1
|
Nicholls SJ, Nelson AJ, Ditmarsch M, Kastelein JJP, Ballantyne CM, Ray KK, Navar AM, Nissen SE, Golberg AC, Brunham LR, Curcio D, Wuerdeman E, Neild A, Kling D, Hsieh A, Dicklin MR, Ference BA, Laufs U, Banach M, Mehran R, Catapano AL, Davidson MH. Obicetrapib on top of maximally tolerated lipid-modifying therapies in participants with or at high risk for atherosclerotic cardiovascular disease: rationale and designs of BROADWAY and BROOKLYN. Am Heart J 2024; 274:32-45. [PMID: 38705341 DOI: 10.1016/j.ahj.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Obicetrapib, a novel, selective cholesteryl ester transfer protein (CETP) inhibitor, reduces low-density lipoprotein cholesterol (LDL-C), LDL particles, apolipoprotein (Apo) B, and lipoprotein(a) [Lp(a)] and increases high-density lipoprotein cholesterol (HDL-C) when added to statins with or without ezetimibe. By substantially reducing LDL-C, obicetrapib has the potential to lower atherogenic lipoproteins in patients with atherosclerotic cardiovascular disease (ASCVD) or heterozygous familial hypercholesterolemia (HeFH) whose LDL-C levels remain high despite treatment with available maximally tolerated lipid-modifying therapies, addressing an unmet medical need in a patient population at high risk for cardiovascular events. METHODS AND RESULTS BROADWAY (NCT05142722) and BROOKLYN (NCT05425745) are ongoing placebo-controlled, double-blind, randomized Phase III trials designed to examine the efficacy, safety, and tolerability of obicetrapib as an adjunct to dietary intervention and maximally tolerated lipid-modifying therapies in participants with a history of ASCVD and/or underlying HeFH whose LDL-C is not adequately controlled. The primary efficacy endpoint was the percent change in LDL-C from baseline to day 84. Other endpoints included changes in Apo B, non-HDL-C, HDL-C, Apo A1, Lp(a), and triglycerides in addition to parameters evaluating safety, tolerability, and pharmacokinetics. BROADWAY also included an adjudicated assessment of major adverse cardiovascular events, measurements of glucose homeostasis, and an ambulatory blood pressure monitoring substudy. A total of 2,532 participants were randomized in BROADWAY and 354 in BROOKLYN to receive obicetrapib 10 mg or placebo (2:1) for 365 days with follow-up through 35 days after the last dose. Results from both trials are anticipated in 2024. CONCLUSION These trials will provide safety and efficacy data to support the potential use of obicetrapib among patients with ASCVD or HeFH with elevated LDL-C for whom existing therapies are not sufficiently effective or well-tolerated.
Collapse
Affiliation(s)
| | - Adam J Nelson
- Victorian Heart Institute, Monash University, Victoria, Australia
| | | | | | | | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | | | - Steven E Nissen
- Cleveland Clinic Lerner School of Medicine at Case Western Reserve University, Cleveland, OH
| | | | - Liam R Brunham
- UBC Centre for Heart Lung Innovation, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Annie Neild
- NewAmsterdam Pharma, Naarden, The Netherlands
| | | | | | | | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Ulrich Laufs
- Klinik und Poliklinkk für Kardiologie, Leipzig University, Germany
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidologym, Medical University of Lodz (MUL), Lodz, Poland
| | - Roxana Mehran
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alberico L Catapano
- IRCCS MultiMedica, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
2
|
Reyes-Soffer G, Matveyenko A, Lignos J, Matienzo N, Santos Baez LS, Hernandez-Ono A, Yung L, Nandakumar R, Singh SA, Aikawa M, George R, Ginsberg HN. Effects of Recombinant Human Lecithin Cholesterol Acyltransferase on Lipoprotein Metabolism in Humans. Arterioscler Thromb Vasc Biol 2024; 44:1407-1418. [PMID: 38695168 DOI: 10.1161/atvbaha.123.320387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 05/24/2024]
Abstract
BACKGROUND LCAT (lecithin cholesterol acyl transferase) catalyzes the conversion of unesterified, or free cholesterol, to cholesteryl ester, which moves from the surface of HDL (high-density lipoprotein) into the neutral lipid core. As this iterative process continues, nascent lipid-poor HDL is converted to a series of larger, spherical cholesteryl ester-enriched HDL particles that can be cleared by the liver in a process that has been termed reverse cholesterol transport. METHODS We conducted a randomized, placebocontrolled, crossover study in 5 volunteers with atherosclerotic cardiovascular disease, to examine the effects of an acute increase of recombinant human (rh) LCAT via intravenous administration (300-mg loading dose followed by 150 mg at 48 hours) on the in vivo metabolism of HDL APO (apolipoprotein)A1 and APOA2, and the APOB100-lipoproteins, very low density, intermediate density, and low-density lipoproteins. RESULTS As expected, recombinant human LCAT treatment significantly increased HDL-cholesterol (34.9 mg/dL; P≤0.001), and this was mostly due to the increase in cholesteryl ester content (33.0 mg/dL; P=0.014). This change did not affect the fractional clearance or production rates of HDL-APOA1 and HDL-APOA2. There were also no significant changes in the metabolism of APOB100-lipoproteins. CONCLUSIONS Our results suggest that an acute increase in LCAT activity drives greater flux of cholesteryl ester through the reverse cholesterol transport pathway without significantly altering the clearance and production of the main HDL proteins and without affecting the metabolism of APOB100-lipoproteins. Long-term elevations of LCAT might, therefore, have beneficial effects on total body cholesterol balance and atherogenesis.
Collapse
Affiliation(s)
- Gissette Reyes-Soffer
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Anastasiya Matveyenko
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - James Lignos
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Nelsa Matienzo
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Leinys S Santos Baez
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Antonio Hernandez-Ono
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Lau Yung
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| | - Renu Nandakumar
- Irving Institute for Clinical and Translations Research (R.N.) and Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine (S.A.S., M.A.), Brigham Women's Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine (S.A.S., M.A.), Brigham Women's Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine (M.A.), Brigham Women's Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Department of Medicine (M.A.), Brigham Women's Hospital, Harvard Medical School, Boston, MA
| | - Richard George
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD (R.G.)
| | - Henry N Ginsberg
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (G.R.-S., A.M., J.L., N.M., L.S.S.B., A.H.-O., L.Y., H.N.G.)
| |
Collapse
|
3
|
Kastelein JJP, Hsieh A, Dicklin MR, Ditmarsch M, Davidson MH. Obicetrapib: Reversing the Tide of CETP Inhibitor Disappointments. Curr Atheroscler Rep 2024; 26:35-44. [PMID: 38133847 PMCID: PMC10838241 DOI: 10.1007/s11883-023-01184-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE OF REVIEW To discuss the history of cardiovascular outcomes trials of cholesteryl ester transfer protein (CETP) inhibitors and to describe obicetrapib, a next-generation, oral, once-daily, low-dose CETP inhibitor in late-stage development for dyslipidemia and atherosclerotic cardiovascular disease (ASCVD). RECENT FINDINGS Phase 1 and 2 trials have evaluated the safety and lipid/lipoprotein effects of obicetrapib as monotherapy, in conjunction with statins, on top of high-intensity statins (HIS), and with ezetimibe on top of HIS. In ROSE2, 10 mg obicetrapib monotherapy and combined with 10 mg ezetimibe, each on top of HIS, significantly reduced low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B, total LDL particles, small LDL particles, small, dense LDL-C, and lipoprotein (a), and increased HDL-C. Phase 3 pivotal registration trials including a cardiovascular outcomes trial are underway. Obicetrapib has an excellent safety and tolerability profile and robustly lowers atherogenic lipoproteins and raises HDL-C. As such, obicetrapib may be a promising agent for the treatment of ASCVD.
Collapse
|
4
|
Brodeur MR, Rhainds D, Charpentier D, Boulé M, Mihalache-Avram T, Mecteau M, Brand G, Pedneault-Gagnon V, Fortier A, Niesor EJ, Rhéaume E, Maugeais C, Tardif JC. Dalcetrapib and anacetrapib increase apolipoprotein E-containing HDL in rabbits and humans. J Lipid Res 2022; 64:100316. [PMID: 36410424 PMCID: PMC9793321 DOI: 10.1016/j.jlr.2022.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/20/2022] [Accepted: 11/11/2022] [Indexed: 11/20/2022] Open
Abstract
The large HDL particles generated by administration of cholesteryl ester transfer protein inhibitors (CETPi) remain poorly characterized, despite their potential importance in the routing of cholesterol to the liver for excretion, which is the last step of the reverse cholesterol transport. Thus, the effects of the CETPi dalcetrapib and anacetrapib on HDL particle composition were studied in rabbits and humans. The association of rabbit HDL to the LDL receptor (LDLr) in vitro was also evaluated. New Zealand White rabbits receiving atorvastatin were treated with dalcetrapib or anacetrapib. A subset of patients from the dal-PLAQUE-2 study treated with dalcetrapib or placebo were also studied. In rabbits, dalcetrapib and anacetrapib increased HDL-C by more than 58% (P < 0.01) and in turn raised large apo E-containing HDL by 66% (P < 0.001) and 59% (P < 0.01), respectively. Additionally, HDL from CETPi-treated rabbits competed with human LDL for binding to the LDLr on HepG2 cells more than control HDL (P < 0.01). In humans, dalcetrapib increased concentrations of large HDL particles (+69%, P < 0.001) and apo B-depleted plasma apo E (+24%, P < 0.001), leading to the formation of apo E-containing HDL (+47%, P < 0.001) devoid of apo A-I. Overall, in rabbits and humans, CETPi increased large apo E-containing HDL particle concentration, which can interact with hepatic LDLr. The catabolism of these particles may depend on an adequate level of LDLr to contribute to reverse cholesterol transport.
Collapse
Affiliation(s)
| | | | | | - Marie Boulé
- Montreal Heart Institute, Montreal, Quebec, Canada
| | | | | | | | | | - Annik Fortier
- Montreal Health Innovations Coordinating Center, Montreal, Quebec, Canada
| | | | - Eric Rhéaume
- Montreal Heart Institute, Montreal, Quebec, Canada,Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Oleaga C, Shapiro MD, Hay J, Mueller PA, Miles J, Huang C, Friz E, Tavori H, Toth PP, Wójcik C, Warden BA, Purnell JQ, Duell PB, Pamir N, Fazio S. Hepatic Sensing Loop Regulates PCSK9 Secretion in Response to Inhibitory Antibodies. J Am Coll Cardiol 2021; 78:1437-1449. [PMID: 34593126 PMCID: PMC8486917 DOI: 10.1016/j.jacc.2021.07.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9i) lower LDL-C by up to 60% and increase plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) levels by 10-fold. OBJECTIVES The authors studied the reasons behind the robust increase in plasma PCSK9 levels by testing the hypothesis that mechanisms beyond clearance via the low-density lipoprotein receptor (LDLR) contribute to the regulation of cholesterol homeostasis. METHODS In clinical cohorts, animal models, and cell-based studies, we measured kinetic changes in PCSK9 production and clearance in response to PCSK9i. RESULTS In a patient cohort receiving PCSK9i therapy, plasma PCSK9 levels rose 11-fold during the first 3 months and then plateaued for 15 months. In a cohort of healthy volunteers, a single injection of PCSK9i increased plasma PCSK9 levels within 12 hours; the rise continued for 9 days until it plateaued at 10-fold above baseline. We recapitulated the rapid rise in PCSK9 levels in a mouse model, but only in the presence of LDLR. In vivo turnover and in vitro pulse-chase studies identified 2 mechanisms contributing to the rapid increase in plasma PCSK9 levels in response to PCSK9i: 1) the expected delayed clearance of the antibody-bound PCSK9; and 2) the unexpected post-translational increase in PCSK9 secretion. CONCLUSIONS PCSK9 re-entry to the liver via LDLR triggers a sensing loop regulating PCSK9 secretion. PCSK9i therapy enhances the secretion of PCSK9, an effect that contributes to the increased plasma PCSK9 levels in treated subjects.
Collapse
Affiliation(s)
- Carlota Oleaga
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Michael D Shapiro
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Joshua Hay
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Paul A Mueller
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Joshua Miles
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Cecilia Huang
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Emily Friz
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Hagai Tavori
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Peter P Toth
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University, and School of Medicine, Baltimore, Maryland, USA; CGH Medical Center, Sterling, Illinois, USA
| | - Cezary Wójcik
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Bruce A Warden
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Jonathan Q Purnell
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - P Barton Duell
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| | - Nathalie Pamir
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA.
| | - Sergio Fazio
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Ginsberg HN, Packard CJ, Chapman MJ, Borén J, Aguilar-Salinas CA, Averna M, Ference BA, Gaudet D, Hegele RA, Kersten S, Lewis GF, Lichtenstein AH, Moulin P, Nordestgaard BG, Remaley AT, Staels B, Stroes ESG, Taskinen MR, Tokgözoğlu LS, Tybjaerg-Hansen A, Stock JK, Catapano AL. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42:4791-4806. [PMID: 34472586 PMCID: PMC8670783 DOI: 10.1093/eurheartj/ehab551] [Citation(s) in RCA: 367] [Impact Index Per Article: 122.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD.
Collapse
Affiliation(s)
- Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, PH-10-305, New York, NY 10032, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - M John Chapman
- Sorbonne University Endocrinology-Metabolism Division, Pitié-Salpetriere University Hospital, and National Institute for Health and Medical Research (INSERM), 47 Hôpital boulevard, Paris 75013, France
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Blå Stråket 5, Gothenburg 413 45, Sweden
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto, Monterrey, Nuevo León 3000, Mexico
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Marina Square, 61, Palermo 90133, Italy
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE, Clinical and Translational Research Center, and Lipid Clinic, Chicoutimi Hospital, 305 Rue St Vallier, Chicoutimi, Québec G7H 5H6, Canada
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Eaton Building, Room 12E248, 200 Elizabeth St, Toronto, Ontario M5G 2C4, Canada
| | - Alice H Lichtenstein
- Cardiovascular Nutrition, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St Ste 9, Boston, MA 02111, USA
| | - Philippe Moulin
- Department of Endocrinology, GHE, Hospices Civils de Lyon, CarMeN Laboratory, Inserm UMR 1060, CENS-ELI B, Univ-Lyon1, Lyon 69003, France
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev 2730, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Dr Ste 10-7C114, Bethesda, MD 20892, USA
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, 1541 Kings Hwy, Amsterdam 71103, The Netherlands
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, 06100 Sıhhiye, Ankara, Turkey
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Blegdamsvej 9, Rigshospitalet, Copenhagen 2100, Denmark.,Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark.,Copenhagen City Heart Study, Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg 57 2000, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, Copenhagen 3B 2200, Denmark
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, Gothenburg SE-412 51, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano and IRCCS MultiMedica, Via Festa del Perdono 7, Milan 20122, Italy
| |
Collapse
|
7
|
Wu JX, He KY, Zhang ZZ, Qu YL, Su XB, Shi Y, Wang N, Wang L, Han ZG. LZP is required for hepatic triacylglycerol transportation through maintaining apolipoprotein B stability. PLoS Genet 2021; 17:e1009357. [PMID: 33591966 PMCID: PMC7909667 DOI: 10.1371/journal.pgen.1009357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/26/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
The conserved zona pellucida (ZP) domain is found in hundreds of extracellular proteins that are expressed in various organs and play a variety of roles as structural components, receptors and tumor suppressors. A liver-specific zona pellucida domain-containing protein (LZP), also named OIT3, has been shown to be mainly expressed in human and mouse hepatocytes; however, the physiological function of LZP in the liver remains unclear. Here, we show that Lzp deletion inhibited very low-density lipoprotein (VLDL) secretion, leading to hepatic TG accumulation and lower serum TG levels in mice. The apolipoprotein B (apoB) levels were significantly decreased in the liver, serum, and VLDL particles of LZP-deficient mice. In the presence of LZP, which is localized to the endoplasmic reticulum (ER) and Golgi apparatus, the ER-associated degradation (ERAD) of apoB was attenuated; in contrast, in the absence of LZP, apoB was ubiquitinated by AMFR, a known E3 ubiquitin ligase specific for apoB, and was subsequently degraded, leading to lower hepatic apoB levels and inhibited VLDL secretion. Interestingly, hepatic LZP levels were elevated in mice challenged with a high-fat diet and humans with simple hepatic steatosis, suggesting that LZP contributes to the physiological regulation of hepatic TG homeostasis. In general, our data establish an essential role for LZP in hepatic TG transportation and VLDL secretion by preventing the AMFR-mediated ubiquitination and degradation of apoB and therefore provide insight into the molecular function of LZP in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jiao-Xiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Kun-Yan He
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuang-Zhuang Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Lan Qu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xian-Bin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine of Rui-Jin Hospital, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| |
Collapse
|
8
|
Palmisano BT, Anozie U, Yu S, Neuman JC, Zhu L, Edington EM, Luu T, Stafford JM. Cholesteryl Ester Transfer Protein Impairs Triglyceride Clearance via Androgen Receptor in Male Mice. Lipids 2021; 56:17-29. [PMID: 32783209 PMCID: PMC7818496 DOI: 10.1002/lipd.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022]
Abstract
Elevated postprandial triacylglycerols (TAG) are an important risk factor for cardiovascular disease. Men have higher plasma TAG and impaired TAG clearance compared to women, which may contribute to sex differences in risk of cardiovascular disease. Understanding mechanisms of sex differences in TAG metabolism may yield novel therapeutic targets to prevent cardiovascular disease. Cholesteryl ester transfer protein (CETP) is a lipid shuttling protein known for its effects on high-density lipoprotein (HDL) cholesterol levels. Although mice lack CETP, we previously demonstrated that transgenic CETP expression in female mice alters TAG metabolism. The impact of CETP on TAG metabolism in males, however, is not well understood. Here, we demonstrate that CETP expression increases plasma TAG in males, especially in very-low density lipoprotein (VLDL), by impairing postprandial plasma TAG clearance compared to wild-type (WT) males. Gonadal hormones were required for CETP to impair TAG clearance, suggesting a role for sex hormones for this effect. Testosterone replacement in the setting of gonadectomy was sufficient to restore the effect of CETP on TAG. Lastly, liver androgen receptor (AR) was required for CETP to increase plasma TAG. Thus, expression of CETP in males raises plasma TAG by impairing TAG clearance via testosterone signaling to AR. Further understanding of how CETP and androgen signaling impair TAG clearance may lead to novel approaches to reduce TAG and mitigate risk of cardiovascular disease.
Collapse
Affiliation(s)
- Brian T. Palmisano
- Tennessee Valley Health System, Veterans AffairsNashvilleTNUSA
- Department of Molecular Physiology & BiophysicsVanderbilt University School of MedicineNashvilleTNUSA
- Division of Cardiovascular MedicineStanford University Medical CenterStanfordCAUSA
| | - Uche Anozie
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Sophia Yu
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Joshua C. Neuman
- Department of Molecular Physiology & BiophysicsVanderbilt University School of MedicineNashvilleTNUSA
| | - Lin Zhu
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Emery M. Edington
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Thao Luu
- Tennessee Valley Health System, Veterans AffairsNashvilleTNUSA
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - John M. Stafford
- Tennessee Valley Health System, Veterans AffairsNashvilleTNUSA
- Department of Molecular Physiology & BiophysicsVanderbilt University School of MedicineNashvilleTNUSA
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| |
Collapse
|
9
|
Affiliation(s)
- Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Kristen Bubb
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia.,Biomedical Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Macchi C, Banach M, Corsini A, Sirtori CR, Ferri N, Ruscica M. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels - experimental and clinical approaches with lipid-lowering agents. Eur J Prev Cardiol 2019; 26:930-949. [PMID: 30776916 DOI: 10.1177/2047487319831500] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulation of pro-protein convertase subtilisin/kexin type 9 (PCSK9) by drugs has led to the development of a still small number of agents with powerful activity on low-density lipoprotein cholesterol levels, associated with a significant reduction of cardiovascular events in patients in secondary prevention. The Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) and Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab (ODYSSEY OUTCOMES) studies, with the two available PCSK9 antagonists, i.e. evolocumab and alirocumab, both reported a 15% reduction in major adverse cardiovascular events. Regulation of PCSK9 expression is dependent upon a number of factors, partly genetic and partly associated to a complex transcriptional system, mainly controlled by sterol regulatory element binding proteins. PCSK9 is further regulated by concomitant drug treatments, particularly by statins, enhancing PCSK9 secretion but decreasing its stimulatory phosphorylated form (S688). These complex transcriptional mechanisms lead to variable circulating levels making clinical measurements of plasma PCSK9 for cardiovascular risk assessment a debated matter. Determination of total PCSK9 levels may provide a diagnostic tool for explaining an apparent resistance to PCSK9 inhibitors, thus indicating the need for other approaches. Newer agents targeting PCSK9 are in clinical development with a major interest in those with a longer duration of action, e.g. RNA silencing, allowing optimal patient compliance. Interest has been expanded to areas not only limited to low-density lipoprotein cholesterol reduction but also investigating other non-lipid pathways raising cardiovascular risk, in particular inflammation associated to raised high-sensitivity C-reactive protein levels, not significantly affected by the present PCSK9 antagonists.
Collapse
Affiliation(s)
- C Macchi
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - M Banach
- 2 Department of Hypertension, Medical University of Lodz, Poland.,3 Polish Mother's Memorial Hospital Research Institute (PMMHRI), Poland.,4 Cardiovascular Research Centre, University of Zielona Gora, Poland
| | - A Corsini
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy.,5 Multimedica IRCCS, Italy
| | - C R Sirtori
- 6 Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Italy
| | - N Ferri
- 7 Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Italy
| | - M Ruscica
- 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| |
Collapse
|
11
|
Borrelli MJ, Youssef A, Boffa MB, Koschinsky ML. New Frontiers in Lp(a)-Targeted Therapies. Trends Pharmacol Sci 2019; 40:212-225. [PMID: 30732864 DOI: 10.1016/j.tips.2019.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Interest in lipoprotein (a) [Lp(a)] has exploded over the past decade with the emergence of genetic and epidemiological studies pinpointing elevated levels of this unique lipoprotein as a causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and calcific aortic valve disease (CAVD). This review summarizes the most recent discoveries regarding therapeutic approaches to lower Lp(a) and presents these findings in the context of an emerging, although far from complete, understanding of the biosynthesis and catabolism of Lp(a). Application of Lp(a)-specific lowering agents to outcome trials will be the key to opening this new frontier in the battle against CVD.
Collapse
Affiliation(s)
- Matthew J Borrelli
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Michael B Boffa
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Marlys L Koschinsky
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
12
|
Nandakumar R, Matveyenko A, Thomas T, Pavlyha M, Ngai C, Holleran S, Ramakrishnan R, Ginsberg HN, Karmally W, Marcovina SM, Reyes-Soffer G. Effects of mipomersen, an apolipoprotein B100 antisense, on lipoprotein (a) metabolism in healthy subjects. J Lipid Res 2018; 59:2397-2402. [PMID: 30293969 DOI: 10.1194/jlr.p082834] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 09/25/2018] [Indexed: 01/17/2023] Open
Abstract
Elevated lipoprotein (a) [Lp(a)] levels increase the risk for CVD. Novel treatments that decrease LDL cholesterol (LDL-C) have also shown promise for reducing Lp(a) levels. Mipomersen, an antisense oligonucleotide that inhibits apoB synthesis, is approved for the treatment of homozygous familial hypercholesterolemia. It decreases plasma levels of LDL-C by 25% to 39% and lowers levels of Lp(a) by 21% to 39%. We examined the mechanisms for Lp(a) lowering during mipomersen treatment. We enrolled 14 healthy volunteers who received weekly placebo injections for 3 weeks followed by weekly injections of mipomersen for 7 weeks. Stable isotope kinetic studies were performed using deuterated leucine at the end of the placebo and mipomersen treatment periods. The fractional catabolic rate (FCR) of Lp(a) was determined from the enrichment of a leucine-containing peptide specific to apo(a) by LC/MS. The production rate (PR) of Lp(a) was calculated from the product of Lp(a) FCR and Lp(a) concentration (converted to pool size). In a diverse population, mipomersen reduced plasma Lp(a) levels by 21%. In the overall study group, mipomersen treatment resulted in a 27% increase in the FCR of Lp(a) with no significant change in PR. However, there was heterogeneity in the response to mipomersen therapy, and changes in both FCRs and PRs affected the degree of change in Lp(a) concentrations. Mipomersen treatment decreases Lp(a) plasma levels mainly by increasing the FCR of Lp(a), although changes in Lp(a) PR were significant predictors of reductions in Lp(a) levels in some subjects.
Collapse
Affiliation(s)
- Renu Nandakumar
- Columbia University College of Physicians and Surgeons, New York, NY
| | | | - Tiffany Thomas
- Columbia University College of Physicians and Surgeons, New York, NY
| | - Marianna Pavlyha
- Columbia University College of Physicians and Surgeons, New York, NY
| | - Colleen Ngai
- Columbia University College of Physicians and Surgeons, New York, NY
| | - Stephen Holleran
- Columbia University College of Physicians and Surgeons, New York, NY
| | | | - Henry N Ginsberg
- Columbia University College of Physicians and Surgeons, New York, NY
| | - Wahida Karmally
- Columbia University College of Physicians and Surgeons, New York, NY
| | - Santica M Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, WA
| | | |
Collapse
|
13
|
Barter PJ, Cochran BJ, Rye KA. CETP inhibition, statins and diabetes. Atherosclerosis 2018; 278:143-146. [PMID: 30278356 DOI: 10.1016/j.atherosclerosis.2018.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023]
Abstract
Type 2 diabetes is a causal risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). While treatment with a statin reduces the risk of having an ASCVD event in all people, including those with type-2 diabetes, statin treatment also increases the likelihood of new onset diabetes when given to those with risk factors for developing diabetes. Treatment with the cholesteryl ester transfer protein (CETP) inhibitor, anacetrapib, reduces the risk of having a coronary event over and above that achieved with a statin. However, unlike statins, anacetrapib decreases the risk of developing diabetes. If the reduced risk of new-onset diabetes is confirmed in another CETP inhibitor outcome trial, there will be a case for considering the use of the combination of a statin plus a CETP inhibitor in high ASCVD-risk people who are also at increased risk of developing diabetes.
Collapse
Affiliation(s)
- Philip J Barter
- Lipid Research Group, School of Medical Sciences, The University of New South Wales, Australia.
| | - Blake J Cochran
- Lipid Research Group, School of Medical Sciences, The University of New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, The University of New South Wales, Australia
| |
Collapse
|
14
|
Abstract
Unknown 15 years ago, PCSK9 (proprotein convertase subtilisin/kexin type 9) is now common parlance among scientists and clinicians interested in prevention and treatment of atherosclerotic cardiovascular disease. What makes this story so special is not its recent discovery nor the fact that it uncovered previously unknown biology but rather that these important scientific insights have been translated into an effective medical therapy in record time. Indeed, the translation of this discovery to novel therapeutic serves as one of the best examples of how genetic insights can be leveraged into intelligent target drug discovery. The PCSK9 saga is unfolding quickly but is far from complete. Here, we review major scientific understandings as they relate to the role of PCSK9 in lipoprotein metabolism and atherosclerotic cardiovascular disease and the impact that therapies designed to inhibit its action are having in the clinical setting.
Collapse
Affiliation(s)
- Michael D Shapiro
- From the Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland
| | - Hagai Tavori
- From the Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland
| | - Sergio Fazio
- From the Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland.
| |
Collapse
|
15
|
Barter PJ, Rye KA. Cholesteryl Ester Transfer Protein Inhibitors as Agents to Reduce Coronary Heart Disease Risk. Cardiol Clin 2018; 36:299-310. [DOI: 10.1016/j.ccl.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Masuda Y, Yamaguchi S, Suzuki C, Aburatani T, Nagano Y, Miyauchi R, Suzuki E, Yamamura N, Nagatomo K, Ishihara H, Okuno K, Nara F, Matschiner G, Hashimoto R, Takahashi T, Nishizawa T. Generation and Characterization of a Novel Small Biologic Alternative to Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Antibodies, DS-9001a, Albumin Binding Domain–Fused Anticalin Protein. J Pharmacol Exp Ther 2018; 365:368-378. [DOI: 10.1124/jpet.117.246652] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/15/2018] [Indexed: 01/06/2023] Open
|
17
|
Masson W, Lobo M, Siniawski D, Huerín M, Molinero G, Valéro R, Nogueira JP. Therapy with cholesteryl ester transfer protein (CETP) inhibitors and diabetes risk. DIABETES & METABOLISM 2018. [PMID: 29523487 DOI: 10.1016/j.diabet.2018.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cholesteryl ester transfer protein (CETP) inhibitors are a class of drugs that targets the CETP enzyme to significantly increase serum high-density lipoprotein cholesterol (HDL-C) and decrease low-density lipoprotein cholesterol (LDL-C) levels. As HDL-C has potential antidiabetic properties, and the beneficial effects of CETP drugs on glucose homoeostasis have not been sufficiently studied, the aims of this study were: (1) to evaluate the effect of CETP inhibitors on the incidence of diabetes; and (2) to assess the association between CETP inhibitor-induced changes in HDL-C levels and incidence of diabetes. METHODS A meta-analysis was performed of randomized controlled clinical trials of CETP inhibitor therapy, either alone or combined with other lipid-lowering drugs, reporting data from new cases of diabetes with a minimum of 6 months of follow-up, after searching the PubMed/MEDLINE, Embase and Cochrane Controlled Trials databases. A fixed-effects meta-regression model was then applied. RESULTS Four eligible trials of CETP inhibitors, involving a total of 73,479 patients, were considered for the analyses, including 960 newly diagnosed cases of diabetes in the CTEP inhibitor group vs 1086 in the placebo group. CETP inhibitor therapy was associated with a significant 12% reduction in incidence of diabetes (OR: 0.88, 95% CI: 0.81-0.96; P=0.005). Assessment of the relationship between on-treatment HDL-C and the effect of CETP inhibitors showed a statistically non-significant trend (Z=-1.13, P=0.26). CONCLUSION CETP inhibitors reduced the incidence of diabetes. The improvement in glucose metabolism may have been related, at least in part, to the increase in HDL-C concentration.
Collapse
Affiliation(s)
- W Masson
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Azcuenaga 980, C1115AAD Buenos Aires, Argentina; Argentine Society of Lipids, Ambrosio Olmos 820, X5000JGQ Córdoba, Argentina.
| | - M Lobo
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Azcuenaga 980, C1115AAD Buenos Aires, Argentina
| | - D Siniawski
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Azcuenaga 980, C1115AAD Buenos Aires, Argentina; Argentine Society of Lipids, Ambrosio Olmos 820, X5000JGQ Córdoba, Argentina
| | - M Huerín
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Azcuenaga 980, C1115AAD Buenos Aires, Argentina
| | - G Molinero
- Council of Epidemiology and Cardiovascular Prevention, Argentine Society of Cardiology, Azcuenaga 980, C1115AAD Buenos Aires, Argentina
| | - R Valéro
- Aix-Marseille University, UMR 1062 INSERM, 1260 INRA, C2VN, NORT, Marseille, France; Department of Nutrition, Metabolic Diseases, Endocrinology, CHU La Conception, APHM, Marseille, France
| | - J P Nogueira
- Argentine Society of Lipids, Ambrosio Olmos 820, X5000JGQ Córdoba, Argentina; Facultad de Ciencias de la Salud, Universidad Nacional de Formosa, Av. Gutnisky 3200, Formosa P3600AZS, Argentina
| |
Collapse
|
18
|
Abstract
Cholesteryl ester transfer protein (CETP) facilitates movement of esterified cholesterol between high-density lipoproteins (HDLs) and apolipoprotein B-containing lipoproteins. By virtue of their ability to raise HDL cholesterol and lower low-density lipoprotein cholesterol, pharmacological inhibitors of CETP have received considerable attention as potential new agents in cardiovascular prevention. While early studies of CETP inhibitors have demonstrated a lack of clinical efficacy and potential toxicity, development of the potent CETP inhibitor, anacetrapib, has moved forward, with emerging evidence suggesting a role in reducing cardiovascular events. The experience with anacetrapib and its potential for use in clinical practice are reviewed here.
Collapse
Affiliation(s)
- Belinda A Di Bartolo
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
19
|
Arsenault BJ, Petrides F, Tabet F, Bao W, Hovingh GK, Boekholdt SM, Ramin-Mangata S, Meilhac O, DeMicco D, Rye KA, Waters DD, Kastelein JJP, Barter P, Lambert G. Effect of atorvastatin, cholesterol ester transfer protein inhibition, and diabetes mellitus on circulating proprotein subtilisin kexin type 9 and lipoprotein(a) levels in patients at high cardiovascular risk. J Clin Lipidol 2017; 12:130-136. [PMID: 29103916 DOI: 10.1016/j.jacl.2017.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/06/2017] [Accepted: 10/03/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Proprotein subtilisin kexin type 9 (PCSK9) and lipoprotein (a) [Lp(a)] levels are causative risk factors for coronary heart disease. OBJECTIVES The objective of the study was to determine the impact of lipid-lowering treatments on circulating PCSK9 and Lp(a). METHODS We measured PCSK9 and Lp(a) levels in plasma samples from Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events trial patients with coronary heart disease and/or type II diabetes (T2D) mellitus. Patients received atorvastatin, which was titrated (10, 20, 40, or 80 mg/d) to achieve low-density lipoprotein cholesterol levels <100 mg/dL (baseline) and were subsequently randomized either to atorvastatin + torcetrapib, a cholesterol ester transfer protein inhibitor, or to atorvastatin + placebo. RESULTS At baseline, both plasma PCSK9 and Lp(a) were dose-dependently increased with increasing atorvastatin doses. Compared with patients without T2D, those with T2D had higher PCSK9 (357 ± 123 vs 338 ± 115 ng/mL, P = .0012) and lower Lp(a) levels (28 ± 32 vs 32 ± 33 mg/dL, P = .0005). Plasma PCSK9 levels significantly increased in patients treated with torcetrapib (+13.1 ± 125.3 ng/mL [+3.7%], P = .005), but not in patients treated with placebo (+2.6 ± 127.9 ng/mL [+0.7%], P = .39). Plasma Lp(a) levels significantly decreased in patients treated with torcetrapib (-3.4 ± 10.7 mg/dL [-11.1%], P < .0001), but not in patients treated with placebo (+0.3 ± 9.4 mg/dL [+0.1%], P = .92). CONCLUSION In patients at high cardiovascular disease risk, PCSK9 and Lp(a) are positively and dose-dependently correlated with atorvastatin dosage, whereas the presence of T2D is associated with higher PCSK9 but lower Lp(a) levels. Cholesterol ester transfer protein inhibition with torcetrapib slightly increases PCSK9 levels and decreases Lp(a) levels.
Collapse
Affiliation(s)
- Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Francine Petrides
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Fatiha Tabet
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | | | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | - Olivier Meilhac
- Inserm, UMR 1188 DéTROI, Université de La Réunion, Sainte-Clotilde, France
| | | | - Kerry-Anne Rye
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - David D Waters
- Division of Cardiology, University of California, San Francisco, CA, USA
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Philip Barter
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Gilles Lambert
- Inserm, UMR 1188 DéTROI, Université de La Réunion, Sainte-Clotilde, France.
| |
Collapse
|
20
|
Abstract
The development of CETP (cholesteryl ester transfer protein) inhibitors has had a long and difficult course with 3 compounds failing in phase III clinical trials. Finally, the REVEAL (Randomized Evaluation of the Effects of Anacetrapib through Lipid modification) trial has shown that the CETP inhibitor anacetrapib decreased coronary heart disease when added to statin therapy. Although the result is different to earlier studies, this is likely related to the size and duration of the trial. The benefit of anacetrapib seems to be largely explained by lowering of non-HDL-C (high-density lipoprotein cholesterol), rather than increases in HDL-C. Although the magnitude of benefit for coronary heart disease appeared to be moderate, in part this may have reflected aspects of the trial design. Anacetrapib treatment was associated with a small increase in blood pressure, but was devoid of major side effects and was also associated with a small reduction in diabetes mellitus. Treatment with CETP inhibitors, either alone or in combination with statins, could provide another option for patients with coronary disease who require further reduction in LDL (low-density lipoprotein) and non-HDL-C.
Collapse
Affiliation(s)
- Alan R Tall
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York (A.R.T.); and Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| | - Daniel J Rader
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York (A.R.T.); and Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| |
Collapse
|
21
|
Filippatos TD, Kei A, Elisaf MS. Anacetrapib, a New CETP Inhibitor: The New Tool for the Management of Dyslipidemias? Diseases 2017; 5:diseases5040021. [PMID: 28961179 PMCID: PMC5750532 DOI: 10.3390/diseases5040021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) inhibitors significantly increase serum high-density lipoprotein cholesterol (HDL) cholesterol levels and decrease low-density lipoprotein cholesterol (LDL) cholesterol concentration. However, three drugs of this class failed to show a decrease of cardiovascular events in high-risk patients. A new CETP inhibitor, anacetrapib, substantially increases HDL cholesterol and apolipoprotein (Apo) AI levels with a profound increase of large HDL2 particles, but also pre-β HDL particles, decreases LDL cholesterol levels mainly due to increased catabolism of LDL particles through LDL receptors, decreases lipoprotein a (Lp(a)) levels owing to a decreased Apo (a) production and, finally, decreases modestly triglyceride (TRG) levels due to increased lipolysis and increased receptor-mediated catabolism of TRG-rich particles. Interestingly, anacetrapib may be associated with a beneficial effect on carbohydrate homeostasis. Furthermore, the Randomized EValuation of the Effects of Anacetrapib Through Lipid-modification (REVEAL) trial showed that anacetrapib administration on top of statin treatment significantly reduces cardiovascular events in patients with atherosclerotic vascular disease without any significant increase of adverse events despite its long half-life. Thus, anacetrapib could be useful for the effective management of dyslipidemias in high-risk patients that do not attain their LDL cholesterol target or are statin intolerable, while its role in patients with increased Lp(a) levels remains to be established.
Collapse
Affiliation(s)
- Theodosios D Filippatos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - Anastazia Kei
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - Moses S Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
22
|
Krishna R, Gheyas F, Liu Y, Cote J, Laterza O, Ruckle JL, Wagner JA, Denker AE. Pharmacokinetics and Pharmacodynamics of Anacetrapib Following Single Doses in Healthy, Young Japanese and White Male Subjects. J Clin Pharmacol 2017; 58:254-262. [DOI: 10.1002/jcph.1004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Yang Liu
- MRL; Merck & Co. Inc.; Kenilworth NJ USA
| | - Josee Cote
- MRL; Merck & Co. Inc.; Kenilworth NJ USA
| | | | - Jon L. Ruckle
- Covance Clinical Research Unit; Inc. (formerly known as Radiant Research - Honolulu); Honolulu HI USA
- Current Address: Pacific Pharma Group, LLC; Tacoma WA USA
| | - John A. Wagner
- MRL; Merck & Co. Inc.; Kenilworth NJ USA
- Current Address: Takeda Pharmaceuticals International Co.; Cambridge MA USA
| | - Andrew E. Denker
- MRL; Merck & Co. Inc.; Kenilworth NJ USA
- Current Address: Alexion Pharmaceuticals; New Haven CT USA
| |
Collapse
|
23
|
Thomas T, Zhou H, Karmally W, Ramakrishnan R, Holleran S, Liu Y, Jumes P, Wagner JA, Hubbard B, Previs SF, Roddy T, Johnson-Levonas AO, Gutstein DE, Marcovina SM, Rader DJ, Ginsberg HN, Millar JS, Reyes-Soffer G. CETP (Cholesteryl Ester Transfer Protein) Inhibition With Anacetrapib Decreases Production of Lipoprotein(a) in Mildly Hypercholesterolemic Subjects. Arterioscler Thromb Vasc Biol 2017; 37:1770-1775. [PMID: 28729361 PMCID: PMC5567403 DOI: 10.1161/atvbaha.117.309549] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Lp(a) [lipoprotein (a)] is composed of apoB (apolipoprotein B) and apo(a) [apolipoprotein (a)] and is an independent risk factor for cardiovascular disease and aortic stenosis. In clinical trials, anacetrapib, a CETP (cholesteryl ester transfer protein) inhibitor, causes significant reductions in plasma Lp(a) levels. We conducted an exploratory study to examine the mechanism for Lp(a) lowering by anacetrapib. APPROACH AND RESULTS We enrolled 39 participants in a fixed-sequence, double-blind study of the effects of anacetrapib on the metabolism of apoB and high-density lipoproteins. Twenty-nine patients were randomized to atorvastatin 20 mg/d, plus placebo for 4 weeks, and then atorvastatin plus anacetrapib (100 mg/d) for 8 weeks. The other 10 subjects were randomized to double placebo for 4 weeks followed by placebo plus anacetrapib for 8 weeks. We examined the mechanisms of Lp(a) lowering in a subset of 12 subjects having both Lp(a) levels >20 nmol/L and more than a 15% reduction in Lp(a) by the end of anacetrapib treatment. We performed stable isotope kinetic studies using 2H3-leucine at the end of each treatment to measure apo(a) fractional catabolic rate and production rate. Median baseline Lp(a) levels were 21.5 nmol/L (interquartile range, 9.9-108.1 nmol/L) in the complete cohort (39 subjects) and 52.9 nmol/L (interquartile range, 38.4-121.3 nmol/L) in the subset selected for kinetic studies. Anacetrapib treatment lowered Lp(a) by 34.1% (P≤0.001) and 39.6% in the complete and subset cohort, respectively. The decreases in Lp(a) levels were because of a 41% reduction in the apo(a) production rate, with no effects on apo(a) fractional catabolic rate. CONCLUSIONS Anacetrapib reduces Lp(a) levels by decreasing its production. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00990808.
Collapse
Affiliation(s)
- Tiffany Thomas
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Haihong Zhou
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Wahida Karmally
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Rajasekhar Ramakrishnan
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Stephen Holleran
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Yang Liu
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Patricia Jumes
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - John A Wagner
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Brian Hubbard
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Stephen F Previs
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Thomas Roddy
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Amy O Johnson-Levonas
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - David E Gutstein
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Santica M Marcovina
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Daniel J Rader
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Henry N Ginsberg
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - John S Millar
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.)
| | - Gissette Reyes-Soffer
- From the Columbia University, New York (T.T., W.K., R.R., S.H., H.N.G., G.R.-S.); Merck & Co, Inc, Kenilworth, NJ (H.Z., Y.L., P.J., J.A.W., B.H., S.F.P., T.R., A.O.J.-L., D.E.G.); University of Washington, Seattle (S.M.M.); and University of Pennsylvania, Philadelphia (D.J.R., J.S.M.).
| |
Collapse
|
24
|
Daurio NA, Wang SP, Chen Y, Zhou H, McLaren DG, Roddy TP, Johns DG, Milot D, Kasumov T, Erion MD, Kelley DE, Previs SF. Enhancing Studies of Pharmacodynamic Mechanisms via Measurements of Metabolic Flux: Fundamental Concepts and Guiding Principles for Using Stable Isotope Tracers. J Pharmacol Exp Ther 2017; 363:80-91. [DOI: 10.1124/jpet.117.241091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/14/2017] [Indexed: 11/22/2022] Open
|
25
|
Reyes-Soffer G, Ginsberg HN, Ramakrishnan R. The metabolism of lipoprotein (a): an ever-evolving story. J Lipid Res 2017; 58:1756-1764. [PMID: 28720561 DOI: 10.1194/jlr.r077693] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Lipoprotein (a) [Lp(a)] is characterized by apolipoprotein (a) [apo(a)] covalently bound to apolipoprotein B 100. It was described in human plasma by Berg et al. in 1963 and the gene encoding apo(a) (LPA) was cloned in 1987 by Lawn and colleagues. Epidemiologic and genetic studies demonstrate that increases in Lp(a) plasma levels increase the risk of atherosclerotic cardiovascular disease. Novel Lp(a) lowering treatments highlight the need to understand the regulation of plasma levels of this atherogenic lipoprotein. Despite years of research, significant uncertainty remains about the assembly, secretion, and clearance of Lp(a). Specifically, there is ongoing controversy about where apo(a) and apoB-100 bind to form Lp(a); which apoB-100 lipoproteins bind to apo(a) to create Lp(a); whether binding of apo(a) is reversible, allowing apo(a) to bind to more than one apoB-100 lipoprotein during its lifespan in the circulation; and how Lp(a) or apo(a) leave the circulation. In this review, we highlight past and recent data from stable isotope studies of Lp(a) metabolism, highlighting the critical metabolic uncertainties that exist. We present kinetic models to describe results of published studies using stable isotopes and suggest what future studies are required to improve our understanding of Lp(a) metabolism.
Collapse
Affiliation(s)
- Gissette Reyes-Soffer
- Departments of Medicine Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Henry N Ginsberg
- Departments of Medicine Columbia University College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
26
|
McCullough A, Previs S, Kasumov T. Stable isotope-based flux studies in nonalcoholic fatty liver disease. Pharmacol Ther 2017; 181:22-33. [PMID: 28720429 DOI: 10.1016/j.pharmthera.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with the worldwide epidemics of obesity, diabetes and cardiovascular diseases. NAFLD ranges from benign fat accumulation in the liver (steatosis) to non-alcoholic steatohepatitis (NASH), and cirrhosis which can progress to hepatocellular carcinoma and liver failure. Mass spectrometry and magnetic resonance spectroscopy-coupled stable isotope-based flux studies provide new insights into the understanding of NAFLD pathogenesis and the disease progression. This review focuses mainly on the utilization of mass spectrometry-based methods for the understanding of metabolic abnormalities in the different stages of NAFLD. For example, stable isotope-based flux studies demonstrated multi-organ insulin resistance, dysregulated glucose, lipids and lipoprotein metabolism in patients with NAFLD. We also review recent developments in the stable isotope-based technologies for the study of mitochondrial dysfunction, oxidative stress and fibrogenesis in NAFLD. We highlight the limitations of current methodologies, discuss the emerging areas of research in this field, and future directions for the applications of stable isotopes to study NAFLD and its complications.
Collapse
Affiliation(s)
- Arthur McCullough
- Department of Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Takhar Kasumov
- Department of Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, OH, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
27
|
Cremers S, Aronson JK. Drugs for rare disorders. Br J Clin Pharmacol 2017; 83:1607-1613. [PMID: 28653488 DOI: 10.1111/bcp.13331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Estimates of the frequencies of rare disorders vary from country to country; the global average defined prevalence is 40 per 100 000 (0.04%). Some occur in only one or a few patients. However, collectively rare disorders are fairly common, affecting 6-8% of the US population, or about 30 million people, and a similar number in the European Union. Most of them affect children and most are genetically determined. Diagnosis can be difficult, partly because of variable presentations and partly because few clinicians have experience of individual rare disorders, although they may be assisted by searching databases. Relatively few rare disorders have specific pharmacological treatments (so-called orphan drugs), partly because of difficulties in designing trials large enough to determine benefits and harms alike. Incentives have been introduced to encourage the development of orphan drugs, including tax credits and research aids, simplification of marketing authorization procedures and exemption from fees, and extended market exclusivity. Consequently, the number of applications for orphan drugs has grown, as have the costs of using them, so much so that treatments may not be cost-effective. It has therefore been suggested that not-for-profit organizations that are socially motivated to reduce those costs should be tasked with producing them. A growing role for patient organizations, improved clinical and translational infrastructures, and developments in genetics have also contributed to successful drug development. The translational discipline of clinical pharmacology is an essential component in drug development, including orphan drugs. Clinical pharmacologists, skilled in basic pharmacology and its links to clinical medicine, can be involved at all stages. They can contribute to the delineation of genetic factors that determine clinical outcomes of pharmacological interventions, develop biomarkers, design and perform clinical trials, assist regulatory decision making, and conduct postmarketing surveillance and pharmacoepidemiological and pharmacoeconomic assessments.
Collapse
Affiliation(s)
- Serge Cremers
- Departments of Pathology & Cell Biology and Medicine, and Irving Institute for Clinical and Translational Research, Columbia University Medical Center, New York, NY, 10027, USA
| | - Jeffrey K Aronson
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, Radcliffe Infirmary, Woodstock Road, Oxford,, OX2 6GG, UK
| |
Collapse
|
28
|
Ming JE, Abrams RE, Bartlett DW, Tao M, Nguyen T, Surks H, Kudrycki K, Kadambi A, Friedrich CM, Djebli N, Goebel B, Koszycki A, Varshnaya M, Elassal J, Banerjee P, Sasiela WJ, Reed MJ, Barrett JS, Azer K. A Quantitative Systems Pharmacology Platform to Investigate the Impact of Alirocumab and Cholesterol-Lowering Therapies on Lipid Profiles and Plaque Characteristics. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017710941. [PMID: 28804243 PMCID: PMC5484552 DOI: 10.1177/1177625017710941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/17/2017] [Indexed: 12/20/2022]
Abstract
Reduction in low-density lipoprotein cholesterol (LDL-C) is associated with decreased risk for cardiovascular disease. Alirocumab, an antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly reduces LDL-C. Here, we report development of a quantitative systems pharmacology (QSP) model integrating peripheral and liver cholesterol metabolism, as well as PCSK9 function, to examine the mechanisms of action of alirocumab and other lipid-lowering therapies, including statins. The model predicts changes in LDL-C and other lipids that are consistent with effects observed in clinical trials of single or combined treatments of alirocumab and other treatments. An exploratory model to examine the effects of lipid levels on plaque dynamics was also developed. The QSP platform, on further development and qualification, may support dose optimization and clinical trial design for PCSK9 inhibitors and lipid-modulating drugs. It may also improve our understanding of factors affecting therapeutic responses in different phenotypes of dyslipidemia and cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey E Ming
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Ruth E Abrams
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | | | - Mengdi Tao
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Tu Nguyen
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Howard Surks
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | | | | | | | - Nassim Djebli
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Britta Goebel
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Alex Koszycki
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Meera Varshnaya
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | | | | | | | | | - Jeffrey S Barrett
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Karim Azer
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| |
Collapse
|
29
|
Hey SP, Franklin JM, Avorn J, Kesselheim AS. Success, Failure, and Transparency in Biomarker-Based Drug Development. Circ Cardiovasc Qual Outcomes 2017; 10:CIRCOUTCOMES.116.003121. [DOI: 10.1161/circoutcomes.116.003121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 04/17/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Spencer Phillips Hey
- From the Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (S.P.H., J.M.F., J.A., A.S.K.); and Harvard Center for Bioethics, Harvard Medical School, Boston, MA (S.P.H., A.S.K.)
| | - Jessica M. Franklin
- From the Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (S.P.H., J.M.F., J.A., A.S.K.); and Harvard Center for Bioethics, Harvard Medical School, Boston, MA (S.P.H., A.S.K.)
| | - Jerry Avorn
- From the Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (S.P.H., J.M.F., J.A., A.S.K.); and Harvard Center for Bioethics, Harvard Medical School, Boston, MA (S.P.H., A.S.K.)
| | - Aaron S. Kesselheim
- From the Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (S.P.H., J.M.F., J.A., A.S.K.); and Harvard Center for Bioethics, Harvard Medical School, Boston, MA (S.P.H., A.S.K.)
| |
Collapse
|
30
|
Abstract
INTRODUCTION Cardiovascular morbidity and mortality are of increasing concern, not only to patients but also to the health care profession and service providers. The preventative benefit of treatment of dyslipidaemia is unquestioned but there is a large, so far unmet need to improve clinical outcome. There are exciting new discoveries of targets that may translate into improved clinical outcome. Areas covered: This review highlights some new pathways in cholesterol and triglyceride metabolism and examines new targets, new drugs and new molecules. The review includes the results of recent trials of relatively new drugs that have shown benefit in cardiovascular endpoint outcomes, drugs that have been licenced without endpoint trials yet available and new drugs that have not yet been licenced but have produced exciting results in animal studies and some in early phase 2 human studies. Expert opinion: The new areas that have been discovered as the cause of dyslipidaemia have opened up a host of new targets for new drugs including antisense RNA's, microRNA's and human monoclonal antibodies. The plethora of new targets and new drugs has made it an extraordinarily exciting time in the development of therapeutics to combat atherosclerosis.
Collapse
Affiliation(s)
- Gerald H Tomkin
- a Diabetes Institute of Ireland , Beacon Clinic and Trinity College , Dublin 2 , Ireland
| | - Daphne Owens
- a Diabetes Institute of Ireland , Beacon Clinic and Trinity College , Dublin 2 , Ireland
| |
Collapse
|
31
|
Millar JS, Lassman ME, Thomas T, Ramakrishnan R, Jumes P, Dunbar RL, deGoma EM, Baer AL, Karmally W, Donovan DS, Rafeek H, Wagner JA, Holleran S, Obunike J, Liu Y, Aoujil S, Standiford T, Gutstein DE, Ginsberg HN, Rader DJ, Reyes-Soffer G. Effects of CETP inhibition with anacetrapib on metabolism of VLDL-TG and plasma apolipoproteins C-II, C-III, and E. J Lipid Res 2017; 58:1214-1220. [PMID: 28314859 PMCID: PMC5454510 DOI: 10.1194/jlr.m074880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/16/2017] [Indexed: 01/30/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Joseph Obunike
- New York City College of Technology, CUNY, Brooklyn, NY 11201
| | - Yang Liu
- Merck & Co., Inc., Kenilworth, NJ 07033
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Mass spectrometry is an ever evolving technology that is equipped with a variety of tools for protein research. Some lipoprotein studies, especially those pertaining to HDL biology, have been exploiting the versatility of mass spectrometry to understand HDL function through its proteome. Despite the role of mass spectrometry in advancing research as a whole, however, the technology remains obscure to those without hands on experience, but still wishing to understand it. In this review, we walk the reader through the coevolution of common mass spectrometry workflows and HDL research, starting from the basic unbiased mass spectrometry methods used to profile the HDL proteome to the most recent targeted methods that have enabled an unprecedented view of HDL metabolism. RECENT FINDINGS Unbiased global proteomics have demonstrated that the HDL proteome is organized into subgroups across the HDL size fractions providing further evidence that HDL functional heterogeneity is in part governed by its varying protein constituents. Parallel reaction monitoring, a novel targeted mass spectrometry method, was used to monitor the metabolism of HDL apolipoproteins in humans and revealed that apolipoproteins contained within the same HDL size fraction exhibit diverse metabolic properties. SUMMARY Mass spectrometry provides a variety of tools and strategies to facilitate understanding, through its proteins, the complex biology of HDL.
Collapse
Affiliation(s)
- Sasha A. Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Simic B, Mocharla P, Crucet M, Osto E, Kratzer A, Stivala S, Kühnast S, Speer T, Doycheva P, Princen HM, van der Hoorn JW, Jukema JW, Giral H, Tailleux A, Landmesser U, Staels B, Lüscher TF. Anacetrapib, but not evacetrapib, impairs endothelial function in CETP-transgenic mice in spite of marked HDL-C increase. Atherosclerosis 2017; 257:186-194. [PMID: 28152406 DOI: 10.1016/j.atherosclerosis.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS High-density lipoprotein cholesterol (HDL-C) is inversely related to cardiovascular risk. HDL-C raising ester transfer protein (CETP) inhibitors, are novel therapeutics. We studied the effects of CETP inhibitors anacetrapib and evacetrapib on triglycerides, cholesterol and lipoproteins, cholesterol efflux, paraoxonase activity (PON-1), reactive oxygen species (ROS), and endothelial function in E3L and E3L.CETP mice. METHODS Triglycerides and cholesterol were measured at weeks 5, 14 and 21 in E3L.CETP mice on high cholesterol diet and treated with anacetrapib (3 mg/kg/day), evacetrapib (3 mg/kg/day) or placebo. Cholesterol efflux was assessed ex-vivo in mice treated with CETP inhibitors for 3 weeks on a normal chow diet. Endothelial function was analyzed at week 21 in isolated aortic rings, and serum lipoproteins assessed by fast-performance liquid chromatography. RESULTS Anacetrapib and evacetrapib increased HDL-C levels (5- and 3.4-fold, resp.) and reduced triglycerides (-39% vs. placebo, p = 0.0174). Total cholesterol levels were reduced only in anacetrapib-treated mice (-32%, p = 0.0386). Cholesterol efflux and PON-1 activity (+45% and +35% vs. control, p < 0.005, resp.) were increased, while aortic ROS production was reduced with evacetrapib (-49% vs. control, p = 0.020). Anacetrapib, but not evacetrapib, impaired endothelium dependent vasorelaxation (p < 0.05). In contrast, no such effects were observed in E3L mice for all parameters tested. CONCLUSIONS Notwithstanding a marked rise in HDL-C, evacetrapib did not improve endothelial function, while anacetrapib impaired it, suggesting that CETP inhibition does not provide vascular protection. Anacetrapib exerts unfavorable endothelial effects beyond CETP inhibition, which may explain the neutral results of large clinical trials in spite of increased HDL-C.
Collapse
Affiliation(s)
- Branko Simic
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland.
| | - Pavani Mocharla
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Margot Crucet
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Elena Osto
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Adelheid Kratzer
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Susan Kühnast
- TNO - Metabolic Health Research, Leiden, The Netherlands
| | - Thimoteus Speer
- Department of Internal Medicine IV, Saarland University Medical Centre, Homburg, Germany
| | - Petia Doycheva
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Hans M Princen
- TNO - Metabolic Health Research, Leiden, The Netherlands
| | | | | | - Hector Giral
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Anne Tailleux
- Institute Pasteur de Lille, Inserm UMR 1011, University of Lille, France
| | - Ulf Landmesser
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Bart Staels
- Institute Pasteur de Lille, Inserm UMR 1011, University of Lille, France
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland.
| |
Collapse
|
34
|
Chan DC, Barrett PHR, Watts GF. Recent explanatory trials of the mode of action of drug therapies on lipoprotein metabolism. Curr Opin Lipidol 2016; 27:550-556. [PMID: 27749370 DOI: 10.1097/mol.0000000000000348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Dysregulated lipoprotein metabolism leads to increased plasma concentrations of atherogenic lipoproteins. We highlight the findings from recent studies of the effect of lipid-regulating therapies on apolipoprotein metabolism in humans employing endogenous labelling with stable isotopically labelled isotopomers. RECENT FINDINGS Fish oil supplementation and niacin treatment both reduce fasting and postprandial triglyceride levels by decreasing the hepatic secretion of VLDL-apoB-100 (apoB) and apoB-48-containing chylomicron particles in obese and/or type 2 diabetes. Niacin also lowers plasma LDL-apoB and Lp(a) levels by increasing catabolism of LDL-apoB and decreasing secretion of Lp(a), respectively. In subjects with hypercholesterolaemia, inhibition of cholesteryl ester transfer protein raises apoA-I and lowers apoB by decreasing and increasing the catabolism of HDL-apoA-I and LDL-apoB, respectively. Antisense oligonucleotides directed at apoB mRNA lowers plasma LDL-cholesterol and apoB chiefly by increasing the catabolism and decreasing the secretion of LDL-apoB in healthy subjects. That apoB ASO treatment does not lower hepatic secretion in humans is unexpected and merits further investigation. SUMMARY Kinetic studies provide mechanistic insight into the mode of action of lipid lowering therapies and lipoprotein disorders. Understanding the mode of action of new drugs in vivo is important to establish their effective use in clinical practice.
Collapse
Affiliation(s)
- Dick C Chan
- Metabolic Research Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW We provide an overview of orally administered lipid-lowering therapies under development. RECENT FINDINGS Recent data support statins for intermediate risk primary prevention, and ezetimibe for high-risk secondary prevention. Novel agents in development include bempedoic acid and gemcabene, and work continues on one remaining cholesteryl ester transfer protein inhibitor, anacetrapib, to determine whether this class can reduce cardiovascular risk. Selective peroxisome proliferator-activated receptor modulators such as K-877 are under study to determine whether they have an advantage over older fibrates. Diacylglycerol transferase inhibitors such as pradigastat appear to have potent triglyceride-lowering effects, even for patients with familial chylomicronemia syndrome. Finally, novel ω-3 preparations are available with significant triglyceride lowering, although their role in therapy remains unclear. SUMMARY Statins will remain the backbone of lipid-lowering therapy, although several novel oral agents are promising. The common theme across drugs in development is the demonstration of good lipid-lowering effect, although lacking cardiovascular outcomes data, which will likely be necessary before any of them, can be recommended or approved for widespread use.
Collapse
Affiliation(s)
- Steven E Gryn
- Department of Medicine, Schulich School of Medicine and Dentistry, London Health Sciences Centre-University Hospital, Western University, London, Ontario, Canada
| | | |
Collapse
|
36
|
Reyes-Soffer G, Moon B, Hernandez-Ono A, Dionizovik-Dimanovski M, Dionizovick-Dimanovski M, Jimenez J, Obunike J, Thomas T, Ngai C, Fontanez N, Donovan DS, Karmally W, Holleran S, Ramakrishnan R, Mittleman RS, Ginsberg HN. Complex effects of inhibiting hepatic apolipoprotein B100 synthesis in humans. Sci Transl Med 2016; 8:323ra12. [PMID: 26819195 DOI: 10.1126/scitranslmed.aad2195] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mipomersen is a 20mer antisense oligonucleotide (ASO) that inhibits apolipoprotein B (apoB) synthesis; its low-density lipoprotein (LDL)-lowering effects should therefore result from reduced secretion of very-low-density lipoprotein (VLDL). We enrolled 17 healthy volunteers who received placebo injections weekly for 3 weeks followed by mipomersen weekly for 7 to 9 weeks. Stable isotopes were used after each treatment to determine fractional catabolic rates and production rates of apoB in VLDL, IDL (intermediate-density lipoprotein), and LDL, and of triglycerides in VLDL. Mipomersen significantly reduced apoB in VLDL, IDL, and LDL, which was associated with increases in fractional catabolic rates of VLDL and LDL apoB and reductions in production rates of IDL and LDL apoB. Unexpectedly, the production rates of VLDL apoB and VLDL triglycerides were unaffected. Small interfering RNA-mediated knockdown of apoB expression in human liver cells demonstrated preservation of apoB secretion across a range of apoB synthesis. Titrated ASO knockdown of apoB mRNA in chow-fed mice preserved both apoB and triglyceride secretion. In contrast, titrated ASO knockdown of apoB mRNA in high-fat-fed mice resulted in stepwise reductions in both apoB and triglyceride secretion. Mipomersen lowered all apoB lipoproteins without reducing the production rate of either VLDL apoB or triglyceride. Our human data are consistent with long-standing models of posttranscriptional and posttranslational regulation of apoB secretion and are supported by in vitro and in vivo experiments. Targeting apoB synthesis may lower levels of apoB lipoproteins without necessarily reducing VLDL secretion, thereby lowering the risk of steatosis associated with this therapeutic strategy.
Collapse
Affiliation(s)
- Gissette Reyes-Soffer
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | - Byoung Moon
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Antonio Hernandez-Ono
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | | - Jhonsua Jimenez
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Joseph Obunike
- Biological Sciences Department, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201, USA
| | - Tiffany Thomas
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Colleen Ngai
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Nelson Fontanez
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Daniel S Donovan
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Wahida Karmally
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Stephen Holleran
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Rajasekhar Ramakrishnan
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | - Henry N Ginsberg
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
37
|
Abstract
There are several established lipid-modifying agents, including statins, fibrates, niacin, and ezetimibe, that have been shown in randomized clinical outcome trials to reduce the risk of having an atherosclerotic cardiovascular event. However, in many people, the risk of having an event remains unacceptably high despite treatment with these established agents. This has stimulated the search for new therapies designed to reduce residual cardiovascular risk. New approaches that target atherogenic lipoproteins include: 1) inhibition of proprotein convertase subtilisin/kexin type 9 to increase removal of atherogenic lipoproteins from plasma; 2) inhibition of the synthesis of apolipoprotein (apo) B, the main protein component of atherogenic lipoproteins; 3) inhibition of microsomal triglyceride transfer protein to block the formation of atherogenic lipoproteins; 4) inhibition of adenosine triphosphate citrate lyase to inhibit the synthesis of cholesterol; 5) inhibition of the synthesis of lipoprotein(a), a factor known to cause atherosclerosis; 6) inhibition of apoC-III to reduce triglyceride-rich lipoproteins and to enhance high-density lipoprotein (HDL) functionality; and 7) inhibition of cholesteryl ester transfer protein, which not only reduces the concentration of atherogenic lipoproteins but also increases the level and function of the potentially antiatherogenic HDL fraction. Other new therapies that specifically target HDLs include infusions of reconstituted HDLs, HDL delipidation, and infusions of apoA-I mimetic peptides that mimic some of the functions of HDLs. This review describes the scientific basis and rationale for developing these new therapies and provides a brief summary of established therapies.
Collapse
Affiliation(s)
- Philip J Barter
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
38
|
Yamashita S, Matsuzawa Y. Re-evaluation of cholesteryl ester transfer protein function in atherosclerosis based upon genetics and pharmacological manipulation. Curr Opin Lipidol 2016; 27:459-72. [PMID: 27454452 DOI: 10.1097/mol.0000000000000332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To re-evaluate the functions of plasma cholesteryl ester transfer protein (CETP) in atherosclerosis based upon recent findings from human genetics and pharmacological CETP manipulation. RECENT FINDINGS CETP is involved in the transfer of cholesteryl ester from HDL to apolipoprotein B-containing lipoproteins, a key step of reverse cholesterol transport (RCT). CETP inhibitors have been developed to raise serum HDL-cholesterol (HDL-C) levels and reduce cardiovascular events. However, outcome studies of three CETP inhibitors (torcetrapib, dalcetrapib and evacetrapib) were prematurely terminated because of increased mortality or futility despite marked increases in HDL-cholesterol and decreases in LDL-cholesterol except for dalcetrapib. Patients with CETP deficiency show remarkable changes in HDL and LDL and are sometimes accompanied by atherosclerotic cardiovascular diseases. Recent prospective epidemiological studies demonstrated atheroprotective roles of CETP. CETP inhibition induces formation of small dense LDL and possibly dysfunctional HDL and downregulates hepatic scavenger receptor class B type I (SR-BI). Therefore, CETP inhibitors may interrupt LDL receptor and SR-BI-mediated cholesterol delivery back to the liver. SUMMARY For future drug development, the opposite strategy, namely enhancers of RCT via CETP and SR-BI activation as well as the inducers of apolipoprotein A-I or HDL production might be a better approach rather than delaying HDL metabolism by inhibiting a main stream of RCT in vivo.
Collapse
Affiliation(s)
- Shizuya Yamashita
- aDepartment of Community Medicine bDepartment of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita cRinku General Medical Center, Izumisano dSumitomo Hospital, Kita-ku, Osaka, Japan
| | | |
Collapse
|
39
|
Abstract
Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient’s response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient’s condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate.
Collapse
|
40
|
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder that clinically leads to increased low density lipoprotein-cholesterol (LDL-C) levels. As a consequence, FH patients are at high risk for cardiovascular disease (CVD). Mutations are found in genes coding for the LDLR, apoB, and PCSK9, although FH cannot be ruled out in the absence of a mutation in one of these genes. It is pivotal to diagnose FH at an early age, since lipid lowering results in a decreased risk of cardiovascular complications especially if initiated early, but unfortunately FH is largely underdiagnosed. While a number of clinical criteria are available, identification of a pathogenic mutation in any of the three aforementioned genes is seen by many as a way to establish a definitive diagnosis of FH. It should be remembered that clinical treatment is based on LDL-C levels and not solely on presence or absence of genetic mutations as LDL-C is what drives risk. Traditionally, mutation detection has been done by means of dideoxy sequencing. However, novel molecular testing methods are gradually being introduced. These next generation sequencing-based methods are likely to be applied on broader scale once their efficacy and effect on cost are being established. Statins are the first-line therapy of choice for FH patients as they have been proven to reduce CVD risk across a range of conditions including hypercholesterolemia (though not specifically tested in FH). However, in a significant proportion of FH patients LDL-C goals are not met, despite the use of maximal statin doses and additional lipid-lowering therapies. This underlines the need for additional therapies, and inhibition of PCSK9 and CETP is among the most promising new therapeutic options. In this review, we aim to provide an overview of the latest information about the definition, diagnosis, screening, and current and novel therapies for FH.
Collapse
Affiliation(s)
- Merel L Hartgers
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Kausik K Ray
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Girona J, Ibarretxe D, Plana N, Guaita-Esteruelas S, Amigo N, Heras M, Masana L. Circulating PCSK9 levels and CETP plasma activity are independently associated in patients with metabolic diseases. Cardiovasc Diabetol 2016; 15:107. [PMID: 27488210 PMCID: PMC4973048 DOI: 10.1186/s12933-016-0428-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/22/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND PCSK9 inhibition is a new powerful cholesterol-lowering strategy. Recently, it was reported that CETP inhibitors influence PCSK9 levels as an off-target effect. We explored the relationship between circulating PCSK9 levels and CETP activity in patients with metabolic disease who were not on lipid-lowering therapy. METHODS Plasma CETP activity and PCSK9 levels were measured in 450 participants (median age, 58 years; 49 % women) who attended the metabolism unit because of metabolic syndrome (MetS) (78 %), atherogenic dyslipidemia (32 %), obesity (50 %), type 2 diabetes mellitus (72 %), and other risk factors (13 %). A 6 week lipid-lowering drug wash-out period was established in treated patients. RESULTS Both PCSK9 levels and CETP activity were higher in patients with an increasing number of MetS components. PCSK9 levels were positively correlated with CETP activity in the entire cohort (r = 0.256, P < 0.0001) independent of age, gender, body mass index (BMI), systolic blood pressure (SBP), LDL cholesterol (LDL-C), triglycerides and glucose. Individuals with the loss-of-function PCSK9 genetic variant rs11591147 (R46L) had lower levels of PCSK9 (36.5 %, P < 0.0001) and LDL-C (17.8 %, P = 0.010) as well as lower CETP activity (10.31 %, P = 0.009). This association remained significant in the multiple regression analysis even after adjusting for gender, age, BMI, LDL-C, triglycerides, glucose, lecithin-cholesterol acyltransferase, SBP and MetS (P = 0.003). CONCLUSIONS Our data suggest a metabolic association between PCSK9 and CETP independent of lipid-lowering treatment. The clinical implications of this metabolic relationship could be relevant for explaining the effect of PCSK9 and CETP inhibition on overall lipid profiles.
Collapse
Affiliation(s)
- Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Nuria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Sandra Guaita-Esteruelas
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus and Department of Electronic Engineering, Universitat Rovira i Virgili, IISPV, Tarragona, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Mercedes Heras
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain. .,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
42
|
The clinical utility of mass spectrometry based protein assays. Clin Chim Acta 2016; 459:155-161. [DOI: 10.1016/j.cca.2016.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 11/22/2022]
|
43
|
Okopień B, Bułdak Ł, Bołdys A. Current and future trends in the lipid lowering therapy. Pharmacol Rep 2016; 68:737-47. [DOI: 10.1016/j.pharep.2016.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/25/2016] [Accepted: 03/25/2016] [Indexed: 12/31/2022]
|
44
|
Singh SA, Aikawa E, Aikawa M. Current Trends and Future Perspectives of State-of-the-Art Proteomics Technologies Applied to Cardiovascular Disease Research. Circ J 2016; 80:1674-83. [PMID: 27430298 DOI: 10.1253/circj.cj-16-0499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of mass spectrometry (MS)-dependent protein research is increasing in the cardiovascular sciences. A major reason for this is the versatility of and ability for MS technologies to accommodate a variety of biological questions such as those pertaining to basic research and clinical applications. In addition, mass spectrometers are becoming easier to operate, and require less expertise to run standard proteomics experiments. Nonetheless, despite the increasing interest in proteomics, many non-expert end users may not be as familiar with the variety of mass spectrometric tools and workflows available to them. We therefore review the major strategies used in unbiased and targeted MS, while providing specific applications in cardiovascular research. Because MS technologies are developing rapidly, it is important to understand the core concepts, strengths and weaknesses. Most importantly, we hope to inspire the further integration of this exciting technology into everyday research in the cardiovascular sciences. (Circ J 2016; 80: 1674-1683).
Collapse
Affiliation(s)
- Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School
| | | | | |
Collapse
|
45
|
Ferri N, Corsini A, Macchi C, Magni P, Ruscica M. Proprotein convertase subtilisin kexin type 9 and high-density lipoprotein metabolism: experimental animal models and clinical evidence. Transl Res 2016; 173:19-29. [PMID: 26548330 DOI: 10.1016/j.trsl.2015.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/03/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) belongs to the proprotein convertase family. Several studies have demonstrated its involvement in the regulation of low-density lipoprotein (LDL) cholesterol levels by inducing the degradation of the LDL receptor (LDLR). However, experimental, epidemiologic, and pharmacologic data provide important evidence on the role of PCSK9 also on high-density lipoproteins (HDLs). In mice, PCSK9 regulates the HDL cholesterol (HDL-C) levels by the degradation of hepatic LDLR, thus inhibiting the uptake of apolipoprotein (Apo)E-containing HDLs. Several epidemiologic and genetic studies reported positive relationship between PCSK9 and HDL-C levels, likely by reducing the uptake of the ApoE-containing HDL particles. PCSK9 enhances also the degradation of LDLR's closest family members, ApoE receptor 2, very low-density lipoprotein receptor, and LDLR-related protein 1. This feature provides a molecular mechanism by which PCSK9 may affect HDL metabolism. Experimental studies demonstrated that PCSK9 directly interacts with HDL by modulating PCSK9 self-assembly and its binding to the LDLR. Finally, the inhibition of PCSK9 by means of monoclonal antibodies directed to PCSK9 (ie, evolocumab and alirocumab) determines an increase of HDL-C fraction by 7% and 4.2%, respectively. Thus, the understanding of the role of PCSK9 on HDL metabolism needs to be elucidated with a particular focus on the effect of PCSK9 on HDL-mediated reverse cholesterol transport.
Collapse
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università di Padova, Padua, Italy.
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Multimedica IRCCS, Milan, Italy
| | - Chiara Macchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Centro per lo Studio delle Malattie Dismetaboliche e delle Iperlipemie-Enrica Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
46
|
Xiao C, Dash S, Morgantini C, Hegele RA, Lewis GF. Pharmacological Targeting of the Atherogenic Dyslipidemia Complex: The Next Frontier in CVD Prevention Beyond Lowering LDL Cholesterol. Diabetes 2016; 65:1767-78. [PMID: 27329952 DOI: 10.2337/db16-0046] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/23/2016] [Indexed: 11/13/2022]
Abstract
Notwithstanding the effectiveness of lowering LDL cholesterol, residual CVD risk remains in high-risk populations, including patients with diabetes, likely contributed to by non-LDL lipid abnormalities. In this Perspectives in Diabetes article, we emphasize that changing demographics and lifestyles over the past few decades have resulted in an epidemic of the "atherogenic dyslipidemia complex," the main features of which include hypertriglyceridemia, low HDL cholesterol levels, qualitative changes in LDL particles, accumulation of remnant lipoproteins, and postprandial hyperlipidemia. We briefly review the underlying pathophysiology of this form of dyslipidemia, in particular its association with insulin resistance, obesity, and type 2 diabetes, and the marked atherogenicity of this condition. We explain the failure of existing classes of therapeutic agents such as fibrates, niacin, and cholesteryl ester transfer protein inhibitors that are known to modify components of the atherogenic dyslipidemia complex. Finally, we discuss targeted repurposing of existing therapies and review promising new therapeutic strategies to modify the atherogenic dyslipidemia complex. We postulate that targeting the central abnormality of the atherogenic dyslipidemia complex, the elevation of triglyceride-rich lipoprotein particles, represents a new frontier in CVD prevention and is likely to prove the most effective strategy in correcting most aspects of the atherogenic dyslipidemia complex, thereby preventing CVD events.
Collapse
Affiliation(s)
- Changting Xiao
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Satya Dash
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Cecilia Morgantini
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology and the Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Palmisano BT, Le TD, Zhu L, Lee YK, Stafford JM. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice. J Lipid Res 2016; 57:1541-51. [PMID: 27354419 DOI: 10.1194/jlr.m069013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism.
Collapse
Affiliation(s)
- Brian T Palmisano
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN
| | - Thao D Le
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN
| | - Lin Zhu
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - John M Stafford
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
48
|
van Capelleveen JC, Kastelein JJP, Zwinderman AH, van Deventer SJH, Collins HL, Adelman SJ, Round P, Ford J, Rader DJ, Hovingh GK. Effects of the cholesteryl ester transfer protein inhibitor, TA-8995, on cholesterol efflux capacity and high-density lipoprotein particle subclasses. J Clin Lipidol 2016; 10:1137-1144.e3. [PMID: 27678430 DOI: 10.1016/j.jacl.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/07/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND TA-8995 is a potent inhibitor of cholesteryl ester transfer protein (CETP) with beneficial effects on lipids and lipoproteins. The effect of TA-8995 on cholesterol efflux capacity (CEC), a measure of high-density lipoprotein (HDL) function, and HDL subparticle distribution is largely unknown. OBJECTIVE To assess the effect of the CETP inhibitor TA-8995 on ABCA1- and non-ABCA1-driven CEC and on HDL particle distribution. METHODS Total, non-ABCA1-, and ABCA1-specific CEC from J774 cells and HDL subclass distribution assessed by two-dimensional gel electrophoresis were measured at baseline and after 12-week treatment in 187 mild-dyslipidemic patients randomized to placebo, 1 mg, 5 mg, 10 mg TA-8995, or 10 mg TA-8995 combined with 10 mg rosuvastatin (NCT01970215). RESULTS Compared with placebo, total, non-ABCA1-, and ABCA1-specific CEC were increased dose dependently by up to 38%, 72%, and 28%, respectively, in patients randomized to 10 mg of TA-8995. PreBeta-1 HDL, the primary acceptor for ABCA1-driven cholesterol efflux, was increased by 36%. This increase in preBeta-1 HDL correlated significantly with the total and the ABCA1-driven CEC increase, whereas the high-density lipoprotein cholesterol (HDL-C) increase did not. CONCLUSION TA-8995 dose dependently increased not only total and non-ABCA1-specific CEC but also ABCA1-specific CEC and preBeta-1 HDL particle levels. These findings suggest that TA-8995 not only increases HDL-C levels but also promotes functional properties of HDL particles. This CETP inhibitor-driven preBeta-1 HDL increase is an important predictor of both ABCA1 and total CEC increase, independent of HDL-C increase. Whether these changes in HDL particle composition and functionality have a beneficial effect on cardiovascular outcome requires formal testing in a cardiovascular outcome trial.
Collapse
Affiliation(s)
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands; Dezima Pharma BV, Naarden, The Netherlands.
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
| | - Sander J H van Deventer
- Dezima Pharma BV, Naarden, The Netherlands; Department of Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Patrick Round
- Dezima Pharma BV, Naarden, The Netherlands; Xention Ltd, Cambridge, UK
| | - John Ford
- Dezima Pharma BV, Naarden, The Netherlands; Xention Ltd, Cambridge, UK
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
49
|
Quintão ECR. The controversy over the use of cholesteryl ester transfer protein inhibitors: is there some light at the end of the tunnel? Eur J Clin Invest 2016; 46:581-9. [PMID: 26992444 DOI: 10.1111/eci.12626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/16/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND According to epidemiological studies, there is no clear relationship between the plasma cholesteryl ester transfer protein (CETP) concentration and the development of atherosclerosis in human populations. Although some studies suggest that increased CETP activity relates to undesirable profiles of plasma lipoproteins, promoting an anti-atherogenic plasma lipoprotein profile by drugs that inhibit CETP has not succeeded in preventing atherosclerosis in humans. MATERIALS AND METHODS This review describes 28 investigations in human populations dealing with plasma CETP, 11 in mice that express human CETP and seven in animals (six in rabbits and one in mice) in which plasma CETP activity was inhibited by drugs. RESULTS Present review shows that models in mice expressing human CETP are not illuminating because they report increase as well reduction of atherosclerosis. However, investigations in rabbits and mice that develop severe hypercholesterolaemia clearly indicate that impairment of the plasma CETP activity elicits protection against the development of atherosclerosis; in all of these experiments are attained substantial reductions of the atherogenic lipoproteins, namely, plasma apoB containing lipoproteins. CONCLUSION These models are strong indicators that the benefit in preventing atherosclerosis should be earned in cases of hyperlipidemia by CETP inhibitors.
Collapse
Affiliation(s)
- Eder C R Quintão
- Internal Medicine, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
50
|
Nicholls SJ, Ruotolo G, Brewer HB, Wang MD, Liu L, Willey MB, Deeg MA, Krueger KA, Nissen SE. Evacetrapib alone or in combination with statins lowers lipoprotein(a) and total and small LDL particle concentrations in mildly hypercholesterolemic patients. J Clin Lipidol 2016; 10:519-527.e4. [DOI: 10.1016/j.jacl.2015.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/21/2015] [Indexed: 10/22/2022]
|