24a. MSC treatment shifted activated neutrophils toward an aged neutrophil phenotype by upregulating the expression of CD24, thereby inhibiting inflammation by reducing chemotaxis, ROS production, and NADPH oxidase. CONCLUSION We identified the immunosuppressive effects of MSCs on the subtype distribution of neutrophils and provided new insight into the therapeutic mechanism of MSC treatment in ALI.
Collapse
Affiliation(s)
- Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Qingqing Ye
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Ruitian Hu
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Xinru Fang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Guanjing Lang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China.
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Tang N, Tian W, Ma GY, Xiao X, Zhou L, Li ZZ, Liu XX, Li CY, Wu KH, Liu W, Wang XY, Gao YY, Yang X, Qi J, Li D, Liu Y, Chen WS, Gao J, Li XQ, Cao W. TRPC channels blockade abolishes endotoxemic cardiac dysfunction by hampering intracellular inflammation and Ca 2+ leakage. Nat Commun 2022; 13:7455. [PMID: 36460692 PMCID: PMC9718841 DOI: 10.1038/s41467-022-35242-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2021] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
Intracellular Ca2+ dysregulation is a key marker in septic cardiac dysfunction; however, regulation of the classic Ca2+ regulatory modules cannot successfully abolish this symptom. Here we show that the knockout of transient receptor potential canonical (TRPC) channel isoforms TRPC1 and TRPC6 can ameliorate LPS-challenged heart failure and prolong survival in mice. The LPS-triggered Ca2+ release from the endoplasmic reticulum both in cardiomyocytes and macrophages is significantly inhibited by Trpc1 or Trpc6 knockout. Meanwhile, TRPC's molecular partner - calmodulin - is uncoupled during Trpc1 or Trpc6 deficiency and binds to TLR4's Pococurante site and atypical isoleucine-glutamine-like motif to block the inflammation cascade. Blocking the C-terminal CaM/IP3R binding domain in TRPC with chemical inhibitor could obstruct the Ca2+ leak and TLR4-mediated inflammation burst, demonstrating a cardioprotective effect in endotoxemia and polymicrobial sepsis. Our findings provide insight into the pathogenesis of endotoxemic cardiac dysfunction and suggest a novel approach for its treatment.
Collapse
Affiliation(s)
- Na Tang
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Wen Tian
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Guang-Yuan Ma
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiong Xiao
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Lei Zhou
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Ze-Zhi Li
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiao-Xiao Liu
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Chong-Yao Li
- grid.412262.10000 0004 1761 5538Department of Pharmacy, Xi’an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, Shaanxi China
| | - Ke-Han Wu
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Wenjuan Liu
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China
| | - Xue-Ying Wang
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Yuan-Yuan Gao
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Xin Yang
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Jianzhao Qi
- grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Ding Li
- grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Yang Liu
- grid.233520.50000 0004 1761 4404Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Wen-Sheng Chen
- grid.233520.50000 0004 1761 4404Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi China ,Department of Cardiovascular Surgery, Xi’an Gaoxin Hospital, Xi’an, Shaanxi China
| | - Jinming Gao
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiao-Qiang Li
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Wei Cao
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
10
|
β-carotene alleviates LPS-induced inflammation through regulating STIM1/ORAI1 expression in bovine mammary epithelial cells. Int Immunopharmacol 2022; 113:109377. [DOI: 10.1016/j.intimp.2022.109377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
11
|
Luan R, Ding D, Yang J. The protective effect of natural medicines against excessive inflammation and oxidative stress in acute lung injury by regulating the Nrf2 signaling pathway. Front Pharmacol 2022; 13:1039022. [PMID: 36467050 PMCID: PMC9709415 DOI: 10.3389/fphar.2022.1039022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Acute lung injury (ALI) is a common critical disease of the respiratory system that progresses into acute respiratory distress syndrome (ARDS), with high mortality, mainly related to pulmonary oxidative stress imbalance and severe inflammation. However, there are no clear and effective treatment strategies at present. Nuclear factor erythroid 2-related factor 2(Nrf2) is a transcription factor that interacts with multiple signaling pathways and regulates the activity of multiple oxidases (NOX, NOS, XO, CYP) related to inflammation and apoptosis, and exhibits antioxidant and anti-inflammatory roles in ALI. Recently, several studies have reported that the active ingredients of natural medicines show protective effects on ALI via the Nrf2 signaling pathway. In addition, they are cheap, naturally available, and possess minimal toxicity, thereby having good clinical research and application value. Herein, we summarized various studies on the protective effects of natural pharmaceutical components such as polyphenols, flavonoids, terpenoids, alkaloids, and polysaccharides on ALI through the Nrf2 signaling pathway and demonstrated existing gaps as well as future perspectives.
Collapse
|
12
|
Calcium–Permeable Channels and Endothelial Dysfunction in Acute Lung Injury. Curr Issues Mol Biol 2022; 44:2217-2229. [PMID: 35678679 PMCID: PMC9164020 DOI: 10.3390/cimb44050150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
The increased permeability of the lung microvascular endothelium is one critical initiation of acute lung injury (ALI). The disruption of vascular-endothelium integrity results in leakiness of the endothelial barrier and accumulation of protein-rich fluid in the alveoli. During ALI, increased endothelial-cell (EC) permeability is always companied by high frequency and amplitude of cytosolic Ca2+ oscillations. Mechanistically, cytosolic calcium oscillations include calcium release from internal stores and calcium entry via channels located in the cell membrane. Recently, numerous publications have shown substantial evidence that calcium-permeable channels play an important role in maintaining the integrity of the endothelium barrier function of the vessel wall in ALI. These novel endothelial signaling pathways are future targets for the treatment of lung injury. This short review focuses on the up-to-date research and provide insight into the contribution of calcium influx via ion channels to the disruption of lung microvascular endothelial-barrier function during ALI.
Collapse
|
13
|
Jiang Q, Huang X, Yu W, Huang R, Zhao X, Chen C. mTOR Signaling in the Regulation of CD4+ T Cell Subsets in Periodontal Diseases. Front Immunol 2022; 13:827461. [PMID: 35222410 PMCID: PMC8866697 DOI: 10.3389/fimmu.2022.827461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontal disease results from the inflammatory infiltration by the microbial community which is marked through tooth mobility and alveolar bone resorption. The inflammation in periodontal disease is mediated by CD4+ T cells through cytokine secretion and osteoclastogenetic activity. Historically, the inflammatory model in periodontal disease is described through disruption of the balance between two subsets of T helper cells which are T-helper type 1 (Th1) and T-helper type 2 (Th2). However, more and more studies have found that apart from subsets of helper T cells, regulatory T-cells and Th17 cells are also involved in the pathogenesis of periodontal diseases. Growing evidence proves that helper T cells differentiation, activation, and subset determination are under the strong impact of mTOR signaling. mTOR signaling could promote Th1 and Th17 cell differentiation and inhibit Treg commitment through different mTOR complexes, therefore we anticipate a regulation effect of mTOR signaling on periodontal diseases by regulating CD4+ T cell subsets. This review aims to integrate the topical researches about the role of different types of Th cells in the pathogenesis of periodontal diseases, as well as the regulation of mTOR signaling in the specification and selection of Th cell commitment.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wenjing Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ranran Huang
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xuefeng Zhao
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center of Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
14
|
Bruen C, Al-Saadi M, Michelson EA, Tanios M, Mendoza-Ayala R, Miller J, Zhang J, Stauderman K, Hebbar S, Hou PC. Auxora vs. placebo for the treatment of patients with severe COVID-19 pneumonia: a randomized-controlled clinical trial. Crit Care 2022; 26:101. [PMID: 35395943 PMCID: PMC8992417 DOI: 10.1186/s13054-022-03964-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Background Calcium release-activated calcium (CRAC) channel inhibitors block proinflammatory cytokine release, preserve endothelial integrity and may effectively treat patients with severe COVID-19 pneumonia. Methods CARDEA was a phase 2, randomized, double-blind, placebo-controlled trial evaluating the addition of Auxora, a CRAC channel inhibitor, to corticosteroids and standard of care in adults with severe COVID-19 pneumonia. Eligible patients were adults with ≥ 1 symptom consistent with COVID-19 infection, a diagnosis of COVID-19 confirmed by laboratory testing using polymerase chain reaction or other assay, and pneumonia documented by chest imaging. Patients were also required to be receiving oxygen therapy using either a high flow or low flow nasal cannula at the time of enrolment and have at the time of enrollment a baseline imputed PaO2/FiO2 ratio > 75 and ≤ 300. The PaO2/FiO2 was imputed from a SpO2/FiO2 determine by pulse oximetry using a non-linear equation. Patients could not be receiving either non-invasive or invasive mechanical ventilation at the time of enrolment. The primary endpoint was time to recovery through Day 60, with secondary endpoints of all-cause mortality at Day 60 and Day 30. Due to declining rates of COVID-19 hospitalizations and utilization of standard of care medications prohibited by regulatory guidance, the trial was stopped early. Results The pre-specified efficacy set consisted of the 261 patients with a baseline imputed PaO2/FiO2≤ 200 with 130 and 131 in the Auxora and placebo groups, respectively. Time to recovery was 7 vs. 10 days (P = 0.0979) for patients who received Auxora vs. placebo, respectively. The all-cause mortality rate at Day 60 was 13.8% with Auxora vs. 20.6% with placebo (P = 0.1449); Day 30 all-cause mortality was 7.7% and 17.6%, respectively (P = 0.0165). Similar trends were noted in all randomized patients, patients on high flow nasal cannula at baseline or those with a baseline imputed PaO2/FiO2 ≤ 100. Serious adverse events (SAEs) were less frequent in patients treated with Auxora vs. placebo and occurred in 34 patients (24.1%) receiving Auxora and 49 (35.0%) receiving placebo (P = 0.0616). The most common SAEs were respiratory failure, acute respiratory distress syndrome, and pneumonia. Conclusions Auxora was safe and well tolerated with strong signals in both time to recovery and all-cause mortality through Day 60 in patients with severe COVID-19 pneumonia. Further studies of Auxora in patients with severe COVID-19 pneumonia are warranted. Trial registration NCT04345614. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-03964-8.
Collapse
Affiliation(s)
- Charles Bruen
- Regions Hospital, Health Partners, St. Paul, MN, USA
| | | | - Edward A Michelson
- Department of Emergency Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Maged Tanios
- MemorialCare Long Beach Medical Center, Long Beach, CA, USA
| | | | | | | | - Kenneth Stauderman
- CalciMedica, Inc, 505 Coast Blvd. South Suite 307, La Jolla, CA, 92037, USA
| | - Sudarshan Hebbar
- CalciMedica, Inc, 505 Coast Blvd. South Suite 307, La Jolla, CA, 92037, USA.
| | - Peter C Hou
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Liang X, Xie J, Liu H, Zhao R, Zhang W, Wang H, Pan H, Zhou Y, Han W. STIM1 Deficiency In Intestinal Epithelium Attenuates Colonic Inflammation and Tumorigenesis by Reducing ER Stress of Goblet Cells. Cell Mol Gastroenterol Hepatol 2022; 14:193-217. [PMID: 35367664 PMCID: PMC9130113 DOI: 10.1016/j.jcmgh.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/29/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS As an indispensable component of store-operated Ca2+ entry, stromal interaction molecule 1 (STIM1) is known to promote colorectal cancer and T-cell-mediated inflammatory diseases. However, whether the intestinal mucosal STIM1 is involved in inflammatory bowel diseases (IBDs) is unclear. This study aimed to investigate the role of intestinal epithelial STIM1 in IBD. METHODS Inflammatory and matched normal intestinal tissues were collected from IBD patients to investigate the expression of STIM1. Intestinal epithelium-specific STIM1 conditional knockout mice (STIM1ΔIEC) were generated and induced to develop colitis and colitis-associated colorectal cancer. The mucosal barrier, including the epithelial barrier and mucus barrier, was analyzed. The mechanisms by which STIM1 regulate goblet cell endoplasmic reticulum stress and apoptosis were assessed. RESULTS STIM1 could regulate intestinal epithelial homeostasis. STIM1 was augmented in the inflammatory intestinal tissues of IBD patients. In dextran sodium sulfate-induced colitis, STIM1 deficiency in intestinal epithelium reduced the loss of goblet cells through alleviating endoplasmic reticulum stress induced by disturbed Ca2+ homeostasis, resulting in the maintenance of the integrated mucus layer. These effects prevented commensal bacteria from contacting and stimulating the intestinal epithelium of STIM1ΔIEC mice and thereby rendered STIM1ΔIEC mice less susceptible to colitis and colitis-associated colorectal cancer. In addition, microbial diversity in dextran sodium sulfate-treated STIM1ΔIEC mice slightly shifted to an advantageous bacteria, which further protected the intestinal epithelium. CONCLUSIONS Our results establish STIM1 as a crucial regulator for the maintenance of the intestinal barrier during colitis and provide a potential target for IBD treatment.
Collapse
Affiliation(s)
- Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hao Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Haidong Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China,Correspondence Address correspondence to: Weidong Han, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang 310016, China; fax: 86-571-86436673.
| |
Collapse
|
16
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
17
|
Systemic Effects of mitoTEMPO upon Lipopolysaccharide Challenge Are Due to Its Antioxidant Part, While Local Effects in the Lung Are Due to Triphenylphosphonium. Antioxidants (Basel) 2022; 11:antiox11020323. [PMID: 35204206 PMCID: PMC8868379 DOI: 10.3390/antiox11020323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 01/08/2023] Open
Abstract
Mitochondria-targeted antioxidants (mtAOX) are a promising treatment strategy against reactive oxygen species-induced damage. Reports about harmful effects of mtAOX lead to the question of whether these could be caused by the carrier molecule triphenylphosphonium (TPP). The aim of this study was to investigate the biological effects of the mtAOX mitoTEMPO, and TPP in a rat model of systemic inflammatory response. The inflammatory response was induced by lipopolysaccharide (LPS) injection. We show that mitoTEMPO reduced expression of inducible nitric oxide synthase in the liver, lowered blood levels of tissue damage markers such as liver damage markers (aspartate aminotransferase and alanine aminotransferase), kidney damage markers (urea and creatinine), and the general organ damage marker, lactate dehydrogenase. In contrast, TPP slightly, but not significantly, increased the LPS-induced effects. Surprisingly, both mitoTEMPO and TPP reduced the wet/dry ratio in the lung after 24 h. In the isolated lung, both substances enhanced the increase in pulmonary arterial pressure induced by LPS observed within 3 h after LPS treatments but did not affect edema formation at this time. Our data suggest that beneficial effects of mitoTEMPO in organs are due to its antioxidant moiety (TEMPO), except for the lung where its effects are mediated by TPP.
Collapse
|
18
|
Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022; 11:253. [PMID: 35053369 PMCID: PMC8773957 DOI: 10.3390/cells11020253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| |
Collapse
|
19
|
Song T, Li P, Wang Q, Hao B, Wang Y, Bian Y, Shi Y. Comprehensive Assessment of the STIMs and Orais Expression in Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2022; 13:874987. [PMID: 35669690 PMCID: PMC9165061 DOI: 10.3389/fendo.2022.874987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/13/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disease characterized by irregular menstrual, hyperandrogenism, and polycystic ovaries. The definitive mechanism of the disorder is not fully elucidated. Store-operated Ca2+ entry (SOCE) plays a role in glucose and lipid metabolism, inflammation, hormone secretion, and cell proliferation. STIMs and Orais are the main elements of SOCE. The potential role of SOCE in PCOS pathogenesis remains unclear. METHODS The expression of STIMs and Orais in granulosa cells (GCs) derived from 83 patients with PCOS and 83 controls were analyzed, respectively, by using quantitative reverse transcription polymerase chain reaction. Binary regression analysis was used to identify the factors affecting PCOS after adjusted by body mass index and age. Pearson correlation analysis was used to determine the association between PCOS phenotypes and SOCE genes expression. RESULTS Significantly increased expression of STIM1, STIM2, Orai1, and Orai2 were observed in patients with PCOS compared with controls (P = 0.037, P = 0.004, P ≤ 0.001, and P = 0.013, respectively), whereas the expression of Orai3 was decreased (P = 0.003). In addition, the expression levels of STIMs and Orais were identified as the factors affecting PCOS (P < 0.05). The expressions of these genes were correlated with hormone level and antral follicle count (P < 0.05). CONCLUSIONS For the first time, our findings indicated that the elements of SOCE were differently expressed, where STIM1, STIM2, Orai1, and Orai2 significantly increased, whereas Orai3 decreased in PCOS GCs, which might be dominantly involved in dysfunction of ovarian GCs and hormonal changes in PCOS.
Collapse
Affiliation(s)
- Tian Song
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Ping Li
- Department of Reproductive Medicine, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen, China
| | - Qiumin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Baozhen Hao
- Shandong Provincial Maternal and Child Health Care Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Guangdong Provincial People’s Hospital, Guangzhou, China
- *Correspondence: Yuhua Shi,
| |
Collapse
|
20
|
Basile DP, Collett JA. Orai1: A New Therapeutic Target for the Acute Kidney Injury-to-Chronic Kidney Disease Transition. Nephron Clin Pract 2022; 146:264-267. [PMID: 34515158 PMCID: PMC8873212 DOI: 10.1159/000518177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 01/03/2023] Open
Abstract
This review focuses on the potential mediation in the acute kidney injury (AKI)-to-chronic kidney disease (CKD) transition by lymphocytes. We highlight evidence that lymphocytes, particularly Th17 cells, modulate the severity of both acute injury and chronic kidney disease. Th17 cells are strongly influenced by the activity of the store-operated Ca2+channel Orai1, which is upregulated on lymphocytes in animal models of AKI. Inhibition of this channel attenuates both acute and chronic kidney injury in rodent models. In addition, Oria1+ cells are increased in peripheral blood of patients with AKI. Similarly, peripheral blood cells manifest an early and sustained increase in Orai1 expression in a rat model of ischemia/reperfusion, suggesting that blood cell Orai1 may represent a marker informing potential Th17 activity in the setting of AKI or the AKI-to-CKD transition.
Collapse
Affiliation(s)
- David P Basile
- Department of Anatomy, Cell Biology & Physiology, Indiana University of Medicine, Indianapolis, Indiana, USA
| | - Jason A Collett
- Department of Anatomy, Cell Biology & Physiology, Indiana University of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Liu Y, Zhou S, Xiang D, Ju L, Shen D, Wang X, Wang Y. Friend or Foe? The Roles of Antioxidants in Acute Lung Injury. Antioxidants (Basel) 2021; 10:1956. [PMID: 34943059 PMCID: PMC8750496 DOI: 10.3390/antiox10121956] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency caused by various intra- and extra-pulmonary injury factors. The oxidative stress caused by excessive reactive oxygen species (ROS) produced in the lungs plays an important role in the pathogenesis of ALI. ROS is a "double-edged sword", which is widely involved in signal transduction and the life process of cells at a physiological concentration. However, excessive ROS can cause mitochondrial oxidative stress, leading to the occurrence of various diseases. It is well-known that antioxidants can alleviate ALI by scavenging ROS. Nevertheless, more and more studies found that antioxidants have no significant effect on severe organ injury, and may even aggravate organ injury and reduce the survival rate of patients. Our study introduces the application of antioxidants in ALI, and explore the mechanisms of antioxidants failure in various diseases including it.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| | - Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan 430071, China
| | - Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.L.); (D.S.)
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China; (S.Z.); (D.X.)
| |
Collapse
|
22
|
Nascimento Da Conceicao V, Sun Y, Ramachandran K, Chauhan A, Raveendran A, Venkatesan M, DeKumar B, Maity S, Vishnu N, Kotsakis GA, Worley PF, Gill DL, Mishra BB, Madesh M, Singh BB. Resolving macrophage polarization through distinct Ca 2+ entry channel that maintains intracellular signaling and mitochondrial bioenergetics. iScience 2021; 24:103339. [PMID: 34816101 PMCID: PMC8591423 DOI: 10.1016/j.isci.2021.103339] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 01/21/2023] Open
Abstract
Transformation of naive macrophages into classically (M1) or alternatively (M2) activated macrophages regulates the inflammatory response. Here, we identified that distinct Ca2+ entry channels determine the IFNγ-induced M1 or IL-4-induced M2 transition. Naive or M2 macrophages exhibit a robust Ca2+ entry that was dependent on Orai1 channels, whereas the M1 phenotype showed a non-selective TRPC1 current. Blockade of Ca2+ entry suppresses pNF-κB/pJNK/STAT1 or STAT6 signaling events and consequently lowers cytokine production that is essential for M1 or M2 functions. Of importance, LPS stimulation shifted M2 cells from Orai1 toward TRPC1-mediated Ca2+ entry and TRPC1-/- mice exhibited transcriptional changes that suppress pro-inflammatory cytokines. In contrast, Orai1-/- macrophages showed a decrease in anti-inflammatory cytokines and exhibited a suppression of mitochondrial oxygen consumption rate and inhibited mitochondrial shape transition specifically in the M2 cells. Finally, alterations in TRPC1 or Orai1 expression determine macrophage polarization suggesting a distinct role of Ca2+ channels in modulating macrophage transformation.
Collapse
Affiliation(s)
| | - Yuyang Sun
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Karthik Ramachandran
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Arun Chauhan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Amritha Raveendran
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Manigandan Venkatesan
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Bony DeKumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Soumya Maity
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Neelanjan Vishnu
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - George A. Kotsakis
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul F. Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald L. Gill
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, PA 17033, USA
| | - Bibhuti B. Mishra
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Muniswamy Madesh
- Department of Medicine, Cardiology Division, Center for Precision Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Brij B. Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
23
|
Kan X, Chen Y, Huang B, Fu S, Guo W, Ran X, Cao Y, Xu D, Cheng J, Yang Z, Xu Y. Effect of Palrnatine on lipopolysaccharide-induced acute lung injury by inhibiting activation of the Akt/NF -κB pathway. J Zhejiang Univ Sci B 2021; 22:929-940. [PMID: 34783223 DOI: 10.1631/jzus.b2000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
Inflammation plays an important role in the development of acute lung injury (ALI). Severe pulmonary inflammation can cause acute respiratory distress syndrome (ARDS) or even death. Expression of proinflammatory interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) in the process of pulmonary inflammation will further exacerbate the severity of ALI. The purpose of this study was to explore the effect of Palrnatine (Pa) on lipopolysaccharide (LPS)-induced mouse ALI and its underlying mechanism. Pa, a natural product, has a wide range of pharmacological activities with the potential to protect against lung injury. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to detect the expression and translation of inflammatory genes and proteins in vitro and in vivo. Immunoprecipitation was used to detect the degree of P65 translocation into the nucleus. We also used molecular modeling to further clarify the mechanism of action. The results showed that Pa pretreatment could significantly inhibit the expression and secretion of the inflammatory cytokine IL-1β, and significantly reduce the protein level of the proinflammatory protease iNOS, in both in vivo and in vitro models induced by LPS. Further mechanism studies showed that Pa could significantly inhibit the activation of the protein kinase B (Akt)/nuclear factor-κB (NF-κB) signaling pathway in the LPS-induced ALI mode and in LPS-induced RAW264.7 cells. Through molecular dynamics simulation, we observed that Pa was bound to the catalytic pocket of Akt and effectively inhibited the biological activity of Akt. These results indicated that Pa significantly relieves LPS-induced ALI by activating the Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yingsheng Chen
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Bingxu Huang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Xin Ran
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Dianwen Xu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Ji Cheng
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Zhanqing Yang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Yanling Xu
- Department of Respiratory Medicine, the Second Hospital, Jilin University, Changchun 130012, China.
| |
Collapse
|
24
|
Relevance of stromal interaction molecule 1 (STIM1) in experimental and human stroke. Pflugers Arch 2021; 474:141-153. [PMID: 34757454 DOI: 10.1007/s00424-021-02636-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Stroke represents a main cause of death and permanent disability worldwide. In the attempt to develop targeted preventive and therapeutic strategies, several efforts were performed over the last decades to identify the specific molecular abnormalities preceding cerebral ischemia and neuronal death. In this regard, mitochondrial dysfunction, autophagy, and intracellular calcium homeostasis appear important contributors to stroke development, as underscored by recent pre-clinical evidence. Intracellular calcium (Ca2+) homeostasis is regulated, among other mechanisms, by the calcium sensor stromal interaction molecule 1 (STIM1) and calcium release-activated calcium modulator (ORAI) members, which mediate the store-operated Ca2+ entry (SOCE). The activity of SOCE is deregulated in animal models of ischemic stroke, leading to ischemic injury exacerbation. We found a different pattern of expression of few SOCE components, dependent from a STIM1 mutation, in cerebral endothelial cells isolated from the stroke-prone spontaneously hypertensive rat (SHRSP), compared to the stroke-resistant (SHRSR) strain, suggesting a potential involvement of this mechanism into the stroke predisposition of SHRSP. In this article, we discuss the relevant role of STIM1 in experimental stroke, as highlighted by the current literature and by our recent experimental findings, and the available evidence in the human disease. We also provide a glance on future perspectives and clinical implications of STIM1.
Collapse
|
25
|
Zhu X, Zhan Y, Gu Y, Huang Q, Wang T, Deng Z, Xie J. Cigarette Smoke Promotes Interleukin-8 Production in Alveolar Macrophages Through the Reactive Oxygen Species/Stromal Interaction Molecule 1/Ca 2+ Axis. Front Physiol 2021; 12:733650. [PMID: 34690806 PMCID: PMC8531208 DOI: 10.3389/fphys.2021.733650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), primarily attributed to cigarette smoke (CS), is characterized by multiple pathophysiological changes, including oxidative stress and inflammation. Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor that regulates Ca2+ entry in different types of cells. The present study aimed to explore the relationship between CS-induced oxidative stress and inflammation, as well as the functional role of STIM1 thereinto. Our results showed that the reactive oxygen species (ROS)/STIM1/Ca2+ axis played a critical role in CS-induced secretion of interleukin (IL)-8 in human alveolar macrophages. Specifically, smokers with COPD (SC) showed higher levels of ROS in the lung tissues compared with healthy non-smokers (HN). STIM1 was upregulated in the lung tissues of COPD patients. The expression of STIM1 was positively associated with ROS levels and negatively correlated with pulmonary function. The expression of STIM1 was also increased in the bronchoalveolar lavage fluid (BALF) macrophages of COPD patients and PMA-differentiated THP-1 macrophages stimulated by cigarette smoke extract (CSE). Additionally, CSE-induced upregulation of STIM1 in PMA-differentiated THP-1 macrophages was inhibited by pretreatment with N-acetylcysteine (NAC), a ROS scavenger. Transfection with small interfering RNA (siRNA) targeting STIM1 and pretreatment with NAC alleviated CSE-induced increase in intracellular Ca2+ levels and IL-8 expression. Furthermore, pretreatment with SKF-96365 and 2-APB, the inhibitors of Ca2+ influx, suppressed CSE-induced secretion of IL-8. In conclusion, our study demonstrates that CSE-induced ROS production may increase the expression of STIM1 in macrophages, which further promotes the release of IL-8 by regulating Ca2+ entry. These data suggest that STIM1 may play a crucial role in CSE-induced ROS production and inflammation, and participate in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Xianying Zhu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Inhibition of Peroxiredoxin 6 PLA2 Activity Decreases Oxidative Stress and the Severity of Acute Lung Injury in the Mouse Cecal Ligation and Puncture Model. Antioxidants (Basel) 2021; 10:antiox10111676. [PMID: 34829547 PMCID: PMC8615065 DOI: 10.3390/antiox10111676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
The use of agents to inhibit the production of reactive oxygen species (ROS) has been proposed for the treatment of Acute Lung Injury (ALI). However, this approach also inhibits the bactericidal activity of polymorphonuclear leucocytes (PMN) and other cells, raising the possibility of aggravating lung injury in ALI associated with bacterial infection. We used the cecal ligation and puncture (CLP) model of ALI associated with sepsis to investigate the effect of inhibiting NADPH oxidase 2 (NOX2)-derived ROS production, the main source of ROS in lungs. A phospholipase A2 inhibitor called peroxiredoxin 6 inhibitory peptide-2 (PIP-2) was used to inhibit NOX2 activation; the peptide prevents liberation of Rac, a necessary NOX2 co-factor. At 18 h after intravenous treatment with 2 µg PIP-2 /gram body weight (wt), the number of colony-forming bacteria in lungs and peritoneal fluid of mice with CLP was approximately doubled as compared to untreated mice. Treatment with 10 µg PIP-2/g body wt resulted in 100% mortality within 18 h. Antibiotic treatment abolished both the increase in lung bacteria with low dose PIP-2 and the increased mortality with high dose PIP-2. Treatment with PIP-2 plus antibiotics resulted in significantly improved lung histology, decreased PMN infiltration, decreased lung fluid accumulation, and decreased oxidative lung injury compared to antibiotics alone. We conclude that the administration of PIP-2 provides partial protection against lung injury in a model of ALI due to bacterial infection, while concurrent antibiotic treatment abolishes the deleterious effects of PIP-2 on lung bacterial clearance. These results suggest that addition of PIP-2 to the antibiotic regimen is beneficial for treatment of ALI associated with bacterial infection.
Collapse
|
27
|
Negri S, Faris P, Moccia F. Reactive Oxygen Species and Endothelial Ca 2+ Signaling: Brothers in Arms or Partners in Crime? Int J Mol Sci 2021; 22:ijms22189821. [PMID: 34575985 PMCID: PMC8465413 DOI: 10.3390/ijms22189821] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+ signals to regulate vascular functions, while excessive ROS production may exploit dysregulated Ca2+ dynamics to induce endothelial injury. Herein, we survey how ROS induce endothelial Ca2+ signals to regulate vascular functions and, vice versa, how aberrant ROS generation may exploit the Ca2+ handling machinery to promote endothelial dysfunction. ROS elicit endothelial Ca2+ signals by regulating inositol-1,4,5-trisphosphate receptors, sarco-endoplasmic reticulum Ca2+-ATPase 2B, two-pore channels, store-operated Ca2+ entry (SOCE), and multiple isoforms of transient receptor potential (TRP) channels. ROS-induced endothelial Ca2+ signals regulate endothelial permeability, angiogenesis, and generation of vasorelaxing mediators and can be exploited to induce therapeutic angiogenesis, rescue neurovascular coupling, and induce cancer regression. However, an increase in endothelial [Ca2+]i induced by aberrant ROS formation may result in endothelial dysfunction, inflammatory diseases, metabolic disorders, and pulmonary artery hypertension. This information could pave the way to design alternative treatments to interfere with the life-threatening interconnection between endothelial ROS and Ca2+ signaling under multiple pathological conditions.
Collapse
|
28
|
Fu P, Epshtein Y, Ramchandran R, Mascarenhas JB, Cress AE, Jacobson J, Garcia JGN, Natarajan V. Essential role for paxillin tyrosine phosphorylation in LPS-induced mitochondrial fission, ROS generation and lung endothelial barrier loss. Sci Rep 2021; 11:17546. [PMID: 34475475 PMCID: PMC8413352 DOI: 10.1038/s41598-021-97006-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Accepted: 08/12/2021] [Indexed: 11/09/2022] Open
Abstract
We have shown that both reactive oxygen species (ROS) and paxillin tyrosine phosphorylation regulate LPS-induced human lung endothelial permeability. Mitochondrial ROS (mtROS) is known to increase endothelial cell (EC) permeability which requires dynamic change in mitochondrial morphology, events that are likely to be regulated by paxillin. Here, we investigated the role of paxillin and its tyrosine phosphorylation in regulating LPS-induced mitochondrial dynamics, mtROS production and human lung microvascular EC (HLMVEC) dysfunction. LPS, in a time-dependent manner, induced higher levels of ROS generation in the mitochondria compared to cytoplasm or nucleus. Down-regulation of paxillin expression with siRNA or ecto-expression of paxillin Y31F or Y118F mutant plasmids attenuated LPS-induced mtROS in HLMVECs. Pre-treatment with MitoTEMPO, a scavenger of mtROS, attenuated LPS-induced mtROS, endothelial permeability and VE-cadherin phosphorylation. Further, LPS-induced mitochondrial fission in HLMVECs was attenuated by both a paxillin siRNA, and paxillin Y31F/Y118F mutant. LPS stimulated phosphorylation of dynamin-related protein (DRP1) at S616, which was also attenuated by paxillin siRNA, and paxillinY31/Y118 mutants. Inhibition of DRP1 phosphorylation by P110 attenuated LPS-induced mtROS and endothelial permeability. LPS challenge of HLMVECs enhanced interaction between paxillin, ERK, and DRP1, and inhibition of ERK1/2 activation with PD98059 blocked mitochondrial fission. Taken together, these results suggest a key role for paxillin tyrosine phosphorylation in LPS-induced mitochondrial fission, mtROS generation and EC barrier dysfunction.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, COMRB Room # 3137, 909, South Wolcott Avenue, Chicago, IL, 60612, USA. .,The Affiliated Hospital of Medical School, Medical School of Ningbo University, 247 Renmin Road, Ningbo, China.
| | - Yulia Epshtein
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramaswamy Ramchandran
- Department of Pharmacology, University of Illinois at Chicago, COMRB Room # 3137, 909, South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Joseph B Mascarenhas
- Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Anne E Cress
- Departments of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jeffrey Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- Department of Medicine, College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, COMRB Room # 3137, 909, South Wolcott Avenue, Chicago, IL, 60612, USA. .,Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Trevelin SC, Sag CM, Zhang M, Alves-Filho JC, Cunha TM, dos Santos CX, Sawyer G, Murray T, Brewer A, Laurindo FRM, Protti A, Lopes LR, Ivetic A, Cunha FQ, Shah AM. Endothelial Nox2 Limits Systemic Inflammation and Hypotension in Endotoxemia by Controlling Expression of Toll-Like Receptor 4. Shock 2021; 56:268-277. [PMID: 34276040 PMCID: PMC8284354 DOI: 10.1097/shk.0000000000001706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2020] [Revised: 09/29/2020] [Accepted: 12/02/2020] [Indexed: 02/01/2023]
Abstract
ABSTRACT Leukocyte Nox2 is recognized to have a fundamental microbicidal function in sepsis but the specific role of Nox2 in endothelial cells (EC) remains poorly elucidated. Here, we tested the hypothesis that endothelial Nox2 participates in the pathogenesis of systemic inflammation and hypotension induced by LPS. LPS was injected intravenously in mice with Tie2-targeted deficiency or transgenic overexpression of Nox2. Mice with Tie2-targeted Nox2 deficiency had increased circulating levels of TNF-α, enhanced numbers of neutrophils trapped in lungs, and aggravated hypotension after LPS injection, as compared to control LPS-injected animals. In contrast, Tie2-driven Nox2 overexpression attenuated inflammation and prevented the hypotension induced by LPS. Because Tie2-Cre targets both EC and myeloid cells we generated bone marrow chimeric mice with Nox2 deletion restricted to leukocytes or ECs. Mice deficient in Nox2 either in leukocytes or ECs had reduced LPS-induced neutrophil trapping in the lungs and lower plasma TNF-α levels as compared to control LPS-injected mice. However, the pronounced hypotensive response to LPS was present only in mice with EC-specific Nox2 deletion. Experiments in vitro with human vein or aortic endothelial cells (HUVEC and HAEC, respectively) treated with LPS revealed that EC Nox2 controls NF-κB activation and the transcription of toll-like receptor 4 (TLR4), which is the recognition receptor for LPS. In conclusion, these results suggest that endothelial Nox2 limits NF-κB activation and TLR4 expression, which in turn attenuates the severity of hypotension and systemic inflammation induced by LPS.
Collapse
Affiliation(s)
- Silvia Cellone Trevelin
- King's College London, British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Can Martin Sag
- Department of Internal Medicine II, University Hospital of Regensburg, Regensburg, Germany
| | - Min Zhang
- King's College London, British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Célio Xavier dos Santos
- King's College London, British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Greta Sawyer
- King's College London, British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Thomas Murray
- King's College London, British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Alison Brewer
- King's College London, British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | | | - Andrea Protti
- King's College London, British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Lucia Rossetti Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Aleksandar Ivetic
- King's College London, British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ajay M. Shah
- King's College London, British Heart Foundation Centre for Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| |
Collapse
|
30
|
Hakami NY, Dusting GJ, Chan EC, Shah MH, Peshavariya HM. Wound Healing After Alkali Burn Injury of the Cornea Involves Nox4-Type NADPH Oxidase. Invest Ophthalmol Vis Sci 2021; 61:20. [PMID: 33079994 PMCID: PMC7585390 DOI: 10.1167/iovs.61.12.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Corneal injury that occurs after burning with alkali initiates wound-healing processes, including inflammation, neovascularization, and fibrosis. Excessive reactions to injury can reduce corneal transparency and thereby compromise vision. The NADPH oxidase (Nox) enzyme complex is known to be involved in cell signaling for wound-healing angiogenesis, but its role in corneal neovascularization has been little studied. Methods The center corneas of wild-type and Nox4 knockout (KO) mice were injured with 3 µL 1 M NaOH, while the contralateral corneas remained untouched. On day 7, mRNA expression levels of NADPH oxidase isoforms, the proangiogenic factors VEGF-A and TGFβ1, and proinflammatory genes ICAM-1 and VCAM-1 were determined. Corneal neovascularization and fibrosis were visualized using PECAM-1 antibody and picrosirius red staining, respectively, on the same day. Results Expressions of both Nox2 and Nox4 gene isoforms as well as the above genes were markedly increased in the injured corneas at 7 days. Injured corneas showed neovascularization and fibrosis as well as an increase in clinical opacity score. All responses stimulated by alkali burn were abrogated in Nox4 KO mice. Conclusions Nox4 could be a new target to treat pathologic corneal wound-healing responses and such targeting might prevent blindness caused by burn injuries.
Collapse
Affiliation(s)
- Nora Y Hakami
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia.,Faculty of Applied Medical Sciences, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Gregory J Dusting
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Elsa C Chan
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Hitesh M Peshavariya
- Centre for Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Bruen C, Miller J, Wilburn J, Mackey C, Bollen TL, Stauderman K, Hebbar S. Auxora for the Treatment of Patients With Acute Pancreatitis and Accompanying Systemic Inflammatory Response Syndrome: Clinical Development of a Calcium Release-Activated Calcium Channel Inhibitor. Pancreas 2021; 50:537-543. [PMID: 33939666 PMCID: PMC8104014 DOI: 10.1097/mpa.0000000000001793] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/26/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To assess the safety of Auxora in patients with acute pancreatitis (AP), systemic inflammatory response syndrome (SIRS), and hypoxemia, and identify efficacy endpoints to prospectively test in future studies. METHODS This phase 2, open-label, dose-response study randomized patients with AP, accompanying SIRS, and hypoxemia (n = 21) to receive low-dose or high-dose Auxora plus standard of care (SOC) or SOC alone. All patients received pancreatic contrast-enhanced computed tomography scans at screenings, day 5/discharge, and as clinically required 90 days postrandomization; scans were blinded and centrally read to determine AP severity using computed tomography severity index. Solid food tolerance was assessed at every meal and SIRS every 12 hours. RESULTS The number of patients experiencing serious adverse events was not increased with Auxora versus SOC alone. Three (36.5%) patients with moderate AP receiving low-dose Auxora improved to mild AP; no computed tomography severity index improvements were observed with SOC. By study end, patients receiving Auxora better tolerated solid foods, had less persistent SIRS, and had reduced hospitalization versus SOC. CONCLUSIONS The favorable safety profile and patient outcomes suggest Auxora may be an appropriate early treatment for patients with AP and SIRS. Clinical development will continue in a randomized, controlled, blinded, dose-ranging study.
Collapse
Affiliation(s)
- Charles Bruen
- From the Departments of Critical Care Medicine
- Emergency Medicine, Regions Hospital, HealthPartners, St. Paul, MN
| | - Joseph Miller
- Departments of Emergency Medicine
- Internal Medicine, Henry Ford Hospital System
| | - John Wilburn
- Department of Emergency Medicine, Wayne State University, Detroit, MI
| | - Caleb Mackey
- Departments ofPulmonary Medicine
- Critical Care Medicine, Riverside Methodist Hospital, Columbus, OH
| | - Thomas L. Bollen
- Department of Radiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | | |
Collapse
|
32
|
Veres B, Eros K, Antus C, Kalman N, Fonai F, Jakus PB, Boros E, Hegedus Z, Nagy I, Tretter L, Gallyas F, Sumegi B. Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia. FEBS Open Bio 2021; 11:684-704. [PMID: 33471430 PMCID: PMC7931201 DOI: 10.1002/2211-5463.13091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 01/05/2023] Open
Abstract
Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram-negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)-dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS-induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNA-seq) data, Ingenuity® Pathway Analysis (IPA ® ) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll-like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)-mediated processes in wild-type mice. The disruption of CypD reduced LPS-induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO- and ROS-producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear- and mitochondrial-encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD-dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases.
Collapse
Affiliation(s)
- Balazs Veres
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Krisztian Eros
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| | - Csenge Antus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Nikoletta Kalman
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Fruzsina Fonai
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Peter Balazs Jakus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Eva Boros
- Institute of BiochemistryBiological Research CentreSzegedHungary
| | - Zoltan Hegedus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- Institute of BiophysicsBiological Research CentreSzegedHungary
| | - Istvan Nagy
- Institute of BiochemistryBiological Research CentreSzegedHungary
- SeqOmics Biotechnology LtdMorahalomHungary
| | - Laszlo Tretter
- Department of Medical BiochemistrySemmelweis UniversityBudapestHungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| |
Collapse
|
33
|
Smith JA. STING, the Endoplasmic Reticulum, and Mitochondria: Is Three a Crowd or a Conversation? Front Immunol 2021; 11:611347. [PMID: 33552072 PMCID: PMC7858662 DOI: 10.3389/fimmu.2020.611347] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
The anti-viral pattern recognition receptor STING and its partnering cytosolic DNA sensor cGAS have been increasingly recognized to respond to self DNA in multiple pathologic settings including cancer and autoimmune disease. Endogenous DNA sources that trigger STING include damaged nuclear DNA in micronuclei and mitochondrial DNA (mtDNA). STING resides in the endoplasmic reticulum (ER), and particularly in the ER-mitochondria associated membranes. This unique location renders STING well poised to respond to intracellular organelle stress. Whereas the pathways linking mtDNA and STING have been addressed recently, the mechanisms governing ER stress and STING interaction remain more opaque. The ER and mitochondria share a close anatomic and functional relationship, with mutual production of, and inter-organelle communication via calcium and reactive oxygen species (ROS). This interdependent relationship has potential to both generate the essential ligands for STING activation and to regulate its activity. Herein, we review the interactions between STING and mitochondria, STING and ER, ER and mitochondria (vis-à-vis calcium and ROS), and the evidence for 3-way communication.
Collapse
Affiliation(s)
- Judith A Smith
- Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
34
|
Han YJ, Lee KH, Yoon S, Nam SW, Ryu S, Seong D, Kim JS, Lee JY, Yang JW, Lee J, Koyanagi A, Hong SH, Dragioti E, Radua J, Smith L, Oh H, Ghayda RA, Kronbichler A, Effenberger M, Kresse D, Denicolò S, Kang W, Jacob L, Shin H, Shin JI. Treatment of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and coronavirus disease 2019 (COVID-19): a systematic review of in vitro, in vivo, and clinical trials. Am J Cancer Res 2021; 11:1207-1231. [PMID: 33391531 PMCID: PMC7738873 DOI: 10.7150/thno.48342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Coronavirus disease 2019 (COVID-19) has spread worldwide and poses a threat to humanity. However, no specific therapy has been established for this disease yet. We conducted a systematic review to highlight therapeutic agents that might be effective in treating COVID-19. Methods: We searched Medline, Medrxiv.org, and reference lists of relevant publications to identify articles of in vitro, in vivo, and clinical studies on treatments for severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and COVID-19 published in English until the last update on October 11, 2020. Results: We included 36 studies on SARS, 30 studies on MERS, and 10 meta-analyses on SARS and MERS in this study. Through 12,200 title and 830 full-text screenings for COVID-19, eight in vitro studies, 46 randomized controlled trials (RCTs) on 6,886 patients, and 29 meta-analyses were obtained and investigated. There was no therapeutic agent that consistently resulted in positive outcomes across SARS, MERS, and COVID-19. Remdesivir showed a therapeutic effect for COVID-19 in two RCTs involving the largest number of total participants (n = 1,461). Other therapies that showed an effect in at least two RCTs for COVID-19 were sofosbuvir/daclatasvir (n = 114), colchicine (n = 140), IFN-β1b (n = 193), and convalescent plasma therapy (n = 126). Conclusions: This review provides information to help establish treatment and research directions for COVID-19 based on currently available evidence. Further RCTs are required.
Collapse
Affiliation(s)
- Young Joo Han
- Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sojung Yoon
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seoung Wan Nam
- Department of Rheumatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seohyun Ryu
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dawon Seong
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Seok Kim
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jun Young Lee
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jinhee Lee
- Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ai Koyanagi
- Research and development unit, Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Fundació Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Sung Hwi Hong
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, USA
| | - Elena Dragioti
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Hans Oh
- School of Social Work, University of Southern California, CA, USA
| | - Ramy Abou Ghayda
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, USA.,Division of Urology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Maria Effenberger
- Department of Internal Medicine I (Gastroenterology, Hepatology, Endocrinology & Metabolism), Medical University Innsbruck, Innsbruck, Austria
| | - Daniela Kresse
- Department of Internal Medicine, St. Johann County Hospital, St. Johann in Tirol, Austria
| | - Sara Denicolò
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Woosun Kang
- Department of Internal Medicine, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Louis Jacob
- Research and development unit, Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Fundació Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain.,Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Hanwul Shin
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea.,✉ Corresponding author: Dr. Jae Il Shin MD PhD, 50-1 Yonsei-ro, Seodaemun-gu, Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea. Tel: 82-2-2228-2050, Fax: 82-2-393-9118, E-mail:
| |
Collapse
|
35
|
Ray A, Jaiswal A, Dutta J, Singh S, Mabalirajan U. A looming role of mitochondrial calcium in dictating the lung epithelial integrity and pathophysiology of lung diseases. Mitochondrion 2020; 55:111-121. [PMID: 32971294 PMCID: PMC7505072 DOI: 10.1016/j.mito.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
With the increasing appreciation of mitochondria in modulating cellular homeostasis, various disease biology researchers have started exploring the detailed role of mitochondria in multiple diseases beyond neuronal and muscular diseases. In this context, emerging shreds of evidence in lung biology indicated the meticulous role of lung epithelia in provoking a plethora of lung diseases in contrast to earlier beliefs. As lung epithelia are ceaselessly exposed to the environment, they need to have multiple protective mechanisms to maintain the integrity of lung structure and function. As ciliated airway epithelium and type 2 alveolar epithelia require intense energy for executing their key functions like ciliary beating and surfactant production, it is no surprise that defects in mitochondrial function in these cells could perturb lung homeostasis and engage in the pathophysiology of lung diseases. On one hand, intracellular calcium plays the central role in executing key functions of lung epithelia, and on the other hand maintenance of intracellular calcium needs the buffering role of mitochondria. Thus, the regulation of mitochondrial calcium in lung epithelia seems to be critical in lung homeostasis and could be decisive in the pathogenesis of various lung diseases.
Collapse
Affiliation(s)
- Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Jaiswal
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
36
|
Yan S, Resta TC, Jernigan NL. Vasoconstrictor Mechanisms in Chronic Hypoxia-Induced Pulmonary Hypertension: Role of Oxidant Signaling. Antioxidants (Basel) 2020; 9:E999. [PMID: 33076504 PMCID: PMC7602539 DOI: 10.3390/antiox9100999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Elevated resistance of pulmonary circulation after chronic hypoxia exposure leads to pulmonary hypertension. Contributing to this pathological process is enhanced pulmonary vasoconstriction through both calcium-dependent and calcium sensitization mechanisms. Reactive oxygen species (ROS), as a result of increased enzymatic production and/or decreased scavenging, participate in augmentation of pulmonary arterial constriction by potentiating calcium influx as well as activation of myofilament sensitization, therefore mediating the development of pulmonary hypertension. Here, we review the effects of chronic hypoxia on sources of ROS within the pulmonary vasculature including NADPH oxidases, mitochondria, uncoupled endothelial nitric oxide synthase, xanthine oxidase, monoamine oxidases and dysfunctional superoxide dismutases. We also summarize the ROS-induced functional alterations of various Ca2+ and K+ channels involved in regulating Ca2+ influx, and of Rho kinase that is responsible for myofilament Ca2+ sensitivity. A variety of antioxidants have been shown to have beneficial therapeutic effects in animal models of pulmonary hypertension, supporting the role of ROS in the development of pulmonary hypertension. A better understanding of the mechanisms by which ROS enhance vasoconstriction will be useful in evaluating the efficacy of antioxidants for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
| | | | - Nikki L. Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.Y.); (T.C.R.)
| |
Collapse
|
37
|
Srivastava N, Tauseef M, Amin R, Joshi B, Joshi JC, Kini V, Klomp J, Li W, Knezevic N, Barbera N, Siddiqui S, Obukhov A, Karginov A, Levitan I, Komarova Y, Mehta D. Noncanonical function of long myosin light chain kinase in increasing ER-PM junctions and augmentation of SOCE. FASEB J 2020; 34:12805-12819. [PMID: 32772419 PMCID: PMC7496663 DOI: 10.1096/fj.201902462rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2019] [Revised: 06/26/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Increased endothelial permeability leads to excessive exudation of plasma proteins and leukocytes in the interstitium, which characterizes several vascular diseases including acute lung injury. The myosin light chain kinase long (MYLK-L) isoform is canonically known to regulate the endothelial permeability by phosphorylating myosin light chain (MLC-P). Compared to the short MYLK isoform, MYLK-L contains an additional stretch of ~919 amino acid at the N-terminus of unknown function. We show that thapsigargin and thrombin-induced SOCE was markedly reduced in Mylk-L-/- endothelial cells (EC) or MYLK-L-depleted human EC. These agonists also failed to increase endothelial permeability in MYLK-L-depleted EC and Mylk-L-/- lungs, thus demonstrating the novel role of MYLK-L-induced SOCE in increasing vascular permeability. MYLK-L augmented SOCE by increasing endoplasmic reticulum (ER)-plasma membrane (PM) junctions and STIM1 translocation to these junctions. Transduction of N-MYLK domain (amino acids 1-919 devoid of catalytic activity) into Mylk-L-/- EC rescued SOCE to the level seen in control EC in a STIM1-dependent manner. N-MYLK-induced SOCE augmented endothelial permeability without MLC-P via an actin-binding motif, DVRGLL. Liposomal-mediated delivery of N-MYLK mutant but not ∆DVRGLL-N-MYLK mutant in Mylk-L-/- mice rescued vascular permeability increase in response to endotoxin, indicating that targeting of DVRGLL motif within MYLK-L may limit SOCE-induced vascular hyperpermeability.
Collapse
Affiliation(s)
- Nityanand Srivastava
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Mohammad Tauseef
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoILUSA
| | - Ruhul Amin
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Bhagwati Joshi
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Vidisha Kini
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Jennifer Klomp
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Weenan Li
- Department of Cellular and Integrative PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Nebojsa Knezevic
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Nicolas Barbera
- Department of MedicineThe Uniiversity of IllinoisChicagoILUSA
| | - Shahid Siddiqui
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Alexander Obukhov
- Department of Cellular and Integrative PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Andrei Karginov
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Irena Levitan
- Department of MedicineThe Uniiversity of IllinoisChicagoILUSA
| | - Yulia Komarova
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
| | - Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular BiologyThe University of Illinois, College of MedicineChicagoILUSA
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoILUSA
| |
Collapse
|
38
|
Miller J, Bruen C, Schnaus M, Zhang J, Ali S, Lind A, Stoecker Z, Stauderman K, Hebbar S. Auxora versus standard of care for the treatment of severe or critical COVID-19 pneumonia: results from a randomized controlled trial. Crit Care 2020; 24:502. [PMID: 32795330 PMCID: PMC7427272 DOI: 10.1186/s13054-020-03220-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Calcium release-activated calcium (CRAC) channel inhibitors stabilize the pulmonary endothelium and block proinflammatory cytokine release, potentially mitigating respiratory complications observed in patients with COVID-19. This study aimed to investigate the safety and efficacy of Auxora, a novel, intravenously administered CRAC channel inhibitor, in adults with severe or critical COVID-19 pneumonia. METHODS A randomized, controlled, open-label study of Auxora was conducted in adults with severe or critical COVID-19 pneumonia. Patients were randomized 2:1 to receive three doses of once-daily Auxora versus standard of care (SOC) alone. The primary objective was to assess the safety and tolerability of Auxora. Following FDA guidance, study enrollment was halted early to allow for transition to a randomized, blinded, placebo-controlled study. RESULTS In total, 17 patients with severe and three with critical COVID-19 pneumonia were randomized to Auxora and nine with severe and one with critical COVID-19 pneumonia to SOC. Similar proportions of patients receiving Auxora and SOC experienced ≥ 1 adverse event (75% versus 80%, respectively). Fewer patients receiving Auxora experienced serious adverse events versus SOC (30% versus 50%, respectively). Two patients (10%) receiving Auxora and two (20%) receiving SOC died during the 30 days after randomization. Among patients with severe COVID-19 pneumonia, the median time to recovery with Auxora was 5 days versus 12 days with SOC; the recovery rate ratio was 1.87 (95% CI, 0.72, 4.89). Invasive mechanical ventilation was needed in 18% of patients with severe COVID-19 pneumonia receiving Auxora versus 50% receiving SOC (absolute risk reduction = 32%; 95% CI, - 0.07, 0.71). Outcomes measured by an 8-point ordinal scale were significantly improved for patients receiving Auxora, especially for patients with a baseline PaO2/FiO2 = 101-200. CONCLUSIONS Auxora demonstrated a favorable safety profile in patients with severe or critical COVID-19 pneumonia and improved outcomes in patients with severe COVID-19 pneumonia. These results, however, are limited by the open-label study design and small patient population resulting from the early cessation of enrollment in response to regulatory guidance. The impact of Auxora on respiratory complications in patients with severe COVID-19 pneumonia will be further assessed in a planned randomized, blinded, placebo-controlled study. TRIAL REGISTRATION ClinicalTrials.gov, NCT04345614 . Submitted on 7 April 2020.
Collapse
Affiliation(s)
| | - Charles Bruen
- Regions Hospital, Health Partners, St. Paul, MN, USA
| | - Michael Schnaus
- Regions Hospital, Health Partners, St. Paul, MN, USA
- Methodist Hospital, Park Nicollet, St. Louis Park, MN, USA
- University of Minnesota, Minneapolis, MN, USA
| | | | - Sadia Ali
- Methodist Hospital, Park Nicollet, St. Louis Park, MN, USA
| | - April Lind
- Methodist Hospital, Park Nicollet, St. Louis Park, MN, USA
| | | | - Kenneth Stauderman
- CalciMedica, Inc., 505 Coast Blvd. South Suite 202, La Jolla, CA, 92037, USA
| | - Sudarshan Hebbar
- CalciMedica, Inc., 505 Coast Blvd. South Suite 202, La Jolla, CA, 92037, USA.
| |
Collapse
|
39
|
Lu Z, Meng S, Chang W, Fan S, Xie J, Guo F, Yang Y, Qiu H, Liu L. Mesenchymal stem cells activate Notch signaling to induce regulatory dendritic cells in LPS-induced acute lung injury. J Transl Med 2020; 18:241. [PMID: 32546185 PMCID: PMC7298963 DOI: 10.1186/s12967-020-02410-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/29/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been shown to alleviate acute lung injury (ALI) and induce the production of regulatory dendritic cells (DCregs), but the potential link between these two cell types remains unclear. The goal of this study was to investigate the effect and mechanism of MSC-induced regulatory dendritic cells in ALI mice. Material/methods In vivo experiments, C57BL/6 wild-type male mice were sacrificed at different times after intratracheal injection of LPS to observe changes in lung DC maturation and pathological damage. MSCs, DCregs or/and carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled DCs were administered to the mice by tail vein, and flow cytometry was performed to measure the phenotype of lung DCs and T cells. Lung injury was estimated by the lung wet weight/body weight ratio and histopathological analysis. In vitro, Western blotting or flow cytometry was used to detect the expression of Notch ligand or receptor in MSCs or DCs after coculture or LPS stimulation. Finally, in vivo and in vitro, we used the Notch signaling inhibitor DAPT to verify the effect of the Notch pathway on MSC-induced DCregs and their pulmonary protection. Results We showed significant accumulation and maturation of lung DCs 2 h after intratracheal injection of LPS, which were positively correlated with the lung pathological injury score. MSC treatment alleviated ALI lung injury, accompanied by a decrease in the number and maturity of classical DCs in the lungs. CFSE-labeled DCs migrated to the lungs of ALI mice more than those of the normal group, and the elimination of CFSE-labeled DCs in the blood was slower. MSCs inhibited the migration of CFSE-labeled DCs to the lung and promoted their elimination in the blood. DCregs, which are obtained by contact coculture of mDCs with MSCs, expressed reduced levels of MHCII, CD86, CD40 and increased levels of PD-L1, and had a reduced ability to stimulate lymphocyte proliferation and activation (expression of CD44 and CD69). mDCs expressing Notch2 significantly increased after coculture with MSCs or rhJagged1, and MSCs expressed more Jagged1 after LPS stimulation. After stimulation of mDCs with recombinant Jagged1, DCs with low expression of MHCII, CD86 and CD40 were also induced, and the effects of both rhJagged1 and MSCs on DCs were blocked by the Notch inhibitor DAPT. Intra-airway DAPT reversed the inhibitory effect of mesenchymal stem cells on DC recruitment to the lungs and its maturation. Conclusions Our results suggested that the recruitment and maturation of lung DCs is an important process in early ALI, MSCs attenuate LPS-induced ALI by inducing the production of DCregs by activating Notch signaling.
Collapse
Affiliation(s)
- Zhonghua Lu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shanshan Meng
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Wei Chang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shanwen Fan
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China.
| |
Collapse
|
40
|
IGF-1 Deficiency Rescue and Intracellular Calcium Blockade Improves Survival and Corresponding Mechanisms in a Mouse Model of Acute Kidney Injury. Int J Mol Sci 2020; 21:ijms21114095. [PMID: 32521790 PMCID: PMC7312627 DOI: 10.3390/ijms21114095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
This study was undertaken to test two therapies for acute kidney injury (AKI) prevention, IGF-1, which is renal protective, and BTP-2, which is a calcium entry (SOCE) inhibitor. We utilized lipopolysaccharide (LPS) IP, as a systemic model of AKI and studied in five groups of animals. Three experiments showed that at 7 days: (1) LPS significantly reduced serum IGF-1 and intramuscular IGF-I in vivo gene therapy rescued this deficiency. (2) Next, at the 7-day time point, our combination therapy, compared to the untreated group, caused a significant increase in survival, which was noteworthy because all of the untreated animals died in 72 h. (3) The four pathways associated with inflammation, including (A) increase in cytosolic calcium, (B) elaboration of proinflammatory cytokines, (C) impairment of vascular integrity, and (D) cell injury, were adversely affected in renal tissue by LPS, using a sublethal dose of LPS. The expression of several genes was measured in each of the above pathways. The combined therapy of IGF-1 and BTP-2 caused a favorable gene expression response in all four pathways. Our current study was an AKI study, but these pathways are also involved in other types of severe inflammation, including sepsis, acute respiratory distress syndrome, and probably severe coronavirus infection.
Collapse
|
41
|
Dorrello NV, Vunjak-Novakovic G. Bioengineering of Pulmonary Epithelium With Preservation of the Vascular Niche. Front Bioeng Biotechnol 2020; 8:269. [PMID: 32351946 PMCID: PMC7174601 DOI: 10.3389/fbioe.2020.00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The shortage of transplantable donor organs directly affects patients with end-stage lung disease, for which transplantation remains the only definitive treatment. With the current acceptance rate of donor lungs of only 20%, rescuing even one half of the rejected donor lungs would increase the number of transplantable lungs threefold, to 60%. We review recent advances in lung bioengineering that have potential to repair the epithelial and vascular compartments of the lung. Our focus is on the long-term support and recovery of the lung ex vivo, and the replacement of defective epithelium with healthy therapeutic cells. To this end, we first review the roles of the lung epithelium and vasculature, with focus on the alveolar-capillary membrane, and then discuss the available and emerging technologies for ex vivo bioengineering of the lung by decellularization and recellularization. While there have been many meritorious advances in these technologies for recovering marginal quality lungs to the levels needed to meet the standards for transplantation – many challenges remain, motivating further studies of the extended ex vivo support and interventions in the lung. We propose that the repair of injured epithelium with preservation of quiescent vasculature will be critical for the immediate blood supply to the lung and the lung survival and function following transplantation.
Collapse
Affiliation(s)
- N Valerio Dorrello
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
42
|
The role of Ca 2+/NFAT in Dysfunction and Inflammation of Human Coronary Endothelial Cells induced by Sera from patients with Kawasaki disease. Sci Rep 2020; 10:4706. [PMID: 32170198 PMCID: PMC7069934 DOI: 10.1038/s41598-020-61667-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Ca2+/nuclear factor of activated T-cells (Ca2+/NFAT) signaling pathway may play a crucial role in the pathogenesis of Kawasaki disease (KD). We investigated the poorly understood Ca2+/NFAT regulation of coronary artery endothelial cells and consequent dysfunction in KD pathogenesis. Human coronary artery endothelial cells (HCAECs) stimulated with sera from patients with KD, compared with sera from healthy children, exhibited significant increases in proliferation and angiogenesis, higher levels of NFATc1 and NFATc3 and some inflammatory molecules, and increased nuclear translocation of NFATc1 and NFATc3. HCAECs stimulated with sera from patients with KD treated with cyclosporine A (CsA) showed decreased proliferation, angiogenesis, NFATc1 and inflammatory molecules levels as compared with results for untreated HCAECs. In conclusion, our data reveal that KD sera activate the Ca2+/NFAT in HCAECs, leading to dysfunction and inflammation of endothelial cells. CsA has cytoprotective effects by ameliorating endothelial cell homeostasis via Ca2+/NFAT.
Collapse
|
43
|
Moccia F, Negri S, Faris P, Berra-Romani R. Targeting the Endothelial Ca2+ Toolkit to Rescue Endothelial Dysfunction in Obesity Associated-Hypertension. Curr Med Chem 2020; 27:240-257. [PMID: 31486745 DOI: 10.2174/0929867326666190905142135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2018] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a major cardiovascular risk factor which dramatically impairs endothelium- dependent vasodilation and leads to hypertension and vascular damage. The impairment of the vasomotor response to extracellular autacoids, e.g., acetylcholine, mainly depends on the reduced Nitric Oxide (NO) bioavailability, which hampers vasorelaxation in large conduit arteries. In addition, obesity may affect Endothelium-Dependent Hyperpolarization (EDH), which drives vasorelaxation in small resistance arteries and arterioles. Of note, endothelial Ca2+ signals drive NO release and trigger EDH. METHODS A structured search of bibliographic databases was carried out to retrieve the most influential, recent articles on the impairment of vasorelaxation in animal models of obesity, including obese Zucker rats, and on the remodeling of the endothelial Ca2+ toolkit under conditions that mimic obesity. Furthermore, we searched for articles discussing how dietary manipulation could be exploited to rescue Ca2+-dependent vasodilation. RESULTS We found evidence that the endothelial Ca2+ could be severely affected by obese vessels. This rearrangement could contribute to endothelial damage and is likely to be involved in the disruption of vasorelaxant mechanisms. However, several Ca2+-permeable channels, including Vanilloid Transient Receptor Potential (TRPV) 1, 3 and 4 could be stimulated by several food components to stimulate vasorelaxation in obese individuals. CONCLUSION The endothelial Ca2+ toolkit could be targeted to reduce vascular damage and rescue endothelium- dependent vasodilation in obese vessels. This hypothesis remains, however, to be probed on truly obese endothelial cells.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
44
|
Tang SE, Liao WI, Wu SY, Pao HP, Huang KL, Chu SJ. The Blockade of Store-Operated Calcium Channels Improves Decompression Sickness in Rats. Front Physiol 2020; 10:1616. [PMID: 32082179 PMCID: PMC7005134 DOI: 10.3389/fphys.2019.01616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Background Previous investigations reveal that BTP2, a store-operated calcium channel blocker, has protective and anti-inflammatory properties in multiple inflammatory diseases. This study investigates whether BTP2 can protect against decompression sickness (DCS) in a rat model. Methods BTP2 (2 mg/kg) was administered to male Sprague–Dawley rats 30 min before subjecting them to hyperbaric pressure. Control rats were not treated. After decompression, signs of DCS were examined, and samples of bronchoalveolar lavage fluid and lung tissue were obtained for evaluation. Results The incidence and mortality of DCS were decreased significantly in rats treated with BTP2 compared to those treated with dimethyl sulfoxide. BTP2 significantly attenuated DCS-induced lung edema, histological evidence of lung inflammation, necroptosis, and apoptosis, while it decreased levels of tumor necrosis factor alpha, interleukin-6, and cytokine-induced neutrophil chemoattractant-1 in bronchoalveolar lavage fluid. In addition, BTP2 reduced the expression of nuclear factor of activated T cells and early growth response protein 3 in lung tissue. BTP2 also significantly increased the levels of inhibitor kappa B alpha and suppressed the levels of nuclear factor kappa B in lung tissue. Conclusion The results suggest that BTP2 may has potential as a prophylactic therapy to attenuate DCS-induced injury.
Collapse
Affiliation(s)
- Shih-En Tang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
45
|
Wan L, Wu W, Jiang S, Wan S, Meng D, Wang Z, Zhang J, Wei L, Yu P. Mibefradil and Flunarizine, Two T-Type Calcium Channel Inhibitors, Protect Mice against Lipopolysaccharide-Induced Acute Lung Injury. Mediators Inflamm 2020; 2020:3691701. [PMID: 33223955 PMCID: PMC7671802 DOI: 10.1155/2020/3691701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have illuminated that blocking Ca2+ influx into effector cells is an attractive therapeutic strategy for lung injury. We hypothesize that T-type calcium channel may be a potential therapeutic target for acute lung injury (ALI). In this study, the pharmacological activity of mibefradil (a classical T-type calcium channel inhibitor) was assessed in a mouse model of lipopolysaccharide- (LPS-) induced ALI. In LPS challenged mice, mibefradil (20 and 40 mg/kg) dramatically decreased the total cell number, as well as the productions of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Mibefradil also suppressed total protein concentration in BALF, attenuated Evans blue extravasation, MPO activity, and NF-κB activation in lung tissue. Furthermore, flunarizine, a widely prescripted antimigraine agent with potent inhibition on T-type channel, was also found to protect mice against lung injury. These data demonstrated that T-type calcium channel inhibitors may be beneficial for treating acute lung injury. The important role of T-type calcium channel in the acute lung injury is encouraged to be further investigated.
Collapse
Affiliation(s)
- Limei Wan
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Weibin Wu
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing 526020, China
| | - Shunjun Jiang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Dongmei Meng
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhipeng Wang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Li Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Pengjiu Yu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
46
|
Berra-Romani R, Guzmán-Silva A, Vargaz-Guadarrama A, Flores-Alonso JC, Alonso-Romero J, Treviño S, Sánchez-Gómez J, Coyotl-Santiago N, García-Carrasco M, Moccia F. Type 2 Diabetes Alters Intracellular Ca 2+ Handling in Native Endothelium of Excised Rat Aorta. Int J Mol Sci 2019; 21:ijms21010250. [PMID: 31905880 PMCID: PMC6982087 DOI: 10.3390/ijms21010250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 02/03/2023] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) plays a key role in controlling endothelial functions; however, it is still unclear whether endothelial Ca2+ handling is altered by type 2 diabetes mellitus, which results in severe endothelial dysfunction. Herein, we analyzed for the first time the Ca2+ response to the physiological autacoid ATP in native aortic endothelium of obese Zucker diabetic fatty (OZDF) rats and their lean controls, which are termed LZDF rats. By loading the endothelial monolayer with the Ca2+-sensitive fluorophore, Fura-2/AM, we found that the endothelial Ca2+ response to 20 µM and 300 µM ATP exhibited a higher plateau, a larger area under the curve and prolonged duration in OZDF rats. The “Ca2+ add-back” protocol revealed no difference in the inositol-1,4,5-trisphosphate-releasable endoplasmic reticulum (ER) Ca2+ pool, while store-operated Ca2+ entry was surprisingly down-regulated in OZDF aortae. Pharmacological manipulation disclosed that sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity was down-regulated by reactive oxygen species in native aortic endothelium of OZDF rats, thereby exaggerating the Ca2+ response to high agonist concentrations. These findings shed new light on the mechanisms by which type 2 diabetes mellitus may cause endothelial dysfunction by remodeling the intracellular Ca2+ toolkit.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
- Correspondence: (R.B.-R.); (F.M.)
| | - Alejandro Guzmán-Silva
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
| | - Ajelet Vargaz-Guadarrama
- Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.V.-G.); (J.S.-G.); (M.G.-C.)
| | - Juan Carlos Flores-Alonso
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla 74360, Mexico;
| | - José Alonso-Romero
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72540, Mexico;
| | - Josué Sánchez-Gómez
- Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.V.-G.); (J.S.-G.); (M.G.-C.)
| | - Nayeli Coyotl-Santiago
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
| | - Mario García-Carrasco
- Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.V.-G.); (J.S.-G.); (M.G.-C.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: (R.B.-R.); (F.M.)
| |
Collapse
|
47
|
Faust H, Mangalmurti NS. Collateral damage: necroptosis in the development of lung injury. Am J Physiol Lung Cell Mol Physiol 2019; 318:L215-L225. [PMID: 31774305 DOI: 10.1152/ajplung.00065.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023] Open
Abstract
Cell death is increasingly recognized as a driving factor in the development of acute lung injury. Necroptosis, an immunogenic regulated cell death program important in innate immunity, has been implicated in the development of lung injury in a diverse range of conditions. Characterized by lytic cell death and consequent extracellular release of endogenous inflammatory mediators, necroptosis can be both beneficial and deleterious to the host, depending on the context. Here, we review recent investigations linking necroptosis and the development of experimental lung injury. We assess the consequences of necroptosis during bacterial pneumonia, viral infection, sepsis, and sterile injury, highlighting increasing evidence from in vitro studies, animal models, and clinical studies that implicates necroptosis in the pathogenesis of ARDS. Lastly, we highlight current challenges in translating laboratory findings to the bedside.
Collapse
Affiliation(s)
- Hilary Faust
- Allergy, Pulmonary, and Critical Care Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nilam S Mangalmurti
- Pulmonary, Allergy, and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Wang B, Chen L, Dai L, Fang W, Wang H. Alisol B 23-Acetate Ameliorates Lipopolysaccharide-Induced Cardiac Dysfunction by Suppressing Toll-Like Receptor 4 (TLR4)/NADPH Oxidase 2 (NOX2) Signaling Pathway. Med Sci Monit 2019; 25:8472-8481. [PMID: 31707400 PMCID: PMC6863037 DOI: 10.12659/msm.918252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022] Open
Abstract
Background Cardiac dysfunction during endotoxemia is a major cause of cardiovascular disease with high morbidity and mortality. Alisol B 23-acetate (AB23A) is a triterpenoid extracted from the Rhizoma Alismatis, a kind of traditional Chinese medicine, exhibits anti-inflammatory activity on endotoxemia. This investigation aimed to uncover the protective effects of AB23A against sepsis-induced cardiac dysfunction. Material/Methods Adult male C57BL/6 mice received lipopolysaccharide (LPS) (20 mg/kg intravenous) stimulation, with or without pre-treatment of AB23A (10 mg/kg, 20 mg/kg, or 40 mg/kg). Histopathological staining and cardiac function were performed 4 hours after LPS stimulation. Then the levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were monitored with enzyme-linked immunosorbent assay (ELISA). In addition, H9C2 cells were treated with LPS (5 μg/mL) with or without pre-treated with AB23A (0.1 μM, 1 μM, or 10 μM), and the production of reactive oxygen species (ROS) was detected by DCFH-DA combined with flow cytometry. The expression of Toll-like receptor 4 (TLR4), NADPH oxidase 2 (NOX2), NOX4, P38, p-P38, extracellular-signal-regulated kinase (ERK), and p-ERK were assessed by western blotting. Results AB23A improved the survival rate and ameliorated myocardial injury, decreased inflammatory infiltration and the level of IL-6, IL-1β, and TNF-α in the LPS-stimulated mouse model. Moreover, AB23A inhibited the ROS production in LPS-treated H9C2 cells. In addition, AB23A suppressed the levels of TLR4 and NOX2 as well as the activation levels of P38 and ERK both in vivo and in vitro. Conclusions AB23A reduced LPS-induced myocardial dysfunction by inhibiting inflammation and ROS production through the TLR4/NOX2 pathway.
Collapse
Affiliation(s)
- BinYan Wang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Liang Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - LingHao Dai
- Academy of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - WenMing Fang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Hui Wang
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
49
|
Savio M, Ibrahim MF, Scarlata C, Orgiu M, Accardo G, Sardar AS, Moccia F, Stivala LA, Brusotti G. Anti-Inflammatory Properties of Bellevalia saviczii Root Extract and Its Isolated Homoisoflavonoid ( Dracol) Are Mediated by Modification on Calcium Signaling. Molecules 2019; 24:molecules24183376. [PMID: 31533249 PMCID: PMC6766996 DOI: 10.3390/molecules24183376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/31/2022] Open
Abstract
Bellevalia saviczii is a medicinal plant used as anti-rheumatic and anti-inflammatory herbal remedy in Iraqi-Kurdistan. The aim of this study was to evaluate the anti-inflammatory activity of its extract and the isolated homoisoflavonoid (Dracol) by studying the Ca2+-dependent NF-kB pathway. Nuclear translocation of p65 NF-kB subunit, as parameter of NF-kB activation, was visualized in human leukemic monocytes by immunofluorescence and Western blot analyses, after cell treatment with B. saviczii root extract or Dracol followed by Lipopolysaccharide stimulation. In parallel, Ca2+ signals responsible for NF-kB activation and levels of inflammatory cytokines were investigated. LPS-induced p65 translocation was evident in monocytes and both treatments, in particular that with Dracol, were able to counteract this activation. Intracellular Ca2+ oscillations were halted and the cytokine release reduced. These results confirm the traditional anti-inflammatory efficacy of B. saviczii and identify one of the molecules in the extract which appears to be responsible of this action.
Collapse
Affiliation(s)
- Monica Savio
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Mohammed Farhad Ibrahim
- Department of Drug Sciences, viale Taramelli 12, University of Pavia, 27100 Pavia, Italy.
- Department of Environmental Science, College of Science, University of Salahaddin-Erbil, Erbil 44001, Iraq.
| | - Chiara Scarlata
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Matteo Orgiu
- Department of Biology and Biotechnology "L. Spallanzani" via Forlanini 6, University of Pavia, 27100 Pavia, Italy.
| | - Giuseppe Accardo
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Abdullah Shakur Sardar
- Department of Biology, College of Education, University of Salahaddin-Erbil, Erbil 44001, Iraq.
| | - Francesco Moccia
- Department of Biology and Biotechnology "L. Spallanzani" via Forlanini 6, University of Pavia, 27100 Pavia, Italy.
| | - Lucia Anna Stivala
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Gloria Brusotti
- Department of Drug Sciences, viale Taramelli 12, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
50
|
Song JW, Zullo J, Lipphardt M, Dragovich M, Zhang FX, Fu B, Goligorsky MS. Endothelial glycocalyx-the battleground for complications of sepsis and kidney injury. Nephrol Dial Transplant 2019; 33:203-211. [PMID: 28535253 DOI: 10.1093/ndt/gfx076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
After briefly discussing endothelial glycocalyx and its role in vascular physiology and renal disease, this overview focuses on its degradation very early in the course of microbial sepsis. We describe our recently proposed mechanism for glycocalyx degradation induced by exocytosis of lysosome-related organelles and release of their cargo. Notably, an intermediate in nitric oxide synthesis, NG-hydroxy-l-arginine, shows efficacy in curtailing exocytosis of these organelles and improvement in animal survival. These data not only depict a novel mechanism responsible for very early glycocalyx degradation, but may also outline a potential preventive therapy. The second issue discussed in this article is related to the therapeutic acceleration of restoration of already degraded endothelial glycocalyx. Here, using as an example our recent findings obtained with sulodexide, we illustrate the importance of the expedited repair of degraded endothelial glycocalyx for the survival of animals with severe sepsis. These two focal points of the review on glycocalyx may not only have broader disease applicability, but they may also provide additional evidence to buttress the idea of the importance of endothelial glycocalyx and its maintenance and repair in the prevention and treatment of an array of renal and nonrenal diseases.
Collapse
Affiliation(s)
- Jong Wook Song
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, NY, USA.,Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Joseph Zullo
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, NY, USA
| | - Mark Lipphardt
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, NY, USA.,Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Matthew Dragovich
- Department of Mechanical Engineering and Mechanics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA
| | - Frank X Zhang
- Department of Mechanical Engineering and Mechanics, and Bioengineering Program, Lehigh University, Bethlehem, PA, USA
| | - Bingmei Fu
- Department of Biomedical Engineering, City College of the City University of New York, New York, USA
| | - Michael S Goligorsky
- Renal Research Institute, Departments of Medicine, Pharmacology and Physiology, New York Medical College at Touro University, Valhalla, NY, USA
| |
Collapse
|