1
|
Jayaraman S, Prasad M, Natarajan SR, Krishnamoorthy R, Alshuniaber MA, Gatasheh MK, Veeraraghavan VP, Rajagopal P, Palanisamy CP. Molecular mechanisms underlying the effects of beta-sitosterol on TGF-β1/Nrf2/SIRT1/p53-mediated signaling in the kidney of a high-fat diet and sucrose-induced type-2 diabetic rat. Chem Biol Interact 2025; 411:111443. [PMID: 39986364 DOI: 10.1016/j.cbi.2025.111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
Diabetic nephropathy, a severe problem of diabetes mellitus, is exacerbated by high-fat diets, prompting a need for interventions. Previous study from our laboratory has shown that β-sitosterol, a potent plant sterol has anti-inflammatory and glucose-lowering efficacy by involving insulin metabolic signalling pathway but its role on anti-oxidant signaling pathways, play a crucial role in mitigating oxidative stress and inflammation associated diabetic nephropathy, highlighting its importance as a potential therapeutic target for managing this debilitating complication of diabetes is unknown. This study was aimed to intricate the molecular mechanisms involved in the potential of β-sitosterol (BSIT) on TGF-β1/Nrf2/SIRT1/p53 signaling in high fat diet (HFD) and sucrose induced diabetic nephropathy (DN) in the rat kidney by employing various comprehensive bioinformatic analysis. We have used various comprehensive methods such as pathway predictions, Drug-Protein Interaction, Functional annotation analysis, and molecular docking techniques. Further, in vivo analysis of BSIT on biochemical profiles, gene and protein expression analysis of anti-oxidant and inflammatory signaling molecules was performed in the kidney of high fat diet (HFD) and sucrose-induced diabetic nephropathy. Computational studies provided insights into β-sitosterol's binding affinities and interaction modes with key proteins, suggesting its potential to regulate TGF-β1/Nrf2/SIRT1/p53 signaling pathways. Results of in vivo findings validated computational predictions, showcasing BSIT's multifaceted effects in mitigating diabetic nephropathy and associated complications including regulation of lipid metabolism, combating oxidative stress, and inflammation. The findings underscore BSIT's therapeutic potential by preserving cellular viability, regulating cell death, enhancing antioxidant defence, and stabilizing metabolic processes. Our study concludes that BSIT's ability to potentially regulate TGF-β1/Nrf2/SIRT1/p53 pathways, emphasizing its promising role in managing diabetic nephropathy and associated complications.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Sathan Raj Natarajan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Mohammad A Alshuniaber
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600077, India.
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, 600095, India.
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Goyal L, Singh S. Neurological Manifestations Following Traumatic Brain Injury: Role of Behavioral, Neuroinflammation, Excitotoxicity, Nrf-2 and Nitric Oxide. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:47-59. [PMID: 39082170 DOI: 10.2174/0118715273318552240708055413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 01/31/2025]
Abstract
Traumatic Brain Injury (TBI) is attributed to a forceful impact on the brain caused by sharp, penetrating bodies, like bullets and any sharp object. Some popular instances like falls, traffic accidents, physical assaults, and athletic injuries frequently cause TBI. TBI is the primary cause of both mortality and disability among young children and adults. Several individuals experience psychiatric problems, including cognitive dysfunction, depression, post-traumatic stress disorder, and anxiety, after primary injury. Behavioral changes post TBI include cognitive deficits and emotional instability (anxiety, depression, and post-traumatic stress disorder). These alterations are linked to neuroinflammatory processes. On the other hand, the direct impact mitigates inflammation insult by the release of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF-α, exacerbating neuronal injury and contributing to neurodegeneration. During the excitotoxic phase, activation of glutamate subunits like NMDA enhances the influx of Ca2+ and leads to mitochondrial metabolic impairment and calpain-mediated cytoskeletal disassembly. TBI pathological insult is also linked to transcriptional response suppression Nrf-2, which plays a critical role against TBI-induced oxidative stress. Activation of NRF-2 enhances the expression of anti-oxidant enzymes, providing neuroprotection. A possible explanation for the elevated levels of NO is that the stimulation of NMDA receptors by glutamate leads to the influx of calcium in the postsynaptic region, activating NOS's constitutive isoforms.
Collapse
Affiliation(s)
- Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| |
Collapse
|
3
|
Ghannam A, Hahn V, Fan J, Tasevski S, Moughni S, Li G, Zhang Z. Sex-specific and cell-specific regulation of ER stress and neuroinflammation after traumatic brain injury in juvenile mice. Exp Neurol 2024; 377:114806. [PMID: 38701941 DOI: 10.1016/j.expneurol.2024.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Endoplasmic reticulum (ER) stress and neuroinflammation play an important role in secondary brain damage after traumatic brain injury (TBI). Due to the complex brain cytoarchitecture, multiple cell types are affected by TBI. However, cell type-specific and sex-specific responses to ER stress and neuroinflammation remain unclear. Here we investigated differential regulation of ER stress and neuroinflammatory pathways in neurons and microglia during the acute phase post-injury in a mouse model of impact acceleration TBI in both males and females. We found that TBI resulted in significant weight loss only in males, and sensorimotor impairment and depressive-like behaviors in both males and females at the acute phase post-injury. By concurrently isolating neurons and microglia from the same brain sample of the same animal, we were able to evaluate the simultaneous responses in neurons and microglia towards ER stress and neuroinflammation in both males and females. We discovered that the ER stress and anti-inflammatory responses were significantly stronger in microglia, especially in female microglia, compared with the male and female neurons. Whereas the degree of phosphorylated-tau (pTau) accumulation was significantly higher in neurons, compared with the microglia. In conclusion, TBI resulted in behavioral deficits and cell type-specific and sex-specific responses to ER stress and neuroinflammation, and abnormal protein accumulation at the acute phase after TBI in immature mice.
Collapse
Affiliation(s)
- Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Victoria Hahn
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Jie Fan
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Gengxin Li
- Statistics, Department of Mathematics and Statistics, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| |
Collapse
|
4
|
Lai JD, Berlind JE, Fricklas G, Lie C, Urenda JP, Lam K, Sta Maria N, Jacobs R, Yu V, Zhao Z, Ichida JK. KCNJ2 inhibition mitigates mechanical injury in a human brain organoid model of traumatic brain injury. Cell Stem Cell 2024; 31:519-536.e8. [PMID: 38579683 DOI: 10.1016/j.stem.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Traumatic brain injury (TBI) strongly correlates with neurodegenerative disease. However, it remains unclear which neurodegenerative mechanisms are intrinsic to the brain and which strategies most potently mitigate these processes. We developed a high-intensity ultrasound platform to inflict mechanical injury to induced pluripotent stem cell (iPSC)-derived cortical organoids. Mechanically injured organoids elicit classic hallmarks of TBI, including neuronal death, tau phosphorylation, and TDP-43 nuclear egress. We found that deep-layer neurons were particularly vulnerable to injury and that TDP-43 proteinopathy promotes cell death. Injured organoids derived from C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) patients displayed exacerbated TDP-43 dysfunction. Using genome-wide CRISPR interference screening, we identified a mechanosensory channel, KCNJ2, whose inhibition potently mitigated neurodegenerative processes in vitro and in vivo, including in C9ORF72 ALS/FTD organoids. Thus, targeting KCNJ2 may reduce acute neuronal death after brain injury, and we present a scalable, genetically flexible cerebral organoid model that may enable the identification of additional modifiers of mechanical stress.
Collapse
Affiliation(s)
- Jesse D Lai
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA.
| | - Joshua E Berlind
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Gabriella Fricklas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Cecilia Lie
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Kelsey Lam
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Naomi Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Russell Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Violeta Yu
- Amgen Inc., Thousand Oaks, CA, USA; Neurological & Rare Diseases, Dewpoint Therapeutics, Boston, MA, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Smith CA, Carpenter KLH, Hutchinson PJ, Smielewski P, Helmy A. Candidate neuroinflammatory markers of cerebral autoregulation dysfunction in human acute brain injury. J Cereb Blood Flow Metab 2023; 43:1237-1253. [PMID: 37132274 PMCID: PMC10369156 DOI: 10.1177/0271678x231171991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
The loss of cerebral autoregulation (CA) is a common and detrimental secondary injury mechanism following acute brain injury and has been associated with worse morbidity and mortality. However patient outcomes have not as yet been conclusively proven to have improved as a result of CA-directed therapy. While CA monitoring has been used to modify CPP targets, this approach cannot work if the impairment of CA is not simply related to CPP but involves other underlying mechanisms and triggers, which at present are largely unknown. Neuroinflammation, particularly inflammation affecting the cerebral vasculature, is an important cascade that occurs following acute injury. We hypothesise that disturbances to the cerebral vasculature can affect the regulation of CBF, and hence the vascular inflammatory pathways could be a putative mechanism that causes CA dysfunction. This review provides a brief overview of CA, and its impairment following brain injury. We discuss candidate vascular and endothelial markers and what is known about their link to disturbance of the CBF and autoregulation. We focus on human traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH), with supporting evidence from animal work and applicability to wider neurologic diseases.
Collapse
Affiliation(s)
- Claudia A Smith
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Cummings J, Wu YL, Dixon CE, Henchir J, Simard JM, Panigrahy A, Kochanek PM, Jha RM, Aneja RK. Abcc8 (sulfonylurea receptor-1) knockout mice exhibit reduced axonal injury, cytotoxic edema and cognitive dysfunction vs. wild-type in a cecal ligation and puncture model of sepsis. J Neuroinflammation 2023; 20:12. [PMID: 36681815 PMCID: PMC9862964 DOI: 10.1186/s12974-023-02692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Sepsis-associated brain injury (SABI) is characterized by an acute deterioration of mental status resulting in cognitive impairment and acquisition of new and persistent functional limitations in sepsis survivors. Previously, we reported that septic mice had evidence of axonal injury, robust microglial activation, and cytotoxic edema in the cerebral cortex, thalamus, and hippocampus in the absence of blood-brain barrier disruption. A key conceptual advance in the field was identification of sulfonylurea receptor 1 (SUR1), a member of the adenosine triphosphate (ATP)-binding cassette protein superfamily, that associates with the transient receptor potential melastatin 4 (TRPM4) cation channel to play a crucial role in cerebral edema development. Therefore, we hypothesized that knockout (KO) of Abcc8 (Sur1 gene) is associated with a decrease in microglial activation, cerebral edema, and improved neurobehavioral outcomes in a murine cecal ligation and puncture (CLP) model of sepsis. Sepsis was induced in 4-6-week-old Abcc8 KO and wild-type (WT) littermate control male mice by CLP. We used immunohistochemistry to define neuropathology and microglial activation along with parallel studies using magnetic resonance imaging, focusing on cerebral edema on days 1 and 4 after CLP. Abcc8 KO mice exhibited a decrease in axonal injury and cytotoxic edema vs. WT on day 1. Abcc8 KO mice also had decreased microglial activation in the cerebral cortex vs. WT. These findings were associated with improved spatial memory on days 7-8 after CLP. Our study challenges a key concept in sepsis and suggests that brain injury may not occur merely as an extension of systemic inflammation. We advance the field further and demonstrate that deletion of the SUR1 gene ameliorates CNS pathobiology in sepsis including edema, axonal injury, neuroinflammation, and behavioral deficits. Benefits conferred by Abcc8 KO in the murine CLP model warrant studies of pharmacological Abcc8 inhibition as a new potential therapeutic strategy for SABI.
Collapse
Affiliation(s)
- Jessica Cummings
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Yijen L. Wu
- grid.21925.3d0000 0004 1936 9000Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - C. Edward Dixon
- grid.21925.3d0000 0004 1936 9000Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Jeremy Henchir
- grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - J. Marc Simard
- grid.411024.20000 0001 2175 4264Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ashok Panigrahy
- grid.239553.b0000 0000 9753 0008Division of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Patrick M. Kochanek
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Ruchira M. Jha
- grid.427785.b0000 0001 0664 3531Barrow Neurological Institute, Phoenix, AZ USA
| | - Rajesh K. Aneja
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine and Pediatrics, School of Medicine, Faculty Pavilion Building, University of Pittsburgh, 2nd Floor, Suite 2112, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| |
Collapse
|
7
|
Simon DW, Raphael I, Johnson KM, Dixon CE, Vagni V, Janesko-Feldman K, Kochanek PM, Bayir H, Clark RS, McGeachy MJ. Endogenous Interleukin-17a Contributes to Normal Spatial Memory Retention but Does Not Affect Early Behavioral or Neuropathological Outcomes after Experimental Traumatic Brain Injury. Neurotrauma Rep 2022; 3:340-351. [PMID: 36204388 PMCID: PMC9531893 DOI: 10.1089/neur.2022.0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine primarily secreted in the brain by inflammatory T lymphocytes and glial cells. IL-17+ T-helper (Th17) cells are increased in the ipsilateral hemisphere after experimental traumatic brain injury (TBI), and IL-17 levels are increased in serum and brain tissue. We hypothesized that il17a and related gene expression would be increased in brain tissue after TBI in mice and il17a-/- mice would demonstrate neuroprotection versus wild type. The controlled cortical impact (CCI) model of TBI in adult male C57BL6/J mice was used for all experiments. Data were analyzed by analysis of variance (ANOVA) or repeated-measures two-way ANOVA with the Bonferroni correction. A value of p < 0.05 determined significance. Expression of il17a was significantly reduced in the ipsilateral cortex and hippocampus by day 3 after TBI, and expression remained low at 28 days. There were no differences between il17a-/- and il17a+/+ mice in beam balance, Morris water maze performance, or lesion volume after CCI. Surprisingly, naïve il17a -/- mice performed significantly (p = 0.02) worse than naïve il17a+/+ mice on the probe trial. In conclusion, sustained depression of il17a gene expression was observed in brains after TBI in adult mice. Genetic knockout of IL-17 was not neuroprotective after TBI. IL-17a may be important for memory retention in naïve mice.
Collapse
Affiliation(s)
- Dennis W. Simon
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kendall M. Johnson
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vincent Vagni
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Keri Janesko-Feldman
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayir
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mandy J. McGeachy
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Shin SS, Hwang M, Diaz-Arrastia R, Kilbaugh TJ. Inhalational Gases for Neuroprotection in Traumatic Brain Injury. J Neurotrauma 2021; 38:2634-2651. [PMID: 33940933 PMCID: PMC8820834 DOI: 10.1089/neu.2021.0053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite multiple prior pharmacological trials in traumatic brain injury (TBI), the search for an effective, safe, and practical treatment of these patients remains ongoing. Given the ease of delivery and rapid absorption into the systemic circulation, inhalational gases that have neuroprotective properties will be an invaluable resource in the clinical management of TBI patients. In this review, we perform a systematic review of both pre-clinical and clinical reports describing inhalational gas therapy in the setting of TBI. Hyperbaric oxygen, which has been investigated for many years, and some of the newest developments are reviewed. Also, promising new therapies such as hydrogen gas, hydrogen sulfide gas, and nitric oxide are discussed. Moreover, novel therapies such as xenon and argon gases and delivery methods using microbubbles are explored.
Collapse
Affiliation(s)
- Samuel S. Shin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Abstract
Thyroid hormone is essential for brain development and brain function in the adult. During development, thyroid hormone acts in a spatial and temporal-specific manner to regulate the expression of genes essential for normal neural cell differentiation, migration, and myelination. In the adult brain, thyroid hormone is important for maintaining normal brain function. Thyroid hormone excess, hyperthyroidism, and thyroid hormone deficiency, hypothyroidism, are associated with disordered brain function, including depression, memory loss, impaired cognitive function, irritability, and anxiety. Adequate thyroid hormone levels are required for normal brain function. Thyroid hormone acts through a cascade of signaling components: activation and inactivation by deiodinase enzymes, thyroid hormone membrane transporters, and nuclear thyroid hormone receptors. Additionally, the hypothalamic-pituitary-thyroid axis, with negative feedback of thyroid hormone on thyrotropin-releasing hormone (TRH) and thyroid-stimulating hormone (TSH) secretion, regulates serum thyroid hormone levels in a narrow range. Animal and human studies have shown both systemic and local reduction in thyroid hormone availability in neurologic disease and after brain trauma. Treatment with thyroid hormone and selective thyroid hormone analogs has resulted in a reduction in injury and improved recovery. This article will describe the thyroid hormone signal transduction pathway in the brain and the role of thyroid hormone in the aging brain, neurologic diseases, and the protective role when administered after traumatic brain injury. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Departments of Medicine and Physiology, Endocrinology, Diabetes and Metabolism Division, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Gregory A Brent
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Departments of Medicine and Physiology, Endocrinology, Diabetes and Metabolism Division, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
10
|
Chachlaki K, Prevot V. Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 2020; 177:5437-5458. [PMID: 31347144 PMCID: PMC7707094 DOI: 10.1111/bph.14800] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a versatile molecule that plays key roles in the development and survival of mammalian species by endowing brain neuronal networks with the ability to make continual adjustments to function in response to moment-to-moment changes in physiological input. Here, we summarize the progress in the field and argue that NO-synthetizing neurons and NO signalling in the brain provide a core hub for integrating sensory- and homeostatic-related cues, control key bodily functions, and provide a potential target for new therapeutic opportunities against several neuroendocrine and behavioural abnormalities.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| |
Collapse
|
11
|
Walter J, Schwarting J, Plesnila N, Terpolilli NA. Influence of Organic Solvents on Secondary Brain Damage after Experimental Traumatic Brain Injury. Neurotrauma Rep 2020; 1:148-156. [PMID: 34223539 PMCID: PMC8240898 DOI: 10.1089/neur.2020.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many compounds tested for a possible neuroprotective effect after traumatic brain injury (TBI) are not readily soluble and therefore organic solvents need to be used as a vehicle. It is, however, unclear whether these organic solvents have intrinsic pharmacological effects on secondary brain damage and may therefore interfere with experimental results. Thus, the aim of the current study was to evaluate the effect of four widely used organic solvents, dimethylsulfoxide (DMSO), Miglyol 812 (Miglyol®), polyethyleneglycol 40 (PEG 40), and N-2-methyl-pyrrolidone (NMP) on outcome after TBI in mice. A total of 143 male C57Bl/6 mice were subjected to controlled cortical impact (CCI). Contusion volume, brain edema formation, and neurological function were assessed 24 h after TBI. Test substances or saline were injected intraperitoneally (i.p.) 10 min before CCI. DMSO, Miglyol, and PEG 40 had no effect on post-traumatic contusion volume after CCI; NMP, however, significantly reduced contusion volume and brain edema formation at different concentrations. The use of DMSO, Miglyol, and PEG 40 is unproblematic for studies investigating neuroprotective treatment strategies as they do not influence post-traumatic brain damage. NMP seems to have an intrinsic neuroprotective effect that should be considered when using this agent in pharmacological experiments; further, a putative therapeutic effect of NMP needs to be elucidated in future studies.
Collapse
Affiliation(s)
- Johannes Walter
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Julian Schwarting
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
12
|
Antagonism of Protease-Activated Receptor 4 Protects Against Traumatic Brain Injury by Suppressing Neuroinflammation via Inhibition of Tab2/NF-κB Signaling. Neurosci Bull 2020; 37:242-254. [PMID: 33111257 DOI: 10.1007/s12264-020-00601-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) triggers the activation of the endogenous coagulation mechanism, and a large amount of thrombin is released to curb uncontrollable bleeding through thrombin receptors, also known as protease-activated receptors (PARs). However, thrombin is one of the most critical factors in secondary brain injury. Thus, the PARs may be effective targets against hemorrhagic brain injury. Since the PAR1 antagonist has an increased bleeding risk in clinical practice, PAR4 blockade has been suggested as a more promising treatment. Here, we explored the expression pattern of PAR4 in the brain of mice after TBI, and explored the effect and possible mechanism of BMS-986120 (BMS), a novel selective and reversible PAR4 antagonist on secondary brain injury. Treatment with BMS protected against TBI in mice. mRNA-seq analysis, Western blot, and qRT-PCR verification in vitro showed that BMS significantly inhibited thrombin-induced inflammation in astrocytes, and suggested that the Tab2/ERK/NF-κB signaling pathway plays a key role in this process. Our findings provide reliable evidence that blocking PAR4 is a safe and effective intervention for TBI, and suggest that BMS has a potential clinical application in the management of TBI.
Collapse
|
13
|
Aravind A, Ravula AR, Chandra N, Pfister BJ. Behavioral Deficits in Animal Models of Blast Traumatic Brain Injury. Front Neurol 2020; 11:990. [PMID: 33013653 PMCID: PMC7500138 DOI: 10.3389/fneur.2020.00990] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/29/2020] [Indexed: 01/30/2023] Open
Abstract
Blast exposure has been identified to be the most common cause for traumatic brain injury (TBI) in soldiers. Over the years, rodent models to mimic blast exposures and the behavioral outcomes observed in veterans have been developed extensively. However, blast tube design and varying experimental parameters lead to inconsistencies in the behavioral outcomes reported across research laboratories. This review aims to curate the behavioral outcomes reported in rodent models of blast TBI using shockwave tubes or open field detonations between the years 2008–2019 and highlight the important experimental parameters that affect behavioral outcome. Further, we discuss the role of various design parameters of the blast tube that can affect the nature of blast exposure experienced by the rodents. Finally, we assess the most common behavioral tests done to measure cognitive, motor, anxiety, auditory, and fear conditioning deficits in blast TBI (bTBI) and discuss the advantages and disadvantages of these tests.
Collapse
Affiliation(s)
- Aswati Aravind
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Arun Reddy Ravula
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Bryan J Pfister
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
14
|
Simon DW, Rogers MB, Gao Y, Vincent G, Firek BA, Janesko-Feldman K, Vagni V, Kochanek PM, Ozolek JA, Mollen KP, Clark RSB, Morowitz MJ. Depletion of gut microbiota is associated with improved neurologic outcome following traumatic brain injury. Brain Res 2020; 1747:147056. [PMID: 32798452 DOI: 10.1016/j.brainres.2020.147056] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/20/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Signaling between intestinal microbiota and the brain influences neurologic outcome in multiple forms of brain injury. The impact of gut microbiota following traumatic brain injury (TBI) has not been well established. Our objective was to compare TBI outcomes in specific pathogen-free mice with or without depletion of intestinal bacteria. Adult male C57BL6/J SPF mice (n = 6/group) were randomized to standard drinking water or ampicillin (1 g/L), metronidazole (1 g/L), neomycin (1 g/L), and vancomycin (0.5 g/L) (AMNV) containing drinking water 14 days prior to controlled cortical impact (CCI) model of TBI. 16S rRNA gene sequencing of fecal pellets was performed and alpha and beta diversity determined. Hippocampal neuronal density and microglial activation was assessed 72 h post-injury by immunohistochemistry. In addition, mice (n = 8-12/group) were randomized to AMNV or no treatment initiated immediately after CCI and memory acquisition (fear conditioning) and lesion volume assessed. Mice receiving AMNV had significantly reduced alpha diversity (p < 0.05) and altered microbiota community composition compared to untreated mice (PERMANOVA: p < 0.01). Mice receiving AMNV prior to TBI had increased CA1 hippocampal neuronal density (15.2 ± 1.4 vs. 8.8 ± 2.1 cells/0.1 mm; p < 0.05) and a 26.6 ± 6.6% reduction in Iba-1 positive cells (p < 0.05) at 72 h. Mice randomized to AMNV immediately after CCI had attenuated associative learning deficit on fear conditioning test (%freeze Cue: 63.7 ± 2.7% vs. 41.0 ± 5.1%, p < 0.05) and decreased lesion volume (27.2 ± 0.8 vs. 24.6 ± 0.7 mm3, p < 0.05). In conclusion, depletion of intestinal microbiota was consistent with a neuroprotective effect whether initiated before or after injury in a murine model of TBI. Further investigations of the role of gut microbiota in TBI are warranted.
Collapse
Affiliation(s)
- Dennis W Simon
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Matthew B Rogers
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuan Gao
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Garret Vincent
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Firek
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Keri Janesko-Feldman
- Departments of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vincent Vagni
- Departments of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John A Ozolek
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, WV, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin P Mollen
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert S B Clark
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J Morowitz
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Center for Microbiome and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Departments of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Ouyang L, Mu X, Wang J, Li Q, Gao Y, Liu H, Sun S, Ren Q, Yan R, Wang J, Liu Q, Sun Y, Liu C, He H, Long W, Zhang XD. Carbon dot targeting to nitrogen signaling molecules for inhibiting neuronal death. J Mater Chem B 2020; 8:2321-2330. [DOI: 10.1039/c9tb02447f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrasmall carbon dot with targeting ability to nitrogen signaling molecules inhibit neuronal death by regulating the activity of endogenous enzymes.
Collapse
|
16
|
Pinho V, Fernandes M, da Costa A, Machado R, Gomes AC. Leukemia inhibitory factor: Recent advances and implications in biotechnology. Cytokine Growth Factor Rev 2019; 52:25-33. [PMID: 31870618 DOI: 10.1016/j.cytogfr.2019.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine with several functions in health and disease ranging from inflammation to cancer. LIF is also a potential target and/or therapeutic agent for diseases such as multiple sclerosis, stroke and even psychological disorders, where the function of LIF as a neurotrophic factor has only recently been explored. In recent years, a limited number of LIF clinical trials have been completed, which partially explains the shortage of effective applications as a therapeutic agent. With the increasing interest from biotechnology companies producing recombinant LIF, this status quo will certainly change, and the potential impact of LIF in terms of disease diagnosis, treatment and management will be realized.
Collapse
Affiliation(s)
- Vanessa Pinho
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Mário Fernandes
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - André da Costa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Raúl Machado
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Andreia C Gomes
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
17
|
Abe N, Choudhury ME, Watanabe M, Kawasaki S, Nishihara T, Yano H, Matsumoto S, Kunieda T, Kumon Y, Yorozuya T, Tanaka J. Comparison of the detrimental features of microglia and infiltrated macrophages in traumatic brain injury: A study using a hypnotic bromovalerylurea. Glia 2018; 66:2158-2173. [PMID: 30194744 DOI: 10.1002/glia.23469] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 11/10/2022]
Abstract
Microglia and blood-borne macrophages in injured or diseased brains are difficult to distinguish because they share many common characteristics. However, the identification of microglia-specific markers and the use of flow cytometry have recently made it easy to discriminate these types of cells. In this study, we analyzed the features of blood-borne macrophages, and activated and resting microglia in a rat traumatic brain injury (TBI) model. Oxidative injury was indicated in macrophages and neurons in TBI lesions by the presence of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Generation of mitochondrial reactive oxygen species (ROS) was markedly observed in granulocytes and macrophages, but not in activated or resting microglia. Dihydroethidium staining supported microglia not being the major source of ROS in TBI lesions. Furthermore, macrophages expressed NADPH oxidase 2, interleukin-1β (IL-1β), and CD68 at higher levels than microglia. In contrast, microglia expressed transforming growth factor β1 (TGFβ1), interleukin-6 (IL-6), and tumor necrosis factor α at higher levels than macrophages. A hypnotic, bromovalerylurea (BU), which has anti-inflammatory effects, reduced both glycolysis and mitochondrial oxygen consumption. BU administration inhibited chemokine CCL2 expression, accumulation of monocytes/macrophages, 8-OHdG generation, mitochondrial ROS generation, and proinflammatory cytokine expression, and markedly ameliorated the outcome of the TBI model. Yet, BU did not inhibit microglial activation or expression of TGFβ1 and insulin-like growth factor 1 (IGF-1). These results indicate that macrophages are the major aggravating cell type in TBI lesions, in particular during the acute phase. Activated microglia may even play favorable roles. Reduction of cellular energy metabolism in macrophages and suppression of CCL2 expression in injured tissue may lead to amelioration of TBI.
Collapse
Affiliation(s)
- Naoki Abe
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.,Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Minori Watanabe
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Shun Kawasaki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan.,Department of Surgery and Palliative Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tasuku Nishihara
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Shirabe Matsumoto
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Takehiro Kunieda
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Yoshiaki Kumon
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Toshihiro Yorozuya
- Department of Anesthesia and Perioperative Medicine, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| |
Collapse
|
18
|
Aneja RK, Alcamo AM, Cummings J, Vagni V, Feldman K, Wang Q, Dixon CE, Billiar TR, Kochanek PM. Lack of Benefit on Brain Edema, Blood-Brain Barrier Permeability, or Cognitive Outcome in Global Inducible High Mobility Group Box 1 Knockout Mice Despite Tissue Sparing after Experimental Traumatic Brain Injury. J Neurotrauma 2018; 36:360-369. [PMID: 30045665 DOI: 10.1089/neu.2018.5664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a prototypical danger-associated molecular pattern molecule that is considered a late mediator of neuro-inflammation after traumatic brain injury (TBI). Prior studies have suggested that targeting HMGB1 may lead to neuroprotective effects, but none of these studies have reported cognitive outcomes. We hypothesized that loss of HMGB1 before and after TBI would markedly attenuate post-traumatic brain edema, blood-brain barrier (BBB) permeability, improve functional deficits and long-term neuropathology versus control mice. Using the controlled cortical impact model and conditional global HMGB1 knockout (HMGB1 KO) mice, we demonstrate that there was a neuroprotective effect seen in the HMGB1 KO versus wild-type control evidenced by a significant reduction in contusion volume. However, two surprising findings were 1) the lack of benefit on either post-traumatic brain edema or BBB permeability, and 2) that spatial memory performance was impaired in HMGB1 KO naïve mice such that the behavioral effects of HMGB1 deletion in uninjured naïve mice were similar to those observed after TBI. Our data suggest the possibility that the role of HMGB1 in TBI is a "double-edged sword"; that is, despite the benefits on selected aspects of secondary injury, the sustained absence of HMGB1 may impair cognitive function, even in naïve mice. Given the pleiotropic actions of extracellular and intracellular HMGB1, when evaluating the potential use of therapies targeting HMGB1, effects on long-term cognitive outcome should be carefully evaluated. It also may be prudent in future studies to examine cell-specific effects of manipulating the HMGB1 pathway.
Collapse
Affiliation(s)
- Rajesh K Aneja
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.,2 Department of Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Alicia M Alcamo
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.,2 Department of Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Jessica Cummings
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.,2 Department of Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Vincent Vagni
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Keri Feldman
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Qingde Wang
- 3 Department of Surgery, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - C Edward Dixon
- 4 Department of Neurological Surgery, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Timothy R Billiar
- 3 Department of Surgery, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Che X, Fang Y, Si X, Wang J, Hu X, Reis C, Chen S. The Role of Gaseous Molecules in Traumatic Brain Injury: An Updated Review. Front Neurosci 2018; 12:392. [PMID: 29937711 PMCID: PMC6002502 DOI: 10.3389/fnins.2018.00392] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/22/2018] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI) affects millions of people in China each year. TBI has a high mortality and often times a serious prognosis. The causative mechanisms of TBI during development and recovery from an injury remain vague, leaving challenges for the medical community to provide treatment options that improve prognosis and provide an optimal recovery. Biological gaseous molecules including nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and molecular hydrogen (H2) have been found to play critical roles in physiological and pathological conditions in mammals. Accumulating evidence has found that these gaseous molecules can execute neuroprotection in many central nervous system (CNS) conditions due to their highly permeable properties allowing them to enter the brain. Considering the complicated mechanisms and the serious prognosis of TBI, effective and adequate therapeutic approaches are urgently needed. These four gaseous molecules can be potential attractive therapeutic intervention on TBI. In this review, we will present a comprehensive overview on the role of these four biological gasses in the development of TBI and their potential therapeutic applications.
Collapse
Affiliation(s)
- Xiaoru Che
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoli Si
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianfeng Wang
- Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Xiaoming Hu
- Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States.,Department of Preventive Medicine, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, China
| |
Collapse
|
20
|
Wang B, Han S. Inhibition of Inducible Nitric Oxide Synthase Attenuates Deficits in Synaptic Plasticity and Brain Functions Following Traumatic Brain Injury. THE CEREBELLUM 2018; 17:477-484. [DOI: 10.1007/s12311-018-0934-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Wang CC, Wee HY, Hu CY, Chio CC, Kuo JR. The Effects of Memantine on Glutamic Receptor-Associated Nitrosative Stress in a Traumatic Brain Injury Rat Model. World Neurosurg 2018; 112:e719-e731. [PMID: 29382619 DOI: 10.1016/j.wneu.2018.01.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND The main aim of this study is to elucidate whether the neuroprotective effect of memantine, a noncompetitive N-methyl-d-aspartate receptor 2B (NR2B) antagonist, affects neuronal nitrosative stress, apoptosis, and NR2B expression and improves functional outcomes. METHODS Immediately after the onset of fluid percussion traumatic brain injury (TBI), anesthetized male Sprague-Dawley rats were divided into sham-operated, TBI + vehicle, and TBI + memantine groups. TBI rats were treated with a memantine intraperitoneal injection dose of 20 mg/kg intraperitoneally and then 1 mg/kg every 12 hours intraperitoneally for 6 doses. The motor function, proprioception, infarction volume, and neuronal apoptosis were then measured. Immunofluorescence was used to evaluate astrogliosis, microgliosis, nitrosative stress, and NR2A and NR2B expression in cortical cells. All the parameters were assessed 72 hours after TBI. RESULTS Compared with the sham-operated controls, the TBI-induced motor and proprioception deficits, and increased infraction volume after TBI were significantly attenuated by memantine therapy. The TBI-induced neuronal apoptosis, astrogliosis, and microgliosis, the numbers of neuronal NO synthase and 3-nitro-l-tyrosine expression in neurons, and inducible NO synthase expression in microglia and astrocyte cells in the ischemic cortex after TBI were significantly improved by memantine therapy. Simultaneously, without affecting the NR2A expression in neuronal cells, the NR2B expression significantly decreased after memantine therapy, as evaluated by an immunofluorescence stain. CONCLUSIONS Intraperitoneal injection of memantine in the acute stage may ameliorate TBI in rats by affecting NR2B expression and decreasing neuronal apoptosis and nitrosative stress in the injured cortex. These effects might represent 1 mechanism by which functional recovery occurred.
Collapse
Affiliation(s)
- Che-Chuan Wang
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Hsiao-Yue Wee
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chiao-Ya Hu
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chung-Ching Chio
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| |
Collapse
|
22
|
Katsumoto A, Miranda AS, Butovsky O, Teixeira AL, Ransohoff RM, Lamb BT. Laquinimod attenuates inflammation by modulating macrophage functions in traumatic brain injury mouse model. J Neuroinflammation 2018; 15:26. [PMID: 29382353 PMCID: PMC5791334 DOI: 10.1186/s12974-018-1075-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a critical public health and socio-economic problem worldwide. A growing body of evidence supports the involvement of inflammatory events in TBI. It has been reported that resident microglia and infiltrating monocytes promote an inflammatory reaction that leads to neuronal death and eventually behavioral and cognitive impairment. Currently, there is no effective treatment for TBI and the development of new therapeutic strategies is a scientific goal of highest priority. Laquinimod, an orally administered neuroimmunomodulator initially developed for the treatment of multiple sclerosis, might be a promising neuroprotective therapy for TBI. Herein, we aim to investigate the hypothesis that laquinimod will reduce the central nervous system (CNS) damage caused by TBI. Methods To test our hypothesis, Ccr2rfp/+Cx3cr1gfp/+ mice were submitted to a moderate TBI induced by fluid percussion. Sham controls were submitted only to craniotomy. Mice were treated daily by oral gavage with laquinimod (25 mg/kg) 7 days before and 3 days after TBI. The brains of mice treated or not treated with laquinimod were collected at 3 and 120 days post injury, and brain morphological changes, axonal injury, and neurogenesis were evaluated by microscopy analysis. We also isolated microglia from infiltrating monocytes, and the expression of immune gene mRNAs were analyzed by employing a quantitative NanoString nCounter technique. Results Laquinimod prevented ventricle enlargement caused by TBI in the long term. Immunohistochemical analyses revealed decreased axonal damage and restored neurogenesis in the laquinimod-treated TBI group at early stage (3 days post injury). Notably, laquinimod inhibited the monocytes infiltration to the brain. Hierarchial clustering demonstrated that the microglial gene expression from the TBI group treated with laquinimod resembles the sham group more than the TBI-water control group. Conclusions Administration of laquinimod reduced lesion volume and axonal damage and restored neurogenesis after TBI. Laquinimod might be a potential therapy strategy to improve TBI long-term prognosis. Electronic supplementary material The online version of this article (10.1186/s12974-018-1075-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atsuko Katsumoto
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th St, Indianapolis, IN, 46202, USA.
| | - Aline S Miranda
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Laboratory of Neurobiology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Oleg Butovsky
- Center of Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Antônio L Teixeira
- Interdisciplinary Laboratory of Medical Investigation, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Richard M Ransohoff
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bruce T Lamb
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
23
|
Panthi S, Gautam K. Roles of nitric oxide and ethyl pyruvate after peripheral nerve injury. Inflamm Regen 2017; 37:20. [PMID: 29259719 PMCID: PMC5725928 DOI: 10.1186/s41232-017-0051-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/01/2017] [Indexed: 12/27/2022] Open
Abstract
Short-lived reactive nitrogen species and reactive oxygen species have acquired significant attention in the field of biomedical science. Nitric oxide (NO), which was thought to be an unstable gas and pollutant, is now regarded as a gas transmitter like H2S and CO. NO is synthesized inside the mammalian body by l-arginine via three different isoforms of NO synthase whereas pyruvate is a glycolysis product and substrate for TCA cycle. Due to poor solubility and stability, therapeutic potential of pyruvate is limited. Ethyl pyruvate (EP) is now considered as a suitable replacement of pyruvate. In this paper, we will try to focus the effect of NO and EP in Schwann cell dedifferentiation, proliferation, nerve degeneration, and regeneration during Wallerian degeneration (WD) of peripheral nerve injury along with their neuroprotective effects, cardiovascular functioning, support in hepatic complication, etc.
Collapse
Affiliation(s)
- Sandesh Panthi
- Otago School of Biomedical Sciences, University of Otago, Otago, New Zealand
| | - Kripa Gautam
- China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
24
|
Li J, Donangelo I, Abe K, Scremin O, Ke S, Li F, Milanesi A, Liu YY, Brent GA. Thyroid hormone treatment activates protective pathways in both in vivo and in vitro models of neuronal injury. Mol Cell Endocrinol 2017; 452:120-130. [PMID: 28549992 DOI: 10.1016/j.mce.2017.05.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023]
Abstract
Thyroid hormone plays an important role in brain development and adult brain function, and may influence neuronal recovery after Traumatic Brain Injury (TBI). We utilized both animal and cell culture models to determine the effects of thyroid hormone treatment, post TBI or during hypoxia, on genes important for neuronal survival and neurogenesis. We show that TBI in rats is associated with a reduction in serum thyroxine (T4) and triiodothyronine (T3). A single dose of levothyroxine (T4), one hour after injury, increased serum T4 and normalized serum T3 levels. Expression of genes important for thyroid hormone action in the brain, MCT8 and Type 2 deiodinase (Dio2) mRNA, diminished after injury, but were partially restored with T4 treatment. mRNA from the Type 3 deiodinase (Dio3) gene, which inactivates T4 to reverse T3 (rT3), was induced 2.7 fold by TBI, and further stimulated 6.7-fold by T4 treatment. T4 treatment significantly increased the expression of mRNA from Bcl2, VEGFA, Sox2 and neurotrophin, genes important for neuronal survival and recovery. The cortex, compared to the hippocampus and cerebellum, sustained the greatest injury and had the most significant change in gene expression as a result of injury and the greatest response to T4 treatment. We utilized hypoxia to study the effect of neuronal injury in vitro. Neuroblastoma cells were exposed to reduced oxygen tension, 0.2%, and were compared to cells grown at control oxygen levels of 21%. T3 treatment significantly increased hypoxia inducible factor (HIF)-2α protein, but not HIF-1α. In a hypoxia time course exposure, expression of hypoxia-mediated genes (VEGF, Enolase, HIF2α, c-Jun) peaked at least 8 h earlier with T3-treatment, compared to cells grown without T3. The early induction of these genes may promote cellular growth after injury. After hypoxic injury, T3 induced mRNA expression of the genes, KLF9 and hairless, important for T3-mediated brain function. The findings from both in vitro and in vivo studies support a role of thyroid hormone in activating pathways important for neuronal protection and promotion of neuronal recovery after injury.
Collapse
Affiliation(s)
- Jianrong Li
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Endocrinology, Union Hospital, Fujian Medical University, China
| | - Ines Donangelo
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Kiyomi Abe
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Oscar Scremin
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Sujie Ke
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Feng Li
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Anna Milanesi
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yan-Yun Liu
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| | - Gregory A Brent
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, Endocrinology Division, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| |
Collapse
|
25
|
Schiavone S, Neri M, Trabace L, Turillazzi E. The NADPH oxidase NOX2 mediates loss of parvalbumin interneurons in traumatic brain injury: human autoptic immunohistochemical evidence. Sci Rep 2017; 7:8752. [PMID: 28821783 PMCID: PMC5562735 DOI: 10.1038/s41598-017-09202-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022] Open
Abstract
Pharmacological interventions for traumatic brain injury (TBI) are limited. Together with parvalbumin (PV) loss, increased production of reactive oxygen species (ROS) by the NADPH oxidase NOX enzymes represents a key step in TBI. Here, we investigated the contribution of NOX2-derived oxidative stress to the loss of PV immunoreactivity associated to TBI, performing immunohistochemistry for NOX2, 8-hydroxy-2′-deoxyguanosine (8OHdG) and PV on post mortem brain samples of subjects died following TBI, subjects died from spontaneous intracerebral hemorrhage (SICH) and controls (CTRL). We detected an increased NOX2 expression and 8OHdG immunoreactivity in subjects died from TBI with respect to CTRL and SICH. NOX2 increase was mainly observed in GABAergic PV-positive interneurons, with a minor presence in microglia. No significant differences in other NADPH oxidase isoforms (NOX1 and NOX4) were detected among experimental groups. NOX2-derived oxidative stress elevation appeared a specific TBI-induced phenomenon, as no alterations in the nitrosative pathway were detected. Our results suggest that NOX2-derived oxidative stress might play a crucial role in the TBI-induced loss of PV-positive interneurons.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Margherita Neri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy.
| | - Emanuela Turillazzi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122, Foggia, Italy
| |
Collapse
|
26
|
Simon DW, McGeachy M, Bayır H, Clark RS, Loane DJ, Kochanek PM. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 2017; 13:171-191. [PMID: 28186177 PMCID: PMC5675525 DOI: 10.1038/nrneurol.2017.13] [Citation(s) in RCA: 669] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 'silent epidemic' of traumatic brain injury (TBI) has been placed in the spotlight as a result of clinical investigations and popular press coverage of athletes and veterans with single or repetitive head injuries. Neuroinflammation can cause acute secondary injury after TBI, and has been linked to chronic neurodegenerative diseases; however, anti-inflammatory agents have failed to improve TBI outcomes in clinical trials. In this Review, we therefore propose a new framework of targeted immunomodulation after TBI for future exploration. Our framework incorporates factors such as the time from injury, mechanism of injury, and secondary insults in considering potential treatment options. Structuring our discussion around the dynamics of the immune response to TBI - from initial triggers to chronic neuroinflammation - we consider the ability of soluble and cellular inflammatory mediators to promote repair and regeneration versus secondary injury and neurodegeneration. We summarize both animal model and human studies, with clinical data explicitly defined throughout this Review. Recent advances in neuroimmunology and TBI-responsive neuroinflammation are incorporated, including concepts of inflammasomes, mechanisms of microglial polarization, and glymphatic clearance. Moreover, we highlight findings that could offer novel therapeutic targets for translational and clinical research, assimilate evidence from other brain injury models, and identify outstanding questions in the field.
Collapse
Affiliation(s)
- Dennis W. Simon
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Mandy McGeachy
- Department of Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David J. Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MA 21201, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine; The Children’s Hospital of Pittsburgh of UPMC, and the Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
27
|
Maggio DM, Singh A, Iorgulescu JB, Bleicher DH, Ghosh M, Lopez MM, Tuesta LM, Flora G, Dietrich WD, Pearse DD. Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model. Int J Mol Sci 2017; 18:ijms18020245. [PMID: 28125047 PMCID: PMC5343782 DOI: 10.3390/ijms18020245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/05/2017] [Accepted: 01/15/2017] [Indexed: 02/07/2023] Open
Abstract
Inducible nitric oxide synthase (iNOS) is a potent mediator of oxidative stress during neuroinflammation triggered by neurotrauma or neurodegeneration. We previously demonstrated that acute iNOS inhibition attenuated iNOS levels and promoted neuroprotection and functional recovery after spinal cord injury (SCI). The present study investigated the effects of chronic iNOS ablation after SCI using inos-null mice. iNOS-/- knockout and wild-type (WT) control mice underwent a moderate thoracic (T8) contusive SCI. Locomotor function was assessed weekly, using the Basso Mouse Scale (BMS), and at the endpoint (six weeks), by footprint analysis. At the endpoint, the volume of preserved white and gray matter, as well as the number of dorsal column axons and perilesional blood vessels rostral to the injury, were quantified. At weeks two and three after SCI, iNOS-/- mice exhibited a significant locomotor improvement compared to WT controls, although a sustained improvement was not observed during later weeks. At the endpoint, iNOS-/- mice showed significantly less preserved white and gray matter, as well as fewer dorsal column axons and perilesional blood vessels, compared to WT controls. While short-term antagonism of iNOS provides histological and functional benefits, its long-term ablation after SCI may be deleterious, blocking protective or reparative processes important for angiogenesis and tissue preservation.
Collapse
Affiliation(s)
- Dominic M Maggio
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institute of Heath, Bethesda, MD 20824, USA.
| | - Amanpreet Singh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - J Bryan Iorgulescu
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Drew H Bleicher
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Michael M Lopez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Luis M Tuesta
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Govinder Flora
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA.
| |
Collapse
|
28
|
Kishikawa T, Otsuka M, Tan PS, Ohno M, Sun X, Yoshikawa T, Shibata C, Takata A, Kojima K, Takehana K, Ohishi M, Ota S, Noyama T, Kondo Y, Sato M, Soga T, Hoshida Y, Koike K. Decreased miR122 in hepatocellular carcinoma leads to chemoresistance with increased arginine. Oncotarget 2016; 6:8339-52. [PMID: 25826076 PMCID: PMC4480756 DOI: 10.18632/oncotarget.3234] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Reduced expression of microRNA122 (miR122), a liver-specific microRNA, is
frequent in hepatocellular carcinoma (HCC). However, its biological
significances remain poorly understood. Because deregulated amino acid levels in
cancers can affect their biological behavior, we determined the amino acid
levels in miR122-silenced mouse liver tissues, in which intracellular arginine
levels were significantly increased. The increased intracellular arginine levels
were through upregulation of the solute carrier family 7 (SLC7A1), a transporter
of arginine and a direct target of miR122. Arginine is the substrate for nitric
oxide (NO) synthetase, and intracellular NO levels were increased in
miR122-silenced HCC cells, with increased resistance to sorafenib, a multikinase
inhibitor. Conversely, maintenance of the miR122-silenced HCC cells in
arginine-depleted culture media, as well as overexpression of miR122 in
miR122-low-expressing HCC cells, reversed these effects and rendered the cells
more sensitive to sorafenib. Using a reporter knock-in construct, chemical
compounds were screened, and Wee1 kinase inhibitor was identified as
upregulators of miR122 transcription, which increased the sensitivity of the
cells to sorafenib. These results provide an insight into sorafenib resistance
in miR122-low HCC, and suggest that arginine depletion or a combination of
sorafenib with the identified compound may provide promising approaches to
managing this HCC subset.
Collapse
Affiliation(s)
- Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.,Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Poh Seng Tan
- Liver Cancer Program, Tisch Cancer Institute, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA.,Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Health System, 119228, Singapore
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Xiaochen Sun
- Liver Cancer Program, Tisch Cancer Institute, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Takeshi Yoshikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Chikako Shibata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Akemi Takata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kentaro Kojima
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenji Takehana
- Pharmacology Research Laboratory, Research Institute, Ajinomoto Pharmaceutical Co., Ltd., Kawasaki, Kanagawa 210-8681, Japan
| | - Maki Ohishi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Sana Ota
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyuki Noyama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuji Kondo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Masaya Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyoshi Soga
- Pharmacology Research Laboratory, Research Institute, Ajinomoto Pharmaceutical Co., Ltd., Kawasaki, Kanagawa 210-8681, Japan
| | - Yujin Hoshida
- Liver Cancer Program, Tisch Cancer Institute, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
29
|
Bambakidis T, Dekker SE, Sillesen M, Liu B, Johnson CN, Jin G, de Vries HE, Li Y, Alam HB. Resuscitation with Valproic Acid Alters Inflammatory Genes in a Porcine Model of Combined Traumatic Brain Injury and Hemorrhagic Shock. J Neurotrauma 2016; 33:1514-21. [PMID: 26905959 DOI: 10.1089/neu.2015.4163] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury and hemorrhagic shock (TBI+HS) elicit a complex inflammatory response that contributes to secondary brain injury. There is currently no proven pharmacologic treatment for TBI+HS, but modulation of the epigenome has been shown to be a promising strategy. The aim of this study was to investigate whether valproic acid (VPA), a histone deacetylase inhibitor, modulates the expression of cerebral inflammatory gene profiles in a large animal model of TBI+HS. Ten Yorkshire swine were subjected to computer-controlled TBI+HS (40% blood volume). After 2 h of shock, animals were resuscitated with Hextend (HEX) or HEX+VPA (300 mg/kg, n = 5/group). Six hours after resuscitation, brains were harvested, RNA was isolated, and gene expression profiles were measured using a porcine microarray. Ingenuity Pathway Analysis® (IPA), gene ontology (GO), Parametric Gene Set Enrichment Analysis (PGSEA), and DAVID (Database for Annotation, Visualization, and Integrated Discovery) were used for pathway analysis. Key microarray findings were verified using real-time polymerase chain reaction (PCR). IPA analysis revealed that VPA significantly down-regulated the complement system (p < 0.001), natural killer cell communication (p < 0.001), and dendritic cell maturation (p < 0.001). DAVID analysis indicated that a cluster of inflammatory pathways held the highest rank and gene enrichment score. Real-time PCR data confirmed that VPA significantly down-expressed genes that ultimately regulate nuclear factor-kB (NF-kB)-mediated production of cytokines, such as TYROBP, TREM2, CCR1, and IL-1β. This high-throughput analysis of cerebral gene expression shows that addition of VPA to the resuscitation protocol significantly modulates the expression of inflammatory pathways in a clinically realistic model of TBI+HS.
Collapse
Affiliation(s)
- Ted Bambakidis
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan
| | - Simone E Dekker
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan.,2 Department of Anesthesiology, Institute for Cardiovascular Research, VU University Medical Center , Amsterdam, the Netherlands
| | - Martin Sillesen
- 3 Department of Surgical Gastroenterology, Copenhagen University Hospital , Copenhagen, Denmark
| | - Baoling Liu
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan
| | - Craig N Johnson
- 4 DNA Sequencing Core, University of Michigan , Ann Arbor, Michigan
| | - Guang Jin
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan
| | - Helga E de Vries
- 5 Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam, the Netherlands
| | - Yongqing Li
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan
| | - Hasan B Alam
- 1 Department of Surgery, University of Michigan Hospital , Ann Arbor, Michigan
| |
Collapse
|
30
|
Wiley CA, Bissel SJ, Lesniak A, Dixon CE, Franks J, Beer Stolz D, Sun M, Wang G, Switzer R, Kochanek PM, Murdoch G. Ultrastructure of Diaschisis Lesions after Traumatic Brain Injury. J Neurotrauma 2016; 33:1866-1882. [PMID: 26914973 DOI: 10.1089/neu.2015.4272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We used controlled cortical impact in mice to model human traumatic brain injury (TBI). Local injury was accompanied by distal diaschisis lesions that developed within brain regions anatomically connected to the injured cortex. At 7 days after injury, histochemistry documented broadly distributed lesions, particularly in the contralateral cortex and ipsilateral thalamus and striatum. Reactive astrocytosis and microgliosis were noted in multiple neural pathways that also showed silver-stained cell processes and bodies. Wisteria floribunda agglutinin (WFA) staining, a marker of perineuronal nets, was substantially diminished in the ipsilateral, but less so in the contralateral cortex. Contralateral cortical silver positive diaschisis lesions showed loss of both phosphorylated and unphosphorylated neurofilament staining, but overall preservation of microtubule-associated protein (MAP)-2 staining. Thalamic lesions showed substantial loss of MAP-2 and unphosphorylated neurofilaments in addition to moderate loss of phosphorylated neurofilament. One animal demonstrated contralateral cerebellar degeneration at 7 days post-injury. After 21 days, the gliosis had quelled, however persistent silver staining was noted. Using a novel serial section technique, we were able to perform electron microscopy on regions fully characterized at the light microscopy level. Cell bodies and processes that were silver positive at the light microscopy level showed hydropic disintegration consisting of: loss of nuclear heterochromatin; dilated somal and neuritic processes with a paucity of filaments, tubules, and mitochondria; and increased numbers of electron-dense membranous structures. Importantly the cell membrane itself was still intact 3 weeks after injury. Although the full biochemical nature of these lesions remains to be deciphered, the morphological preservation of damaged neurons and processes raises the question of whether this is a reversible process.
Collapse
Affiliation(s)
- Clayton A Wiley
- 1 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennslyvania
| | - Stephanie J Bissel
- 1 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennslyvania
| | - Andrew Lesniak
- 1 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennslyvania
| | - C Edward Dixon
- 2 VA Pittsburgh Healthcare System and Safar Center for Resuscitation Research , Pittsburgh, Pennsylvania.,3 Department of Neurosurgery, Anesthesiology, Physical Medicine, University of Pittsburgh , Pittsburgh, Pennslyvania
| | - Jonathan Franks
- 4 Center for Biologic Imaging, University of Pittsburgh , Pittsburgh, Pennslyvania
| | - Donna Beer Stolz
- 4 Center for Biologic Imaging, University of Pittsburgh , Pittsburgh, Pennslyvania
| | - Ming Sun
- 4 Center for Biologic Imaging, University of Pittsburgh , Pittsburgh, Pennslyvania
| | - Guoji Wang
- 1 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennslyvania
| | | | - Patrick M Kochanek
- 2 VA Pittsburgh Healthcare System and Safar Center for Resuscitation Research , Pittsburgh, Pennsylvania.,3 Department of Neurosurgery, Anesthesiology, Physical Medicine, University of Pittsburgh , Pittsburgh, Pennslyvania.,6 Department of Pediatrics, and Rehabilitation and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennslyvania
| | - Geoffrey Murdoch
- 1 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennslyvania
| |
Collapse
|
31
|
Osier ND, Carlson SW, DeSana A, Dixon CE. Chronic Histopathological and Behavioral Outcomes of Experimental Traumatic Brain Injury in Adult Male Animals. J Neurotrauma 2015; 32:1861-82. [PMID: 25490251 PMCID: PMC4677114 DOI: 10.1089/neu.2014.3680] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to survey the use of experimental animal models for studying the chronic histopathological and behavioral consequences of traumatic brain injury (TBI). The strategies employed to study the long-term consequences of TBI are described, along with a summary of the evidence available to date from common experimental TBI models: fluid percussion injury; controlled cortical impact; blast TBI; and closed-head injury. For each model, evidence is organized according to outcome. Histopathological outcomes included are gross changes in morphology/histology, ventricular enlargement, gray/white matter shrinkage, axonal injury, cerebrovascular histopathology, inflammation, and neurogenesis. Behavioral outcomes included are overall neurological function, motor function, cognitive function, frontal lobe function, and stress-related outcomes. A brief discussion is provided comparing the most common experimental models of TBI and highlighting the utility of each model in understanding specific aspects of TBI pathology. The majority of experimental TBI studies collect data in the acute postinjury period, but few continue into the chronic period. Available evidence from long-term studies suggests that many of the experimental TBI models can lead to progressive changes in histopathology and behavior. The studies described in this review contribute to our understanding of chronic TBI pathology.
Collapse
Affiliation(s)
- Nicole D. Osier
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony DeSana
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Seton Hill University, Greensburg, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- V.A. Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Villalba N, Sonkusare SK, Longden TA, Tran TL, Sackheim AM, Nelson MT, Wellman GC, Freeman K. Traumatic brain injury disrupts cerebrovascular tone through endothelial inducible nitric oxide synthase expression and nitric oxide gain of function. J Am Heart Assoc 2015; 3:e001474. [PMID: 25527626 PMCID: PMC4338739 DOI: 10.1161/jaha.114.001474] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) has been reported to increase the concentration of nitric oxide (NO) in the brain and can lead to loss of cerebrovascular tone; however, the sources, amounts, and consequences of excess NO on the cerebral vasculature are unknown. Our objective was to elucidate the mechanism of decreased cerebral artery tone after TBI. METHODS AND RESULTS Cerebral arteries were isolated from rats 24 hours after moderate fluid‐percussion TBI. Pressure‐induced increases in vasoconstriction (myogenic tone) and smooth muscle Ca2+ were severely blunted in cerebral arteries after TBI. However, myogenic tone and smooth muscle Ca2+ were restored by inhibition of NO synthesis or endothelium removal, suggesting that TBI increased endothelial NO levels. Live native cell NO, indexed by 4,5‐diaminofluorescein (DAF‐2 DA) fluorescence, was increased in endothelium and smooth muscle of cerebral arteries after TBI. Clamped concentrations of 20 to 30 nmol/L NO were required to simulate the loss of myogenic tone and increased (DAF‐2T) fluorescence observed following TBI. In comparison, basal NO in control arteries was estimated as 0.4 nmol/L. Consistent with TBI causing enhanced NO‐mediated vasodilation, inhibitors of guanylyl cyclase, protein kinase G, and large‐conductance Ca2+‐activated potassium (BK) channel restored function of arteries from animals with TBI. Expression of the inducible isoform of NO synthase was upregulated in cerebral arteries isolated from animals with TBI, and the inducible isoform of NO synthase inhibitor 1400W restored myogenic responses following TBI. CONCLUSIONS The mechanism of profound cerebral artery vasodilation after TBI is a gain of function in vascular NO production by 60‐fold over controls, resulting from upregulation of the inducible isoform of NO synthase in the endothelium.
Collapse
Affiliation(s)
- Nuria Villalba
- From the Departments of Pharmacology, University of Vermont, Burlington, VT
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kertmen H, Gürer B, Yilmaz ER, Kanat MA, Arikok AT, Ergüder BI, Hasturk AE, Ergil J, Sekerci Z. Antioxidant and antiapoptotic effects of darbepoetin-α against traumatic brain injury in rats. Arch Med Sci 2015; 11:1119-28. [PMID: 26528358 PMCID: PMC4624756 DOI: 10.5114/aoms.2015.54869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/14/2013] [Accepted: 10/04/2013] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION In this study, we tried to determine whether darbepoetin-α would protect the brain from oxidative stress and apoptosis in a rat traumatic brain injury model. MATERIAL AND METHODS The animals were randomized into four groups; group 1 (sham), group 2 (trauma), group 3 (darbepoetin α), group 4 (methylprednisolone). In the sham group only the skin incision was performed. In all the other groups, a moderate traumatic brain injury modelwas applied. RESULTS Following trauma both glutathione peroxidase, superoxide dismutase levels decreased (p < 0.001 for both); darbepoetin-α increased the activity of both antioxidant enzymes (p = 0.001 and p < 0.001 respectively). Trauma caused significant elevation in the nitric oxide synthetase and xanthine oxidase levels (p < 0.001 for both). Administration of darbepoetin-α significantly decreased the levels of nitric oxide synthetase and xanthine oxidase (p < 0.001 for both). Also, trauma caused significant elevation in the nitric oxide levels (p < 0.001); darbepoetin-α administration caused statistically significant reduction in the nitric oxide levels (p < 0.001). On the other hand, malondialdehyde levels were increased following trauma (p < 0.001), and darbepoetin α significantly reduced the malondialdehyde levels (p < 0.001). Due to the elevated apoptotic activity following the injury, caspase-3 activity increased significantly. Darbepoetin-α treatment significantly inhibited apoptosis by lowering the caspase-3 activity (p < 0.001). In the darbepoetin group, histopathological score was lower than the trauma group (p = 0.016). CONCLUSIONS In this study, darbepoetin-α was shown to be at least as effective as methylprednisolone in protecting brain from oxidative stress, lipid peroxidation and apoptosis.
Collapse
Affiliation(s)
- Hayri Kertmen
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Bora Gürer
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Erdal Resit Yilmaz
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| | - Mehmet Ali Kanat
- Ministry of Health, Refik Saydam National Public Health Agency, Ankara, Turkey
| | - Ata Türker Arikok
- Department of Pathology, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | | | - Askin Esen Hasturk
- Department of Neurosurgery, Ministry of Health, Oncology Training and Research Hospital, Ankara, Turkey
| | - Julide Ergil
- Department of Anesthesiology, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | - Zeki Sekerci
- Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Neurosurgery Clinic, Ankara, Turkey
| |
Collapse
|
34
|
Su EJ, Fredriksson L, Kanzawa M, Moore S, Folestad E, Stevenson TK, Nilsson I, Sashindranath M, Schielke GP, Warnock M, Ragsdale M, Mann K, Lawrence ALE, Medcalf RL, Eriksson U, Murphy GG, Lawrence DA. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury. Front Cell Neurosci 2015; 9:385. [PMID: 26500491 PMCID: PMC4596067 DOI: 10.3389/fncel.2015.00385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/14/2015] [Indexed: 12/30/2022] Open
Abstract
Current therapies for Traumatic brain injury (TBI) focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB) integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC) within the brain can promote BBB permeability through PDGF receptor α (PDGFRα) signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 min after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 h, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC) measurements, and with the preservation of cognitive function. Finally, analysis of cerebrospinal fluid (CSF) from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα.
Collapse
Affiliation(s)
- Enming J Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Linda Fredriksson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet Stockholm, Sweden
| | - Mia Kanzawa
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Shannon Moore
- Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA
| | - Erika Folestad
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet Stockholm, Sweden
| | - Tamara K Stevenson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet Stockholm, Sweden
| | - Maithili Sashindranath
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University Melbourne, VIC, Australia
| | - Gerald P Schielke
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Mark Warnock
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Margaret Ragsdale
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Kris Mann
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Anna-Lisa E Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University Melbourne, VIC, Australia
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet Stockholm, Sweden
| | - Geoffrey G Murphy
- Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, MI, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Molecular and Integrative Physiology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
35
|
Cerebrospinal Fluid Markers of Macrophage and Lymphocyte Activation After Traumatic Brain Injury in Children. Pediatr Crit Care Med 2015; 16:549-57. [PMID: 25850867 PMCID: PMC4497935 DOI: 10.1097/pcc.0000000000000400] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The magnitude and role of the cellular immune response following pediatric traumatic brain injury remains unknown. We tested the hypothesis that macrophage/microglia and T-cell activation occurs following pediatric traumatic brain injury by measuring cerebrospinal fluid levels of soluble cluster of differentiation 163 and ferritin and soluble interleukin-2 receptor α, respectively, and determined whether these biomarkers were associated with relevant clinical variables and outcome. DESIGN Retrospective analysis of samples from an established, single-center cerebrospinal fluid bank. SETTING PICU in a tertiary children's hospital. PATIENTS Sixty-six pediatric patients after severe traumatic brain injury (Glasgow Coma Scale score < 8) who were 1 month to 16 years old and 17 control patients who were 1 month to 14 years old. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Cerebrospinal fluid levels of soluble cluster of differentiation 163, ferritin, and soluble interleukin-2 receptor α were determined by enzyme-linked immunosorbent assay at two time points (t1 = 17 ± 10 hr; t2 = 72 ± 15 hr) for each traumatic brain injury patient. Cerebrospinal fluid levels of soluble cluster of differentiation 163, ferritin, and soluble interleukin-2 receptor α after traumatic brain injury were compared with controls and analyzed for associations with age, patient sex, initial Glasgow Coma Scale score, diagnosis of abusive head trauma, the presence of hemorrhage on CT scan, and Glasgow Outcome Scale score. Cerebrospinal fluid level of soluble cluster of differentiation 163 was increased in traumatic brain injury patients at t2 versus t1 and controls (median, 95.4 ng/mL [interquartile range, 21.8-134.0 ng/mL] vs 31.0 ng/mL [5.7-77.7 ng/mL] and 27.8 ng/mL [19.1-43.1 ng/mL], respectively; p < 0.05). Cerebrospinal fluid level of ferritin was increased in traumatic brain injury patients at t2 and t1 versus controls (8.3 ng/mL [<7.5-19.8 ng/mL] and 8.9 ng/mL [<7.5-26.7 ng/mL] vs <7.5 ng/mL below lower limit of detection, respectively; p < 0.05). Cerebrospinal fluid levels of soluble interleukin-2 receptor α in traumatic brain injury patients at t2 and t1 were not different versus controls. Multivariate regression revealed associations between high ferritin and age 4 years or younger, lower Glasgow Coma Scale score, abusive head trauma, and unfavorable Glasgow Outcome Scale score. CONCLUSIONS Children with traumatic brain injury demonstrate evidence for macrophage activation after traumatic brain injury, and in terms of cerebrospinal fluid ferritin, this appears more prominent with young age, initial injury severity, abusive head trauma, and unfavorable outcome. Further study is needed to determine whether biomarkers of macrophage activation may be used to discriminate between aberrant and adaptive immune responses and whether inflammation represents a therapeutic target after traumatic brain injury.
Collapse
|
36
|
Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, Stein DG. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj 2015; 29:1165-1174. [PMID: 26083048 DOI: 10.3109/02699052.2015.1035330] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Inflammation is an important component of the response to traumatic brain injury (TBI). Progesterone has been shown to inhibit neuroinflammation following (TBI) and may do so through Toll-like receptor (TLR)-mediated pathways. In vitro studies indicate that 1,25-dihydroxyvitamin D(3) (VDH) may also modulate the inflammatory response through the TLR4 pathway. This study tested the hypothesis that PROG and VDH would exert additive and synergistic neuroprotective effects compared with individual treatment by modulating TLR4/NF-κB-mediated inflammation pathways after TBI in rats. RESEARCH DESIGN AND METHODS Bilateral medial frontal cortical impact injury was induced in young adult Sprague-Dawley rats. Progesterone (i.p., 16 mg kg-1 body weight) and VDH (1 µg kg-1 body weight) were injected separately or combined at 1 and 6 hours after surgery. Rats were killed 24 hours post-surgery and peri-contusional brain tissue harvested for immunostaining and protein measurement. RESULTS TLR4, phosphorylation of NF-κB, neuronal loss and astrocyte activation were significantly reduced with combination treatment after TBI compared to each agent given individually. CONCLUSIONS At 24 hours after TBI, combination therapy shows greater efficacy in reducing neuroinflammation compared to progesterone and VDH given separately, and does so by modulating the TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Huiling Tang
- a Department of Emergency Medicine , Emory University , Atlanta , GA , USA
| | - Fang Hua
- a Department of Emergency Medicine , Emory University , Atlanta , GA , USA
| | - Jun Wang
- a Department of Emergency Medicine , Emory University , Atlanta , GA , USA
| | - Seema Yousuf
- a Department of Emergency Medicine , Emory University , Atlanta , GA , USA
| | - Fahim Atif
- a Department of Emergency Medicine , Emory University , Atlanta , GA , USA
| | - Iqbal Sayeed
- a Department of Emergency Medicine , Emory University , Atlanta , GA , USA
| | - Donald G Stein
- a Department of Emergency Medicine , Emory University , Atlanta , GA , USA
| |
Collapse
|
37
|
Shein SL, Shellington DK, Exo JL, Jackson TC, Wisniewski SR, Jackson EK, Vagni VA, Bayır H, Clark RSB, Dixon CE, Janesko-Feldman KL, Kochanek PM. Hemorrhagic shock shifts the serum cytokine profile from pro- to anti-inflammatory after experimental traumatic brain injury in mice. J Neurotrauma 2015; 31:1386-95. [PMID: 24773520 DOI: 10.1089/neu.2013.2985] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secondary insults, such as hemorrhagic shock (HS), worsen outcome from traumatic brain injury (TBI). Both TBI and HS modulate levels of inflammatory mediators. We evaluated the addition of HS on the inflammatory response to TBI. Adult male C57BL6J mice were randomized into five groups (n=4 [naïve] or 8/group): naïve; sham; TBI (through mild-to-moderate controlled cortical impact [CCI] at 5 m/sec, 1-mm depth), HS; and CCI+HS. All non-naïve mice underwent identical monitoring and anesthesia. HS and CCI+HS underwent a 35-min period of pressure-controlled hemorrhage (target mean arterial pressure, 25-27 mm Hg) and a 90-min resuscitation with lactated Ringer's injection and autologous blood transfusion. Mice were sacrificed at 2 or 24 h after injury. Levels of 13 cytokines, six chemokines, and three growth factors were measured in serum and in five brain tissue regions. Serum levels of several proinflammatory mediators (eotaxin, interferon-inducible protein 10 [IP-10], keratinocyte chemoattractant [KC], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein 1alpha [MIP-1α], interleukin [IL]-5, IL-6, tumor necrosis factor alpha, and granulocyte colony-stimulating factor [G-CSF]) were increased after CCI alone. Serum levels of fewer proinflammatory mediators (IL-5, IL-6, regulated upon activation, normal T-cell expressed, and secreted, and G-CSF) were increased after CCI+HS. Serum level of anti-inflammatory IL-10 was significantly increased after CCI+HS versus CCI alone. Brain tissue levels of eotaxin, IP-10, KC, MCP-1, MIP-1α, IL-6, and G-CSF were increased after both CCI and CCI+HS. There were no significant differences between levels after CCI alone and CCI+HS in any mediator. Addition of HS to experimental TBI led to a shift toward an anti-inflammatory serum profile--specifically, a marked increase in IL-10 levels. The brain cytokine and chemokine profile after TBI was minimally affected by the addition of HS.
Collapse
Affiliation(s)
- Steven L Shein
- 1 Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kochanek PM, Jackson TC, Ferguson NM, Carlson SW, Simon DW, Brockman EC, Ji J, Bayir H, Poloyac SM, Wagner AK, Kline AE, Empey PE, Clark RS, Jackson EK, Dixon CE. Emerging therapies in traumatic brain injury. Semin Neurol 2015; 35:83-100. [PMID: 25714870 PMCID: PMC4356170 DOI: 10.1055/s-0035-1544237] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being evaluated targeting both classic and novel paradigms. This includes a robust increase in both preclinical and clinical investigations. Using a mechanism-based approach the authors define the targets and emerging therapies for TBI. They address putative new therapies for TBI across both the spectrum of injury severity and the continuum of care, from the field to rehabilitation. They discussTBI therapy using 11 categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3) mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11) TBI resuscitation. The current golden age of TBI research represents a special opportunity for the development of breakthroughs in the field.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nikki Miller Ferguson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departmentol Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erik C. Brockman
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jing Ji
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hülya Bayir
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Philip E. Empey
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departments of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K. Jackson
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittburgh School of Medicine, Pittsburgh, Pennsylvania
- Departmentol Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Larráyoz IM, Martínez-Herrero S, García-Sanmartín J, Ochoa-Callejero L, Martínez A. Adrenomedullin and tumour microenvironment. J Transl Med 2014; 12:339. [PMID: 25475159 PMCID: PMC4272513 DOI: 10.1186/s12967-014-0339-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/21/2014] [Indexed: 01/03/2023] Open
Abstract
Adrenomedullin (AM) is a regulatory peptide whose involvement in tumour progression is becoming more relevant with recent studies. AM is produced and secreted by the tumour cells but also by numerous stromal cells including macrophages, mast cells, endothelial cells, and vascular smooth muscle cells. Most cancer patients present high levels of circulating AM and in some cases these higher levels correlate with a worst prognosis. In some cases it has been shown that the high AM levels return to normal following surgical removal of the tumour, thus indicating the tumour as the source of this excessive production of AM. Expression of this peptide is a good investment for the tumour cell since AM acts as an autocrine/paracrine growth factor, prevents apoptosis-mediated cell death, increases tumour cell motility and metastasis, induces angiogenesis, and blocks immunosurveillance by inhibiting the immune system. In addition, AM expression gets rapidly activated by hypoxia through a HIF-1α mediated mechanism, thus characterizing AM as a major survival factor for tumour cells. Accordingly, a number of studies have shown that inhibition of this peptide or its receptors results in a significant reduction in tumour progression. In conclusion, AM is a great target for drug development and new drugs interfering with this system are being developed.
Collapse
Affiliation(s)
- Ignacio M Larráyoz
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Sonia Martínez-Herrero
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Josune García-Sanmartín
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Laura Ochoa-Callejero
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja CIBIR, C/Piqueras 98, Logroño, 26006, Spain.
| |
Collapse
|
40
|
Role for mammalian chitinase 3-like protein 1 in traumatic brain injury. Neuropathology 2014; 35:95-106. [DOI: 10.1111/neup.12158] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 11/26/2022]
|
41
|
Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS. The role of the nitric oxide pathway in brain injury and its treatment--from bench to bedside. Exp Neurol 2014; 263:235-43. [PMID: 25447937 DOI: 10.1016/j.expneurol.2014.10.017] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/09/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Nitric oxide (NO) is a key signalling molecule in the regulation of cerebral blood flow. This review summarises current evidence regarding the role of NO in the regulation of cerebral blood flow at rest, under physiological conditions, and after brain injury, focusing on subarachnoid haemorrhage, traumatic brain injury, and ischaemic stroke and following cardiac arrest. We also review the role of NO in the response to hypoxic insult in the developing brain. NO depletion in ischaemic brain tissue plays a pivotal role in the development of subsequent morbidity and mortality through microcirculatory disturbance and disordered blood flow regulation. NO derived from endothelial nitric oxide synthase (eNOS) appears to have neuroprotective properties. However NO derived from inducible nitric oxide synthase (iNOS) may have neurotoxic effects. Cerebral NO donor agents, for example sodium nitrite, appear to replicate the effects of eNOS derived NO, and therefore have neuroprotective properties. This is true in both the adult and immature brain. We conclude that these agents should be further investigated as targeted pharmacotherapy to protect against secondary brain injury.
Collapse
Affiliation(s)
- P S Garry
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - M Ezra
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - M J Rowland
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - J Westbrook
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - K T S Pattinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
42
|
Bacopa monniera selectively attenuates suppressed Superoxide dismutase activity in Diazepam induced amnesic mice. Ann Neurosci 2014; 18:8-13. [PMID: 25205911 PMCID: PMC4117027 DOI: 10.5214/ans.0972.7531.1118104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/10/2010] [Accepted: 01/04/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Amnesia is characterized by loss of memory that could result from abnormal neuro-chemical homeostasis, genetic predisposition or drug abuse. We earlier reported that B. monniera attenuates diazepam, scopolamine and L-NNA induced amnesia and wanted to test if SOD levels were affected by its administration. PURPOSE B. monniera is earlier reported to augment the defense system for oxidative stress by increasing the activities of superoxide dismutase, therefore, we investigated its levels after B. monniera administration in combination with different amnesic agents. METHODS We treated mice with amnesic agents such as scopolamine, diazepam, L-NNA and MK 801 either with or without B. monniera. RESULTS Diazepam (1.75 mg/kg ip) significantly reduced SOD activity while it was unaltered when Scopolamine (0.1 mg/kg ip), MK 801 (0.17 mg/kg ip) and L-NNA (30 mg/kg ip) were administered. B. monniera significantly attenuated diazepam induced suppression of SOD activity. CONCLUSION It is suggested that the mechanism of B. monniera's antiamnesic effect may vary depending on the type of amnesic agent used. However, antioxidant mechanism may be central to evoking the memory enhancing effects of B. monniera against diazepam induced amnesia.
Collapse
|
43
|
Abdul-Muneer PM, Chandra N, Haorah J. Interactions of oxidative stress and neurovascular inflammation in the pathogenesis of traumatic brain injury. Mol Neurobiol 2014; 51:966-79. [PMID: 24865512 PMCID: PMC9420084 DOI: 10.1007/s12035-014-8752-3] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of death in the young age group and leads to persisting neurological impairment in many of its victims. It may result in permanent functional deficits because of both primary and secondary damages. This review addresses the role of oxidative stress in TBI-mediated secondary damages by affecting the function of the vascular unit, changes in blood-brain barrier (BBB) permeability, posttraumatic edema formation, and modulation of various pathophysiological factors such as inflammatory factors and enzymes associated with trauma. Oxidative stress plays a major role in many pathophysiologic changes that occur after TBI. In fact, oxidative stress occurs when there is an impairment or inability to balance antioxidant production with reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels. ROS directly downregulate proteins of tight junctions and indirectly activate matrix metalloproteinases (MMPs) that contribute to open the BBB. Loosening of the vasculature and perivascular unit by oxidative stress-induced activation of MMPs and fluid channel aquaporins promotes vascular or cellular fluid edema, enhances leakiness of the BBB, and leads to progression of neuroinflammation. Likewise, oxidative stress activates directly the inflammatory cytokines and growth factors such as IL-1β, tumor necrosis factor-α (TNF-α), and transforming growth factor-beta (TGF-β) or indirectly by activating MMPs. In another pathway, oxidative stress-induced degradation of endothelial vascular endothelial growth factor receptor-2 (VEGFR-2) by MMPs leads to a subsequent elevation of cellular/serum VEGF level. The decrease in VEGFR-2 with a subsequent increase in VEGF-A level leads to apoptosis and neuroinflammation via the activation of caspase-1/3 and IL-1β release.
Collapse
Affiliation(s)
- P M Abdul-Muneer
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA,
| | | | | |
Collapse
|
44
|
Stoica BA, Loane DJ, Zhao Z, Kabadi SV, Hanscom M, Byrnes KR, Faden AI. PARP-1 inhibition attenuates neuronal loss, microglia activation and neurological deficits after traumatic brain injury. J Neurotrauma 2014; 31:758-72. [PMID: 24476502 DOI: 10.1089/neu.2013.3194] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Traumatic brain injury (TBI) causes neuronal cell death as well as microglial activation and related neurotoxicity that contribute to subsequent neurological dysfunction. Poly (ADP-ribose) polymerase (PARP-1) induces neuronal cell death through activation of caspase-independent mechanisms, including release of apoptosis inducing factor (AIF), and microglial activation. Administration of PJ34, a selective PARP-1 inhibitor, reduced cell death of primary cortical neurons exposed to N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG), a potent inducer of AIF-dependent cell death. PJ34 also attenuated lipopolysaccharide and interferon-γ-induced activation of BV2 or primary microglia, limiting NF-κB activity and iNOS expression as well as decreasing generation of reactive oxygen species and TNFα. Systemic administration of PJ34 starting as late as 24 h after controlled cortical impact resulted in improved motor function recovery in mice with TBI. Stereological analysis demonstrated that PJ34 treatment reduced the lesion volume, attenuated neuronal cell loss in the cortex and thalamus, and reduced microglial activation in the TBI cortex. PJ34 treatment did not improve cognitive performance in a Morris water maze test or reduce neuronal cell loss in the hippocampus. Overall, our data indicate that PJ34 has a significant, albeit selective, neuroprotective effect after experimental TBI, and its therapeutic effect may be from multipotential actions on neuronal cell death and neuroinflammatory pathways.
Collapse
Affiliation(s)
- Bogdan A Stoica
- 1 Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland , School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhou YF, Li WT, Han HC, Gao DK, He XS, Li L, Song JN, Fei Z. Allicin protects rat cortical neurons against mechanical trauma injury by regulating nitric oxide synthase pathways. Brain Res Bull 2014; 100:14-21. [DOI: 10.1016/j.brainresbull.2013.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/21/2013] [Indexed: 01/01/2023]
|
46
|
Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G, Radak Z, Calabrese EJ, Cuzzocrea S. Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 2013; 19:836-53. [PMID: 23547621 DOI: 10.1089/ars.2012.4981] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE A vast amount of circumstantial evidence implicates high energy oxidants and oxidative stress as mediators of secondary damage associated with traumatic brain injury. The excessive production of reactive oxygen species due to excitotoxicity and exhaustion of the endogenous antioxidant system induces peroxidation of cellular and vascular structures, protein oxidation, cleavage of DNA, and inhibition of the mitochondrial electron transport chain. RECENT ADVANCES Different integrated responses exist in the brain to detect oxidative stress, which is controlled by several genes termed vitagens. Vitagens encode for cytoprotective heat shock proteins, and thioredoxin and sirtuins. CRITICAL ISSUES AND FUTURE DIRECTIONS This article discusses selected aspects of secondary brain injury after trauma and outlines key mechanisms associated with toxicity, oxidative stress, inflammation, and necrosis. Finally, this review discusses the role of different oxidants and presents potential clinically relevant molecular targets that could be harnessed to treat secondary injury associated with brain trauma.
Collapse
Affiliation(s)
- Carolin Cornelius
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Najafi S, Payandemehr B, Tabrizian K, Shariatpanahi M, Nassireslami E, Azami K, Mohammadi M, Asadi F, Roghani A, Sharifzadeh M. The role of nitric oxide in the PKA inhibitor induced spatial memory deficits in rat: Involvement of choline acetyltransferase. Eur J Pharmacol 2013; 714:478-85. [DOI: 10.1016/j.ejphar.2013.06.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 06/17/2013] [Accepted: 06/21/2013] [Indexed: 01/24/2023]
|
48
|
Hypothermia decreases cerebrospinal fluid asymmetric dimethylarginine levels in children with traumatic brain injury. Pediatr Crit Care Med 2013; 14:403-12. [PMID: 23439461 PMCID: PMC4134918 DOI: 10.1097/pcc.0b013e31827212c0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Pathological increases in asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, have been implicated in endothelial dysfunction and vascular diseases. Reduced nitric oxide early after traumatic brain injury may contribute to hypoperfusion. Currently, methods to quantify asymmetric dimethylarginine in the cerebrospinal fluid have not been fully explored. We aimed to develop and validate a method to determine asymmetric dimethylarginine in the cerebrospinal fluid of a pediatric traumatic brain injury population and to use this method to assess the effects of 1) traumatic brain injury and 2) therapeutic hypothermia on this mediator. DESIGN, SETTING, AND PATIENTS An ancillary study to a prospective, phase II randomized clinical trial of early hypothermia in a tertiary care pediatric intensive care unit for children with Traumatic brain injury admitted to Children's Hospital of Pittsburgh. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS A UPLC-MS/MS method was developed and validated to quantitate asymmetric dimethylarginine. A total of 56 samples collected over 3 days with injury onset were analyzed from the cerebrospinal fluid of consented therapeutic hypothermia (n = 9) and normothermia (n = 10) children. Children undergoing diagnostic lumbar puncture (n = 5) were enrolled as controls. Asymmetric dimethylarginine was present at a quantifiable level in all samples. Mean asymmetric dimethylarginine levels were significantly increased in normothermic Traumatic brain injury children compared with that in control (0.19 ± 0.08 µmol/L and 0.11 ± 0.02 µmol/L, respectively, p = 0.01), and hypothermic children had significantly reduced mean asymmetric dimethylarginine levels (0.11 ± 0.05 µmol/L) vs. normothermic (p = 0.03) measured on day 3. Patient demographics including age, gender, and nitric oxide levels (measured as nitrite and nitrate using liquid chromatography coupled with Griess reaction) did not significantly differ between normothermia and hypothermia groups. Also, nitric oxide levels did not correlate with asymmetric dimethylarginine concentrations. CONCLUSIONS Asymmetric dimethylarginine levels were significantly increased in the cerebrospinal fluid of traumatic brain injury children. Early hypothermia attenuated this increase. The implications of attenuated asymmetric dimethylarginine on nitric oxide synthases activity and regional cerebral blood flow after traumatic brain injury by therapeutic hypothermia deserve future study.
Collapse
|
49
|
Dapul HR, Park J, Zhang J, Lee C, DanEshmand A, Lok J, Ayata C, Gray T, Scalzo A, Qiu J, Lo EH, Whalen MJ. Concussive injury before or after controlled cortical impact exacerbates histopathology and functional outcome in a mixed traumatic brain injury model in mice. J Neurotrauma 2013; 30:382-91. [PMID: 23153355 DOI: 10.1089/neu.2012.2536] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Traumatic brain injury (TBI) may involve diverse injury mechanisms (e.g., focal impact vs. diffuse impact loading). Putative therapies developed in TBI models featuring a single injury mechanism may fail in clinical trials if the model does not fully replicate multiple injury subtypes, which may occur concomitantly in a given patient. We report development and characterization of a mixed contusion/concussion TBI model in mice using controlled cortical impact (CCI; 0.6 mm depth, 6 m/sec) and a closed head injury (CHI) model at one of two levels of injury (53 vs. 83 g weight drop from 66 in). Compared with CCI or CHI alone, sequential CCI-CHI produced additive effects on loss of consciousness (p<0.001), acute cell death (p<0.05), and 12-day lesion size (p<0.05) but not brain edema or 48-h contusion volume. Additive effects of CHI and CCI on post-injury motor (p<0.05) and cognitive (p<0.005) impairment were observed with sequential CCI-CHI (83 g). The data suggest that concussive forces, which in isolation do not induce histopathological damage, exacerbate histopathology and functional outcome after cerebral contusion. Sequential CHI-CCI may model complex injury mechanisms that occur in some patients with TBI and may prove useful for testing putative therapies.
Collapse
Affiliation(s)
- Heda R Dapul
- Neuroscience Center , Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hemerka JN, Wu X, Dixon CE, Garman RH, Exo JL, Shellington DK, Blasiole B, Vagni VA, Janesko-Feldman K, Xu M, Wisniewski SR, Bayır H, Jenkins LW, Clark RSB, Tisherman SA, Kochanek PM. Severe brief pressure-controlled hemorrhagic shock after traumatic brain injury exacerbates functional deficits and long-term neuropathological damage in mice. J Neurotrauma 2012; 29:2192-208. [PMID: 22738159 DOI: 10.1089/neu.2011.2303] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypotension after traumatic brain injury (TBI) worsens outcome. We published the first report of TBI plus hemorrhagic shock (HS) in mice using a volume-controlled approach and noted increased neuronal death. To rigorously control blood pressure during HS, a pressure-controlled HS model is required. Our hypothesis was that a brief, severe period of pressure-controlled HS after TBI in mice will exacerbate functional deficits and neuropathology versus TBI or HS alone. C57BL6 male mice were randomized into four groups (n=10/group): sham, HS, controlled cortical impact (CCI), and CCI+HS. We used a pressure-controlled shock phase (mean arterial pressure [MAP]=25-27 mm Hg for 35 min) and its treatment after mild to moderate CCI including, a 90 min pre-hospital phase, during which lactated Ringer's solution was given to maintain MAP >70 mm Hg, and a hospital phase, when the shed blood was re-infused. On days 14-20, the mice were evaluated in the Morris water maze (MWM, hidden platform paradigm). On day 21, the lesion and hemispheric volumes were quantified. Neuropathology and hippocampal neuron counts (hematoxylin and eosin [H&E], Fluoro-Jade B, and NeuN) were evaluated in the mice (n=60) at 24 h, 7 days, or 21 days (n=5/group/time point). HS reduced MAP during the shock phase in the HS and CCI+HS groups (p<0.05). Fluid requirements during the pre-hospital phase were greatest in the CCI+HS group (p<0.05), and were increased in HS versus sham and CCI animals (p<0.05). MWM latency was increased on days 14 and 15 after CCI+HS (p<0.05). Swim speed and visible platform latency were impaired in the CCI+HS group (p<0.05). CCI+HS animals had increased contusion volume versus the CCI group (p<0.05). Hemispheric volume loss was increased 33.3% in the CCI+HS versus CCI group (p<0.05). CA1 cell loss was seen in CCI+HS and CCI animals at 24 h and 7 days (p<0.05). CA3 cell loss was seen after CCI+HS (p<0.05 at 24 h and 7 days). CA1 cell loss at 21 days was seen only in CCI+HS animals (p<0.05). Brief, severe, pressure-controlled HS after CCI produces robust functional deficits and exacerbates neuropathology versus CCI or HS alone.
Collapse
Affiliation(s)
- Joseph N Hemerka
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|