1
|
Jobling AI, Greferath U, Dixon MA, Quiriconi P, Eyar B, van Koeverden AK, Mills SA, Vessey KA, Bui BV, Fletcher EL. Microglial regulation of the retinal vasculature in health and during the pathology associated with diabetes. Prog Retin Eye Res 2025; 106:101349. [PMID: 40020909 DOI: 10.1016/j.preteyeres.2025.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The high metabolic demand of retinal neurons requires a precisely regulated vascular system that can deliver rapid changes in blood flow in response to neural need. In the retina, this is achieved via the action of a coordinated group of cells that form the neurovascular unit. While cells such as pericytes, Müller cells, and astrocytes have long been linked to neurovascular coupling, more recently the resident microglial population have also been implicated. In the healthy retina, microglia make extensive contact with blood vessels, as well as neuronal synapses, and are important in vascular patterning during development. Work in the brain and retina has recently indicated that microglia can directly regulate the local vasculature. In the retina, the fractalkine-Cx3cr1 signalling axis has been shown to induce local capillary constriction within the superficial vascular plexus via a mechanism involving components of the renin-angiotensin system. Furthermore, aberrant microglial induced vasoconstriction may be at the centre of early vascular reactivity changes observed in those with diabetes. This review summarizes the recent emerging evidence that microglia play multiple roles in retinal homeostasis especially in regulating the vasculature. We highlight what is known about the role of microglia under normal circumstances, and then build on this to discuss how microglia contribute to early vascular compromise during diabetes. Further understanding of the mechanisms of microglial-vascular regulation may allow alternate treatment strategies to be devised to reduce vascular pathology in diseases such as diabetic retinopathy.
Collapse
Affiliation(s)
- Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Michael A Dixon
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Pialuisa Quiriconi
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Belinda Eyar
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Samuel A Mills
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Fickweiler W, Sampani K, Markel DS, Levine SR, Sun JK, Gardner TW. Advancing Toward a World Without Vision Loss From Diabetes: Insights From The Mary Tyler Moore Vision Initiative Symposium 2024 on Curing Vision Loss From Diabetes. Transl Vis Sci Technol 2025; 14:12. [PMID: 40338731 PMCID: PMC12077579 DOI: 10.1167/tvst.14.5.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 05/10/2025] Open
Abstract
The Mary Tyler Moore Vision Initiative (MTM Vision) honors Mary Tyler Moore's commitment to ending vision loss from diabetes. Founded by Moore's husband, Dr. S. Robert Levine, MTM Vision aims to accelerate breakthroughs in diabetic retinal disease (DRD). At the MTM Vision Symposium 2024 on Curing Vision Loss from Diabetes, experts highlighted the urgent need for updated DRD staging systems, clinically relevant endpoints, and novel biomarkers to detect early disease changes. MTM Vision is advancing two clinical trials in collaboration with the DRCR Retina Network, launching a public awareness campaign, and welcoming Boehringer Ingelheim as the first founding industry member of its pre-competitive Consortium. Speakers emphasized big-data strategies and artificial intelligence (AI)-driven tools to improve DRD diagnosis, risk prediction, and personalized treatment. They also showcased new efforts to bridge academic discoveries with industry expertise, illustrating promising work on vascular regeneration and cellular senescence that may yield future therapies. The MTM Vision Biorepository and Resource Center is expanding tissue collections, enabling multi-omics analyses to study DRD mechanisms. Patient voices were central to the discussion, with calls for enhanced patient-reported outcomes, caregiver support, and broader education on DRD's risks. The symposium also underscored the importance of integrating mental health, quality of life measures, and ongoing patient input to guide clinical research.
Collapse
Affiliation(s)
- Ward Fickweiler
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Thomas W. Gardner
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Hata M, Hata M, Dejda A, Pilon F, Diaz-Marin R, Fournier F, Joyal JS, Cagnone G, Ochi Y, Crespo-Garcia S, Wilson AM, Sapieha P. Corticosteroids reduce pathological angiogenesis yet compromise reparative vascular remodeling in a model of retinopathy. Proc Natl Acad Sci U S A 2024; 121:e2411640121. [PMID: 39693344 DOI: 10.1073/pnas.2411640121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 12/20/2024] Open
Abstract
Tissue inflammation is often broadly associated with cellular damage, yet sterile inflammation also plays critical roles in beneficial tissue remodeling. In the central nervous system, this is observed through a predominantly innate immune response in retinal vascular diseases such as age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. Here, we set out to elucidate the dynamics of the immune response during progression and regression of pathological neovascularization in retinopathy. In a mouse model of oxygen-induced retinopathy, we report that dexamethasone, a broad-spectrum corticosteroid, suppresses initial formation of pathological preretinal neovascularization in early stages of disease, yet blunts reparative inflammation by impairing distinct myeloid cell populations, and hence reduces beneficial vascular remodeling in later stages of disease. Using genetic depletion of distinct components of the innate immune response, we demonstrate that CX3C chemokine receptor 1-expressing microglia contribute to angiogenesis. Conversely, myeloid cells expressing lysozyme 2 are recruited to sites of damaged blood vessels and pathological neovascularization where they partake in a reparative process that ultimately restores circulatory homeostasis to the retina. Hence, the Janus-faced properties of anti-inflammatory drugs should be considered, particularly in stages associated with persistent neovascularization.
Collapse
Affiliation(s)
- Masayuki Hata
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Maki Hata
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Agnieszka Dejda
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Frédérique Pilon
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Roberto Diaz-Marin
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Frédérik Fournier
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Jean-Sebastien Joyal
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier, Universitaire Ste-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Gael Cagnone
- Departments of Pediatrics, Ophthalmology, and Pharmacology, Centre Hospitalier, Universitaire Ste-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Yotaro Ochi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8315, Japan
| | - Sergio Crespo-Garcia
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Ariel M Wilson
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Przemyslaw Sapieha
- Departments of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
- Department of Biochemistry and Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
4
|
Zhou L, Xu Z, Lu H, Cho H, Xie Y, Lee G, Ri K, Duh EJ. Suppression of inner blood-retinal barrier breakdown and pathogenic Müller glia activation in ischemia retinopathy by myeloid cell depletion. J Neuroinflammation 2024; 21:210. [PMID: 39182142 PMCID: PMC11344463 DOI: 10.1186/s12974-024-03190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Ischemic retinopathies including diabetic retinopathy are major causes of vision loss. Inner blood-retinal barrier (BRB) breakdown with retinal vascular hyperpermeability results in macular edema. Although dysfunction of the neurovascular unit including neurons, glia, and vascular cells is now understood to underlie this process, there is a need for fuller elucidation of the underlying events in BRB dysfunction in ischemic disease, including a systematic analysis of myeloid cells and exploration of cellular cross-talk. We used an approach for microglia depletion with the CSF-1R inhibitor PLX5622 (PLX) in the retinal ischemia-reperfusion (IR) model. Under non-IR conditions, PLX treatment successfully depleted microglia in the retina. PLX suppressed the microglial activation response following IR as well as infiltration of monocyte-derived macrophages. This occurred in association with reduction of retinal expression of chemokines including CCL2 and the inflammatory adhesion molecule ICAM-1. In addition, there was a marked suppression of retinal neuroinflammation with reduction in expression of IL-1b, IL-6, Ptgs2, TNF-a, and Angpt2, a protein that regulates BRB permeability. PLX treatment significantly suppressed inner BRB breakdown following IR, without an appreciable effect on neuronal dysfunction. A translatomic analysis of Müller glial-specific gene expression in vivo using the Ribotag approach demonstrated a strong suppression of Müller cell expression of multiple pro-inflammatory genes following PLX treatment. Co-culture studies of Müller cells and microglia demonstrated that activated microglia directly upregulates Müller cell-expression of these inflammatory genes, indicating Müller cells as a downstream effector of myeloid cells in retinal IR. Co-culture studies of these two cell types with endothelial cells demonstrated the ability of both activated microglia and Müller cells to compromise EC barrier function. Interestingly, quiescent Müller cells enhanced EC barrier function in this co-culture system. Together this demonstrates a pivotal role for myeloid cells in inner BRB breakdown in the setting of ischemia-associated disease and indicates that myeloid cells play a major role in iBRB dysregulation, through direct and indirect effects, while Müller glia participate in amplifying the neuroinflammatory effect of myeloid cells.
Collapse
Affiliation(s)
- Lingli Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhenhua Xu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haining Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongkwan Cho
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yangyiran Xie
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Grace Lee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaoru Ri
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elia J Duh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Hu A, Schmidt MHH, Heinig N. Microglia in retinal angiogenesis and diabetic retinopathy. Angiogenesis 2024; 27:311-331. [PMID: 38564108 PMCID: PMC11303477 DOI: 10.1007/s10456-024-09911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024]
Abstract
Diabetic retinopathy has a high probability of causing visual impairment or blindness throughout the disease progression and is characterized by the growth of new blood vessels in the retina at an advanced, proliferative stage. Microglia are a resident immune population in the central nervous system, known to play a crucial role in regulating retinal angiogenesis in both physiological and pathological conditions, including diabetic retinopathy. Physiologically, they are located close to blood vessels and are essential for forming new blood vessels (neovascularization). In diabetic retinopathy, microglia become widely activated, showing a distinct polarization phenotype that leads to their accumulation around neovascular tufts. These activated microglia induce pathogenic angiogenesis through the secretion of various angiogenic factors and by regulating the status of endothelial cells. Interestingly, some subtypes of microglia simultaneously promote the regression of neovascularization tufts and normal angiogenesis in neovascularization lesions. Modulating the state of microglial activation to ameliorate neovascularization thus appears as a promising potential therapeutic approach for managing diabetic retinopathy.
Collapse
Affiliation(s)
- Aiyan Hu
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| | - Nora Heinig
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| |
Collapse
|
6
|
Aguirre B, Lin MC, Araujo E, Lu CH, Casero D, Sun M, Nusinowitz S, Hanson J, Calkins K, Gordon L, Wadehra M, Chu A. Epithelial Membrane Protein 2 (EMP2) Blockade Attenuates Pathological Neovascularization in Murine Oxygen-Induced Retinopathy. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 38958972 PMCID: PMC11223617 DOI: 10.1167/iovs.65.8.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose Retinopathy of prematurity (ROP) results from postnatal hyperoxia exposure in premature infants and is characterized by aberrant neovascularization of retinal blood vessels. Epithelial membrane protein-2 (EMP2) regulates hypoxia-inducible factor (HIF)-induced vascular endothelial growth factor (VEGF) production in the ARPE-19 cell line and genetic knock-out of Emp2 in a murine oxygen-induced retinopathy (OIR) model attenuates neovascularization. We hypothesize that EMP2 blockade via intravitreal injection protects against neovascularization. Methods Ex vivo choroid sprouting assay was performed, comparing media and human IgG controls versus anti-EMP2 antibody (Ab) treatment. In vivo, eyes from wild-type (WT) mice exposed to hyperoxia from postnatal (P) days 7 to 12 were treated with P12 intravitreal injections of control IgG or anti-EMP2 Abs. Neovascularization was assessed at P17 by flat mount imaging. Local and systemic effects of anti-EMP2 Ab treatment were assessed. Results Choroid sprouts treated with 30 µg/mL of anti-EMP2 Ab demonstrated a 48% reduction in vessel growth compared to control IgG-treated sprouts. Compared to IgG-treated controls, WT OIR mice treated with 4 µg/g of intravitreal anti-EMP2 Ab demonstrated a 42% reduction in neovascularization. They demonstrated down-regulation of retinal gene expression in pathways related to vasculature development and up-regulation in genes related to fatty acid oxidation and tricarboxylic acid cycle respiratory electron transport, compared to controls. Anti-EMP2 Ab-treated OIR mice did not exhibit gross retinal histologic abnormalities, vision transduction abnormalities, or weight loss. Conclusions Our results suggest that EMP2 blockade could be a local and specific treatment modality for retinal neovascularization in oxygen-induced retinopathies, without systemic adverse effects.
Collapse
Affiliation(s)
- Brian Aguirre
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Meng-Chin Lin
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Eduardo Araujo
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Cheng-Hsiang Lu
- F. Widjaja Inflammatory Bowel Research Institute, Cedars Sinai Medical Center, Los Angeles, California, United States
| | - David Casero
- F. Widjaja Inflammatory Bowel Research Institute, Cedars Sinai Medical Center, Los Angeles, California, United States
- Department of Medicine and Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California, United States
| | - Michel Sun
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Steven Nusinowitz
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Justin Hanson
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Kara Calkins
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Lynn Gordon
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Madhuri Wadehra
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
- Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| |
Collapse
|
7
|
Shahror RA, Morris CA, Mohammed AA, Wild M, Zaman B, Mitchell CD, Phillips PH, Rusch NJ, Shosha E, Fouda AY. Role of myeloid cells in ischemic retinopathies: recent advances and unanswered questions. J Neuroinflammation 2024; 21:65. [PMID: 38454477 PMCID: PMC10918977 DOI: 10.1186/s12974-024-03058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Myeloid cells including microglia and macrophages play crucial roles in retinal homeostasis by clearing cellular debris and regulating inflammation. These cells are activated in several blinding ischemic retinal diseases including diabetic retinopathy, where they may exert both beneficial and detrimental effects on neurovascular function and angiogenesis. Myeloid cells impact the progression of retinal pathologies and recent studies suggest that targeting myeloid cells is a promising therapeutic strategy to mitigate diabetic retinopathy and other ischemic retinal diseases. This review summarizes the recent advances in our understanding of the role of microglia and macrophages in retinal diseases and focuses on the effects of myeloid cells on neurovascular injury and angiogenesis in ischemic retinopathies. We highlight gaps in knowledge and advocate for a more detailed understanding of the role of myeloid cells in retinal ischemic injury to fully unlock the potential of targeting myeloid cells as a therapeutic strategy for retinal ischemia.
Collapse
Affiliation(s)
- Rami A Shahror
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Carol A Morris
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Aya A Mohammed
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Melissa Wild
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Bushra Zaman
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Christian D Mitchell
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Paul H Phillips
- Department of Ophthalmology, Harvey & Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Esraa Shosha
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt
| | - Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA.
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Khor YS, Wong PF. MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses. Biogerontology 2024; 25:23-51. [PMID: 37646881 DOI: 10.1007/s10522-023-10059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
Collapse
Affiliation(s)
- Yi-Sheng Khor
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Saleki K, Alijanizadeh P, Azadmehr A. Is neuropilin-1 the neuroimmune initiator of multi-system hyperinflammation in COVID-19? Biomed Pharmacother 2023; 167:115558. [PMID: 37748412 DOI: 10.1016/j.biopha.2023.115558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
A major immunopathological feature of Coronavirus disease-2019 (COVID-19) is excessive inflammation in the form of "cytokine storm". The storm is characterized by injurious levels of cytokines which form a complicated network damaging different organs, including the lungs and the brain. The main starter of "cytokine network" hyperactivation in COVID-19 has not been discovered yet. Neuropilins (NRPs) are transmembrane proteins that act as neuronal guidance and angiogenesis modulators. The crucial function of NRPs in forming the nervous and vascular systems has been well-studied. NRP1 and NRP2 are the two identified homologs of NRP. NRP1 has been shown as a viral entry pathway for SARS-CoV2, which facilitates neuroinvasion by the virus within the central or peripheral nervous systems. These molecules directly interact with various COVID-19-related molecules, such as specific regions of the spike protein (major immune element of SARS-CoV2), vascular endothelial growth factor (VEGF) receptors, VEGFR1/2, and ANGPTL4 (regulator of vessel permeability and integrity). NRPs mainly play a role in hyperinflammatory injury of the CNS and lungs, and also the liver, kidney, pancreas, and heart in COVID-19 patients. New findings have suggested NRPs good candidates for pharmacotherapy of COVID-19. However, therapeutic targeting of NRP1 in COVID-19 is still in the preclinical phase. This review presents the implications of NRP1 in multi-organ inflammation-induced injury by SARS-CoV2 and provides insights for NRP1-targeting treatments for COVID-19 patients.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Immunology Department, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
10
|
Shin HA, Park M, Lee HJ, Duong VA, Kim HM, Hwang DY, Lee H, Lew H. Unveiling Neuroprotection and Regeneration Mechanisms in Optic Nerve Injury: Insight from Neural Progenitor Cell Therapy with Focus on Vps35 and Syntaxin12. Cells 2023; 12:2412. [PMID: 37830626 PMCID: PMC10572010 DOI: 10.3390/cells12192412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Axonal degeneration resulting from optic nerve damage can lead to the progressive death of retinal ganglion cells (RGCs), culminating in irreversible vision loss. We contrasted two methods for inducing optic nerve damage: optic nerve compression (ONCo) and optic nerve crush (ONCr). These were assessed for their respective merits in simulating traumatic optic neuropathies and neurodegeneration. We also administered neural progenitor cells (NPCs) into the subtenon space to validate their potential in mitigating optic nerve damage. Our findings indicate that both ONCo and ONCr successfully induced optic nerve damage, as shown by increases in ischemia and expression of genes linked to neuronal regeneration. Post NPC injection, recovery in the expression of neuronal regeneration-related genes was more pronounced in the ONCo model than in the ONCr model, while inflammation-related gene expression saw a better recovery in ONCr. In addition, the proteomic analysis of R28 cells in hypoxic conditions identified Vps35 and Syntaxin12 genes. Vps35 preserved the mitochondrial function in ONCo, while Syntaxin12 appeared to restrain inflammation via the Wnt/β-catenin signaling pathway in ONCr. NPCs managed to restore damaged RGCs by elevating neuroprotection factors and controlling inflammation through mitochondrial homeostasis and Wnt/β-catenin signaling in hypoxia-injured R28 cells and in both animal models. Our results suggest that ischemic injury and crush injury cause optic nerve damage via different mechanisms, which can be effectively simulated using ONCo and ONCr, respectively. Moreover, cell-based therapies such as NPCs may offer promising avenues for treating various optic neuropathies, including ischemic and crush injuries.
Collapse
Affiliation(s)
- Hyun-Ah Shin
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Mira Park
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Hey Jin Lee
- CHA Advanced Research Institute, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| | - Van-An Duong
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Hyun-Mun Kim
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea; (H.-A.S.); (H.-M.K.); (D.-Y.H.)
- Department of Microbiology, School of Medicine, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea; (V.-A.D.); (H.L.)
| | - Helen Lew
- Department of Ophthalmology, CHA Medical Center, CHA University, Pocheon-si 13488, Gyeonggi-Do, Republic of Korea;
| |
Collapse
|
11
|
Mawambo G, Oubaha M, Ichiyama Y, Blot G, Crespo-Garcia S, Dejda A, Binet F, Diaz-Marin R, Sawchyn C, Sergeev M, Juneau R, Kaufman RJ, Affar EB, Mallette FA, Wilson AM, Sapieha P. HIF1α-dependent hypoxia response in myeloid cells requires IRE1α. J Neuroinflammation 2023; 20:145. [PMID: 37344842 DOI: 10.1186/s12974-023-02793-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/24/2023] [Indexed: 06/23/2023] Open
Abstract
Cellular adaptation to low oxygen tension triggers primitive pathways that ensure proper cell function. Conditions of hypoxia and low glucose are characteristic of injured tissues and hence successive waves of inflammatory cells must be suited to function under low oxygen tension and metabolic stress. While Hypoxia-Inducible Factor (HIF)-1α has been shown to be essential for the inflammatory response of myeloid cells by regulating the metabolic switch to glycolysis, less is known about how HIF1α is triggered in inflammation. Here, we demonstrate that cells of the innate immune system require activity of the inositol-requiring enzyme 1α (IRE1α/XBP1) axis in order to initiate HIF1α-dependent production of cytokines such as IL1β, IL6 and VEGF-A. Knockout of either HIF1α or IRE1α in myeloid cells ameliorates vascular phenotypes in a model of retinal pathological angiogenesis driven by sterile inflammation. Thus, pathways associated with ER stress, in partnership with HIF1α, may co-regulate immune adaptation to low oxygen.
Collapse
Affiliation(s)
- Gaëlle Mawambo
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Malika Oubaha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
- Départment de Sciences Biologiques, Université du Québec À Montréal (UQAM), Montréal, QC, H2X 1L4, Canada
| | - Yusuke Ichiyama
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, QC, H1T 2M4, Canada
| | - Guillaume Blot
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, QC, H1T 2M4, Canada
| | - Sergio Crespo-Garcia
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
- School of Optometry, University of Montreal, Montreal, QC, H3T1P1, Canada
| | - Agnieszka Dejda
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - François Binet
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Roberto Diaz-Marin
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Christina Sawchyn
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Mikhail Sergeev
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Rachel Juneau
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - El Bachir Affar
- Department of Medicine, University of Montreal, Montreal, Canada
| | - Frédérick A Mallette
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Ariel M Wilson
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 De L'Assomption Boulevard, Montréal, QC, H1T 2M4, Canada.
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
12
|
Gui X, Zhang H, Zhang R, Li Q, Zhu W, Nie Z, Zhao J, Cui X, Hao W, Wen X, Shen W, Song H. Exosomes incorporated with black phosphorus quantum dots attenuate retinal angiogenesis via disrupting glucose metabolism. Mater Today Bio 2023; 19:100602. [PMID: 36942311 PMCID: PMC10024194 DOI: 10.1016/j.mtbio.2023.100602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023] Open
Abstract
Black phosphorus quantum dots (BPQDs) have shown potential in tumor therapy, however, their anti-angiogenic functions have not been studied. Although BPQDs are easily degraded to non-toxic phosphrous, the reported toxicity, poor stability, and non-selectivity largely limit their further application in medicine. In this study, a vascular targeting, biocompatible, and cell metabolism-disrupting nanoplatform is engineered by incorporating BPQDs into exosomes modified with the Arg-Gly-Asp (RGD) peptide (BPQDs@RGD-EXO nanospheres, BREs). BREs inhibit endothelial cells (ECs) proliferation, migration, tube formation, and sprouting in vitro. The anti-angiogenic role of BREs in vivo is evaluated using mouse retinal vascular development model and oxygen-induced retinopathy model. Combined RNA-seq and metabolomic analysis reveal that BREs disrupt glucose metabolism, which is further confirmed by evaluating metabolites, ATP production and the c-MYC/Hexokinase 2 pathway. These BREs are promising anti-angiogenic platforms for the treatment of pathological retinal angiogenesis with minimal side effects.
Collapse
Affiliation(s)
- Xiao Gui
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Rui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Weiye Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Zheng Nie
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Jiawei Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Xiao Cui
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Weiju Hao
- University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu University of TCM, Chengdu, 610016, China
- Corresponding author.
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
- Corresponding author.
| | - Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
- Corresponding author.
| |
Collapse
|
13
|
Liu Z, Shi H, Xu J, Yang Q, Ma Q, Mao X, Xu Z, Zhou Y, Da Q, Cai Y, Fulton DJ, Dong Z, Sodhi A, Caldwell RB, Huo Y. Single-cell transcriptome analyses reveal microglia types associated with proliferative retinopathy. JCI Insight 2022; 7:160940. [PMID: 36264636 PMCID: PMC9746914 DOI: 10.1172/jci.insight.160940] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/18/2022] [Indexed: 01/14/2023] Open
Abstract
Pathological angiogenesis is a major cause of irreversible blindness in individuals of all age groups with proliferative retinopathy (PR). Mononuclear phagocytes (MPs) within neovascular areas contribute to aberrant retinal angiogenesis. Due to their cellular heterogeneity, defining the roles of MP subsets in PR onset and progression has been challenging. Here, we aimed to investigate the heterogeneity of microglia associated with neovascularization and to characterize the transcriptional profiles and metabolic pathways of proangiogenic microglia in a mouse model of oxygen-induced PR (OIR). Using transcriptional single-cell sorting, we comprehensively mapped all microglia populations in retinas of room air (RA) and OIR mice. We have unveiled several unique types of PR-associated microglia (PRAM) and identified markers, signaling pathways, and regulons associated with these cells. Among these microglia subpopulations, we found a highly proliferative microglia subset with high self-renewal capacity and a hypermetabolic microglia subset that expresses high levels of activating microglia markers, glycolytic enzymes, and proangiogenic Igf1. IHC staining shows that these PRAM were spatially located within or around neovascular tufts. These unique types of microglia have the potential to promote retinal angiogenesis, which may have important implications for future treatment of PR and other pathological ocular angiogenesis-related diseases.
Collapse
Affiliation(s)
- Zhiping Liu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Huidong Shi
- Georgia Cancer Center and,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jiean Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xiaoxiao Mao
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhimin Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yaqi Zhou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yongfeng Cai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David J.R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ruth B. Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
14
|
Becker K, Weigelt CM, Fuchs H, Viollet C, Rust W, Wyatt H, Huber J, Lamla T, Fernandez-Albert F, Simon E, Zippel N, Bakker RA, Klein H, Redemann NH. Transcriptome analysis of AAV-induced retinopathy models expressing human VEGF, TNF-α, and IL-6 in murine eyes. Sci Rep 2022; 12:19395. [PMID: 36371417 PMCID: PMC9653384 DOI: 10.1038/s41598-022-23065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
Retinopathies are multifactorial diseases with complex pathologies that eventually lead to vision loss. Animal models facilitate the understanding of the pathophysiology and identification of novel treatment options. However, each animal model reflects only specific disease aspects and understanding of the specific molecular changes in most disease models is limited. Here, we conducted transcriptome analysis of murine ocular tissue transduced with recombinant Adeno-associated viruses (AAVs) expressing either human VEGF-A, TNF-α, or IL-6. VEGF expression led to a distinct regulation of extracellular matrix (ECM)-associated genes. In contrast, both TNF-α and IL-6 led to more comparable gene expression changes in interleukin signaling, and the complement cascade, with TNF-α-induced changes being more pronounced. Furthermore, integration of single cell RNA-Sequencing data suggested an increase of endothelial cell-specific marker genes by VEGF, while TNF-α expression increased the expression T-cell markers. Both TNF-α and IL-6 expression led to an increase in macrophage markers. Finally, transcriptomic changes in AAV-VEGF treated mice largely overlapped with gene expression changes observed in the oxygen-induced retinopathy model, especially regarding ECM components and endothelial cell-specific gene expression. Altogether, our study represents a valuable investigation of gene expression changes induced by VEGF, TNF-α, and IL-6 and will aid researchers in selecting appropriate animal models for retinopathies based on their agreement with the human pathophysiology.
Collapse
Affiliation(s)
- Kolja Becker
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carina M. Weigelt
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Fuchs
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Coralie Viollet
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Werner Rust
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Hannah Wyatt
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jochen Huber
- grid.420061.10000 0001 2171 7500Clinical Development & Operations Corporate, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Thorsten Lamla
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Francesc Fernandez-Albert
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Eric Simon
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Nina Zippel
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Remko A. Bakker
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Klein
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Norbert H. Redemann
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
15
|
Sinclair SH, Miller E, Talekar KS, Schwartz SS. Diabetes mellitus associated neurovascular lesions in the retina and brain: A review. FRONTIERS IN OPHTHALMOLOGY 2022; 2:1012804. [PMID: 38983558 PMCID: PMC11182219 DOI: 10.3389/fopht.2022.1012804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/14/2022] [Indexed: 07/11/2024]
Abstract
Diabetes mellitus (DM) is now recognized as a system-wide, autoimmune, inflammatory, microvascular disorder, which, in the retina and brain results in severe multifocal injury now recognized as a leading cause, world-wide, of progressive vision loss and dementia. To address this problem, resulting primarily from variations in glycemia in the prediabetic and overt diabetic states, it must be realized that, although some of the injury processes associated with diabetes may be system wide, there are varying responses, effector, and repair mechanisms that differ from organ to organ or within varying cell structures. Specifically, within the retina, and similarly within the brain cortex, lesions occur of the "neurovascular unit", comprised of focal microvascular occlusions, inflammatory endothelial and pericyte injury, with small vessel leakage resulting in injury to astrocytes, Müller cells, and microglia, all of which occur with progressive neuronal apoptosis. Such lesions are now recognized to occur before the first microaneurysms are visible to imaging by fundus cameras or before they result in detectable symptoms or signs recognizable to the patient or clinician. Treatments, therefore, which currently are not initiated within the retina until edema develops or there is progression of vascular lesions that define the current staging of retinopathy, and in the brain only after severe signs of cognitive failure. Treatments, therefore are applied relatively late with some reduction in progressive cellular injury but with resultant minimal vision or cognitive improvement. This review article will summarize the multiple inflammatory and remediation processes currently understood to occur in patients with diabetes as well as pre-diabetes and summarize as well the current limitations of methods for assessing the structural and functional alterations within the retina and brain. The goal is to attempt to define future screening, monitoring, and treatment directions that hopefully will prevent progressive injury as well as enable improved repair and attendant function.
Collapse
Affiliation(s)
- Stephen H Sinclair
- Pennsylvania College of Optometry, Salus University, Philadelphia, PA, United States
| | - Elan Miller
- Division of Vascular Neurology, Vickie & Jack Farber Institute for Institute for Neuroscience, Sidney Kimmel Medical College (SKMC) Thomas Jefferson University, Philadelphia, PA, United States
| | - Kiran S Talekar
- Department of Radiology, Section of Neuroradiology and ENT Radiology, Clinical Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging at Thomas Jefferson University Hospital and The Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC) Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Stanley S Schwartz
- Department of Endocrinology and Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Main Line Health System, Philadelphia, PA, United States
| |
Collapse
|
16
|
Yu Y, Zeng H, Jin K, You R, Liu Z, Zhang H, Liu C, Su X, Yan S, Chang Y, Liu L, Xu L, Xu J, Zhu Y, Wang Z. Immune inactivation by neuropilin-1 predicts clinical outcome and therapeutic benefit in muscle-invasive bladder cancer. Cancer Immunol Immunother 2022; 71:2117-2126. [DOI: 10.1007/s00262-022-03153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
|
17
|
Abstract
Semaphorin 3A is a secreted glycoprotein, which was originally identified as axon guidance factor in the neuronal system, but it also possesses immunoregulatory properties. Here, the effect of semaphorin 3A on T-lymphocytes, myeloid dendritic cells and macrophages is systematically analyzed on the bases of all publications available in the literature for 20 years. Expression of semaphorin 3A receptors – neuropilin-1 and plexins A – in these cells is described in details. The data obtained on human and murine cells is described comparatively. A comprehensive overview of the interaction of semaphorin 3A with mononuclear phagocyte system is presented for the first time. Semaphorin 3A signaling mostly results in changes of the cytoskeletal machinery and cellular morphology that regulate pathways involved in migration, adhesion, and cell–cell cooperation of immune cells. Accumulating evidence indicates that this factor is crucially involved in various phases of immune responses, including initiation phase, antigen presentation, effector T cell function, inflammation phase, macrophage activation, and polarization. In recent years, interest in this field has increased significantly because semaphorin 3A is associated with many human diseases and therefore can be used as a target for their treatment. Its involvement in the immune responses is important to study, because semaphorin 3A and its receptors turn to be a promising new therapeutic tools to be applied in many autoimmune, allergic, and oncology diseases.
Collapse
Affiliation(s)
- Ekaterina P Kiseleva
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
- Mechnikov North-Western State Medical University, St. Petersburg, 195067, Russia
| | - Kristina V Rutto
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine", St. Petersburg, 197376, Russia.
| |
Collapse
|
18
|
Cheung CMG, Fawzi A, Teo KY, Fukuyama H, Sen S, Tsai WS, Sivaprasad S. Diabetic macular ischaemia- a new therapeutic target? Prog Retin Eye Res 2022; 89:101033. [PMID: 34902545 PMCID: PMC11268431 DOI: 10.1016/j.preteyeres.2021.101033] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022]
Abstract
Diabetic macular ischaemia (DMI) is traditionally defined and graded based on the angiographic evidence of an enlarged and irregular foveal avascular zone. However, these anatomical changes are not surrogate markers for visual impairment. We postulate that there are vascular phenotypes of DMI based on the relative perfusion deficits of various retinal capillary plexuses and choriocapillaris. This review highlights several mechanistic pathways, including the role of hypoxia and the complex relation between neurons, glia, and microvasculature. The current animal models are reviewed, with shortcomings noted. Therefore, utilising the advancing technology of optical coherence tomography angiography (OCTA) to identify the reversible DMI phenotypes may be the key to successful therapeutic interventions for DMI. However, there is a need to standardise the nomenclature of OCTA perfusion status. Visual acuity is not an ideal endpoint for DMI clinical trials. New trial endpoints that represent disease progression need to be developed before irreversible vision loss in patients with DMI. Natural history studies are required to determine the course of each vascular and neuronal parameter to define the DMI phenotypes. These DMI phenotypes may also partly explain the development and recurrence of diabetic macular oedema. It is also currently unclear where and how DMI fits into the diabetic retinopathy severity scales, further highlighting the need to better define the progression of diabetic retinopathy and DMI based on both multimodal imaging and visual function. Finally, we discuss a complete set of proposed therapeutic pathways for DMI, including cell-based therapies that may provide restorative potential.
Collapse
Affiliation(s)
- Chui Ming Gemmy Cheung
- Singapore Eye Research Institution, Singapore National Eye Centre, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore
| | | | - Kelvin Yc Teo
- Singapore Eye Research Institution, Singapore National Eye Centre, Singapore
| | | | | | - Wei-Shan Tsai
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, United Kingdom.
| |
Collapse
|
19
|
Zippel N, Kenny CH, Wu H, Garneau M, Kroe-Barrett R, Gupta P, Low S, Bakker RA, Thomas L. Sema3A Antibody BI-X Prevents Cell Permeability and Cytoskeletal Collapse in HRMECs and Increases Tip Cell Density in Mouse Oxygen-Induced Retinopathy. Transl Vis Sci Technol 2022; 11:17. [PMID: 35727188 PMCID: PMC9233289 DOI: 10.1167/tvst.11.6.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Semaphorin 3A (Sema3A) is an axonal guidance molecule that inhibits angiogenesis by vasorepulsion and blocks revascularization in the ischemic retina. BI-X is an intravitreal anti-Sema3A agent under clinical investigation in patients with proliferative diabetic retinopathy (PDR) and diabetic macular ischemia (DMI). Methods Surface plasmon resonance was used to determine binding affinity of BI-X to human and murine Sema3A. In vitro, human retinal microvascular endothelial cells (HRMECs) were used to assess effects of BI-X on cell permeability and cytoskeletal collapse induced by Sema3A. In vivo, intravitreal BI-X or an anti-trinitrophenol control antibody was administered in both eyes in mice with oxygen-induced retinopathy (OIR). Retinal flat mounts were prepared, and avascular area and tip cell density were determined using confocal laser-scanning microscopy. Results Dissociation constants for BI-X binding to human and murine Sema3A were 29 pM and 27 pM, respectively. In vitro, BI-X prevented HRMEC permeability and cytoskeletal collapse induced by Sema3A. In vivo, BI-X increased tip cell density by 33% (P < 0.001) and reduced avascular area by 12% (not significant). A significant negative correlation was evident between avascular area and tip cell density (r2 = 0.4205, P < 0.0001). Conclusions BI-X binds to human Sema3A with picomolar affinity and prevents cell permeability and cytoskeletal collapse in HRMECs. BI-X also enhances revascularization in mice with OIR. Translational Relevance BI-X is a potent inhibitor of human Sema3A that improves revascularization in a murine model of OIR; BI-X is currently being investigated in patients with laser-treated PDR and DMI.
Collapse
Affiliation(s)
- Nina Zippel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Helen Wu
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Michel Garneau
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Priyanka Gupta
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Sarah Low
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Remko A Bakker
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Leo Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
20
|
Klotzsche-von Ameln A, Sprott D. Harnessing retinal phagocytes to combat pathological neovascularization in ischemic retinopathies? Pflugers Arch 2022; 474:575-590. [PMID: 35524802 PMCID: PMC9117346 DOI: 10.1007/s00424-022-02695-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Ischemic retinopathies (IR) are vision-threatening diseases that affect a substantial amount of people across all age groups worldwide. The current treatment options of photocoagulation and anti-VEGF therapy have side effects and are occasionally unable to prevent disease progression. It is therefore worthwhile to consider other molecular targets for the development of novel treatment strategies that could be safer and more efficient. During the manifestation of IR, the retina, normally an immune privileged tissue, encounters enhanced levels of cellular stress and inflammation that attract mononuclear phagocytes (MPs) from the blood stream and activate resident MPs (microglia). Activated MPs have a multitude of effects within the retinal tissue and have the potential to both counter and exacerbate the harmful tissue microenvironment. The present review discusses the current knowledge about the role of inflammation and activated retinal MPs in the major IRs: retinopathy of prematurity and diabetic retinopathy. We focus particularly on MPs and their secreted factors and cell–cell-based interactions between MPs and endothelial cells. We conclude that activated MPs play a major role in the manifestation and progression of IRs and could therefore become a promising new target for novel pharmacological intervention strategies in these diseases.
Collapse
Affiliation(s)
| | - David Sprott
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
21
|
It is time for a moonshot to find “Cures” for diabetic retinal disease. Prog Retin Eye Res 2022; 90:101051. [DOI: 10.1016/j.preteyeres.2022.101051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
|
22
|
Abstract
The global prevalence of metabolic diseases, such as obesity, diabetes, and atherosclerosis, is rapidly increasing and has now reached epidemic proportions. Chronic tissue inflammation is a characteristic of these metabolic diseases, indicating that immune responses are closely involved in the pathogenesis of metabolic disorders. However, the regulatory mechanisms underlying immunometabolic crosstalk in these diseases are not completely understood. Recent studies have revealed the multifaceted functions of semaphorins, originally identified as axon guidance molecules, in regulating tissue inflammation and metabolic disorders, thereby highlighting the functional coupling between semaphorin signaling and immunometabolism. In this review, we explore how semaphorin signaling transcends beyond merely guiding axons to controlling immune responses and metabolic diseases.
Collapse
|
23
|
VEGF-Trap Modulates Retinal Inflammation in the Murine Oxygen-Induced Retinopathy (OIR) Model. Biomedicines 2022; 10:biomedicines10020201. [PMID: 35203414 PMCID: PMC8869660 DOI: 10.3390/biomedicines10020201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Anti-Vascular Endothelial Growth Factor (VEGF) agents are the first-line treatment for retinal neovascular diseases, which represent the most prevalent causes of acquired vision loss world-wide. VEGF-Trap (Aflibercept, AFL), a recombinant decoy receptor recognizing ligands of both VEGFR-1 and -2, was recently reported to be highly efficient in improving visual acuity and preserving retinal anatomy in individuals affected by diabetic macular edema. However, the precise molecular and cell biological mechanisms underlying the beneficial effects of this novel tool have yet to be elucidated. Using the mouse oxygen-induced retinopathy (OIR) model as a surrogate of retinopathies with sterile post-ischemic inflammation, such as late proliferative diabetic retinopathy (PDR), retinopathy of prematurity (ROP), and diabetic macular edema (DME), we provide evidence that AFL modulates inflammation in response to hypoxia by regulating the morphology of microglial cells, a parameter commonly used as a proxy for changes in their activation state. We show that AFL administration during the hypoxic period of OIR leads to an increased number of ramified Iba1+ microglial cells/macrophages while subsequently limiting the accumulation of these cells in particular retinal layers. Our results suggest that, beyond its well-documented beneficial effects on microvascular regeneration, AFL might exert important modulatory effects on post-ischemic retinal inflammation.
Collapse
|
24
|
Nedaei K, Hesaraki M, Mazloomzadeh S, Totonchi M, Biglari AR. Lentiviral Mediated Expression of Soluble Neuropilin 1 Inhibits Semaphorin 3A-mediated Collapse Activity in Vitro. Basic Clin Neurosci 2021; 12:223-232. [PMID: 34925719 PMCID: PMC8672662 DOI: 10.32598/bcn.12.2.1678.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/14/2020] [Accepted: 08/02/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Semaphorin 3A (Sema 3A) is a secreted protein, which plays an integral part in developing the nervous system. It has collapse activity on the growth cone of dorsal root ganglia. After the development of the nervous system, Sema 3A expression decreases. Neuropilin 1 is a membrane receptor of Sema 3A. When semaphorin binds to neuropilin 1, the recruitment of oligodendrocyte precursor cells to the demyelinated site decreases. In Multiple Sclerosis (MS), Sema 3A expression increases and inhibits oligodendrocyte precursor cell differentiation. Therefore, the remyelination of axons gets impaired. We hypothesized that the function of Sema 3A could be inhibited by neutralizing its binding to membrane NRP1. Methods we cloned a soluble form of mouse Neuropilin 1 (msNRP1) in a lentiviral vector and expressed the recombinant protein in HEK293T cells. Then, the conditioned medium of the transduced cells was used to evaluate the effects of the msNRP1 on the inhibition of Sema 3A-induced growth cone collapse activity. Dorsal root ganglion explants of timed pregnant (E13) mice were prepared. Then, the growth cone collapse activity of Sema 3A was assessed in the presence and absence of msNRP1-containing conditioned media of transduced and non-transduced HEK293T cells. Comparisons between groups were performed by 1-way ANOVA and post hoc Tukey tests. Results msNRP1 was successfully cloned and transduced in HEK293T cells. The supernatant of transduced cells was concentrated and evaluated for the production of msNRP1. ELISA results indicated that transduced cells secreted msNRP1. Growth cone collapse assay showed that Sema 3A activity was significantly reduced in the presence of the conditioned medium of msNRP1-transduced HEK293T cells. Conversely, a conditioned medium of non-transduced HEK293T cells could not effectively prevent Sema 3A growth cone collapse activity. Conclusion Our results indicated that msNRP1 was successfully produced in HEK293T cells. The secreted msNRP1 effectively prevented Sema 3A collapse activity. Therefore, msNRP1 can increase remyelination in MS lesions, although more studies using animal models are required.
Collapse
Affiliation(s)
- Keivan Nedaei
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdi Hesaraki
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeideh Mazloomzadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Reza Biglari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
25
|
Zhou L, Xu Z, Oh Y, Gamuyao R, Lee G, Xie Y, Cho H, Lee S, Duh EJ. Myeloid cell modulation by a GLP-1 receptor agonist regulates retinal angiogenesis in ischemic retinopathy. JCI Insight 2021; 6:93382. [PMID: 34673570 PMCID: PMC8675187 DOI: 10.1172/jci.insight.93382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Ischemic retinopathies including diabetic retinopathy are major causes of blindness. Although neurons and Müller glia are recognized as important regulators of reparative and pathologic angiogenesis, the role of mononuclear phagocytes (MPs) — particularly microglia, the resident retinal immune cells — is unclear. Here, we found MP activation in human diabetic retinopathy, especially in neovessels from human neovascular membranes in proliferative retinopathy, including TNF-α expression. There was similar activation in the mouse oxygen-induced retinopathy (OIR) model of ischemia-induced neovascularization. Glucagon-like peptide-1 receptor (GLP-1R) agonists are in clinical use for glycemic control in diabetes and are also known to modulate microglia. Herein, we investigated the effect of a long-acting GLP-1R agonist, NLY01. Following intravitreal administration, NLY01 selectively localized to MPs in retina with OIR. NLY01 modulated MPs but not retinal endothelial cell viability, apoptosis, and tube formation in vitro. In OIR, NLY01 treatment inhibited MP infiltration and activation, including MP expression of cytokines in vivo. NLY01 significantly suppressed global induction of retinal inflammatory cytokines, promoted reparative angiogenesis, and suppressed pathologic retinal neovascularization. Collectively, these findings indicate the important role of mononuclear phagocytes in regulation of retinal vascularization in ischemia and suggest modulation of MPs as a potentially new treatment strategy for ischemic retinopathies.
Collapse
Affiliation(s)
| | | | - Yumin Oh
- Wilmer Eye Institute and.,The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | - Seulki Lee
- Wilmer Eye Institute and.,The Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
26
|
Wang T, Zhou P, Xie X, Tomita Y, Cho S, Tsirukis D, Lam E, Luo HR, Sun Y. Myeloid lineage contributes to pathological choroidal neovascularization formation via SOCS3. EBioMedicine 2021; 73:103632. [PMID: 34688035 PMCID: PMC8546367 DOI: 10.1016/j.ebiom.2021.103632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Background Pathological neovascularization in neovascular age-related macular degeneration (nAMD) is the leading cause of vision loss in the elderly. Increasing evidence shows that cells of myeloid lineage play important roles in controlling pathological endothelium formation. Suppressor of cytokine signaling 3 (SOCS3) pathway has been linked to neovascularization. Methods We utilised a laser-induced choroidal neovascularization (CNV) mouse model to investigate the neovascular aspect of human AMD. In several cell lineage reporter mice, bone marrow chimeric mice and Socs3 loss-of-function (knockout) and gain-of-function (overexpression) mice, immunohistochemistry, confocal, and choroidal explant co-culture with bone marrow-derived macrophage medium were used to study the mechanisms underlying pathological CNV formation via myeloid SOCS3. Findings SOCS3 was significantly induced in myeloid lineage cells, which were recruited into the CNV lesion area. Myeloid Socs3 overexpression inhibited laser-induced CNV, reduced myeloid lineage-derived macrophage/microglia recruitment onsite, and attenuated pro-inflammatory factor expression. Moreover, SOCS3 in myeloid regulated vascular sprouting ex vivo in choroid explants and SOCS3 agonist reduced in vivo CNV. Interpretation These findings suggest that myeloid lineage cells contributed to pathological CNV formation regulated by SOCS3. Funding This project was funded by NIH/NEI (R01EY030140, R01EY029238), BrightFocus Foundation, American Health Assistance Foundation (AHAF), and Boston Children's Hospital Ophthalmology Foundation for YS and the National Institutes of Health/National Heart, Lung and Blood Institute (U01HL098166) for PZ.
Collapse
Affiliation(s)
- Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Pingzhu Zhou
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Xuemei Xie
- Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Steve Cho
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Demetrios Tsirukis
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hongbo Robert Luo
- Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School, Boston, MA, USA; Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
27
|
Uemura A, Fruttiger M, D'Amore PA, De Falco S, Joussen AM, Sennlaub F, Brunck LR, Johnson KT, Lambrou GN, Rittenhouse KD, Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res 2021; 84:100954. [PMID: 33640465 PMCID: PMC8385046 DOI: 10.1016/j.preteyeres.2021.100954] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research.
Collapse
Affiliation(s)
- Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, 20 Staniford Street, Boston, MA, 02114, USA.
| | - Sandro De Falco
- Angiogenesis Laboratory, Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Via Pietro Castellino 111, 80131 Naples, Italy; ANBITION S.r.l., Via Manzoni 1, 80123, Naples, Italy.
| | - Antonia M Joussen
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12200 Berlin, and Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France.
| | - Lynne R Brunck
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kristian T Johnson
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - George N Lambrou
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Kay D Rittenhouse
- Bayer Consumer Care AG, Pharmaceuticals, Peter-Merian-Strasse 84, CH-4052 Basel, Switzerland.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany.
| |
Collapse
|
28
|
Ikeda T, Nakamura K, Morishita S, Sato T, Horie T, Kida T, Oku H, Takai S, Jin D. Decreased Presence of Mast Cells in the Bursa Premacularis of Proliferative Diabetic Retinopathy. Ophthalmic Res 2021; 64:1002-1012. [PMID: 34515200 DOI: 10.1159/000518438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | | | - Seita Morishita
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Takaki Sato
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
29
|
Diaz-Marin R, Crespo-Garcia S, Wilson AM, Buscarlet M, Dejda A, Fournier F, Juneau R, Alquier T, Sapieha P. Myeloid-resident neuropilin-1 influences brown adipose tissue in obesity. Sci Rep 2021; 11:15767. [PMID: 34344941 PMCID: PMC8333363 DOI: 10.1038/s41598-021-95064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
The beneficial effects of brown adipose tissue (BAT) on obesity and associated metabolic diseases are mediated through its capacity to dissipate energy as heat. While immune cells, such as tissue-resident macrophages, are known to influence adipose tissue homeostasis, relatively little is known about their contribution to BAT function. Here we report that neuropilin-1 (NRP1), a multiligand single-pass transmembrane receptor, is highly expressed in BAT-resident macrophages. During diet-induced obesity (DIO), myeloid-resident NRP1 influences interscapular BAT mass, and consequently vascular morphology, innervation density and ultimately core body temperature during cold exposure. Thus, NRP1-expressing myeloid cells contribute to the BAT homeostasis and potentially its thermogenic function in DIO.
Collapse
Affiliation(s)
- Roberto Diaz-Marin
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Sergio Crespo-Garcia
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Ariel M Wilson
- Department of Ophthalmology, Maisonneuve-Rosemont Research Centre, Université de Montréal, Montréal, QC, H1T2M4, Canada
| | - Manuel Buscarlet
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Agnieszka Dejda
- Department of Ophthalmology, Maisonneuve-Rosemont Research Centre, Université de Montréal, Montréal, QC, H1T2M4, Canada
| | - Frédérik Fournier
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Rachel Juneau
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Thierry Alquier
- Montreal Diabetes Research Centre and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Montréal, QC, H2X0A9, Canada
| | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada. .,Department of Ophthalmology, Maisonneuve-Rosemont Research Centre, Université de Montréal, Montréal, QC, H1T2M4, Canada.
| |
Collapse
|
30
|
Rojo Arias JE, Jászai J. Gene expression profile of the murine ischemic retina and its response to Aflibercept (VEGF-Trap). Sci Rep 2021; 11:15313. [PMID: 34321516 PMCID: PMC8319207 DOI: 10.1038/s41598-021-94500-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic retinal dystrophies are leading causes of acquired vision loss. Although the dysregulated expression of the hypoxia-responsive VEGF-A is a major driver of ischemic retinopathies, implication of additional VEGF-family members in their pathogenesis has led to the development of multivalent anti-angiogenic tools. Designed as a decoy receptor for all ligands of VEGFR1 and VEGFR2, Aflibercept is a potent anti-angiogenic agent. Notwithstanding, the molecular mechanisms mediating Aflibercept's efficacy remain only partially understood. Here, we used the oxygen-induced retinopathy (OIR) mouse as a model system of pathological retinal vascularization to investigate the transcriptional response of the murine retina to hypoxia and of the OIR retina to Aflibercept. While OIR severely impaired transcriptional changes normally ensuing during retinal development, analysis of gene expression patterns hinted at alterations in leukocyte recruitment during the recovery phase of the OIR protocol. Moreover, the levels of Angiopoietin-2, a major player in the progression of diabetic retinopathy, were elevated in OIR tissues and consistently downregulated by Aflibercept. Notably, GO term, KEGG pathway enrichment, and expression dynamics analyses revealed that, beyond regulating angiogenic processes, Aflibercept also modulated inflammation and supported synaptic transmission. Altogether, our findings delineate novel mechanisms potentially underlying Aflibercept's efficacy against ischemic retinopathies.
Collapse
Affiliation(s)
- Jesús Eduardo Rojo Arias
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany ,grid.5335.00000000121885934Present Address: Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - József Jászai
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
31
|
Liu Z, Xu J, Ma Q, Zhang X, Yang Q, Wang L, Cao Y, Xu Z, Tawfik A, Sun Y, Weintraub NL, Fulton DJ, Hong M, Dong Z, Smith LEH, Caldwell RB, Sodhi A, Huo Y. Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Sci Transl Med 2021; 12:12/555/eaay1371. [PMID: 32759274 DOI: 10.1126/scitranslmed.aay1371] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/02/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
The coordination of metabolic signals among different cellular components in pathological retinal angiogenesis is poorly understood. Here, we showed that in the pathological angiogenic vascular niche, retinal myeloid cells, particularly macrophages/microglia that are spatially adjacent to endothelial cells (ECs), are highly glycolytic. We refer to these macrophages/microglia that exhibit a unique angiogenic phenotype with increased expression of both M1 and M2 markers and enhanced production of both proinflammatory and proangiogenic cytokines as pathological retinal angiogenesis-associated glycolytic macrophages/microglia (PRAGMs). The phenotype of PRAGMs was recapitulated in bone marrow-derived macrophages or retinal microglia stimulated by lactate that was produced by hypoxic retinal ECs. Knockout of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3; Pfkfb3 for rodents), a glycolytic activator in myeloid cells, impaired the ability of macrophages/microglia to acquire an angiogenic phenotype, rendering them unable to promote EC proliferation and sprouting and pathological neovascularization in a mouse model of oxygen-induced proliferative retinopathy. Mechanistically, hyperglycolytic macrophages/microglia produced large amount of acetyl-coenzyme A, leading to histone acetylation and PRAGM-related gene induction, thus reprogramming macrophages/microglia into an angiogenic phenotype. These findings reveal a critical role of glycolytic metabolites as initiators of reciprocal activation of macrophages/microglia and ECs in the retinal angiogenic niche and suggest that strategies targeting the metabolic communication between these cell types may be efficacious in the treatment of pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Zhiping Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jiean Xu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaoyu Zhang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lina Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yapeng Cao
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zhimin Xu
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amany Tawfik
- Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Akrit Sodhi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. .,James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
32
|
Semaphorin3A increases M1-like microglia and retinal ganglion cell apoptosis after optic nerve injury. Cell Biosci 2021; 11:97. [PMID: 34039431 PMCID: PMC8157735 DOI: 10.1186/s13578-021-00603-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background The mechanisms leading to retinal ganglion cell (RGC) death after optic nerve injury have not been fully elucidated. Current evidence indicates that microglial activation and M1- and M2-like dynamics may be an important factor in RGC apoptosis after optic nerve crush (ONC). Semaphorin3A (Sema3A) is a classic axonal guidance protein,which has been found to have a role in neuroinflammation processes. In this study, we investigated the contribution of microglial-derived Sema3A to progressive RGC apoptosis through regulating paradigm of M1- and M2-like microglia after ONC. Method
A mouse ONC model and a primary microglial-RGC co-culture system were used in the present study. The expression of M1- and M2-like microglial activation markers were assessed by real-time polymerase chain reaction (RT-qPCR). Histological and Western blot (WB) analyses were used to investigate the polarization patterns of microglia transitions and the levels of Sema3A. RGC apoptosis was investigated by TUNEL staining and caspase-3 detection. Results Levels of Sema3A in the mouse retina increased after ONC. Treatment of mice with the stimulating factor 1 receptor antagonist PLX3397 resulted in a decrease of retinal microglia. The levels of CD16/32 (M1) were up-regulated at days 3 and 7 post-ONC. However, CD206 (M2) declined on day 7 after ONC. Exposure to anti-Sema3A antibodies (anti-Sema3A) resulted in a decrease in the number of M1-like microglia, an increase in the number of M2-like microglia, and the amelioration of RGC apoptosis. Conclusions An increase in microglia-derived Sema3A in the retina after ONC partially leads to a continuous increase of M1-like microglia and plays an important role in RGC apoptosis. Inhibition of Sema3A activity may be a novel approach to the prevention of RGC apoptosis after optic nerve injury. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00603-7.
Collapse
|
33
|
Binet F, Wilson AM, Sapieha P. [NETosis drives removal of senescent cells and favors revascularisation in retinopathy]. Med Sci (Paris) 2021; 37:541-543. [PMID: 34003102 DOI: 10.1051/medsci/2021047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- François Binet
- Département d'ophtalmologie, Centre de recherche de l'hôpital Maisonneuve-Rosemont, Université de Montréal, 5415, boulevard de l'Assomption, Montréal, Québec, H1T 2M4, Canada - Département de biochimie - médecine moléculaire, Centre de recherche de l'hôpital Maisonneuve-Rosemont, Université de Montréal, 5415, boulevard de l'Assomption, Montréal, Québec, H1T 2M4, Canada
| | - Ariel M Wilson
- Département d'ophtalmologie, Centre de recherche de l'hôpital Maisonneuve-Rosemont, Université de Montréal, 5415, boulevard de l'Assomption, Montréal, Québec, H1T 2M4, Canada
| | - Przemyslaw Sapieha
- Département d'ophtalmologie, Centre de recherche de l'hôpital Maisonneuve-Rosemont, Université de Montréal, 5415, boulevard de l'Assomption, Montréal, Québec, H1T 2M4, Canada - Département de biochimie - médecine moléculaire, Centre de recherche de l'hôpital Maisonneuve-Rosemont, Université de Montréal, 5415, boulevard de l'Assomption, Montréal, Québec, H1T 2M4, Canada
| |
Collapse
|
34
|
Andriessen EMMA, Binet F, Fournier F, Hata M, Dejda A, Mawambo G, Crespo‐Garcia S, Pilon F, Buscarlet M, Beauchemin K, Bougie V, Cumberlidge G, Wilson AM, Bourgault S, Rezende FA, Beaulieu N, Delisle J, Sapieha P. Myeloid-resident neuropilin-1 promotes choroidal neovascularization while mitigating inflammation. EMBO Mol Med 2021; 13:e11754. [PMID: 33876574 PMCID: PMC8103107 DOI: 10.15252/emmm.201911754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) in its various forms is a leading cause of blindness in industrialized countries. Here, we provide evidence that ligands for neuropilin-1 (NRP1), such as Semaphorin 3A and VEGF-A, are elevated in the vitreous of patients with AMD at times of active choroidal neovascularization (CNV). We further demonstrate that NRP1-expressing myeloid cells promote and maintain CNV. Expression of NRP1 on cells of myeloid lineage is critical for mitigating production of inflammatory factors such as IL6 and IL1β. Therapeutically trapping ligands of NRP1 with an NRP1-derived trap reduces CNV. Collectively, our findings identify a role for NRP1-expressing myeloid cells in promoting pathological angiogenesis during CNV and introduce a therapeutic approach to counter neovascular AMD.
Collapse
Affiliation(s)
| | - François Binet
- SemaThera Inc.MontrealQCCanada
- Department of OphthalmologyUniversity of MontrealMontrealQCCanada
| | - Frédérik Fournier
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontrealQCCanada
| | - Masayuki Hata
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontrealQCCanada
| | - Agnieszka Dejda
- Department of OphthalmologyUniversity of MontrealMontrealQCCanada
| | - Gaëlle Mawambo
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontrealQCCanada
| | - Sergio Crespo‐Garcia
- Department of OphthalmologyUniversity of MontrealMontrealQCCanada
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontrealQCCanada
| | - Frédérique Pilon
- Department of OphthalmologyUniversity of MontrealMontrealQCCanada
| | - Manuel Buscarlet
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontrealQCCanada
| | | | | | | | - Ariel M Wilson
- Department of OphthalmologyUniversity of MontrealMontrealQCCanada
| | - Steve Bourgault
- Department of ChemistryUniversité du Québec à MontréalMontrealQCCanada
| | - Flavio A Rezende
- Department of OphthalmologyUniversity of MontrealMontrealQCCanada
| | | | - Jean‐Sébastien Delisle
- Department of MedicineMaisonneuve‐Rosemont Hospital Research CentreUniversity of MontrealMontrealQCCanada
| | - Przemyslaw Sapieha
- Department of Biomedical SciencesUniversity of MontrealMontrealQCCanada
- SemaThera Inc.MontrealQCCanada
- Department of OphthalmologyUniversity of MontrealMontrealQCCanada
- Department of Biochemistry and Molecular MedicineUniversity of MontrealMontrealQCCanada
| |
Collapse
|
35
|
Cho H, Kambhampati SP, Lai MJ, Zhou L, Lee G, Xie Y, Hui Q, Kannan RM, Duh EJ. Dendrimer-Triamcinolone Acetonide Reduces Neuroinflammation, Pathological Angiogenesis, and Neuroretinal Dysfunction in Ischemic Retinopathy. ADVANCED THERAPEUTICS 2021; 4:2000181. [PMID: 34527806 PMCID: PMC8436818 DOI: 10.1002/adtp.202000181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Severe visual loss in DR is primarily due to proliferative diabetic retinopathy, characterized by pathologic preretinal angiogenesis driven by retinal ischemia. Microglia, the resident immune cells of the retina, have emerged as a potentially important regulator of pathologic retinal angiogenesis. Corticosteroids including triamcinolone acetonide (TA), known for their antiangiogenic effects, are used in treating retinal diseases, but their use is significantly limited by side effects including cataracts and glaucoma. Generation-4 hydroxyl polyamidoamine dendrimer nanoparticles are utilized to deliver TA to activated microglia in the ischemic retina in a mouse model of oxygen-induced retinopathy (OIR). Following intravitreal injection, dendrimer-conjugated TA (D-TA) exhibits selective localization and sustained retention in activated microglia in disease-associated areas of the retina. D-TA, but not free TA, suppresses inflammatory cytokine production, microglial activation, and preretinal neovascularization in OIR. In addition, D-TA, but not free TA, ameliorates OIR-induced neuroretinal and visual dysfunction. These results indicate that activated microglia are a promising therapeutic target for retinal angiogenesis and neuroprotection in ischemic retinal diseases. Furthermore, dendrimer-based targeted therapy and specifically D-TA constitute a promising treatment approach for DR, offering increased and sustained drug efficacy with reduced side effects.
Collapse
Affiliation(s)
- Hongkwan Cho
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Siva P Kambhampati
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael J Lai
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Lingli Zhou
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Grace Lee
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yangyiran Xie
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Qiaoyan Hui
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Rangaramanujam M Kannan
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Baltimore, MD 21218, USA
| | - Elia J Duh
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA; Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
36
|
Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Soluble Neuropilin-1 Response to Hypoglycemia in Type 2 Diabetes: Increased Risk or Protection in SARS-CoV-2 Infection? Front Endocrinol (Lausanne) 2021; 12:665134. [PMID: 34248841 PMCID: PMC8261232 DOI: 10.3389/fendo.2021.665134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Neuropilin-1(NRP1) is a cofactor that enhances SARS-CoV-2 coronavirus cell infectivity when co-expressed with angiotensin-converting enzyme 2(ACE2). The Renin-Angiotensin System (RAS) is activated in type 2 diabetes (T2D); therefore, the aim of this study was to determine if hypoglycaemia-induced stress in T2D would potentiate serum NRP1(sNRP1) levels, reflecting an increased risk for SARS-CoV-2 infection. METHODS A case-control study of aged-matched T2D (n = 23) and control (n = 23) subjects who underwent a hyperinsulinemic clamp over 1-hour to hypoglycemia(<40mg/dl) with subsequent timecourse of 4-hours and 24-hours. Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement determined RAS-related proteins: renin (REN), angiotensinogen (AGT), ACE2, soluble NRP1(sNRP1), NRP1 ligands (Vascular endothelial growth factor, VEGF and Class 3 Semaphorins, SEM3A) and NRP1 proteolytic enzyme (A Disintegrin and Metalloproteinase 9, ADAM9). RESULTS Baseline RAS overactivity was present with REN elevated and AGT decreased in T2D (p<0.05); ACE2 was unchanged. Baseline sNRP1, VEGF and ADAM9 did not differ between T2D and controls and remained unchanged in response to hypoglycaemia. However, 4-hours post-hypoglycemia, sNRP1, VEGF and ADAM9 were elevated in T2D(p<0.05). SEMA3A was not different at baseline; at hypoglycemia, SEMA3A decreased in controls only. Post-hypoglycemia, SEMA3A levels were higher in T2D versus controls. sNRP1 did not correlate with ACE2, REN or AGT. T2D subjects stratified according to ACE inhibitor (ACEi) therapies showed no difference in sNRP1 levels at either glucose normalization or hypoglycaemia. CONCLUSION Hypoglycemia potentiated both plasma sNRP1 level elevation and its ligands VEGF and SEMA3A, likely through an ADAM9-mediated mechanism that was not associated with RAS overactivity or ACEi therapy; however, whether this is protective or promotes increased risk for SARS-CoV-2 infection in T2D is unclear. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov, identifier NCT03102801.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed Al-Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
- Department of Endocrinology, Leeds Medical School, Leeds, United Kingdom
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, United Kingdom
| | - Stephen L. Atkin
- Department of Research, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Alexandra E. Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- *Correspondence: Alexandra E. Butler, ;
| |
Collapse
|
37
|
The Role of Macrophages in Vascular Repair and Regeneration after Ischemic Injury. Int J Mol Sci 2020; 21:ijms21176328. [PMID: 32878297 PMCID: PMC7503238 DOI: 10.3390/ijms21176328] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophage is one of the important players in immune response which perform many different functions during tissue injury, repair, and regeneration. Studies using animal models of cardiovascular diseases have provided a clear picture describing the effect of macrophages and their phenotype during injury and regeneration of various vascular beds. Many data have been generated to demonstrate that macrophages secrete many important factors including cytokines and growth factors to regulate angiogenesis and arteriogenesis, acting directly or indirectly on the vascular cells. Different subsets of macrophages may participate at different stages of vascular repair. Recent findings also suggest a direct interaction between macrophages and other cell types during the generation and repair of vasculature. In this short review, we focused our discussion on how macrophages adapt to the surrounding microenvironment and their potential interaction with other cells, in the context of vascular repair supported by evidences mostly from studies using hindlimb ischemia as a model for studying post-ischemic vascular repair.
Collapse
|
38
|
The Role of Semaphorins in Metabolic Disorders. Int J Mol Sci 2020; 21:ijms21165641. [PMID: 32781674 PMCID: PMC7460634 DOI: 10.3390/ijms21165641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a family originally identified as axonal guidance molecules. They are also involved in tumor growth, angiogenesis, immune regulation, as well as other biological and pathological processes. Recent studies have shown that semaphorins play a role in metabolic diseases including obesity, adipose inflammation, and diabetic complications, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, diabetic wound healing, and diabetic osteoporosis. Evidence provides mechanistic insights regarding the role of semaphorins in metabolic diseases by regulating adipogenesis, hypothalamic melanocortin circuit, immune responses, and angiogenesis. In this review, we summarize recent progress regarding the role of semaphorins in obesity, adipose inflammation, and diabetic complications.
Collapse
|
39
|
The role of semaphorins in small vessels of the eye and brain. Pharmacol Res 2020; 160:105044. [PMID: 32590102 DOI: 10.1016/j.phrs.2020.105044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
Small vessel diseases, such as ischemic retinopathy and cerebral small vessel disease (CSVD), are increasingly recognized in patients with diabetes, dementia and cerebrovascular disease. The mechanisms of small vessel diseases are poorly understood, but the latest studies suggest a role for semaphorins. Initially identified as axon guidance cues, semaphorins are mainly studied in neuronal morphogenesis, neural circuit assembly, and synapse assembly and refinement. In recent years, semaphorins have been found to play important roles in regulating vascular growth and development and in many pathophysiological processes, including atherosclerosis, angiogenesis after stroke and retinopathy. Growing evidence indicates that semaphorins affect the occurrence, perfusion and regression of both the macrovasculature and microvasculature by regulating the proliferation, apoptosis, migration, barrier function and inflammatory response of endothelial cells, vascular smooth muscle cells (VSMCs) and pericytes. In this review, we concentrate on the regulatory effects of semaphorins on the cell components of the vessel wall and their potential roles in microvascular diseases, especially in the retina and cerebral small vessel. Finally, we discuss potential molecular approaches in targeting semaphorins as therapies for microvascular disorders in the eye and brain.
Collapse
|
40
|
Boeck M, Thien A, Wolf J, Hagemeyer N, Laich Y, Yusuf D, Backofen R, Zhang P, Boneva S, Stahl A, Hilgendorf I, Agostini H, Prinz M, Wieghofer P, Schlunck G, Schlecht A, Lange C. Temporospatial distribution and transcriptional profile of retinal microglia in the oxygen‐induced retinopathy mouse model. Glia 2020; 68:1859-1873. [DOI: 10.1002/glia.23810] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Myriam Boeck
- Eye Center, Medical Center, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Adrian Thien
- Eye Center, Medical Center, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Nora Hagemeyer
- Institute of Neuropathology, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Yannik Laich
- Eye Center, Medical Center, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Dilmurat Yusuf
- Department of BioinformaticsUniversity of Freiburg Freiburg im Breisgau Germany
| | - Rolf Backofen
- Department of BioinformaticsUniversity of Freiburg Freiburg im Breisgau Germany
| | - Peipei Zhang
- Eye Center, Medical Center, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Andreas Stahl
- Department of OphthalmologyUniversity Medical Center Greifswald Greifswald Germany
| | - Ingo Hilgendorf
- Cardiology and AngiologyUniversity Heart Center, University of Freiburg Freiburg im Breisgau Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of Freiburg Freiburg im Breisgau Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Peter Wieghofer
- Institute of AnatomyUniversity of Leipzig Freiburg im Breisgau Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of MedicineUniversity of Freiburg Freiburg im Breisgau Germany
| |
Collapse
|
41
|
Wu JH, Li YN, Chen AQ, Hong CD, Zhang CL, Wang HL, Zhou YF, Li PC, Wang Y, Mao L, Xia YP, He QW, Jin HJ, Yue ZY, Hu B. Inhibition of Sema4D/PlexinB1 signaling alleviates vascular dysfunction in diabetic retinopathy. EMBO Mol Med 2020; 12:e10154. [PMID: 31943789 PMCID: PMC7005627 DOI: 10.15252/emmm.201810154] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and leads to blindness. Anti‐VEGF is a primary treatment for DR. Its therapeutic effect is limited in non‐ or poor responders despite frequent injections. By performing a comprehensive analysis of the semaphorins family, we identified the increased expression of Sema4D during oxygen‐induced retinopathy (OIR) and streptozotocin (STZ)‐induced retinopathy. The levels of soluble Sema4D (sSema4D) were significantly increased in the aqueous fluid of DR patients and correlated negatively with the success of anti‐VEGF therapy during clinical follow‐up. We found that Sema4D/PlexinB1 induced endothelial cell dysfunction via mDIA1, which was mediated through Src‐dependent VE‐cadherin dysfunction. Furthermore, genetic disruption of Sema4D/PlexinB1 or intravitreal injection of anti‐Sema4D antibody reduced pericyte loss and vascular leakage in STZ model as well as alleviated neovascularization in OIR model. Moreover, anti‐Sema4D had a therapeutic advantage over anti‐VEGF on pericyte dysfunction. Anti‐Sema4D and anti‐VEGF also conferred a synergistic therapeutic effect in two DR models. Thus, this study indicates an alternative therapeutic strategy with anti‐Sema4D to complement or improve the current treatment of DR.
Collapse
Affiliation(s)
- Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-Qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Can-Dong Hong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Lin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Ling Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Cheng Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Aier School of Ophthalmology, Wuhan Aier Eye Hospital, Central South University, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen-Yu Yue
- Department of Neurology and Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Abstract
The retina is one of the most metabolically active tissues in the body, consuming high levels of oxygen and nutrients. A well-organized ocular vascular system adapts to meet the metabolic requirements of the retina to ensure visual function. Pathological conditions affect growth of the blood vessels in the eye. Understanding the neuronal biological processes that govern retinal vascular development is of interest for translational researchers and clinicians to develop preventive and interventional therapeutics for vascular eye diseases that address early drivers of abnormal vascular growth. This review summarizes the current knowledge of the cellular and molecular processes governing both physiological and pathological retinal vascular development, which is dependent on the interaction among retinal cell populations, including neurons, glia, immune cells, and vascular endothelial cells. We also review animal models currently used for studying retinal vascular development.
Collapse
Affiliation(s)
- Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| |
Collapse
|
44
|
Reuer T, Schneider AC, Cakir B, Bühler AD, Walz JM, Lapp T, Lange C, Agostini H, Schlunck G, Cursiefen C, Reinhard T, Bock F, Stahl A. Semaphorin 3F Modulates Corneal Lymphangiogenesis and Promotes Corneal Graft Survival. Invest Ophthalmol Vis Sci 2019; 59:5277-5284. [PMID: 30383199 DOI: 10.1167/iovs.18-24287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Corneal vascularization significantly increases the risk for graft rejection after keratoplasty. Semaphorin 3F (Sema3F) is a known modulator of physiologic avascularity in the outer retina. The aim of this study was to investigate whether Sema3F is involved in maintaining corneal avascularity and can reduce the risk for corneal graft rejection. Methods Corneal Sema3F expression was investigated using immunohistochemistry and qPCR in human and murine tissue. Pathologic invasion of blood and lymph vessels into corneal tissue was analyzed in the murine corneal suture and high-risk keratoplasty model. The anti-lymphangiogenic effects of Sema3F were further investigated using an in vitro spheroidal sprouting model with supernatant from isolated primary human corneal epithelial cells (hCECs). Results Sema3F is constitutively expressed in human and murine corneal epithelium. In the corneal suture model, lymphangiogenesis was significantly suppressed by topical Sema3F treatment (P = 0.0003). In the murine high-risk keratoplasty model, pretreatment by topical Sema3F in the inflammation phase significantly promoted subsequent graft survival (P = 0.0006). In this model, both lymph- and blood angiogenesis were reduced (P < 0.05). In vitro, hCEC supernatant had a direct anti-lymphangiogenic effect on human lymphatic endothelial cells (P < 0.01). This effect was completely abolished by addition of anti-Sema3F antibodies. Conclusions Sema3F is a novel mediator of corneal avascularity with potent anti-lymphangiogenic properties. Topical treatment with Sema3F eye drops may help to limit corneal vascularization and improve outcomes in high-risk keratoplasty patients.
Collapse
Affiliation(s)
- Tristan Reuer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Bertan Cakir
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anima D Bühler
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johanna M Walz
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andreas Stahl
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Guo S, Ren J, Li Z, Fan X, Qin L, Li J. Aqueous semaphorin 3A level correlates with retinal macular oedema and ganglion cell degeneration in patients with retinal vein occlusion. Acta Ophthalmol 2019; 97:273-278. [PMID: 30803163 DOI: 10.1111/aos.14079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/02/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the semophorin 3A (SEMA3A) level in aqueous humor of patients with retinal vein occlusion (RVO) and explore the correlation of SEMA3A with macular oedema and ganglion cell degeneration in RVO. METHODS This comparative study prospectively included 41 consecutive patients (41 eyes) with RVO who had intravitreal anti-VEGF injections from March 2014 to March 2015 for cystoid macular oedema (CME) or neovascular glaucoma (NVG). The patients were divided into three groups according to the fluorescein angiograghy (FFA): central retinal vein occlusion (CRVO) group (n = 15), branch retinal vein occlusion (BRVO) group (n = 15) and NVG group (secondary to CRVO, n = 11). The patients who had undergone cataract surgery (n = 16) during the same period served as controls. The SEMA3A concentration in aqueous humor collected before the initial anti-VEGF injection was determined by enzyme-linked immunosorbent assay (ELISA). Central retinal thickness (CRT), cube volume (CV) and ganglion cell-inner plexiform layer (GC-IPL) thickness was analysed by spectral-domain optical coherence tomography (SD-OCT). RESULTS Semaphorin 3A level in CRVO group (1.52 ± 1.23 ng/ml) and NVG group (1.67 ± 0.98 ng/ml) were significantly higher than the control group (0.66 ± 0.58 ng/ml; both p < 0.05). Moreover, SEMA3A level in CRVO group was higher than BRVO group (1.52 ± 1.23 ng/ml versus 0.53 ± 0.37 ng/ml; p < 0.05). SEMA3A level was positively correlated with CRT and CV in both BRVO group (CRTr = 0.6535, p = 0.0082; CVr = 0.5190, p = 0.0474) and CRVO group (CRTr = 0.6270, p = 0.0124; CVr = 0.6898, p = 0.0044). In RVO patients, the GC-IPL thickness of affected eyes were significantly reduced compared with the normal follow eyes (CRVOt = 4.55, p = 0.006; BRVOt = 4.54, p = 0.004). Meanwhile, negative correlation of SEMA3A level with GC-IPL thickness was found in both BRVO group (r = -0.5906, p = 0.0205) and CRVO group (r = -0.6100, p = 0.0157). CONCLUSION Semaphorin 3A level is increased in aqueous humor of RVO patients. Positive correlation of CRT as well as negative correlation of GC-IPL thickness with SEMA3A may suggest a pathological role of SEMA3A in macular oedema and ganglion cell degeneration during RVO.
Collapse
Affiliation(s)
- Shengxiang Guo
- Department of Ophthalmology First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
- Department of Ophthalmology Xi'an Third Hospital Xi'an China
| | - Jiawei Ren
- Department of Ophthalmology First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Zhengli Li
- Department of Clinical Laboratory Xi'an Third Hospital Xi'an China
| | | | - Li Qin
- Department of Ophthalmology First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| | - Jingming Li
- Department of Ophthalmology First Affiliated Hospital of Xi'an Jiaotong University Xi'an China
| |
Collapse
|
46
|
Lee PSY, Gao N, Dike M, Shkilnyy O, Me R, Zhang Y, Yu FSX. Opposing Effects of Neuropilin-1 and -2 on Sensory Nerve Regeneration in Wounded Corneas: Role of Sema3C in Ameliorating Diabetic Neurotrophic Keratopathy. Diabetes 2019; 68:807-818. [PMID: 30679185 PMCID: PMC6425876 DOI: 10.2337/db18-1172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
The diabetic cornea exhibits pathological alterations, such as delayed epithelial wound healing and nerve regeneration. We investigated the role of semaphorin (SEMA) 3C in corneal wound healing and reinnervation in normal and diabetic B6 mice. Wounding induced the expression of SEMA3A, SEMA3C, and their receptor neuropilin-2 (NRP2), but not NRP1, in normal corneal epithelial cells; this upregulation was suppressed for SEMA3C and NRP2 in diabetic corneas. Injections of Sema3C-specific small interfering RNA and NRP2-neutralizing antibodies in wounded mice resulted in a decrease in the rate of wound healing and regenerating nerve fibers, whereas exogenous SEMA3C had opposing effects in diabetic corneas. NRP1 neutralization, on the other hand, decreased epithelial wound closure but increased sensory nerve regeneration in diabetic corneas, suggesting a detrimental role in nerve regeneration. Taken together, epithelium-expressed SEMA3C plays a role in corneal epithelial wound closure and sensory nerve regeneration. The hyperglycemia-suppressed SEMA3C/NRP2 signaling may contribute to the pathogenesis of diabetic neurotrophic keratopathy, and SEMA3C might be used as an adjunctive therapeutic for treating the disease.
Collapse
Affiliation(s)
- Patrick Shean-Young Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Mamata Dike
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Olga Shkilnyy
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Rao Me
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Yangyang Zhang
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
47
|
Omori K, Nagata N, Kurata K, Fukushima Y, Sekihachi E, Fujii N, Namba-Hamano T, Takabatake Y, Fruttiger M, Nagasawa T, Uemura A, Murata T. Inhibition of stromal cell-derived factor-1α/CXCR4 signaling restores the blood-retina barrier in pericyte-deficient mouse retinas. JCI Insight 2018; 3:120706. [PMID: 30518679 DOI: 10.1172/jci.insight.120706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/31/2018] [Indexed: 01/19/2023] Open
Abstract
In diabetic retinopathy (DR), pericyte dropout from capillary walls is believed to cause the breakdown of the blood-retina barrier (BRB), which subsequently leads to vision-threatening retinal edema. While various proinflammatory cytokines and chemokines are upregulated in eyes with DR, their distinct contributions to disease progression remain elusive. Here, we evaluated roles of stromal cell-derived factor-1α (SDF-1α) and its receptor CXCR4 in the BRB breakdown initiated by pericyte deficiency. After inhibition of pericyte recruitment to developing retinal vessels in neonatal mice, endothelial cells (ECs) upregulated the expression of SDF-1α. Administration of CXCR4 antagonists, or EC-specific disruption of the CXCR4 gene, similarly restored the BRB integrity, even in the absence of pericyte coverage. Furthermore, CXCR4 inhibition significantly decreased both the expression levels of proinflammatory genes (P < 0.05) and the infiltration of macrophages (P < 0.05) into pericyte-deficient retinas. Taken together, EC-derived SDF-1α induced by pericyte deficiency exacerbated inflammation through CXCR4 in an autocrine or paracrine manner and thereby induced macrophage infiltration and BRB breakdown. These findings suggest that the SDF-1α/CXCR4 signaling pathway may be a potential therapeutic target in DR.
Collapse
Affiliation(s)
- Keisuke Omori
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nanae Nagata
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kaori Kurata
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoko Fukushima
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Erika Sekihachi
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobutaka Fujii
- Laboratory of Bioorganic Medicinal Chemistry and Chemogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
Korovina I, Neuwirth A, Sprott D, Weber S, Sardar Pasha SPB, Gercken B, Breier G, El-Armouche A, Deussen A, Karl MO, Wielockx B, Chavakis T, Klotzsche-von Ameln A. Hematopoietic hypoxia-inducible factor 2α deficiency ameliorates pathological retinal neovascularization via modulation of endothelial cell apoptosis. FASEB J 2018; 33:1758-1770. [PMID: 30156910 DOI: 10.1096/fj.201800430r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A hallmark of proliferative retinopathies, such as retinopathy of prematurity (ROP), is a pathological neovascularization orchestrated by hypoxia and the resulting hypoxia-inducible factor (HIF)-dependent response. We studied the role of Hif2α in hematopoietic cells for pathological retina neovascularization in the murine model of ROP, the oxygen-induced retinopathy (OIR) model. Hematopoietic-specific deficiency of Hif2α ameliorated pathological neovascularization in the OIR model, which was accompanied by enhanced endothelial cell apoptosis. That latter finding was associated with up-regulation of the apoptosis-inducer FasL in Hif2α-deficient microglia. Consistently, pharmacological inhibition of the FasL reversed the reduced pathological neovascularization from hematopoietic-specific Hif2α deficiency. Our study found that the hematopoietic cell Hif2α contributes to pathological retina angiogenesis. Our findings not only provide novel insights regarding the complex interplay between immune cells and endothelial cells in hypoxia-driven retina neovascularization but also may have therapeutic implications for proliferative retinopathies.-Korovina, I., Neuwirth, A., Sprott, D., Weber, S., Sardar Pasha, S. P. B., Gercken, B., Breier, G., El-Armouche, A., Deussen, A., Karl, M. O., Wielockx, B., Chavakis, T., Klotzsche-von Ameln, A. Hematopoietic hypoxia-inducible factor 2α deficiency ameliorates pathological retinal neovascularization via modulation of endothelial cell apoptosis.
Collapse
Affiliation(s)
- Irina Korovina
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - David Sprott
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Silvio Weber
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sheik Pran Babu Sardar Pasha
- Deutsche Forschungsgemeinschaft (DFG) Center for Regenerative Therapies, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Georg Breier
- Medical Biology, Department of Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mike O Karl
- Deutsche Forschungsgemeinschaft (DFG) Center for Regenerative Therapies, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany.,German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Deutsche Forschungsgemeinschaft (DFG) Center for Regenerative Therapies, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anne Klotzsche-von Ameln
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
49
|
Sapieha P, Mallette FA. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends Cell Biol 2018; 28:595-607. [DOI: 10.1016/j.tcb.2018.03.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
|
50
|
Joly S, Dejda A, Rodriguez L, Sapieha P, Pernet V. Nogo-A inhibits vascular regeneration in ischemic retinopathy. Glia 2018; 66:2079-2093. [PMID: 30051920 DOI: 10.1002/glia.23462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/20/2023]
Abstract
Nogo-A is a potent glial-derived inhibitor of axon growth in the injured CNS and acts as a negative regulator of developmental angiogenesis by inhibiting vascular endothelial cell migration. However, its function in pathological angiogenesis has never been studied after ischemic injury in the CNS. Using the mouse model of oxygen-induced retinopathy (OIR) which yields defined zones of retinal ischemia, our goal was to investigate the role of Nogo-A in vascular regeneration. We demonstrate a marked upregulation of the Nogo-A receptor sphingosine 1-phosphate receptor 2 in blood vessels following OIR, while Nogo-A is abundantly expressed in surrounding glial cells. Acute inhibition of Nogo-A with function-blocking antibody 11C7 significantly improved vascular regeneration and consequently prevented pathological pre-retinal angiogenesis. Ultimately, inhibition of Nogo-A led to restoration of retinal function as determined by electrophysiological response of retinal cells to light stimulation. Our data suggest that anti-Nogo-A antibody may protect neuronal cells from ischemic damage by accelerating blood vessel repair in the CNS. Targeting Nogo-A by immunotherapy may improve CNS perfusion after vascular injuries.
Collapse
Affiliation(s)
- Sandrine Joly
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Quebec, Quebec, Canada
| | - Agnieszka Dejda
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Léa Rodriguez
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Quebec, Quebec, Canada
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|