1
|
Tang Q, Lee JM, Li L, Cai C, Jung H, Kwon HJE. A prevalent Krt8-to-Krt5 cellular state transition in skin is co-opted by p63 for enamel organ development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637463. [PMID: 39990386 PMCID: PMC11844444 DOI: 10.1101/2025.02.11.637463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Tooth enamel, the hardest tissue in vertebrates, is crucial for mastication and dental protection. Its formation depends on the enamel organ (EO), a specialized epithelial structure derived from oral epithelium. A fundamental question persists: how does uniform oral epithelium differentiate into diverse EO cell types? While p63, a master regulator of ectodermal development, coordinates multiple signaling pathways essential for dental placode formation, its specific roles in EO development remain unclear due to the early developmental arrest in p63 knockout mice. Using single-cell RNA sequencing data from mouse incisors, we demonstrate that p63 is expressed across all EO cell types, serving both shared and distinct functions. Through trajectory reconstruction, we identify the role of p63 in regulating both amelogenic (AmG) and non-AmG lineage commitment during EO development. Our comparative transcriptome analyses reveal that p63 regulates the Krt8-to-Krt5 transition during AmG cell differentiation, paralleling its function in skin development. This parallel is reinforced by comparative motif discovery, revealing shared transcription factor usage, particularly p63 and AP-2 family members, in both AmG and skin epidermal cells during this transition. Chromatin accessibility analysis further illustrate that p63 mediates this transition through chromatin landscape remodeling. Together, these findings demonstrate that p63 co-opts the Krt8-to-Krt5 transition mechanism from skin development for EO development, providing novel insights into the molecular mechanisms underlying EO development and potential therapeutic targets for enamel disorders.
Collapse
|
2
|
Rexhaj F, Sabel N, Robertson A, Lundgren T. Proteomic profiling of human dental enamel affected by molar incisor hypomineralisation of different clinical severity grades: an in vitro study. Eur Arch Paediatr Dent 2024; 25:533-545. [PMID: 38842758 PMCID: PMC11341683 DOI: 10.1007/s40368-024-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The aim of this study was to explore the potential to profile and distinguish varying clinical severity grades of MIH, compared to normal enamel, using proteomics. METHODS Liquid chromatography-mass spectrometry analyses were conducted on enamel samples of extracted teeth, from 11 children and adolescents, spanning an age range of 6-18 years. Enamel powder samples were collected from extracted, third molars (n = 3) and first permanent molars diagnosed with MIH (n = 8). The MIH tooth samples were categorized into subgroups based on clinical severity grade. The data were statistically analyzed using ANOVA and Welch's t test. RESULTS Teeth affected by MIH exhibited a diverse array of proteins, each with different functions related to dental enamel, distinguishing them from their normal enamel counterparts. The application of microdissection combined with LC-MS techniques has revealed the potential to discern unique proteomic profiles among MIH-affected teeth, characterized by varying clinical severity grades. Both analyzed MIH groups displayed consistent trends in the presentation of biological processes, including underabundance of proteins primarily associated with cell organization and biogenesis. Furthermore, proteins linked to cell death were overabundant in both MIH groups. CONCLUSION Proteomics enabled the detection and differentiation of various proteins across different clinical severity grades of MIH.
Collapse
Affiliation(s)
- F Rexhaj
- Department of Pediatric Dentistry, Institute of Odontology at the Sahlgrenska Academy, University of Gothenburg, P. O. Box 450, 40530, Göteborg, Sweden.
| | - N Sabel
- Department of Pediatric Dentistry, Institute of Odontology at the Sahlgrenska Academy, University of Gothenburg, P. O. Box 450, 40530, Göteborg, Sweden
| | - A Robertson
- Department of Pediatric Dentistry, Institute of Odontology at the Sahlgrenska Academy, University of Gothenburg, P. O. Box 450, 40530, Göteborg, Sweden
| | - T Lundgren
- Department of Pediatric Dentistry, Institute of Odontology at the Sahlgrenska Academy, University of Gothenburg, P. O. Box 450, 40530, Göteborg, Sweden
| |
Collapse
|
3
|
Gruper Y, Wolff ASB, Glanz L, Spoutil F, Marthinussen MC, Osickova A, Herzig Y, Goldfarb Y, Aranaz-Novaliches G, Dobeš J, Kadouri N, Ben-Nun O, Binyamin A, Lavi B, Givony T, Khalaila R, Gome T, Wald T, Mrazkova B, Sochen C, Besnard M, Ben-Dor S, Feldmesser E, Orlova EM, Hegedűs C, Lampé I, Papp T, Felszeghy S, Sedlacek R, Davidovich E, Tal N, Shouval DS, Shamir R, Guillonneau C, Szondy Z, Lundin KEA, Osicka R, Prochazka J, Husebye ES, Abramson J. Autoimmune amelogenesis imperfecta in patients with APS-1 and coeliac disease. Nature 2023; 624:653-662. [PMID: 37993717 DOI: 10.1038/s41586-023-06776-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Ameloblasts are specialized epithelial cells in the jaw that have an indispensable role in tooth enamel formation-amelogenesis1. Amelogenesis depends on multiple ameloblast-derived proteins that function as a scaffold for hydroxyapatite crystals. The loss of function of ameloblast-derived proteins results in a group of rare congenital disorders called amelogenesis imperfecta2. Defects in enamel formation are also found in patients with autoimmune polyglandular syndrome type-1 (APS-1), caused by AIRE deficiency3,4, and in patients diagnosed with coeliac disease5-7. However, the underlying mechanisms remain unclear. Here we show that the vast majority of patients with APS-1 and coeliac disease develop autoantibodies (mostly of the IgA isotype) against ameloblast-specific proteins, the expression of which is induced by AIRE in the thymus. This in turn results in a breakdown of central tolerance, and subsequent generation of corresponding autoantibodies that interfere with enamel formation. However, in coeliac disease, the generation of such autoantibodies seems to be driven by a breakdown of peripheral tolerance to intestinal antigens that are also expressed in enamel tissue. Both conditions are examples of a previously unidentified type of IgA-dependent autoimmune disorder that we collectively name autoimmune amelogenesis imperfecta.
Collapse
Affiliation(s)
- Yael Gruper
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anette S B Wolff
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Liad Glanz
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Mihaela Cuida Marthinussen
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway/Vestland, Bergen, Norway
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Yonatan Herzig
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Goretti Aranaz-Novaliches
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Jan Dobeš
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osher Ben-Nun
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Binyamin
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Bar Lavi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Razi Khalaila
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Gome
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomáš Wald
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Mrazkova
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Carmel Sochen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Marine Besnard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Shifra Ben-Dor
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Elisaveta M Orlova
- Endocrinological Research Center, Institute of Pediatric Endocrinology, Moscow, Russian Federation
| | - Csaba Hegedűs
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - István Lampé
- Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Papp
- Division of Dental Anatomy, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Felszeghy
- Division of Dental Anatomy, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Esti Davidovich
- Department of Pediatric Dentistry, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Noa Tal
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S Shouval
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raanan Shamir
- The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikvah, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carole Guillonneau
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Zsuzsa Szondy
- Division of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Knut E A Lundin
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Prochazka
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences v.v.i 252 50, Vestec, Czech Republic
| | - Eystein S Husebye
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Kiel M, Wuebker S, Remy M, Riemondy K, Smith F, Carey C, Williams T, Van Otterloo E. MEMO1 Is Required for Ameloblast Maturation and Functional Enamel Formation. J Dent Res 2023; 102:1261-1271. [PMID: 37475472 PMCID: PMC11066519 DOI: 10.1177/00220345231185758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Coordinated mineralization of soft tissue is central to organismal form and function, while dysregulated mineralization underlies several human pathologies. Oral epithelial-derived ameloblasts are polarized, secretory cells responsible for generating enamel, the most mineralized substance in the human body. Defects in ameloblast development result in enamel anomalies, including amelogenesis imperfecta. Identifying proteins critical in ameloblast development can provide insight into specific pathologies associated with enamel-related disorders or, more broadly, mechanisms of mineralization. Previous studies identified a role for MEMO1 in bone mineralization; however, whether MEMO1 functions in the generation of additional mineralized structures remains unknown. Here, we identify a critical role for MEMO1 in enamel mineralization. First, we show that Memo1 is expressed in ameloblasts and, second, that its conditional deletion from ameloblasts results in enamel defects, characterized by a decline in mineral density and tooth integrity. Histology revealed that the mineralization defects in Memo1 mutant ameloblasts correlated with a disruption in ameloblast morphology. Finally, molecular profiling of ameloblasts and their progenitors in Memo1 oral epithelial mutants revealed a disruption to cytoskeletal-associated genes and a reduction in late-stage ameloblast markers, relative to controls. Collectively, our findings integrate MEMO1 into an emerging network of molecules important for ameloblast development and provide a system to further interrogate the relationship of cytoskeletal and amelogenesis-related defects.
Collapse
Affiliation(s)
- M. Kiel
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - S. Wuebker
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - M.T. Remy
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA
| | - K.A. Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - F. Smith
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C.M. Carey
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T. Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO, USA
| | - E. Van Otterloo
- Iowa Institute for Oral Health Research, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
- Department of Periodontics, University of Iowa, College of Dentistry & Dental Clinics, Iowa City, IA, USA
- The University of Iowa Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Sawaya AP, Uchiyama A, Hope E, Bajpai D, Worrell S, Cross M, Beniash E, Jenkins LM, Duverger O, Morasso MI. Keratin 75 Is a Component of the LINC Complex and Has an Essential Role in Mediating the SOX2 Rapid Healing Response during Wound Repair. J Invest Dermatol 2023; 143:494-498. [PMID: 36174715 PMCID: PMC9974572 DOI: 10.1016/j.jid.2022.08.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Andrew P Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Emma Hope
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Deepti Bajpai
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen Worrell
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Cross
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elia Beniash
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lisa M Jenkins
- Mass Spectrometry Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
6
|
Raza R, Chhabra G, Bilal M, Ndiaye MA, Liaqat K, Nawaz S, Sgro JY, Rayment I, Ahmad W, Ahmad N. A Homozygous Missense Variant in K25 Underlying Overlapping Phenotype with Woolly Hair and Dental Anomalies. J Invest Dermatol 2023; 143:173-176.e3. [PMID: 35926655 DOI: 10.1016/j.jid.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Rubab Raza
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gagan Chhabra
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mary A Ndiaye
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Khurram Liaqat
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shoaib Nawaz
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jean-Yves Sgro
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ivan Rayment
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nihal Ahmad
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; William S. Middleton VA Medical Center, Madison, Wisconsin, USA.
| |
Collapse
|
7
|
Deshmukh R, Vasquez B, Bhogadi L, Gabe CM, Lukashova L, Verdelis K, Morasso MI, Beniash E. Elucidating the role of keratin 75 in enamel using Krt75 tm1Der knock-in mouse model. Front Physiol 2022; 13:1102553. [PMID: 36620220 PMCID: PMC9816862 DOI: 10.3389/fphys.2022.1102553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Keratin 75 (K75) was recently discovered in ameloblasts and enamel organic matrix. Carriers of A161T substitution in K75 present with the skin condition Pseudofollicullitis barbae. This mutation is also associated with high prevalence of caries and compromised structural and mechanical properties of enamel. Krt75tm1Der knock-in mouse (KI) with deletion of Asn159, located two amino acids away from KRT75A161T, can be a potential model for studying the role of K75 in enamel and the causes of the higher caries susceptibility associated with KRT75A161T mutation. To test the hypotheses that KI enamel is more susceptible to a simulated acid attack (SAA), and has altered structural and mechanical properties, we conducted in vitro SAA experiments, microCT, and microhardness analyses on 1st molars of one-month-old WT and KI mice. KI and WT hemimandibles were subjected to SAA and contralateral hemimandibles were used as controls. Changes in enamel porosity were assessed by immersion of the hemimandibles in rhodamine, followed by fluorescent microscopy analysis. Fluorescence intensity of KI enamel after SSA was significantly higher than in WT, indicating that KI enamel is more susceptible to acid attack. MicroCT analysis of 1st molars revealed that while enamel volumes were not significantly different, enamel mineral density was significantly lower in KI, suggesting a potential defect of enamel maturation. Microhardness tests revealed that in KI enamel is softer than in WT, and potentially less resilient to damages. These results suggest that the KI enamel can be used as a model to study the role of K75 in enamel.
Collapse
Affiliation(s)
- Rutuja Deshmukh
- Center for Craniofacial Regeneration, Pittsburgh, PA, United States
| | - Brent Vasquez
- Center for Craniofacial Regeneration, Pittsburgh, PA, United States,Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States
| | - Lasya Bhogadi
- Center for Craniofacial Regeneration, Pittsburgh, PA, United States,Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States
| | - Claire M. Gabe
- Center for Craniofacial Regeneration, Pittsburgh, PA, United States,Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States
| | | | - Kostas Verdelis
- Center for Craniofacial Regeneration, Pittsburgh, PA, United States,Department of Endodontics, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States
| | - Maria I. Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Elia Beniash
- Center for Craniofacial Regeneration, Pittsburgh, PA, United States,Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine (UPSDM), Pittsburgh, PA, United States,*Correspondence: Elia Beniash,
| |
Collapse
|
8
|
Alam MK, Dhasarathan V, Aly MH, Zaman MU, Ganji KK, Basri R, Munisekhar MS, Nagarajappa AK. Investigation on Enamel and Dentine of Tooth through 1D Photonic Structure to Identify the Caries in Human Teeth. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120788. [PMID: 36550994 PMCID: PMC9774619 DOI: 10.3390/bioengineering9120788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
In this research, a one-dimensional (1D) photonic structure was employed to study the nature of both enamel and dentine teeth at the signal of 1.8 THz. A simple three layer one-dimensional crystal is chosen to avoid fabrication intricacy. The materials and methods for sample preparations are discussed. The principle of investigation of caries in the teeth relies on the amount of reflected signal from the structure. Similarly, reflectance is a function of refractive indices and thickness of each layer, the nature of both substrate and infiltrated materials, and the configuration of the structure. Apart from this, the fabrication process of one-dimensional structure and experimental set-up was proposed in this article. The numerical treatment is explained here to obtain reflectance, and subsequently, the output potential. Comparison studies on output potential between enamel and dentine are also shown through graphical representation. The output result in terms of milli-Volt (mV) were obtained at the output end and collected at the photodiode. Interesting results were also observed at the photodetector. For example; the output potential of the reflected signal is around 0.18 mV for both enamel and dentine teeth whereas the potential is more than 0.26 mV and 0.31 mV for caries in dentine and enamel, respectively. Finally, it was inferred that the nature of teeth pertaining to the caries in the enamel and dentine teeth can be investigated by identifying the amount of potential at the output end.
Collapse
Affiliation(s)
- Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Al-Jouf, Saudi Arabia
- Correspondence:
| | - Vigneswaran Dhasarathan
- Department of Electronics and Communication Engineering, Centre for IoT and AI (CITI), KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - Moustafa H. Aly
- Electronics and Communication Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Mahmud Uz Zaman
- Oral and Maxillofacial Surgery and Diagnostic Sciences Department, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj 16245, Saudi Arabia
| | - Kiran Kumar Ganji
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Al-Jouf, Saudi Arabia
| | - Rehana Basri
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka 72345, Al-Jouf, Saudi Arabia
| | - Manay Srinivas Munisekhar
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Al-Jouf, Saudi Arabia
| | - Anil Kumar Nagarajappa
- Department of Oral & Maxillofacial Surgery & Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| |
Collapse
|
9
|
Abstract
Paleoproteomics, the study of ancient proteins, is a rapidly growing field at the intersection of molecular biology, paleontology, archaeology, paleoecology, and history. Paleoproteomics research leverages the longevity and diversity of proteins to explore fundamental questions about the past. While its origins predate the characterization of DNA, it was only with the advent of soft ionization mass spectrometry that the study of ancient proteins became truly feasible. Technological gains over the past 20 years have allowed increasing opportunities to better understand preservation, degradation, and recovery of the rich bioarchive of ancient proteins found in the archaeological and paleontological records. Growing from a handful of studies in the 1990s on individual highly abundant ancient proteins, paleoproteomics today is an expanding field with diverse applications ranging from the taxonomic identification of highly fragmented bones and shells and the phylogenetic resolution of extinct species to the exploration of past cuisines from dental calculus and pottery food crusts and the characterization of past diseases. More broadly, these studies have opened new doors in understanding past human-animal interactions, the reconstruction of past environments and environmental changes, the expansion of the hominin fossil record through large scale screening of nondiagnostic bone fragments, and the phylogenetic resolution of the vertebrate fossil record. Even with these advances, much of the ancient proteomic record still remains unexplored. Here we provide an overview of the history of the field, a summary of the major methods and applications currently in use, and a critical evaluation of current challenges. We conclude by looking to the future, for which innovative solutions and emerging technology will play an important role in enabling us to access the still unexplored "dark" proteome, allowing for a fuller understanding of the role ancient proteins can play in the interpretation of the past.
Collapse
Affiliation(s)
- Christina Warinner
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Kristine Korzow Richter
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew J. Collins
- Department
of Archaeology, Cambridge University, Cambridge CB2 3DZ, United Kingdom
- Section
for Evolutionary Genomics, Globe Institute,
University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
10
|
Zeng S, Huang Y, Huang W, Pathak JL, He Y, Gao W, Huang J, Zhang Y, Zhang J, Dong H. Real-Time Monitoring and Quantitative Evaluation of Resin In-Filtrant Repairing Enamel White Spot Lesions Based on Optical Coherence Tomography. Diagnostics (Basel) 2021; 11:diagnostics11112046. [PMID: 34829392 PMCID: PMC8618956 DOI: 10.3390/diagnostics11112046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to explore the feasibility of real-time monitoring and quantitative guiding the repair of enamel white spot lesions (WSLs) with resin infiltration by optical coherence tomography (OCT). Seven New Zealand rabbits were treated with 37% phosphoric acid etchant for 15 min to establish the model of enamel demineralization chalk spots of upper incisors, which were repaired by Icon resin infiltrant. OCT, stereo microscope (SM) imaging, scanning electron microscope (SEM) imaging and hematoxylin eosin (HE) staining were used to image each operation step. The changes of WSLs of enamel before and in the process of restoration with resin infiltrant showed specific performance in OCT images, which were consistent with the corresponding results of stereomicroscope and SEM. OCT can non-invasively and accurately image the whole process of repairing enamel demineralization layer with resin infiltration real-time, which can effectively guide the clinical use of resin infiltrant to repair enamel WSLs and be used as an imaging tool to evaluate the process and effect of restoration with resin infiltrant at the same time.
Collapse
Affiliation(s)
- Sujuan Zeng
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Yuhang Huang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Wenyan Huang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Janak L. Pathak
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Yanbing He
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
| | - Jing Huang
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
| | - Yiqing Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
- Correspondence:
| | - Huixian Dong
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China;
| |
Collapse
|
11
|
Park HJ, Choi M, Park HJ, Haw S. Dental Caries in Adults with Atopic Dermatitis: A Nationwide Cross-Sectional Study in Korea. Ann Dermatol 2021; 33:154-162. [PMID: 33935457 PMCID: PMC8081999 DOI: 10.5021/ad.2021.33.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/19/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022] Open
Abstract
Background Dental caries is the most prevalent chronic infectious oral disease of multifactorial etiology. Increased risk of dental caries development in patients with asthma and allergic rhinitis has been frequently reported. In contrast, only a few studies on dental caries in patients with atopic dermatitis (AD) have been reported. Objective We investigated the association between AD and dental caries development in an adult population in the Republic of Korea. Methods A total of 21,606 adults who participated in the Korean National Health and Nutrition Examination Survey, a nationwide, population-based, cross-sectional survey between 2010 and 2015, were included in the study. Multiple logistic regression analyses with confounder adjustment suggested odds ratios (ORs) to identify the possible association between AD and decayed, missing, filled teeth (DMFT) experience compared to non-AD participants. Multiple Poisson regression analyses estimated the mean ratio of the DMFT index according to the presence of AD. Results After adjusting for various confounding factors, the prevalence of DMFT was significantly associated with AD (OR, 1.58; 95% confidence interval (CI), 1.08~2.29; p=0.017). In addition, the mean value of the DMFT index was significantly different between the AD and non-AD groups (mean ratio, 1.07; 95% CI, 1.00~1.14; p=0.046). Conclusion AD was significantly associated with the development of dental caries. Dermatologists should be aware of the dental manifestations of AD patients and recommend regular dental check-ups for the early detection of caries.
Collapse
Affiliation(s)
- Hee Jae Park
- Department of Dermatology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Mira Choi
- Department of Dermatology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Hai-Jin Park
- Department of Dermatology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Sik Haw
- Department of Dermatology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
12
|
Haworth S, Kho PF, Holgerson PL, Hwang LD, Timpson NJ, Rentería ME, Johansson I, Cuellar-Partida G. Assessment and visualization of phenome-wide causal relationships using genetic data: an application to dental caries and periodontitis. Eur J Hum Genet 2021; 29:300-308. [PMID: 33011735 PMCID: PMC7868372 DOI: 10.1038/s41431-020-00734-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/19/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
Hypothesis-free Mendelian randomization studies provide a way to assess the causal relevance of a trait across the human phenome but can be limited by statistical power, sample overlap or complicated by horizontal pleiotropy. The recently described latent causal variable (LCV) approach provides an alternative method for causal inference which might be useful in hypothesis-free experiments across human phenome. We developed an automated pipeline for phenome-wide tests using the LCV approach including steps to estimate partial genetic causality, filter to a meaningful set of estimates, apply correction for multiple testing and then present the findings in a graphical summary termed causal architecture plot. We apply this pipeline to body mass index (BMI) and lipid traits as exemplars of traits where there is strong prior expectation for causal effects, and to dental caries and periodontitis as exemplars of traits where there is a need for causal inference. The results for lipids and BMI suggest that these traits are best viewed as contributing factors on a multitude of traits and conditions, thus providing additional evidence that supports viewing these traits as targets for interventions to improve health. On the other hand, caries and periodontitis are best viewed as a downstream consequence of other traits and diseases rather than a cause of ill health. The automated pipeline is implemented in the Complex-Traits Genetics Virtual Lab ( https://vl.genoma.io ) and results are available in https://view.genoma.io . We propose causal architecture plots based on phenome-wide partial genetic causality estimates as a new way visualizing the overall causal map of the human phenome.
Collapse
Affiliation(s)
- Simon Haworth
- Bristol Dental School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Pik Fang Kho
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Liang-Dar Hwang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Miguel E Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ingegerd Johansson
- Section of Cariology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Gabriel Cuellar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
13
|
Sharma V, Rastogi S, Kumar Bhati K, Srinivasan A, Roychoudhury A, Nikolajeff F, Kumar S. Mapping the Inorganic and Proteomic Differences among Different Types of Human Teeth: A Preliminary Compositional Insight. Biomolecules 2020; 10:E1540. [PMID: 33187273 PMCID: PMC7697572 DOI: 10.3390/biom10111540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, studies on mineralized tissues are becoming increasingly popular not only due to the diverse mechanophysical properties of such materials but also because of the growing need to understand the intricate mechanism involved in their assembly and formation. The biochemical mechanism that results in the formation of such hierarchical structures through a well-coordinated accumulation of inorganic and organic components is termed biomineralization. Some prime examples of such tissues in the human body are teeth and bones. Our current study is an attempt to dissect the compositional details of the inorganic and organic components in four major types of human teeth using mass spectrometry-based approaches. We quantified inorganic materials using inductively coupled plasma resonance mass spectrometry (ICP-MS). Differential level of ten different elements, Iron (Fe), Cadmium (Cd), Potassium (K), Sulphur (S), Cobalt (Co), Magnesium (Mg), Manganese (Mn), Zinc (Zn), Aluminum (Al), and Copper (Cu) were quantified across different teeth types. The qualitative and quantitative details of their respective proteomic milieu revealed compositional differences. We found 152 proteins in total tooth protein extract. Differential abundance of proteins in different teeth types were also noted. Further, we were able to find out some significant protein-protein interaction (PPI) backbone through the STRING database. Since this is the first study analyzing the differential details of inorganic and organic counterparts within teeth, this report will pave new directions to the compositional understanding and development of novel in-vitro repair strategies for such biological materials.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Departement of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Simran Rastogi
- Departement of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Science, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium;
| | - Alagiri Srinivasan
- Department of Biochemistry, Jamia Hamdard University, New Delhi 110062, India;
| | - Ajoy Roychoudhury
- Centre for Dental Education and Research (CDER), All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Fredrik Nikolajeff
- Department of Health Sciences, Lulea University of Technology, 97187 Lulea, Sweden;
| | - Saroj Kumar
- Departement of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India;
| |
Collapse
|
14
|
Cai C, Huang B, Qu K, Zhang J, Lei C. A novel missense mutation within KRT75 gene strongly affects heat stress in Chinese cattle. Gene 2020; 768:145294. [PMID: 33181250 DOI: 10.1016/j.gene.2020.145294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
The KRT75 gene (Keratin 75) is a member of the type II epithelial α-keratin gene family which plays a key role in hair and nail formation. And the coat conformation affects heat tolarence in mammals. Therefore, the aim of this study was to identify novel single nucleotide polymorphisms (SNPs) of the KRT75 gene and further evaluate its relation to heat stress in Chinese cattle. A missense mutation (NC_037332.1: g.1052 T > C) of the bovine KRT75 was identified using the Bovine Genome Variation Database (BGVD). The g.1052 T > C variant was then genotyped in 519 individuals of 22 cattle breeds. Further analyses showed that the frequency of T allele in Chinese indigenous cattle breeds gradually diminished from northern groups to southern groups, whereas the frequency of C allele displayed a contrary patternl. Simultaneously, the frequency of the CC and CT genotype for southern groups was much greater than that of the TT genotype. Additionally, association analysis showed the genotypes were remarkably associated with mean annual temperature (T), relative humidity (RH) and temperature humidity index (THI) (P < 0.01). Our results demonstrated that the KRT75 gene might be a candidate gene associated with the heat stress in Chinese cattle.
Collapse
Affiliation(s)
- Cuicui Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bizhi Huang
- Yunnan Academy of Grassland Animal Science, Kunming 650212, China
| | - Kaixing Qu
- Yunnan Academy of Grassland Animal Science, Kunming 650212, China
| | - Jicai Zhang
- Yunnan Academy of Grassland Animal Science, Kunming 650212, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
15
|
Sukseree S, Schwarze UY, Gruber R, Gruber F, Quiles Del Rey M, Mancias JD, Bartlett JD, Tschachler E, Eckhart L. ATG7 is essential for secretion of iron from ameloblasts and normal growth of murine incisors during aging. Autophagy 2020; 16:1851-1857. [PMID: 31880208 DOI: 10.1080/15548627.2019.1709764] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The incisors of rodents comprise an iron-rich enamel and grow throughout adult life, making them unique models of iron metabolism and tissue homeostasis during aging. Here, we deleted Atg7 (autophagy related 7) in murine ameloblasts, i.e. the epithelial cells that produce enamel. The absence of ATG7 blocked the transport of iron from ameloblasts into the maturing enamel, leading to a white instead of yellow surface of maxillary incisors. In aging mice, lack of ATG7 was associated with the growth of ectopic incisors inside severely deformed primordial incisors. These results suggest that 2 characteristic features of rodent incisors, i.e. deposition of iron on the enamel surface and stable growth during aging, depend on autophagic activity in ameloblasts. Abbreviations: ATG5: autophagy related 5; ATG7: autophagy related 7; CMV: cytomegalovirus; Cre: Cre recombinase; CT: computed tomography; FTH1: ferritin heavy polypeptide 1; GFP: green fluorescent protein; KRT5: keratin 5; KRT14: keratin 14; LGALS3: lectin, galactose binding, soluble 3; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; NCOA4: nuclear receptor coactivator 4; NRF2: nuclear factor, erythroid 2 like 2; SQSTM1: sequestosome 1.
Collapse
Affiliation(s)
- Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna , Vienna, Austria
| | | | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna , Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna , Vienna, Austria
| | - Maria Quiles Del Rey
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute , Boston, MA, USA
| | - John D Bartlett
- Division of Biosciences, College of Dentistry, The Ohio State University , Columbus, OH, USA
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna , Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna , Vienna, Austria
| |
Collapse
|
16
|
Yang X, Yamazaki H, Yamakoshi Y, Duverger O, Morasso MI, Beniash E. Trafficking and secretion of keratin 75 by ameloblasts in vivo. J Biol Chem 2019; 294:18475-18487. [PMID: 31628189 PMCID: PMC6885611 DOI: 10.1074/jbc.ra119.010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
A highly specialized cytoskeletal protein, keratin 75 (K75), expressed primarily in hair follicles, nail beds, and lingual papillae, was recently discovered in dental enamel, the most highly mineralized hard tissue in the human body. Among many questions this discovery poses, the fundamental question regarding the trafficking and secretion of this protein, which lacks a signal peptide, is of an utmost importance. Here, we present evidence that K75 is expressed during the secretory stage of enamel formation and is present in the forming enamel matrix. We further show that K75 is secreted together with major enamel matrix proteins amelogenin and ameloblastin, and it was detected in Golgi and the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) but not in rough ER (rER). Inhibition of ER-Golgi transport by brefeldin A did not affect the association of K75 with Golgi, whereas ameloblastin accumulated in rER, and its transport from rER into Golgi was disrupted. Together, these results indicate that K75, a cytosolic protein lacking a signal sequence, is secreted into the forming enamel matrix utilizing portions of the conventional ER-Golgi secretory pathway. To the best of our knowledge, this is the first study providing insights into mechanisms of keratin secretion.
Collapse
Affiliation(s)
- Xu Yang
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Hajime Yamazaki
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Olivier Duverger
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria I Morasso
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
17
|
Chiba R, Okubo M, Yamamoto R, Saito MM, Kobayashi S, Beniash E, Yamakoshi Y. Porcine keratin 75 in developing enamel. J Oral Biosci 2019; 61:163-172. [PMID: 31252053 DOI: 10.1016/j.job.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To provide in vivo biochemical evidence for the isolation, identification, and characterization of porcine keratin 75 (K75) in developing enamel. METHODS Immunolocalization of K75 was observed in mandibles from mice at postnatal days 5 and 11. K75 gene expression was analyzed by quantitative reverse transcription-polymerase chain reaction using enamel organ epithelium (EOE) of incisors from pigs at 5 months of age. Enamel protein was extracted and isolated from both immature and mature enamel of second molars from 5-month-old pigs, and the K75 antibody-positive fraction was analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). In vitro protease digestion of K75-antibody-positive fraction was carried out using porcine kallikrein 4 (pKLK4) or recombinant human enamelysin (rhMMP20) and their degradation patterns were characterized by both SDS-PAGE and western blotting. RESULTS Specific immunostaining for K75 was restricted to the layers of stratum intermedium and the enamel side of ameloblasts in mice at postnatal day 5, and to the papillary layer at postnatal day 11. Porcine K75 was expressed throughout enamel formation, but its transcript levels were significantly higher in the transition EOE than in the secretory- and maturation-stage EOE. Porcine K75 was extracted from the neutral soluble fraction from both immature and mature enamel. It was identified by LC-MS/MS analysis, and was found not to be degraded by either pKLK4 or rhMMP20. CONCLUSION We propose that K75 is present in the developing enamel and undergoes different processing/degradation compared to other enamel proteins.
Collapse
Affiliation(s)
- Risako Chiba
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Miu Okubo
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Mari M Saito
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Saeko Kobayashi
- Department of Pediatric Dentistry, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15261, USA.
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
18
|
Duverger O, Cross MA, Smith FJD, Morasso MI. Enamel Anomalies in a Pachyonychia Congenita Patient with a Mutation in KRT16. J Invest Dermatol 2019; 139:238-241. [PMID: 30009827 PMCID: PMC11058062 DOI: 10.1016/j.jid.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Olivier Duverger
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A Cross
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
19
|
Duverger O, Morasso MI. Pleiotropic function of DLX3 in amelogenesis: from regulating pH and keratin expression to controlling enamel rod decussation. Connect Tissue Res 2018; 59:30-34. [PMID: 29745813 PMCID: PMC6102719 DOI: 10.1080/03008207.2017.1408602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DLX3 is essential for tooth enamel development and is so far the only transcription factor known to be mutated in a syndromic form of amelogenesis imperfecta. Through conditional deletion of Dlx3 in the dental epithelium in mouse, we have previously established the involvement of DLX3 in enamel pH regulation, as well as in controlling the expression of sets of keratins that contribute to enamel rod sheath formation. Here, we show that the decussation pattern of enamel rods was lost in conditional knockout animals, suggesting that DLX3 controls the coordinated migration of ameloblasts during enamel secretion. We further demonstrate that DLX3 regulates the expression of some components of myosin II complexes potentially involved in driving the movement of ameloblasts that leads to enamel rod decussation.
Collapse
Affiliation(s)
- Olivier Duverger
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA,Address correspondence to: (OD)
| | - Maria I. Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Nibali L, Di Iorio A, Tu YK, Vieira AR. Host genetics role in the pathogenesis of periodontal disease and caries. J Clin Periodontol 2018; 44 Suppl 18:S52-S78. [PMID: 27754553 DOI: 10.1111/jcpe.12639] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND This study aimed to produce the latest summary of the evidence for association of host genetic variants contributing to both periodontal diseases and caries. MATERIALS AND METHODS Two systematic searches of the literature were conducted in Ovid Medline, Embase, LILACS and Cochrane Library for large candidate gene studies (CGS), systematic reviews and genome-wide association studies reporting data on host genetic variants and presence of periodontal disease and caries. RESULTS A total of 124 studies were included in the review (59 for the periodontitis outcome and 65 for the caries outcome), from an initial search of 15,487 titles. Gene variants associated with periodontitis were categorized based on strength of evidence and then compared with gene variants associated with caries. Several gene variants showed moderate to strong evidence of association with periodontitis, although none of them had also been associated with the caries trait. CONCLUSIONS Despite some potential aetiopathogenic similarities between periodontitis and caries, no genetic variants to date have clearly been associated with both diseases. Further studies or comparisons across studies with large sample size and clear phenotype definition could shed light into possible shared genetic risk factors for caries and periodontitis.
Collapse
Affiliation(s)
- Luigi Nibali
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University London (QMUL), London, UK
| | - Anna Di Iorio
- Library Services, UCL Eastman Dental Institute, London, UK
| | - Yu-Kang Tu
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Alexandre R Vieira
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Nakatomi M, Ida-Yonemochi H, Nakatomi C, Saito K, Kenmotsu S, Maas RL, Ohshima H. Msx2 Prevents Stratified Squamous Epithelium Formation in the Enamel Organ. J Dent Res 2018; 97:1355-1364. [PMID: 29863959 DOI: 10.1177/0022034518777746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tooth enamel is manufactured by the inner enamel epithelium of the multilayered enamel organ. Msx2 loss-of-function mutation in a mouse model causes an abnormal accumulation of epithelial cells in the enamel organ, but the underlying mechanism by which Msx2 regulates amelogenesis is poorly understood. We therefore performed detailed histological and molecular analyses of Msx2 null mice. Msx2 null ameloblasts and stratum intermedium (SI) cells differentiated normally in the early stages of amelogenesis. However, during subsequent developmental stages, the outer enamel epithelium (OEE) became highly proliferative and transformed into a keratinized stratified squamous epithelium that ectopically expressed stratified squamous epithelium markers, including Heat shock protein 25, Loricrin, and Keratin 10. Moreover, expression of hair follicle-specific keratin genes such as Keratin 26 and Keratin 73 was upregulated in the enamel organ of Msx2 mutants. With the accumulation of keratin in the stellate reticulum (SR) region and subsequent odontogenic cyst formation, SI cells gradually lost the ability to differentiate, and the expression of Sox2 and Notch1 was downregulated, leading to ameloblast depolarization. As a consequence, the organization of the Msx2 mutant enamel organ became disturbed and enamel failed to form in the normal location. Instead, there was ectopic mineralization that likely occurred within the SR. In summary, we show that during amelogenesis, Msx2 executes a bipartite function, repressing the transformation of OEE into a keratinized stratified squamous epithelium while simultaneously promoting the development of a properly differentiated enamel organ competent for enamel formation.
Collapse
Affiliation(s)
- M Nakatomi
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,2 Division of Anatomy, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - H Ida-Yonemochi
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - C Nakatomi
- 3 General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan.,4 Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - K Saito
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S Kenmotsu
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - R L Maas
- 5 Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - H Ohshima
- 1 Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
22
|
|
23
|
Bhattacharya S, Duverger O, Brooks SR, Morasso MI. Homeobox transcription factor DLX4 is not necessary for skin development and homeostasis. Exp Dermatol 2018; 27:289-292. [PMID: 29380438 PMCID: PMC5844850 DOI: 10.1111/exd.13503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/18/2022]
Abstract
Dlx4 is a member of a family of homeobox genes with homology to Drosophila distal-less (dll) gene. We show that Dlx4 expression pattern partially overlaps with its cis-linked gene Dlx3 during mouse development as well as in neonatal and adult skin. In mice, Dlx4 is expressed in the branchial arches, embryonic limbs, digits, nose, hair follicle and in the basal and suprabasal layers of mouse interfollicular epidermis. We show that inactivation of Dlx4 in mice did not result in any overtly gross pathology. Skin development, homeostasis and response to TPA treatment were similar in mice with loss of Dlx4 compared to wild-type counterparts.
Collapse
Affiliation(s)
- Shreya Bhattacharya
- Laboratory of Skin Biology, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Olivier Duverger
- Laboratory of Skin Biology, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Stephen R. Brooks
- Biodata Mining and Discovery Section, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Maria I. Morasso
- Laboratory of Skin Biology, National Institute for Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Duverger O, Carlson JC, Karacz CM, Schwartz ME, Cross MA, Marazita ML, Shaffer JR, Morasso MI. Genetic variants in pachyonychia congenita-associated keratins increase susceptibility to tooth decay. PLoS Genet 2018; 14:e1007168. [PMID: 29357356 PMCID: PMC5794186 DOI: 10.1371/journal.pgen.1007168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/01/2018] [Accepted: 12/25/2017] [Indexed: 12/24/2022] Open
Abstract
Pachyonychia congenita (PC) is a cutaneous disorder primarily characterized by nail dystrophy and painful palmoplantar keratoderma. PC is caused by mutations in KRT6A, KRT6B, KRT6C, KRT16, and KRT17, a set of keratin genes expressed in the nail bed, palmoplantar epidermis, oral mucosal epithelium, hair follicle and sweat gland. RNA-seq analysis revealed that all PC-associated keratins (except for Krt6c that does exist in the mouse genome) are expressed in the mouse enamel organ. We further demonstrated that these keratins are produced by ameloblasts and are incorporated into mature human enamel. Using genetic and intraoral examination data from 573 adults and 449 children, we identified several missense polymorphisms in KRT6A, KRT6B and KRT6C that lead to a higher risk for dental caries. Structural analysis of teeth from a PC patient carrying a p.Asn171Lys substitution in keratin-6a (K6a) revealed disruption of enamel rod sheaths resulting in altered rod shape and distribution. Finally, this PC-associated substitution as well as more frequent caries-associated SNPs, found in two of the KRT6 genes, that result in p.Ser143Asn substitution (rs28538343 in KRT6B and rs151117600 in KRT6C), alter the assembly of K6 filaments in ameloblast-like cells. These results identify a new set of keratins involved in tooth enamel formation, distinguish novel susceptibility loci for tooth decay and reveal additional clinical features of pachyonychia congenita. Tooth decay, more commonly known as dental cavities, is the most common chronic disease worldwide, both in children and in adults. It consists in the destruction of tooth enamel, the outer layer of the teeth, by acid-producing bacteria. Enamel is the hardest tissue in the body, comprised of 96% minerals. However, it contains a small fraction of proteins that is important for its resistance to mechanical stress and decay. Here we show that this protein fraction contains a set of structural proteins (K6a, K6b, K6c, K16 and K17) that belong to the keratin family and are present specifically in the skin of the palms and soles, as well as in nails. We further show that common genetic mutations that affect the composition of these proteins lead to an increased number of cavities. Rare mutations in these keratins lead to a human disease called pachyonychia congenita (PC) and characterized by severe nail malformations and lesions in the skin of the palms and soles. Analysis of wisdom teeth from one of these patients showed that their enamel exhibited structural defects. These results demonstrate that these keratins are important components of tooth enamel and that common genetic variants in the genes that encode them influence tooth decay risk in the general population.
Collapse
Affiliation(s)
- Olivier Duverger
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jenna C. Carlson
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Chelsea M. Karacz
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Mary E. Schwartz
- Pachyonychia Congenita Project, Holladay, UT, United States of America
| | - Michael A. Cross
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Mary L. Marazita
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral Biology, School of Dental Medicine, Clinical and Translational Science Institute, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Maria I. Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
25
|
Nishikawa S. Cytoskeleton, intercellular junctions, planar cell polarity, and cell movement in amelogenesis. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Beniash E. Co-option of Hair Follicle Keratins into Amelogenesis Is Associated with the Evolution of Prismatic Enamel: A Hypothesis. Front Physiol 2017; 8:823. [PMID: 29114231 PMCID: PMC5660855 DOI: 10.3389/fphys.2017.00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/06/2017] [Indexed: 11/24/2022] Open
Abstract
Recent discovery of hair follicle keratin 75 (KRT75) in enamel raises questions about the function of this protein in enamel and the mechanisms of its secretion. It is also not clear how this protein with a very specific and narrow expression pattern, limited to the inner root sheath of the hair follicle, became associated with enamel. We propose a hypothesis that KRT75 was co-opted by ameloblasts during the evolution of Tomes' process and the prismatic enamel in synapsids.
Collapse
|
27
|
Piekoszewska-Ziętek P, Turska-Szybka A, Olczak-Kowalczyk D. Single Nucleotide Polymorphism in the Aetiology of Caries: Systematic Literature Review. Caries Res 2017; 51:425-435. [PMID: 28668961 DOI: 10.1159/000476075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/24/2017] [Indexed: 01/20/2023] Open
Abstract
Recent progress in the field of molecular biology and techniques of DNA sequence analysis allowed determining the meaning of hereditary factors of many common human diseases. Studies of genetic mechanisms in the aetiology of caries encompass, primarily, 4 main groups of genes responsible for (1) the development of enamel, (2) formation and composition of saliva, (3) immunological responses, and (4) carbohydrate metabolism. The aim of this study was to present current knowledge about the influence of single nucleotide polymorphism (SNP) genetic variants on the occurrence of dental caries. PubMed/Medline, Embase, and Cochrane Library databases were searched for papers on the influence of genetic factors connected with SNP on the occurrence of dental caries in children, teenagers, and adults. Thirty original papers written in English were included in this review. Study groups ranged from 30 to 13,000 subjects. SNPs were observed in 30 genes. Results of the majority of studies confirm the participation of hereditary factors in the aetiology of caries. Three genes, AMELX, AQP5, and ESRRB, have the most promising evidence based on multiple replications and data, supporting a role of these genes in caries. The review of the literature proves that SNP is linked with the aetiology of dental caries.
Collapse
|
28
|
Yang X, Vidunas AJ, Beniash E. Optimizing Immunostaining of Enamel Matrix: Application of Sudan Black B and Minimization of False Positives from Normal Sera and IgGs. Front Physiol 2017; 8:239. [PMID: 28487659 PMCID: PMC5403949 DOI: 10.3389/fphys.2017.00239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/05/2017] [Indexed: 11/13/2022] Open
Abstract
Non-specific fluorescence from demineralized enamel matrix can significantly compromise the immunofluorescence studies and lead to false positives. Our goal was to assess degrees of non-specific binding under different conditions and try to optimize procedures for immunofluorescence studies of forming enamel. Firstly, we compared two methods for background fluorescence elimination, i.e., sodium borohydride and Sudan Black B treatments. The results demonstrated that Sudan Black B is far superior to sodium borohydride in reducing the background fluorescence in dental tissues. We also studied the extent of non-specific binding of normal sera and purified polyclonal immunoglobulins (IgG) from five mammalian species, guinea pig, rat, rabbit, goat, and sheep, over a broad range of dilutions. For all sera tested fluorescence signals increased exponentially from 1:1000 to 1:100. Interestingly, the non-specific binding of sera from rodent species was below that of positive control in the whole range of dilutions. In contrast, incubation with sera from 3 non-rodent species produced much higher signals which surpassed the positive control signal at 1:250~1:500 dilution range. Most of the IgGs didn't show significant non-specific binding within 0.25–5 μg/ml range, except rabbit IgG which demonstrated extremely high affinity to the enamel matrix even at concentrations as low as 1 μg/ml. Further, studies confirmed that Fab fragments of purified normal rabbit IgG, not conserved Fc fragments, were involved in the interactions. Our observations suggest this high affinity is associated with the antigen binding sites of rabbit IgG. We anticipate that our results will help enamel researchers to optimize and standardize their immunochemical procedures.
Collapse
Affiliation(s)
- Xu Yang
- Department of Oral Biology, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA
| | - Alexander J Vidunas
- Department of Oral Biology, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA
| | - Elia Beniash
- Department of Oral Biology, School of Dental Medicine, University of PittsburghPittsburgh, PA, USA.,Department of Bioengineering, Center for Craniofacial Regeneration, Swanson School of Engineering, McGowan Institute for Regenerative Medicine, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
29
|
Rittié L, Kaspar RL, Sprecher E, Smith FJD. Report of the 13th Annual International Pachyonychia Congenita Consortium Symposium. Br J Dermatol 2017; 176:1144-1147. [PMID: 28345191 DOI: 10.1111/bjd.15417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2016] [Indexed: 11/29/2022]
Abstract
The International Pachyonychia Congenita Consortium (IPCC) is a group of physicians and scientists from around the world dedicated to developing therapies for pachyonychia congenita, a rare autosomal dominant skin disorder. The research presented at the 13th Annual Research Symposium of the IPCC, held on 10-11 May 2016, in Scottsdale, AZ, U.S.A., is reported here.
Collapse
Affiliation(s)
- L Rittié
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, U.S.A
| | - R L Kaspar
- TransDerm Inc., 2161 Delaware Ave, Santa Cruz, CA, 95060, U.S.A
| | - E Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - F J D Smith
- Pachyonychia Congenita Project, Salt Lake City, UT, U.S.A
| |
Collapse
|
30
|
Duverger O, Ohara T, Bible PW, Zah A, Morasso MI. DLX3-Dependent Regulation of Ion Transporters and Carbonic Anhydrases is Crucial for Enamel Mineralization. J Bone Miner Res 2017; 32:641-653. [PMID: 27760456 PMCID: PMC11025043 DOI: 10.1002/jbmr.3022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
Abstract
Patients with tricho-dento-osseous (TDO) syndrome, an ectodermal dysplasia caused by mutations in the homeodomain transcription factor DLX3, exhibit enamel hypoplasia and hypomineralization. Here we used a conditional knockout mouse model to investigate the developmental and molecular consequences of Dlx3 deletion in the dental epithelium in vivo. Dlx3 deletion in the dental epithelium resulted in the formation of chalky hypomineralized enamel in all teeth. Interestingly, transcriptomic analysis revealed that major enamel matrix proteins and proteases known to be involved in enamel secretion and maturation were not affected significantly by Dlx3 deletion in the enamel organ. In contrast, expression of several ion transporters and carbonic anhydrases known to play an important role in enamel pH regulation during maturation was significantly affected in enamel organs lacking DLX3. Most of these affected genes showed binding of DLX3 to their proximal promoter as evidenced by chromatin immunoprecipitation sequencing (ChIP-seq) analysis on rat enamel organ. These molecular findings were consistent with altered pH staining evidenced by disruption of characteristic pH oscillations in the enamel. Taken together, these results show that DLX3 is indispensable for the regulation of ion transporters and carbonic anhydrases during the maturation stage of amelogenesis, exerting a crucial regulatory function on pH oscillations during enamel mineralization. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Olivier Duverger
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Takahiro Ohara
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Paul W Bible
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Angela Zah
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
31
|
Kallistová A, Horáček I, Šlouf M, Skála R, Fridrichová M. Mammalian enamel maturation: Crystallographic changes prior to tooth eruption. PLoS One 2017; 12:e0171424. [PMID: 28196135 PMCID: PMC5308864 DOI: 10.1371/journal.pone.0171424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/20/2017] [Indexed: 01/26/2023] Open
Abstract
Using the distal molar of a minipig as a model, we studied changes in the microstructural characteristics of apatite crystallites during enamel maturation (16-23 months of postnatal age), and their effects upon the mechanical properties of the enamel coat. The slow rate of tooth development in a pig model enabled us to reveal essential heterochronies in particular components of the maturation process. The maturation changes began along the enamel-dentine junction (EDJ) of the trigonid, spreading subsequently to the outer layers of the enamel coat to appear at the surface zone with a 2-month delay. Correspondingly, at the distal part of the tooth the timing of maturation processes is delayed by 3-5 month compared to the mesial part of the tooth. The early stage of enamel maturation (16-20 months), when the enamel coat is composed almost exclusively of radial prismatic enamel, is characterized by a gradual increase in crystallite thickness (by a mean monthly increment of 3.8 nm); and an increase in the prism width and thickness of crystals composed of elementary crystallites. The late stage of maturation (the last two months prior to tooth eruption), marked with the rapid appearance of the interprismatic matrix (IPM) during which the crystals densely infill spaces between prisms, is characterized by an abrupt decrease in microstrain and abrupt changes in the micromechanical properties of the enamel: a rapid increase in its ability to resist long-term load and its considerable hardening. The results suggest that in terms of crystallization dynamics the processes characterizing the early and late stage of mammalian enamel maturation represent distinct entities. In regards to common features with enamel formation in the tribosphenic molar we argue that the separation of these processes could be a common apomorphy of mammalian amelogenetic dynamics in general.
Collapse
Affiliation(s)
- Anna Kallistová
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, Czech Republic
- Institute of Geology of the CAS, v.v.i., Rozvojová 269, Prague 6, Czech Republic
| | - Ivan Horáček
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, Czech Republic
- * E-mail:
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of CAS v.v.i., Heyrovského náměstí 2, Prague 6, Czech Republic
| | - Roman Skála
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, Czech Republic
- Institute of Geology of the CAS, v.v.i., Rozvojová 269, Prague 6, Czech Republic
| | - Michaela Fridrichová
- Institute of Geology of the CAS, v.v.i., Rozvojová 269, Prague 6, Czech Republic
| |
Collapse
|
32
|
Atopic dermatitis and early childhood caries: Results of the GUSTO study. J Allergy Clin Immunol 2017; 139:2000-2003. [PMID: 28122670 DOI: 10.1016/j.jaci.2016.10.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/14/2016] [Accepted: 10/27/2016] [Indexed: 11/24/2022]
|
33
|
Jin YJ, Wang S, Cho J, Selim MA, Wright T, Mosialos G, Zhang JY. Epidermal CYLD inactivation sensitizes mice to the development of sebaceous and basaloid skin tumors. JCI Insight 2016; 1. [PMID: 27478875 DOI: 10.1172/jci.insight.86548] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The deubiquitinase-encoding gene Cyld displays a dominant genetic linkage to a wide spectrum of skin-appendage tumors, which could be collectively designated as CYLD mutant-syndrome (CYLDm-syndrome). Despite recent advances, little is understood about the molecular mechanisms responsible for this painful and difficult-to-treat skin disease. Here, we generated a conditional mouse model with epidermis-targeted expression of a catalytically deficient CYLDm through K14-Cre-mediated deletion of exon 9 (hereafter refer to CyldEΔ9/Δ9 ). CyldEΔ9/Δ9 mice were born alive but developed hair and sebaceous gland abnormalities and dental defects at 100% and 60% penetrance, respectively. Upon topical challenge with DMBA/TPA, these animals primarily developed sebaceous and basaloid tumors resembling human CYLDm-syndrome as opposed to papilloma, which is most commonly induced in WT mice by this treatment. Molecular analysis revealed that TRAF6-K63-Ubiquitination (K63-Ub), c-Myc-K63-Ub, and phospho-c-Myc (S62) were markedly elevated in CyldEΔ9/Δ9 skin. Topical treatment with a pharmacological c-Myc inhibitor induced sebaceous and basal cell apoptosis in CyldEΔ9/Δ9 skin. Consistently, c-Myc activation was readily detected in human cylindroma and sebaceous adenoma. Taken together, our findings demonstrate that CyldEΔ9/Δ9 mice represent a disease-relevant animal model and identify TRAF6 and c-Myc as potential therapeutic targets for CYLDm-syndrome.
Collapse
Affiliation(s)
- Yingai Jane Jin
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA
| | - Sally Wang
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA
| | - Joshua Cho
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA
| | - M Angelica Selim
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Tim Wright
- Dental School, University North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University, Duke University Medical Center, Durham, North Carolina, USA; Department of Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
34
|
Correction of Hair Shaft Defects through Allele-Specific Silencing of Mutant Krt75. J Invest Dermatol 2016; 136:45-51. [PMID: 26763422 PMCID: PMC4764097 DOI: 10.1038/jid.2015.375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/10/2015] [Accepted: 09/12/2015] [Indexed: 11/25/2022]
Abstract
Dominant mutations in keratin genes can cause a number of inheritable skin disorders characterized by intraepidermal blistering, epidermal hyperkeratosis, or abnormalities in skin appendages, such as nail plate dystrophy and structural defects in hair. Allele-specific silencing of mutant keratins through RNA interference is a promising therapeutic approach for suppressing the expression of mutant keratins and related phenotypes in the epidermis. However, its effectiveness on skin appendages remains to be confirmed in vivo. In this study, we developed allele specific siRNAs capable of selectively suppressing the expression of a mutant Krt75, which causes hair shaft structural defects characterized by the development of blebs along the hair shaft in mice. Hair regenerated from epidermal keratinocyte progenitor cells isolated from mutant Krt75 mouse models reproduced the blebbing phenotype when grafted in vivo. In contrast, mutant cells manipulated with a lentiviral vector expressing mutant Krt75-specific shRNA persistently suppressed this phenotype. The phenotypic correction was associated with significant reduction of mutant Krt75 mRNA in the skin grafts. Thus, data obtained from this study demonstrated the feasibility of utilizing RNA interference to achieve durable correction of hair structural phenotypes through allele-specific silencing of the mutant keratin genes.
Collapse
|
35
|
Duverger O, Beniash E, Morasso MI. Keratins as components of the enamel organic matrix. Matrix Biol 2016; 52-54:260-265. [PMID: 26709044 PMCID: PMC4875797 DOI: 10.1016/j.matbio.2015.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/16/2022]
Abstract
Dental enamel is the hardest tissue in the human body, and although it starts as a tissue rich in proteins, by the time of eruption of the tooth in the oral cavity only a small fraction of the protein remains. While this organic matrix of enamel represents less than 1% by weight it plays essential roles in improving both toughness and resilience to chemical attacks. Despite the fact that the first studies of the enamel matrix began in the 19th century, its exact composition and mechanisms of its function remain poorly understood. It was proposed that keratin or a keratin-like primitive epithelial component exists in mature enamel, however due to the extreme insolubility of its organic matrix the presence of keratins there was never clearly established. We have recently identified expression of a number of hair keratins in ameloblasts, the enamel secreting cells, and demonstrated their incorporation into mature enamel. Mutation in epithelial hair keratin KRT75 leads to a skin condition called pseudofollicularis barbae. Carriers of this mutation have an altered enamel structure and mechanical properties. Importantly, these individuals have a much higher prevalence of caries. To the best of our knowledge, this is the first study showing a direct link between a mutation in a protein-coding region of a gene and increased caries rates. In this paper we present an overview of the evidence of keratin-like material in enamel that has accumulated over the last 150years. Furthermore, we propose potential mechanisms of action of KTR75 in enamel and highlight the clinical implications of the link between mutations in KRT75 and caries. Finally, we discuss the potential use of keratins for enamel repair.
Collapse
Affiliation(s)
- Olivier Duverger
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Elia Beniash
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States.
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
36
|
Bayram M, Deeley K, Reis MF, Trombetta VM, Ruff TD, Sencak RC, Hummel M, Dizak PM, Washam K, Romanos HF, Lips A, Alves G, Costa MC, Granjeiro JM, Antunes LS, Küchler EC, Seymen F, Vieira AR. Genetic influences on dental enamel that impact caries differ between the primary and permanent dentitions. Eur J Oral Sci 2015; 123:327-334. [PMID: 26283008 DOI: 10.1111/eos.12204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 11/30/2022]
Abstract
Clinically, primary and permanent teeth are distinct anatomically and the presentation of caries lesions differs between the two dentitions. Hence, the possibility exists that genetic contributions to tooth formation of the two dentitions are different. The purpose of this study was to test the hypothesis that genetic associations with an artificial caries model will not be the same between primary and permanent dentitions. Enamel samples from primary and permanent teeth were tested for microhardness at baseline, after carious lesion creation, and after fluoride application to verify association with genetic variants of selected genes. Associations were found between genetic variants of ameloblastin, amelogenin, enamelin, tuftelin, tuftelin interactive protein 11, and matrix metallopeptidase 20 and enamel from permanent teeth but not with enamel from primary teeth. In conclusion, our data continue to support that genetic variation may impact enamel development and consequently individual caries susceptibility. These effects may be distinct between primary and permanent dentitions.
Collapse
Affiliation(s)
- Merve Bayram
- Department of Pedodontics, School of Dentistry, Istanbul Medipol University, Istanbul, Turkey
| | - Kathleen Deeley
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria F Reis
- Clinical Research Unit, Fluminense Federal University, Niterói, RJ, Brazil
| | - Vanessa M Trombetta
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy D Ruff
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Regina C Sencak
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Hummel
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piper M Dizak
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelly Washam
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helena F Romanos
- Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Andrea Lips
- Clinical Research Unit, Fluminense Federal University, Niterói, RJ, Brazil
| | - Gutemberg Alves
- Clinical Research Unit, Fluminense Federal University, Niterói, RJ, Brazil
| | - Marcelo C Costa
- Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José M Granjeiro
- Directory of Programs, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ, Brazil
| | - Leonardo S Antunes
- Clinical Research Unit, Fluminense Federal University, Niterói, RJ, Brazil
| | - Erika C Küchler
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Clinical Research Unit, Fluminense Federal University, Niterói, RJ, Brazil
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Alexandre R Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Duverger O. Des kératines du cheveu dans l’émail dentaire. Med Sci (Paris) 2015; 31:239-41. [DOI: 10.1051/medsci/20153103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Research round-up. Br Dent J 2014. [DOI: 10.1038/sj.bdj.2014.1066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|