1
|
Chen J, Li Y, Quan X, Chen J, Han Y, Yang L, Zhou M, Mok GSP, Wang R, Zhao Y. Utilizing engineered extracellular vesicles as delivery vectors in the management of ischemic stroke: a special outlook on mitochondrial delivery. Neural Regen Res 2025; 20:2181-2198. [PMID: 39101653 PMCID: PMC11759020 DOI: 10.4103/nrr.nrr-d-24-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/03/2024] [Accepted: 06/22/2024] [Indexed: 08/06/2024] Open
Abstract
Ischemic stroke is a secondary cause of mortality worldwide, imposing considerable medical and economic burdens on society. Extracellular vesicles, serving as natural nano-carriers for drug delivery, exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke. However, the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency. By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles, their delivery efficacy may be greatly improved. Furthermore, previous studies have indicated that microvesicles, a subset of large-sized extracellular vesicles, can transport mitochondria to neighboring cells, thereby aiding in the restoration of mitochondrial function post-ischemic stroke. Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components, such as proteins or deoxyribonucleic acid, or their sub-components, for extracellular vesicle-based ischemic stroke therapy. In this review, we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies. Given the complex facets of treating ischemic stroke, we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process. Moreover, given the burgeoning interest in mitochondrial delivery, we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Li Yang
- Department of Pharmacy, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Manfei Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Greta Seng Peng Mok
- Department of Electrical and Computer Engineering, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macao Special Administrative Region, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| |
Collapse
|
2
|
Feng H, Gao H, Chen J, Zhao R, Huang Y. Emerging phospholipid-targeted affinity materials for extracellular vesicle isolation and molecular profiling. J Chromatogr A 2025; 1741:465639. [PMID: 39742681 DOI: 10.1016/j.chroma.2024.465639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Extracellular vesicles (EVs) carrying lipids, proteins, nucleic acids and small molecular metabolites have emerged as an attractive paradigm for understanding and interfering physiological and pathological processes. To this end, selective and efficient separation approaches are highly demanded to obtain target EVs from complicated biosamples. With increasing knowledges on EV lipids, recent years have witnessed rapid advances of phospholipid-targeted affinity materials and platforms for high-performance isolation and analysis of EVs. In view of this, this review is contributed to introduce recent progresses in lipid membrane-targeted affinity strategies for EV isolation and molecular detection in biofluids. Affinity ligands including lipids, peptides, small molecules and aptamers and their molecular interactions with lipids are discussed in focus. The design, construction and mechanism of actions of affinity interfaces are summarized. The EV separation performances in complex biosamples and downstream proteomic, lipidomic and metabolic profiling are introduced. Finally, the perspectives and challenges for the development of next-generation phospholipid-targeted EV separation platforms are discussed.
Collapse
Affiliation(s)
- Huixia Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Sánchez SV, Otavalo GN, Gazeau F, Silva AKA, Morales JO. Intranasal delivery of extracellular vesicles: A promising new approach for treating neurological and respiratory disorders. J Control Release 2025; 379:489-523. [PMID: 39800240 DOI: 10.1016/j.jconrel.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Extracellular vesicles (EVs) are membrane vesicles secreted by all types of cells, including bacteria, animals, and plants. These vesicles contain proteins, nucleic acids, and lipids from their parent cells and can transfer these components between cells. EVs have attracted attention for their potential use in diagnosis and therapy due to their natural properties, such as low immunogenicity, high biocompatibility, and ability to cross the blood-brain barrier. They can also be engineered to carry therapeutic molecules. EVs can be delivered via various routes. The intranasal route is particularly advantageous for delivering them to the central nervous system, making it a promising approach for treating neurological disorders. SCOPE OF REVIEW This review delves into the promising potential of intranasally administered EVs-based therapies for various medical conditions, with a particular focus on those affecting the brain and central nervous system. Additionally, the potential use of these therapies for pulmonary conditions, cancer, and allergies is examined, offering a hopeful outlook for the future of medical treatments. MAJOR CONCLUSIONS The intranasal administration of EVs offers significant advantages over other delivery methods. By directly delivering EVs to the brain, specifically targeting areas that have been injured, this administration proves to be highly efficient and effective, providing reassurance about the progress in medical treatments. Intranasal delivery is not limited to brain-related conditions. It can also benefit other organs like the lungs and stimulate a mucosal immune response against various pathogens due to the highly vascularized nature of the nasal cavity and airways. Moreover, it has the added benefit of minimizing toxicity to non-targeted organs and allows the EVs to remain longer in the body. As a result, there is a growing emphasis on conducting clinical trials for intranasal administration of EVs, particularly in treating respiratory tract pathologies such as coronavirus disease.
Collapse
Affiliation(s)
- Sofía V Sánchez
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Gabriela N Otavalo
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Florence Gazeau
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Amanda K A Silva
- Université Paris Cité, CNRS UMR8175, INSERM U1334, Laboratory NABI (Nanomédecine, Biologie Extracellulaire, Intégratome et Innovations en santé), Paris, France
| | - Javier O Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile; Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile.
| |
Collapse
|
4
|
Lei R, Ren S, Ye H, Cui Z. Purification of mesenchymal stromal cell-derived small extracellular vesicles using ultrafiltration. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70030. [PMID: 39830832 PMCID: PMC11739894 DOI: 10.1002/jex2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/03/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) are pivotal for the curative effects of mesenchymal stromal cells, but their translation into clinical products is hindered by the technical challenges of scaled production and purification. Ultrafiltration, a pressure-driven membrane separation method, is well known as an efficient, scalable, and cost-effective approach for bioseparation. However, there has been little study so far that comprehensively evaluates the potential application of ultrafiltration for scaled sEV isolation and purification. In this study, the feasibility and effectiveness of ultrafiltration for MSC-sEV isolation and purification are studied, and the effects of key process design and operational parameters, including the membrane pore size, transmembrane pressure (TMP), stirring speed (shear rate), feed concentration, are quantified using a stirred cell setup. Results revealed that 500 kDa molecular weight cut-off (MWCO) polyethersulfone membrane demonstrated superior suitability for MSC-sEV separation, yielding higher purity and productivity compared to 100 and 300 kDa MWCO membranes of the same material. The MSC-sEV productivity and purity could also be improved by applying a moderate stirring speed and lower operational pressure, respectively. Isovolumetric diafiltration was incorporated to enhance the purity of MSC-sEVs, successfully removing about 99% of protein contaminants by six diafiltration volumes (DVs). Subsequently, a fed-batch ultra-diafiltration (UF/DF) process with optimised filtration parameters was developed and compared with the currently most used ultracentrifugation (UC) method, showing exceptional effectiveness and performance in the isolation of MSC-sEVs: it increased the recovery of MSC-sEV from 20.59% to 60.88% (about three folds increase) and nearly doubled the purity, while also reducing processing time from over 4 h to 3.5 h, with a potential further reduction to less than 2.5 h through automation. The study concludes that ultrafiltration could be a promising method for both lab-scale preparation and industrial-scale manufacture of MSC-sEVs, offering advantages of high recovery, scalability, fast, and cost-effectiveness.
Collapse
Affiliation(s)
- Rui Lei
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Shuai Ren
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| |
Collapse
|
5
|
Thiruvenkataramani RP, Abdul-Hafez A, Kesaraju T, Mohamed H, Ibrahim SA, Othman A, Arif H, Zarea AA, Abdulmageed M, Arellano MG, Mohamed T, Kanada M, Madhukar BV, Omar SA. Small Extracellular Vesicles Derived from Cord Blood Plasma and Placental Mesenchymal Stem Cells Attenuate Acute Lung Injury Induced by Lipopolysaccharide (LPS). Int J Mol Sci 2024; 26:75. [PMID: 39795932 PMCID: PMC11719573 DOI: 10.3390/ijms26010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. Accumulating evidence suggests that these paracrine effects are mediated by mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs), which play a critical role in immune system modulation and tissue regeneration. sEVs contain a diverse cargo of mRNA, miRNA, and proteins, contributing to their therapeutic potential. We hypothesize that sEVs derived from three distinct sources, cord blood plasma (CBP), Wharton jelly (WJ), and placental (PL) MSCs, may prevent the cytotoxicity induced by E. coli lipopolysaccharide (LPS) in lung alveolar epithelial cells. Objective: To determine the effects of CBP-, WJ-, and PL-MSCs-derived sEVs on cell viability, apoptosis, and proinflammatory cytokine production in alveolar epithelial cells and monocytes following LPS treatment. sEVs were collected from conditioned media of PL-MSCs, WJ-MSCs, and CBP using 50 nm membrane filters. sEVs were characterized based on nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting techniques. The protein concentration of isolated sEVs was used to standardize treatment doses. A549 cells and monocyte THP-1 cells were cultured and exposed to LPS in the presence or absence of sEVs for 72 h. Cell viability was measured using CellTiter-Glo 2.0 chemiluminescence-based assay. For cytokine analysis, A549 and THP-1 cells were pre-incubated for 24 h with or without PL- and CBP-sEVs, followed by exposure to LPS or control conditions for an additional 24 h. The conditioned media were collected, and interleukin-6 (IL-6) and interleukin-8 (IL-8) levels were quantified using ELISA. LPS treatment significantly reduced the viability of both A549 and THP-1 cells. The presence of CB- or WJ-sEVs significantly increased cell viability compared to controls. Cells treated with PL-sEVs showed increased cell viability but did not reach statistical significance. LPS-treated cells showed a significant increase in apoptosis and elevated levels of pro-inflammatory cytokines IL-6 and IL-8. All three sEVs types (CBP-, WJ-, and PL-sEVs) significantly reduced LPS-induced apoptosis and IL-6 release. Interestingly, while WJ-sEVs decreased IL-8, both CBP- and PL-sEVs led to an increase in IL-8 compared to their respective controls. CBP-, PL-, and WJ-derived sEVs demonstrated protective effects against LPS-induced injury in alveolar epithelial cells and monocytes, as evidenced by increased cell viability and modulation of pro-inflammatory cytokine release. These findings suggest that placenta-derived sEVs have the potential to modulate the immune response, mitigate inflammation, and prevent end-organ damage in neonatal sepsis.
Collapse
Affiliation(s)
- Ranga P. Thiruvenkataramani
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
- Regional Neonatal Intensive Care Unit, University of Michigan Health-Sparrow Hospital, Lansing, MI 48912, USA
| | - Amal Abdul-Hafez
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
| | - Tulasi Kesaraju
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
- Regional Neonatal Intensive Care Unit, University of Michigan Health-Sparrow Hospital, Lansing, MI 48912, USA
| | - Hend Mohamed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
- Regional Neonatal Intensive Care Unit, University of Michigan Health-Sparrow Hospital, Lansing, MI 48912, USA
| | - Sherif Abdelfattah Ibrahim
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
| | - Amira Othman
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
- Regional Neonatal Intensive Care Unit, University of Michigan Health-Sparrow Hospital, Lansing, MI 48912, USA
| | - Hattan Arif
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
| | - Ahmed A. Zarea
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.A.Z.); (M.K.)
| | - Mohammed Abdulmageed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
- Regional Neonatal Intensive Care Unit, University of Michigan Health-Sparrow Hospital, Lansing, MI 48912, USA
| | - Myrna Gonzalez Arellano
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
- Regional Neonatal Intensive Care Unit, University of Michigan Health-Sparrow Hospital, Lansing, MI 48912, USA
| | - Tarek Mohamed
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
- Regional Neonatal Intensive Care Unit, University of Michigan Health-Sparrow Hospital, Lansing, MI 48912, USA
| | - Masamitsu Kanada
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (A.A.Z.); (M.K.)
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Burra V. Madhukar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
| | - Said A. Omar
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA; (A.A.-H.); (T.K.); (H.M.); (S.A.I.); (A.O.); (H.A.); (M.A.); (M.G.A.); (T.M.); (B.V.M.); (S.A.O.)
- Regional Neonatal Intensive Care Unit, University of Michigan Health-Sparrow Hospital, Lansing, MI 48912, USA
| |
Collapse
|
6
|
Jiang H, Zhu X, Yu J, Wang W, Mao Y, Jiang L, Zhu L, Shen H, Lou C, Lin C, Lin Z, Yan Z, Wang Y, Wang J, Xue X, Pan X. Biomimetic Extracellular Vesicles Based on Composite Bioactive Ions for the Treatment of Ischemic Bone Disease. ACS NANO 2024; 18:34924-34948. [PMID: 39652362 DOI: 10.1021/acsnano.4c13028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Extracellular vesicles (EVs) have demonstrated considerable potential in the treatment of ischemic bone diseases, such as glucocorticoid-induced osteonecrosis of the femoral head (GIONFH). However, the clinical application of EVs faces challenges such as low yield, poor bioactivity, and lack of targeting. Herein, we have developed a platform of multiengineered extracellular vesicle mimetics (EVMs) to address these challenges. By stimulating mesenchymal stem cells (MSCs) with multibioactive ions from TS (Trisilicate, a mixture of calcium silicate, magnesium silicate, and strontium silicate), we obtained endogenously modified TS-MSCs. From these, we further prepared a large quantity of bioactive EVMTS-MSCs through a straightforward extrusion method. Moreover, by integrating metabolic glycoengineering with click chemistry strategies, alendronate (ALN) was surface-modified on EVMTS-MSCs to further prepare ALN-EVMTS-MSCs. The engineered ALN-EVMTS-MSCs demonstrated bone-targeting effects, promoting osteogenesis and angiogenesis. This promoting effect is attributed to the rich presence of miR-21 in the TS-modified EVM, which further silences PTEN to activate the PI3K/AKT signaling pathway, thereby enhancing osteogenesis and angiogenesis. Our treatment strategy for ischemic bone diseases is based on a multiengineered, biomaterial-inspired, metabolic glycoengineering, and click chemistry-based platform of EVM. This study also provides an enhanced understanding of the development and application of engineered vesicles in disease treatment.
Collapse
Affiliation(s)
- Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Xinyi Zhu
- The First Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Jiachen Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Yiwen Mao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Liting Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Liang Zhu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Hanting Shen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Zijian Yan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Yumeng Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000 Zhejiang, People's Republic of China
| | - Jilong Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000 Zhejiang, People's Republic of China
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000 Zhejiang Province, China
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou 325000 Zhejiang Province, China
| |
Collapse
|
7
|
Chacko N, Ankri R. Non-invasive early-stage cancer detection: current methods and future perspectives. Clin Exp Med 2024; 25:17. [PMID: 39708168 DOI: 10.1007/s10238-024-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 12/23/2024]
Abstract
This review paper explores the realm of non-invasive methods for early cancer detection. Early identification is crucial for effective therapeutic intervention, and non-invasive techniques have emerged as promising tools to enhance diagnostic accuracy and improve patient outcomes. The paper thoroughly examines the advantages, limitations, and prospects of various non-invasive approaches, including blood tests, non-blood-based tests, and diverse imaging modalities. It discusses the biomarkers found in blood for early-stage cancer detection, specifying the types of cancer associated with each biomarker. The non-blood-based tests focus on components in saliva, urine, and breath for cancer detection, alongside current studies and future perspectives on various cancers. Optical imaging methods covered in this review include fluorescence imaging in the near-infrared (NIR) region, bioluminescence imaging, and Raman spectroscopy for early-stage cancer detection. The review also highlights the pros and cons of ultrasound imaging in early-stage cancer detection. Additionally, the clinical implications of using AI for cancer detection, both present and future, are explored. This paper provides valuable insights for researchers and clinicians working in the field of non-invasive early-stage cancer detection.
Collapse
Affiliation(s)
- Neelima Chacko
- Department of Physics, Faculty of Natural Science, Ariel University, 40700, Ariel, Israel
| | - Rinat Ankri
- Department of Physics, Faculty of Natural Science, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
8
|
Dilsiz N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl Oncol 2024; 50:102121. [PMID: 39278189 PMCID: PMC11418158 DOI: 10.1016/j.tranon.2024.102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Exosomes are small, round vesicles in the 30 and 120 nm diameter range released by all living cell types. Exosomes play many essential functions in intercellular communication and tissue crosstalk in the human body. They can potentially be used as strong biomarkers and therapeutic agents for early diagnosis, therapy response, and prognosis of different diseases. The main requirements for exosomal large-scale clinical practice application are rapid, easy, high-yield, high purity, characterization, safety, low cost, and therapeutic efficacy. Depending on the sample types, environmental insults, and exosome quantity, exosomes can be isolated from various sources, including body fluids, solid tissues, and cell culture medium using different procedures. This study comprehensively analyzed the current research progress in exosome isolation and characterization strategies along with their advantages and disadvantages. The provided information will make it easier to select exosome separation methods based on the types of biological samples available, and it will facilitate the use of exosomes in translational and clinical research, particularly in cancer. Lay abstract Exosomes have recently received much attention due to their potential to function as biomarkers and novel therapeutic agents for early diagnosis, therapeutic response, and prognosis in various diseases. This review summarizes many approaches for isolating and characterizing exosomes, focusing on developing technologies, and provides an in-depth comparison and analysis of each method, including its principles, advantages, and limitations.
Collapse
Affiliation(s)
- Nihat Dilsiz
- Experimental Medicine Application and Research Center (EMARC) Validebag Research Park, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
9
|
Hassaan NA, Mansour HA. Exosomal therapy is a luxury area for regenerative medicine. Tissue Cell 2024; 91:102570. [PMID: 39383641 DOI: 10.1016/j.tice.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Stem cell-based therapies have made significant advancements in tissue regeneration and medical engineering. However, there are limitations to cell transplantation therapy, such as immune rejection and limited cell viability. These limitations greatly impede the translation of stem cell-based tissue regeneration into clinical practice. In recent years, exosomes, which are packaged vesicles released from cells, have shown promising progress. Specifically, exosomes derived from stem cells have demonstrated remarkable therapeutic benefits. Exosomes are nanoscale extracellular vesicles that act as paracrine mediators. They transfer functional cargos, such as miRNA and mRNA molecules, peptides, proteins, cytokines, and lipids, from MSCs to recipient cells. By participating in intercellular communication events, exosomes contribute to the healing of injured or diseased tissues and organs. Studies have shown that the therapeutic effects of MSCs in various experimental paradigms can be solely attributed to their exosomes. Consequently, MSC-derived exosomes can be modified and utilized to develop a unique cell-free therapeutic approach for treating multiple diseases, including neurological, immunological, heart, and other diseases. This review is divided into several categories, including the current understanding of exosome biogenesis, isolation techniques, and their application as therapeutic tools.
Collapse
Affiliation(s)
- Nahla A Hassaan
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Hanaa A Mansour
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
10
|
Nuzzo D, Girgenti A, Palumbo L, Naselli F, Bavetta M, Marfia G, Picone P. Vesicles: New Advances in the Treatment of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12672. [PMID: 39684383 DOI: 10.3390/ijms252312672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases are characterized by brain lesions that limit normal daily activities and represent a major challenge to healthcare systems worldwide, with a significant economic impact. Nanotechnology is the science of manipulating matter at the nanoscale, where materials exhibit unique properties that are significantly different from their larger counterparts. These properties can be exploited for a wide range of applications, including medicine. Among the emerging therapeutic approaches for the treatment of neurodegenerative diseases, nanotechnologies are gaining prominence as a promising avenue to explore. Here, we review the state of the art of biological and artificial vesicles and their biological properties in the context of neurodegenerative diseases. Indeed, nanometric structures such as extracellular vesicles and artificial vesicles represent a promising tool for the treatment of such disorders due to their size, biocompatibility, and ability to transport drugs, proteins, and genetic material across the blood-brain barrier to target specific cells and brain areas. In the future, a deeper and broader synergy between materials science, bioengineering, biology, medicine, and the discovery of new, increasingly powerful delivery systems will certainly enable a more applied use of nanotechnology in the treatment of brain disorders.
Collapse
Affiliation(s)
- Domenico Nuzzo
- Institute for Biomedical Research and Innovation, CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Antonella Girgenti
- Institute for Biomedical Research and Innovation, CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Laura Palumbo
- Institute for Biomedical Research and Innovation, CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Flores Naselli
- Institute for Biomedical Research and Innovation, CNR, Via U. La Malfa 153, 90146 Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Building 16, 90128 Palermo, Italy
| | - Martina Bavetta
- Institute for Biomedical Research and Innovation, CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Pasquale Picone
- Institute for Biomedical Research and Innovation, CNR, Via U. La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
11
|
Oh C, Mazan-Mamczarz K, Gorospe M, Noh JH, Kim KM. Impact of UPF2 on the levels of CD81 on extracellular vesicles. Front Cell Dev Biol 2024; 12:1469080. [PMID: 39655046 PMCID: PMC11625909 DOI: 10.3389/fcell.2024.1469080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Extracellular vesicles (EVs) are involved in cell-to-cell communication. Following uptake, EV cargo molecules, including DNA, RNA, lipids, and proteins, influence gene expression and molecular signaling in recipient cells. Although various studies have identified disease-specific EV molecules, further research into their biogenesis and secretion mechanisms is needed for clinical application. Here, we investigated the role of UPF2 in regulating the biogenesis and components of EVs. Notably, UPF2 promoted the expression of CD81, a membrane protein marker of EVs, as UPF2 silencing decreased CD81 levels in EVs, both inside the cell and secreted. In contrast, the expression levels of CD63 increased, without altering the size or numbers of EVs. In addition, reducing UPF2 levels did not affect the total number of EVs but lowered production of CD81-positive EVs and reduced the efficiency of uptake by recipient cells. Collectively, our findings uncover a novel function for UPF2 in regulating the production of CD81 and changing EV properties.
Collapse
Affiliation(s)
- Chaehwan Oh
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Ji Heon Noh
- Molecular Aging Biology Laboratory (MABL), Department of Biochemistry, College of Natural Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoung Mi Kim
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Li Q, Liu Q, Li S, Zuo X, Zhou H, Gao Z, Xia B. Golgi-derived extracellular vesicle production induced by SARS-CoV-2 envelope protein. Apoptosis 2024:10.1007/s10495-024-02035-3. [PMID: 39580578 DOI: 10.1007/s10495-024-02035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/25/2024]
Abstract
Extracellular vesicles facilitate cell-to-cell communication, and some enveloped viruses utilize these vesicles as carriers to mediate viral transmission. SARS-CoV-2 envelope protein (2-E) forms a cation channel and overexpression of 2-E led to the generation of a distinct type of large extracellular vesicles (2-E-EVs). Although 2-E-EVs have been demonstrated to facilitate viral transmission in a receptor-independent way, the characteristics and biogenesis mechanism remain enigmatic. Via lipidomics and proteomic analysis, we found 2-E-EVs are distinct from endosome-derived exosomes. 2-E-EVs are notably enriched in Golgi apparatus components, aligning with the observed fragmentation in Golgi morphology. Through live cell imaging, we established a connection between 2-E-EVs formation, Golgi fragmentation, and channel activity, emphasizing the role of 2-E-EVs as ion channel-induced extracellular vesicles. Our work highlights 2-E-EVs as distinctive Golgi-derived vesicles, contributing to a deeper understanding of 2-E channel-mediated virus-host dynamics, with implications for therapeutic strategies and drug delivery.
Collapse
Affiliation(s)
- Qiguang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Shuangqu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xiaoli Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, China.
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
13
|
Yamada N, Tominaga K, Tominaga N, Kobayashi A, Niino C, Miyagi Y, Yamagata H, Nakagawa S. Glycosylation changes of vWF in circulating extracellular vesicles to predict depression. Sci Rep 2024; 14:29066. [PMID: 39580509 PMCID: PMC11585580 DOI: 10.1038/s41598-024-80507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
The clinical diagnosis of major depressive disorder (MDD) still depends on subjective information in terms of various symptoms regarding mood. Detecting the characterization of extracellular vesicles (EVs) in blood may result in finding a diagnostic biomarker that reflects the depressive stage of patients with MDD. Here, we report the results on the glycosylation pattern of enriched plasma EVs from patients with MDD. We compared glycosylation patterns by lectin blotting expressed in EVs isolated from the plasma of both patients with MDD and age-matched healthy control participants (HCs) using size-exclusion chromatography. The levels of Wheat germ agglutinin (WGA), N-acetyl glucosamine (GlcNAc), and N-Acetylneuraminic acid (Neu5Ac, sialic acid) - binding lectin, were significantly decreased in patients with MDD in the depressive state compared to HCs and in remission state. Furthermore, proteome analysis revealed that the von Willebrand factor (vWF) was a significant factor recognized by WGA. WGA-binding vWF antigen differentiated patients with MDD versus HCs and the same patients with MDD in a depressive versus remission state. In this study, the change patterns in the glycoproteins contained in plasma EVs support the usability of testing to identify patients who are at increased risk of depression during antidepressant treatment.
Collapse
Affiliation(s)
- Norihiro Yamada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Kana Tominaga
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan.
| | - Naoomi Tominaga
- Division of Clinical Laboratory Sciences, Department of Nursing and Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Ayumi Kobayashi
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Chihiro Niino
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Yuta Miyagi
- Division of Clinical Laboratory Sciences, Department of Nursing and Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Yamaguchi, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
- Kokoro Hospital Machida, 2140, Kamioyamadamachi, Machida, 194-0201, Tokyo, Japan
| | - Shin Nakagawa
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, 755-8505, Yamaguchi, Japan
| |
Collapse
|
14
|
Liang Z, Chen Z, Zhang C, Chen C, Yang W, Zhang Y, Wei H. Mitochondria-Rich Microvesicles Alleviate CNI ED by Transferring Mitochondria and Suppressing Local Ferroptosis. Int J Nanomedicine 2024; 19:11745-11765. [PMID: 39558916 PMCID: PMC11570538 DOI: 10.2147/ijn.s488163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Purpose Erectile dysfunction (ED) frequently arises as a complication of pelvic surgeries, including rectal and prostate surgery, and has no definitive cure. This study explored whether mitochondria-rich microvesicles (MVs) can be used to treat ED stemming from cavernous nerve injury (CNI) and investigated its potential mechanisms. Methods We isolated MVs and mitochondria (MT) from PC12. The apoptosis rate, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial derived reactive oxygen species (mtROS), iron content, malondialdehyde (MDA) content and endogenous antioxidant system activity of corpus cavernosum smooth muscle cells (CCSMCs) cultured with MVs and MT were detected in vitro. In vivo, twenty-four male Sprague Dawley rats were randomly divided into four groups: sham operation group and CNI group were injected with PBS, MVs and MT respectively. After fourteen days of treatment, the erectile function was measured and penile tissues were collected for histological analysis. Subsequently, inhibition of mitochondria in MV was performed to explore the mechanism of the rescue experiment. Results The CCSMCs, PC12-MVs and PC12-MT were successfully isolated and identified. After MVs culture, apoptosis rate, ROS, mtROS, iron content and MDA content of CCSMCs were significantly decreased, while MMP and the activities of endogenous antioxidant system were increased. MVs transplantation can significantly restore erectile function and smooth muscle content in CNIED rats. The rescue experiment suggested that MVs exerted the above therapeutic effect by transferring mitochondria within it. Conclusion MVs transplantation significantly improve erectile function in CNI ED rats. MVs may play a role in anti-OS and anti-ferroptosis at the transplant site through efficient transfer of mitochondria, providing a potential treatment vehicle for CNI ED.
Collapse
Affiliation(s)
- Zhenkang Liang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| | - Chaowei Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| | - Cui Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| | - Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| | - Yuxuan Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| |
Collapse
|
15
|
Ma X, Peng L, Zhu X, Chu T, Yang C, Zhou B, Sun X, Gao T, Zhang M, Chen P, Chen H. Isolation, identification, and challenges of extracellular vesicles: emerging players in clinical applications. Apoptosis 2024:10.1007/s10495-024-02036-2. [PMID: 39522104 DOI: 10.1007/s10495-024-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) serve as critical mediators of intercellular communication, encompassing exosomes, microvesicles, and apoptotic vesicles that play significant roles in diverse physiological and pathological contexts. Numerous studies have demonstrated that EVs derived from mesenchymal stem cells (MSC-EVs) play a pivotal role in facilitating tissue and organ repair, alleviating inflammation and apoptosis, enhancing the proliferation of endogenous stem cells within tissues and organs, and modulating immune function-these functions have been extensively utilized in clinical applications. The precise classification, isolation, and identification of MSC-EVs are essential for their clinical applications. This article provides a comprehensive overview of the biological properties of EVs, emphasizing both their advantages and limitations in isolation and identification methodologies. Additionally, we summarize the protein markers associated with MSC-EVs, emphasizing their significance in the treatment of various diseases. Finally, this article addresses the current challenges and dilemmas in developing clinical applications for MSC-EVs, aiming to offer valuable insights for future research.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Lanwei Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaohui Zhu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianqi Chu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Changcheng Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Bohao Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiangwei Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianya Gao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Mengqi Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China.
| |
Collapse
|
16
|
Wang L, Xia J, Guan X, Song Y, Zhu M, Wang F, Zhao B, Liu L, Liu J. Ion osmolarity-driven sequential concentration-enrichment for the scale-up isolation of extracellular vesicles. J Nanobiotechnology 2024; 22:686. [PMID: 39523301 PMCID: PMC11550536 DOI: 10.1186/s12951-024-02956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) carry a variety of bioactive molecules and are becoming a promising alternative to cell therapy. Scale-up EV isolation is necessary for their functional studies and biological applications, while the traditional methods are challenged by low throughput, low yield, and potential damage. Herein, we developed an ion osmolarity-driven sequential concentration-enrichment strategy (IOSCE) for the EV isolation. IOSCE is composed of a novel superabsorbent polymers (SAPs) for EV concentration and a charged polymer for EV enrichment. Based on the driving force of ionic osmotic pressure, IOSCE can isolate EVs on a large scale from cell culture medium. The saturated water absorption capacity of IOSCE is 13.62 times higher than that of commercial SAPs. Compared with the ultracentrifugation method, IOSCE exhibited a 2.64 times higher yield (6.33 × 108 particles/mL). Moreover, the mesenchymal stem cell-derived EVs isolated using IOSCE demonstrate strong biological activity and can reduce neuroinflammation by affecting RNA metabolism and translation processes. IOSCE provides a cost-effective, high-throughput, and low-damage method for the scale up EV isolation, which is promising for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Lizhi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Junhao Xia
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xin Guan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yang Song
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Mengru Zhu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fengya Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Baofeng Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lukuan Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
17
|
Mohan HM, Fernandez MG, Huang C, Lin R, Ryou JH, Seyfried D, Grotewold N, Whiteley AM, Barmada SJ, Basrur V, Mosalaganti S, Paulson HL, Sharkey LM. Endogenous retrovirus-like proteins recruit UBQLN2 to stress granules and alter their functional properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620053. [PMID: 39484508 PMCID: PMC11527177 DOI: 10.1101/2024.10.24.620053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The human genome is replete with sequences derived from foreign elements including endogenous retrovirus-like proteins of unknown function. Here we show that UBQLN2, a ubiquitin-proteasome shuttle factor implicated in neurodegenerative diseases, is regulated by the linked actions of two retrovirus-like proteins, RTL8 and PEG10. RTL8 confers on UBQLN2 the ability to complex with and regulate PEG10. PEG10, a core component of stress granules, drives the recruitment of UBQLN2 to stress granules under various stress conditions, but can only do so when RTL8 is present. Changes in PEG10 levels further remodel the kinetics of stress granule disassembly and overall composition by incorporating select extracellular vesicle proteins. Within stress granules, PEG10 forms virus-like particles, underscoring the structural heterogeneity of this class of biomolecular condensates. Together, these results reveal an unexpected link between pathways of cellular proteostasis and endogenous retrovirus-like proteins.
Collapse
|
18
|
Fang X, Zhang Y, Zhang Y, Guan H, Huang X, Miao R, Yin R, Tian J. Endothelial extracellular vesicles: their possible function and clinical significance in diabetic vascular complications. J Transl Med 2024; 22:944. [PMID: 39415278 PMCID: PMC11481601 DOI: 10.1186/s12967-024-05760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
Diabetic vascular complications attract increased attention due to their high morbidity, mortality and disability rate. Comprehensive and in-depth exploration of the etiology and pathogenesis of diabetic vascular complications is important for diagnosis and treatment. Endothelial extracellular vesicles (EVs) serve as potential intercellular communicators, transmitting biological information from the donor cell to the recipient cell, exerting both harmful and beneficial effects on vascular function. Endothelial EVs are new diagnostic and therapeutic targets and biomarkers in diabetic vascular complications. This review summarizes the biogenesis and release of endothelial EVs, as well as isolation and characterization methods, and discusses the role of endothelial EVs in the maintenance of vascular homeostasis along with their contributions to vascular dysfunction. Finally, the article illustrates the impact of endothelial EVs on the pathogenesis of diabetic vascular complications and evaluates their potential as therapeutic tools and diagnostic markers in diabetic vascular complications.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Jilin, 130117, China
| | - Xinyue Huang
- First Clinical Medical College, Changzhi Medical College, Shanxi, 046013, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
19
|
Xia EJ, Zou S, Zhao X, Liu W, Zhang Y, Zhao IS. Extracellular vesicles as therapeutic tools in regenerative dentistry. Stem Cell Res Ther 2024; 15:365. [PMID: 39402576 PMCID: PMC11476107 DOI: 10.1186/s13287-024-03936-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Dental and maxillofacial diseases are always accompanied by complicated hard and soft tissue defects, involving bone, teeth, blood vessels and nerves, which are difficult to repair and severely affect the life quality of patients. Recently, extracellular vesicles (EVs) secreted by all types of cells and extracted from body fluids have gained more attention as potential solutions for tissue regeneration due to their special physiological characteristics and intrinsic signaling molecules. Compared to stem cells, EVs present lower immunogenicity and tumorigenicity, cause fewer ethical problems, and have higher stability. Thus, EV therapy may have a broad clinical application in regenerative dentistry. Herein, we reviewed the currently available literature regarding the functional roles of EVs in oral and maxillofacial tissue regeneration, including in maxilla and mandible bone, periodontal tissues, temporomandibular joint cartilage, dental hard tissues, peripheral nerves and soft tissues. We also summarized the underlying mechanisms of actions of EVs and their delivery strategies for dental tissue regeneration. This review would provide helpful guidelines and valuable insights into the emerging potential of EVs in future research and clinical applications in regenerative dentistry.
Collapse
Affiliation(s)
- Evelyn Jingwen Xia
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China
| | - Shasha Zou
- Longgang Center for Chronic Disease Control, Shenzhen, 518172, China
| | - Xiu Zhao
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Wei Liu
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen, 518015, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518015, China.
| | - Irene Shuping Zhao
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Ave, Shenzhen, 518015, China.
| |
Collapse
|
20
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
21
|
Zhang H, Pei S, Li J, Zhu J, Li H, Wu G, Weng R, Chen R, Fang Z, Sun J, Chen K. Insights about exosomal circular RNAs as novel biomarkers and therapeutic targets for hepatocellular carcinoma. Front Pharmacol 2024; 15:1466424. [PMID: 39444611 PMCID: PMC11496148 DOI: 10.3389/fphar.2024.1466424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most prevalent pathological types of Primary Liver Cancer (PLC) is the Hepatocellular Carcinoma (HCC) poses a global health issue. The high recurrence and metastasis rate of HCC, coupled with a low 5-year survival rate, result in a bleak prognosis. Exosomes, small extracellular vesicles released by various cells, contain diverse non-coding RNA molecules, including circular RNAs (circRNAs), which play a significant role in intercellular communication and can impact HCC progression. Studies have revealed the potential clinical applications of exosomal circRNAs as biomarkers and therapeutic targets for HCC. These circRNAs can be transferred via exosomes to nearby non-cancerous cells, thereby regulating HCC progression and influencing malignant phenotypes, such as cell proliferation, invasion, metastasis, and drug resistance. This review provides a comprehensive overview of the identified exosomal circRNAs, highlighting their potential as non-invasive biomarkers for HCC, and suggesting new perspectives for HCC diagnosis and treatment. The circRNA from exosomal organelles promotes metastasis and immune scape because of their unique chirality which is different from the Biomolecular Homochirality.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Zhejiang Chinese Medical University, Shuren College, Hangzhou, China
| | - Shanshan Pei
- School of Pharmacy, Beihua University, Jilin, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingbo Sun
- School of Pharmacy, Beihua University, Jilin, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
22
|
Wang J, Deng S, Cheng D, Gu J, Qin L, Mao F, Xue Y, Jiang Z, Chen M, Zou F, Huang N, Cao Y, Cai K. Engineered microparticles modulate arginine metabolism to repolarize tumor-associated macrophages for refractory colorectal cancer treatment. J Transl Med 2024; 22:908. [PMID: 39375706 PMCID: PMC11457421 DOI: 10.1186/s12967-024-05652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Arginase is abundantly expressed in colorectal cancer and disrupts arginine metabolism, promoting the formation of an immunosuppressive tumor microenvironment. This significant factor contributes to the insensitivity of colorectal cancer to immunotherapy. Tumor-associated macrophages (TAMs) are major immune cells in this environment, and aberrant arginine metabolism in tumor tissues induces TAM polarization toward M2-like macrophages. The natural compound piceatannol 3'-O-glucoside inhibits arginase activity and activates nitric oxide synthase, thereby reducing M2-like macrophages while promoting M1-like macrophage polarization. METHODS The natural compounds piceatannol 3'-O-glucoside and indocyanine green were encapsulated within microparticles derived from tumor cells, termed PG/ICG@MPs. The enhanced cancer therapeutic effect of PG/ICG@MP was assessed both in vitro and in vivo. RESULTS PG/ICG@MP precisely targets the tumor site, with piceatannol 3'-O-glucoside concurrently inhibiting arginase activity and activating nitric oxide synthase. This process promotes increased endogenous nitric oxide production through arginine metabolism. The combined actions of nitric oxide and piceatannol 3'-O-glucoside facilitate the repolarization of tumor-associated macrophages toward the M1 phenotype. Furthermore, the increase in endogenous nitric oxide levels, in conjunction with the photodynamic effect induced by indocyanine green, increases the quantity of reactive oxygen species. This dual effect not only enhances tumor immunity but also exerts remarkable inhibitory effects on tumors. CONCLUSION Our research results demonstrate the excellent tumor-targeting effect of PG/ICG@MPs. By modulating arginine metabolism to improve the tumor immune microenvironment, we provide an effective approach with clinical translational significance for combined cancer therapy.
Collapse
Affiliation(s)
- Jun Wang
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Denglong Cheng
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junnan Gu
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Le Qin
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fuwei Mao
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifan Xue
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenxin Jiang
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mian Chen
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Falong Zou
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ning Huang
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yinghao Cao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| | - Kailin Cai
- Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
23
|
Wu J, Mao K, Zhang R, Fu Y. Extracellular vesicles in the pathogenesis of neurotropic viruses. Microb Pathog 2024; 195:106901. [PMID: 39218378 DOI: 10.1016/j.micpath.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Neurotropic viruses, characterized by their capacity to invade the central nervous system, present a considerable challenge to public health and are responsible for a diverse range of neurological disorders. This group includes a diverse array of viruses, such as herpes simplex virus, varicella zoster virus, poliovirus, enterovirus and Japanese encephalitis virus, among others. Some of these viruses exhibit high neuroinvasiveness and neurovirulence, while others demonstrate weaker neuroinvasive and neurovirulent properties. The clinical manifestations of infections caused by neurotropic viruses can vary significantly, ranging from mild symptoms to severe life-threatening conditions. Extracellular vesicles (EVs) have garnered considerable attention due to their pivotal role in intracellular communication, which modulates the biological activity of target cells via the transport of biomolecules in both health and disease. Investigating EVs in the context of virus infection is crucial for elucidating their potential role contribution to viral pathogenesis. This is because EVs derived from virus-infected cells frequently transfer viral components to uninfected cells. Importantly, EVs released by virus-infected cells have the capacity to traverse the blood-brain barrier (BBB), thereby impacting neuronal activity and inducing neuroinflammation. In this review, we explore the roles of EVs during neurotropic virus infections in either enhancing or inhibiting viral pathogenesis. We will delve into our current comprehension of the molecular mechanisms that underpin these roles, the potential implications for the infected host, and the prospective diagnostic applications that could arise from this understanding.
Collapse
Affiliation(s)
- Junyi Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Kedan Mao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| | - Yuxuan Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
24
|
Kapoor KS, Harris K, Arian KA, Ma L, Schueng Zancanela B, Church KA, McAndrews KM, Kalluri R. High throughput and rapid isolation of extracellular vesicles and exosomes with purity using size exclusion liquid chromatography. Bioact Mater 2024; 40:683-695. [PMID: 39290685 PMCID: PMC11407901 DOI: 10.1016/j.bioactmat.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as potential biomarkers for diagnosing a range of diseases without invasive procedures. Extracellular vesicles also offer advantages compared to synthetic vesicles for delivery of various drugs; however, limitations in segregating EVs from other particles and soluble proteins have led to inconsistent EV retrieval rates with low levels of purity. Here, we report a new high-yield (88.47 %) and rapid (<20 min) EV isolation method termed size exclusion - fast protein liquid chromatography (SE-FPLC). We show SE-FPLC can effectively isolate EVs from multiple sources including EVs derived from human and mouse cells and serum samples. The results indicate that SE-FPLC can successfully remove highly abundant protein contaminants such as albumin and lipoprotein complexes, which can represent a major hurdle in large scale isolation of EVs. The high-yield nature of SE-FPLC allows for easy industrial scaling up of EV production for various clinical utilities. SE-FPLC also enables analysis of small volumes of blood for use in point-of-care diagnostics in the clinic. Collectively, SE-FPLC offers many advantages over current EV isolation methods and offers rapid clinical translation.
Collapse
Affiliation(s)
- Kshipra S Kapoor
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Kristen Harris
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kent A Arian
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lihua Ma
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Beatriz Schueng Zancanela
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kaira A Church
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
25
|
Kawasaki T, Takeda Y, Kumanogoh A. Proteomics of blood extracellular vesicles in inflammatory respiratory diseases for biomarker discovery and new insights into pathophysiology. Inflamm Regen 2024; 44:38. [PMID: 39294831 PMCID: PMC11409490 DOI: 10.1186/s41232-024-00351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Inflammatory respiratory diseases, such as interstitial lung disease (ILD), bronchial asthma (BA), chronic obstructive pulmonary disease (COPD), and respiratory infections, remain significant global health concerns owing to their chronic and severe nature. Emerging as a valuable resource, blood extracellular vesicles (EVs) offer insights into disease pathophysiology and biomarker discovery in these conditions. MAIN BODY This review explores the advancements in blood EV proteomics for inflammatory respiratory diseases, highlighting their potential as non-invasive diagnostic and prognostic tools. Blood EVs offer advantages over traditional serum or plasma samples. Proteomic analyses of blood EVs have revealed numerous biomarkers that can be used to stratify patients, predict disease progression, and identify candidate therapeutic targets. Blood EV proteomics has identified proteins associated with progressive fibrosis in ILD, offering new avenues of treatment. In BA, eosinophil-derived EVs harbor biomarkers crucial for managing eosinophilic inflammation. Research on COPD has also identified proteins that correlate with lung function. Moreover, EVs play a critical role in respiratory infections such as COVID-19, and disease-associated proteins are encapsulated. Thus, proteomic studies have identified key molecules involved in disease severity and immune responses, underscoring their role in monitoring and guiding therapy. CONCLUSION This review highlights the potential of blood EV proteomics as a non-invasive diagnostic and prognostic tool for inflammatory respiratory diseases, providing a promising avenue for improved patient management and therapeutic development.
Collapse
Affiliation(s)
- Takahiro Kawasaki
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
26
|
Bok EY, Seo SY, Lee HG, Wimalasena SHMP, Kim E, Cho A, Jung YH, Hur TY, So KM, Lee SL, Do YJ. Exosomes isolation from bovine serum: qualitative and quantitative comparison between ultracentrifugation, combination ultracentrifugation and size exclusion chromatography, and exoEasy methods. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:1021-1033. [PMID: 39398302 PMCID: PMC11466739 DOI: 10.5187/jast.2024.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 10/15/2024]
Abstract
Exosomes have been extensively studied as disease biomarker in humans, given their role in transporting bioactive molecules. However, despite the great potential of exosomes as noninvasive diagnostic markers and therapeutic nanocarriers for bovine diseases, few studies have been conducted on bovine exosome. Thus, this study aimed to quantitatively and qualitatively compare three isolation methods to identify a suitable method for bovine serum. Exosomes were isolated using ultracentrifugation alone (UC), a combination of ultracentrifugation and size exclusion chromatography (US), or membrane affinity-based exoEasy kit (EE). Isolated particles were evaluated using a range of complementary techniques. Transmission electron microscopy showed that all three isolation methods resulted in particles with a cup-shaped morphology. The particle concentration measured by nanoparticle trafficking analyzer of US was lower compared to those of UC and EE method. As a result of immunoblotting, exosome markers including TSG101, CD81, and HSP70 were detected in US particles, while in UC and EE, only TSG101 expression was confirmed. Particles isolated from UC and EE showed a contamination with the blood protein albumin, whereas particles from US did not show albumin contamination. In addition, to evaluate the possibility of using exosomes as biomarkers, the profiles of the small RNA in the exosomes were compared using the bioanalyzer 2100. As a result, in the EE method, the band of small RNA (25-200 nt) was most prominent, and in the US methods, a distinct band was observed in the small RNA range. Collectively, the purity of exosomes without non-exosomal contamination was highest in the US method. However, for the detection of small RNA, the EE method was found to be the most suitable. Therefore, the results suggest that the optimal isolation method varies depending on the specific purpose of exosome isolation.
Collapse
Affiliation(s)
- Eun-Yeong Bok
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Sang Young Seo
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Han Gyu Lee
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | | | - Eunju Kim
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Ara Cho
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Young-Hun Jung
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Tai-Young Hur
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Kyoung-Min So
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang
National University, Jinju 52828, Korea
- Research Institute of Life Sciences,
Gyeongsang National University, Jinju 52828, Korea
| | - Yoon Jung Do
- Division of Animal Diseases &
Health, National Institute of Animal Science, Rural Development
Administration, Wanju 55365, Korea
| |
Collapse
|
27
|
Lv L, Zhang J, Wang Y, Liang H, Liu Q, Hu F, Li H, Su W, Zhang J, Chen R, Chen Z, Wang Z, Li J, Yan R, Yang M, Chang Y, Li J, Liang T, Xing G, Chen K. Boron Neutron Capture Therapy-Derived Extracellular Vesicles via DNA Accumulation Boost Antitumor Dendritic Cell Vaccine Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405158. [PMID: 39021327 PMCID: PMC11425286 DOI: 10.1002/advs.202405158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/20/2024]
Abstract
Radiated tumor cell-derived extracellular vesicles (RT-EVs) encapsulate abundant DNA fragments from irradiated tumor cells, in addition to acting as integrators of multiple tumor antigens. Accumulating evidence indicates these DNA fragments from damaged cells are involved in downstream immune responses, but most of them are degraded in cells before incorporation into derived RT-EVs, thus the low abundance of DNA fragments limits immune responses of RT-EVs. Here, this study found that different radiations affected fates of DNA fragments in RT-EVs. Boron neutron capture therapy (BNCT) induced DNA accumulation in RT-EVs (BEVs) by causing more DNA breaks and DNA oxidation resisting nuclease degradation. This is attributed to the high-linear energy transfer (LET) properties of alpha particles from the neutron capture reaction of 10B. When being internalized by dendritic cells (DCs), BEVs activated the DNA sensing pathway, resulting in functional enhancements including antigen presentation, migration capacity, and cytokine secretion. After vaccination of the BEVs-educated DCs (BEV@BMDCs), the effector T cells significantly expanded and infiltrated into tumors, suggesting robust anti-tumor immune activation. BEV@BMDCs not only effectively inhibited the primary tumor growth and metastasis formation but also elicited long-term immune memory. In conclusion, a successful DC vaccine is provided as a promising candidate for tumor vaccine.
Collapse
Affiliation(s)
- Linwen Lv
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsArtemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Yujiao Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Haojun Liang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Qiuyang Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Fan Hu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Hao Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Wenxi Su
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Junhui Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ranran Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ziteng Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Zhijie Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Jiacheng Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ruyu Yan
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Mingxin Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ya‐nan Chang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Juan Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Tianjiao Liang
- Guangdong‐Hong Kong‐Macao Joint Laboratory for Neutron Scattering Science and TechnologySpallation Neutron Source Science CenterDongguan523803China
| | - Gengmei Xing
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Kui Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| |
Collapse
|
28
|
Liu Y, Xie F, Zhang H, Ye H, Wen H, Qiu M, Ding Y, Zheng X, Yin Z, Zhang X. Preliminary construction of non-coding RNAs and ceRNA regulatory networks mediated by exosomes in porcine follicular fluid. Genomics 2024; 116:110920. [PMID: 39151553 DOI: 10.1016/j.ygeno.2024.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/19/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Follicles are fundamental units of the ovary, regulated intricately during development. Exosomes and ovarian granulosa cells (OGCs) play pivotal roles in follicular development, yet the regulatory mechanisms governing exosomes remain elusive. RESULTS High-throughput sequencing was employed to evaluate the complete transcript expression profiles of six samples (three porcine ovarian granulosa cells-exosome co-culture samples (GCE) and three porcine ovarian granulosa cells (POGCs) samples). Differential expression analysis revealed 924 lncRNAs, 35 circRNAs, 49 miRNAs, and 9823 mRNAs in the GCE group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated enrichment of differentially expressed transcripts in pathways related to cell proliferation and apoptosis. Furthermore, a ceRNA regulatory network comprising 43 lncRNAs, 6 circRNAs, 11 miRNAs, and 126 mRNAs was constructed based on intergene co-expression correlations. Seven miRNAs associated with cell proliferation and apoptosis regulation were identified within this network, encompassing 92 subnet pairs as candidate genes for further exploration of exosome regulatory mechanisms. Additionally, preliminary verification at the cellular level demonstrated that exosomal miR-200b enhances the viability of POGCs. CONCLUSIONS Transcriptome analysis unveiled a pivotal candidate ceRNA network potentially implicated in exosome-mediated regulation of granulosa cell proliferation and apoptosis, thereby influencing porcine follicular development. These findings offer insights into the molecular mechanisms of follicular fluid exosome regulation, encompassing both coding and non-coding RNA perspectives.
Collapse
Affiliation(s)
- Yangguang Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Fan Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Huibin Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Haibo Ye
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Haoyu Wen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Mengyao Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
29
|
Pan K, Zhu Y, Chen P, Yang K, Chen Y, Wang Y, Dai Z, Huang Z, Zhong P, Zhao X, Fan S, Ning L, Zhang J, Chen P. Biological functions and biomedical applications of extracellular vesicles derived from blood cells. Free Radic Biol Med 2024; 222:43-61. [PMID: 38848784 DOI: 10.1016/j.freeradbiomed.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
There is a growing interest in using extracellular vesicles (EVs) for therapeutic applications. EVs are composed of cytoplasmic proteins and nucleic acids and an external lipid bilayer containing transmembrane proteins on their surfaces. EVs can alter the state of the target cells by interacting with the receptor ligand of the target cell or by being internalised by the target cell. Blood cells are the primary source of EVs, and 1 μL of plasma contains approximately 1.5 × 107 EVs. Owing to their easy acquisition and the avoidance of cell amplification in vitro, using blood cells as a source of therapeutic EVs has promising clinical application prospects. This review summarises the characteristics and biological functions of EVs derived from different blood cell types (platelets, erythrocytes, and leukocytes) and analyses the prospects and challenges of using them for clinical therapeutic applications. In summary, blood cell-derived EVs can regulate different cell types such as immune cells (macrophages, T cells, and dendritic cells), stem cells, and somatic cells, and play a role in intercellular communication, immune regulation, and cell proliferation. Overall, blood cell-derived EVs have the potential for use in vascular diseases, inflammatory diseases, degenerative diseases, and injuries. To promote the clinical translation of blood cell-derived EVs, researchers need to perform further studies on EVs in terms of scalable and reproducible isolation technology, quality control, safety, stability and storage, regulatory issues, cost-effectiveness, and long-term efficacy.
Collapse
Affiliation(s)
- Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiwei Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Pengyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Ke Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yiyu Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Yongcheng Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Zhanqiu Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325088, China
| | - Zhenxiang Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Peiyu Zhong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Xing Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Lei Ning
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopaedic Trauma and Aging Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310016, China.
| |
Collapse
|
30
|
Deng ZH, Chen YX, Xue-Gao, Yang JY, Wei XY, Zhang GX, Qian JX. Mesenchymal stem cell-derived exosomes ameliorate hypoxic pulmonary hypertension by inhibiting the Hsp90aa1/ERK/pERK pathway. Biochem Pharmacol 2024; 226:116382. [PMID: 38909785 DOI: 10.1016/j.bcp.2024.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is a serious and life-threatening chronic cardiopulmonary disease characterized by progressive elevation of pulmonary artery pressure and pulmonary vascular remodeling. Mesenchymal stem cell- derived exosomes (MSC-Exos) can relieve HPH by reversing pulmonary vascular remodeling. The HPH model was established in healthy male Sprague-Dawley (SD) rats aged 6 to 8 weeks. The rats were placed in a room with oxygen concentration of (10 ± 1) % for 8 hours a day over 28 days, were then injected intravenously with MSC-Exos (100 ug protein/kg) or equal-volume phosphate buffer saline (PBS) once a day over 1 week. Right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI) and pulmonary vascular remodeling were observed after anesthesia. In addition, platelet-derived growth factor BB (PDGF-BB) was used to stimulate rat pulmonary artery smooth muscle cells (PASMCs) to construct HPH pathological cell models. The results showed that MSC-Exos could not only reduce the elevation of RVSP, right ventricular hypertrophy and the degree of pulmonary vascular remodeling in HPH rats, but also reduce the proliferation, migration and apoptosis resistance of PASMCs. Finally, GSE53408 and GSE113439 datasets were analyzed and showed that the expression of Hsp90aa1 and pERK/ERK were significantly increased in HPH, also could be inhibited by MSC-Exos. Meanwhile, inhibition of Hsp90aa1 also reduced PASMCs migration and pERK/ERK protein level. In conclusion, MSC-Exos alleviated HPH by suppressing PASMCs proliferation, migration and apoptosis resistance through inhibiting the Hsp90aa1/ERK/pERK pathway.
Collapse
Affiliation(s)
- Zhi-Hua Deng
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Yao-Xin Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xue-Gao
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing-Yu Yang
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xia-Ying Wei
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Guo-Xing Zhang
- Department of Physiology and Neurosciences, Medical College of Soochow University, Suzhou 215000, China
| | - Jin-Xian Qian
- Department of Respiratory and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
31
|
Sukhnanan K, Ross JR, Chao NJ, Chen BJ. Endothelial Cell Derived Extracellular Vesicles and Hematopoiesis. Radiat Res 2024; 202:215-226. [PMID: 38918003 DOI: 10.1667/rade-24-00039.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) have been recognized as a novel way of cell-to-cell communication in the last several decades. It is believed that EVs exert their functions on nearby or distant cells through transfer of the cargo that they carry. In this review, we focus on EVs produced by endothelial cells, with emphasis on their role in hematopoiesis. We first describe how endothelial cells interact with hematopoietic stem/progenitor cells during development and in disease conditions. We then discuss EVs, ranging from their subtypes to isolation methods and analysis of EVs. With the above background information, we next review the literature related to endothelial cell derived EVs (ECEVs), including physiological functions and their clinical uses. In the last sections, we summarize the current results about the effect of ECEVs on hematopoiesis under physiological and stress conditions.
Collapse
Affiliation(s)
| | - Joel R Ross
- Department of Medicine, Duke University, Durham, North Carolina
| | - Nelson J Chao
- Department of Medicine, Duke University, Durham, North Carolina
- Department of Pathology, Duke University, Durham, North Carolina
- Department of Immunology, Duke University, Durham, North Carolina
- Duke Cancer Institute, Duke University, Durham, North Carolina
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Benny J Chen
- Department of Medicine, Duke University, Durham, North Carolina
- Department of Immunology, Duke University, Durham, North Carolina
- Duke Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina
- Duke Regeneration Center, Duke University, Durham, North Carolina
| |
Collapse
|
32
|
Song J, Zhou D, Cui L, Wu C, Jia L, Wang M, Li J, Ya J, Ji X, Meng R. Advancing stroke therapy: innovative approaches with stem cell-derived extracellular vesicles. Cell Commun Signal 2024; 22:369. [PMID: 39039539 PMCID: PMC11265156 DOI: 10.1186/s12964-024-01752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Stroke is a leading cause of mortality and long-term disability globally, with acute ischemic stroke (AIS) being the most common subtype. Despite significant advances in reperfusion therapies, their limited time window and associated risks underscore the necessity for novel treatment strategies. Stem cell-derived extracellular vesicles (EVs) have emerged as a promising therapeutic approach due to their ability to modulate the post-stroke microenvironment and facilitate neuroprotection and neurorestoration. This review synthesizes current research on the therapeutic potential of stem cell-derived EVs in AIS, focusing on their origin, biogenesis, mechanisms of action, and strategies for enhancing their targeting capacity and therapeutic efficacy. Additionally, we explore innovative combination therapies and discuss both the challenges and prospects of EV-based treatments. Our findings reveal that stem cell-derived EVs exhibit diverse therapeutic effects in AIS, such as promoting neuronal survival, diminishing neuroinflammation, protecting the blood-brain barrier, and enhancing angiogenesis and neurogenesis. Various strategies, including targeting modifications and cargo modifications, have been developed to improve the efficacy of EVs. Combining EVs with other treatments, such as reperfusion therapy, stem cell transplantation, nanomedicine, and gut microbiome modulation, holds great promise for improving stroke outcomes. However, challenges such as the heterogeneity of EVs and the need for standardized protocols for EV production and quality control remain to be addressed. Stem cell-derived EVs represent a novel therapeutic avenue for AIS, offering the potential to address the limitations of current treatments. Further research is needed to optimize EV-based therapies and translate their benefits to clinical practice, with an emphasis on ensuring safety, overcoming regulatory hurdles, and enhancing the specificity and efficacy of EV delivery to target tissues.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingrun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, England
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
33
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Zang X, Li C, Wang Y, Huang X, Wang X, Zhang W, Cao X, Liang C, Dai T, Wang K, Chen Y, Wu J. Protein profile of circulating extracellular vesicles reveals biomarker candidates for diagnosis of post-traumatic deep vein thrombosis. Clin Chim Acta 2024; 561:119721. [PMID: 38796050 DOI: 10.1016/j.cca.2024.119721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Deep vein thrombosis (DVT) is a common complication after trauma and mostly without specific symptoms. Timely diagnosis and early appropriate treatment measures can prevent further development of thrombosis for patients with traumatic lower extremity fractures. Although extracellular vesicles (EVs) are confirmed as promising disease biomarkers, little is known about the role of altered levels and composition in the diagnosis of post-traumatic DVT. METHOD The levels of circulating EVs subgroups were measured using flow cytometry. Isolated EVs were characterized and subjected to proteomics analysis to screen for differentially expressed proteins (DEPs) between DVT and non-DVT patients. Regularized logistic regression analysis based on L2 penalty terms using R's caret package was applied to build a model for DVT diagnosis. RESULTS Compared to non-DVT patients, DVT patients had higher circulating hepatocyte-derived EVs (hEVs) with good predictive value for post-traumatic DVT diagnosis. The results of the proteomic analysis showed that differentially expressed proteins (DEPs) of circulating EVs between the DVT group and non-DVT group were enriched in the complement and coagulation cascade. Finally, an integrated model of five biomarkers including SERPING1, C8G, CFH, FIX, and hEVs level was established for post-traumatic DVT diagnosis with robust identification of the traumatic patients with and without DVT (AUC 0.972). CONCLUSION Post-traumatic DVT patients had changed levels and composition of circulating EVs compared to non-DVT patients and healthy controls. Circulating EVs may acquire pathological protein signatures and become potential biomarkers for identifying subjects' post-traumatic DVT.
Collapse
Affiliation(s)
- Xinwei Zang
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China; Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China & Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Chunyan Li
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049 China.
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049 China.
| | - Xiaorong Wang
- State Key Laboratory of Molecular Developmental Biology, Innovation Academy for Seed Design, CAS, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049 China.
| | - Wenjie Zhang
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Xiangyu Cao
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Cuiying Liang
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Tenglong Dai
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| | - Kun Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China.
| | - Yuying Chen
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Jun Wu
- Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China.
| |
Collapse
|
35
|
Abrego-Guandique DM, Ilori OA, Caroleo MC, Cannataro R, Cione E, Tucci P. Differential Digestive Stability of Food-Derived microRNAs: The Case of miR-30c-5p and miR-92a-3p in Polyfloral Honey. Curr Issues Mol Biol 2024; 46:7473-7485. [PMID: 39057084 PMCID: PMC11276035 DOI: 10.3390/cimb46070443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary microRNAs (miRs) represent a new area in food science. Although they have been found in many foods, including honey, more research is needed about their stability and fate during digestion. Hence, this study aimed to analyze the digestive stability of two selected miRs in honey. We extracted miR-92a-3p and miR-30c-5p from pasteurized and unpasteurized forms of polyfloral honey using two different methods and kits: a column-based manual method and a phenol-free semi-automated magnetic-bead-based method. The latter option was used for the subsequent analysis of samples according to the INFOGEST static in vitro digestion protocol. Also, the honey samples were examined for exosome-like particles using dynamic light scattering. Although the expression levels of both miRs were significantly lower following intestinal digestion, we found a difference in the resilience of the miRs to gastrointestinal conditions, with miR-30c-5p being relatively stable compared to miR-92a-3p following digestion, regardless of the honey's pasteurization treatment. Moreover, there was marked heterogeneity in the extracellular vesicle profile of the pasteurized sample. We identified the presence of two broadly conserved miRs in honey: miR-92a-3p and miR-30c-5p. Despite honey exhibiting high digestibility, miR-92a-3p was less resilient than miR-30c-5p, demonstrating considerable resistance under gastrointestinal conditions. Although further research is needed, the results obtained from this study may represent a starting point for utilizing honey as a source of exogenous miRNAs for preventive strategies and more "natural" treatments.
Collapse
Affiliation(s)
| | - Olubukunmi Amos Ilori
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (O.A.I.); (P.T.)
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy; (D.M.A.-G.); (M.C.C.)
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogota 110861, Colombia
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (O.A.I.); (P.T.)
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Paola Tucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (O.A.I.); (P.T.)
| |
Collapse
|
36
|
Jin K, Shen S, Shi R, Xu X, Hu M. Exosomal miRNAs in prenatal diagnosis: Recent advances. Medicine (Baltimore) 2024; 103:e38717. [PMID: 38996168 PMCID: PMC11245187 DOI: 10.1097/md.0000000000038717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
Exosomes, small membranous microvesicles released by cells, contain a range of bioactive molecules, including proteins and miRNAs, which play critical roles in intercellular communication and physiological and pathological processes. Current research suggests that exosomal miRNAs could serve as valuable biomarkers for prenatal diseases, offering a noninvasive method for early detection and monitoring. Studies linking exosomal miRNAs to various birth defects, including fetal growth restriction, urinary tract malformations, cardiovascular system malformations, and hereditary diseases like Down syndrome, were discussed. However, there are some conflicting study findings due to different exosome separation methods. Here, we also discussed exosome separation methods, emphasizing the importance of method selection based on specific purposes and sample types. Further studies are needed to standardize isolation techniques, understand the specific mechanisms underlying exosomal miRNA function, and develop reliable noninvasive prenatal diagnostic indicators. Overall, exosomal miRNAs show promise as potential biomarkers for prenatal diagnosis, but further research is necessary to validate their clinical utility.
Collapse
Affiliation(s)
- Keqin Jin
- Genetic Laboratory, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Shuangshuang Shen
- Prenatal Diagnostic Center, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Ruyong Shi
- Department of Ultrasound Medicine, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Xiayuan Xu
- Genetic Laboratory, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| | - Min Hu
- Gynaecology and Obstetrics, Jinhua Maternal and Child Health Care Hospital, Jinhua, China
| |
Collapse
|
37
|
Ma C, Xu Z, Hao K, Fan L, Du W, Gao Z, Wang C, Zhang Z, Li N, Li Q, Gao Q, Yu C. Rapid isolation method for extracellular vesicles based on Fe 3O 4@ZrO 2. Front Bioeng Biotechnol 2024; 12:1399689. [PMID: 39045537 PMCID: PMC11263208 DOI: 10.3389/fbioe.2024.1399689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Extracellular vesicles (EVs) are pivotal in intercellular communication, disease mechanisms. Despite numerous methods for EVs isolation, challenges persist in yield, purity, reproducibility, cost, time, and automation. We introduce a EVs isolation technique using Fe3O4@ZrO2 beads, leveraging ZrO2-phosphate interaction. The results indicated that EVs were efficiently separated from large volumes of samples in 30 minutes without preconcentration. Our method demonstrated capture efficiency (74%-78%) compared to ultracentrifugation, purity (97%), and reproducibility (0.3%-0.5%), with excellent linearity (R2 > 0.99). EVs from urine samples showed altered expression of miRNAs. The logistic regression model achieved an AUC of 0.961, sensitivity of 0.92, and specificity of 0.94. With potential for automation, this magnetic bead-based method holds promise for clinical applications, offering an efficient and reliable tool for EVs research and clinical studies.
Collapse
Affiliation(s)
- Cuidie Ma
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhihui Xu
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Kun Hao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Lingling Fan
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Wenqian Du
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Zhan Gao
- Department of Urology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chong Wang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zheng Zhang
- Department of Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ningxia Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Qi Li
- Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Gao
- Beijing Hotgen Biotech Co., Ltd., Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
38
|
Barathan M, Zulpa AK, Ng SL, Lokanathan Y, Ng MH, Law JX. Innovative Strategies to Combat 5-Fluorouracil Resistance in Colorectal Cancer: The Role of Phytochemicals and Extracellular Vesicles. Int J Mol Sci 2024; 25:7470. [PMID: 39000577 PMCID: PMC11242358 DOI: 10.3390/ijms25137470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is a significant public health challenge, with 5-fluorouracil (5-FU) resistance being a major obstacle to effective treatment. Despite advancements, resistance to 5-FU remains formidable due to complex mechanisms such as alterations in drug transport, evasion of apoptosis, dysregulation of cell cycle dynamics, tumor microenvironment (TME) interactions, and extracellular vesicle (EV)-mediated resistance pathways. Traditional chemotherapy often results in high toxicity, highlighting the need for alternative approaches with better efficacy and safety. Phytochemicals (PCs) and EVs offer promising CRC therapeutic strategies. PCs, derived from natural sources, often exhibit lower toxicity and can target multiple pathways involved in cancer progression and drug resistance. EVs can facilitate targeted drug delivery, modulate the immune response, and interact with the TME to sensitize cancer cells to treatment. However, the potential of PCs and engineered EVs in overcoming 5-FU resistance and reshaping the immunosuppressive TME in CRC remains underexplored. Addressing this gap is crucial for identifying innovative therapies with enhanced efficacy and reduced toxicities. This review explores the multifaceted mechanisms of 5-FU resistance in CRC and evaluates the synergistic effects of combining PCs with 5-FU to improve treatment efficacy while minimizing adverse effects. Additionally, it investigates engineered EVs in overcoming 5-FU resistance by serving as drug delivery vehicles and modulating the TME. By synthesizing the current knowledge and addressing research gaps, this review enhances the academic understanding of 5-FU resistance in CRC, highlighting the potential of interdisciplinary approaches involving PCs and EVs for revolutionizing CRC therapy. Further research and clinical validation are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Muttiah Barathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Khusairy Zulpa
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
39
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
40
|
Pirouzpanah MB, Babaie S, Pourzeinali S, Valizadeh H, Malekeh S, Şahin F, Farshbaf-Khalili A. Harnessing tumor-derived exosomes: A promising approach for the expansion of clinical diagnosis, prognosis, and therapeutic outcome of prostate cancer. Biofactors 2024; 50:674-692. [PMID: 38205673 DOI: 10.1002/biof.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
Prostate cancer is the second leading cause of men's death worldwide. Although early diagnosis and therapy for localized prostate cancer have improved, the majority of men with metastatic disease die from prostate cancer annually. Therefore, identification of the cellular-molecular mechanisms underlying the progression of prostate cancer is essential for overcoming controlled proliferation, invasion, and metastasis. Exosomes are small extracellular vesicles that mediate most cells' interactions and contain membrane proteins, cytosolic and nuclear proteins, extracellular matrix proteins, lipids, metabolites, and nucleic acids. Exosomes play an essential role in paracrine pathways, potentially influencing Prostate cancer progression through a wide variety of mechanisms. In the present review, we outline and discuss recent progress in our understanding of the role of exosomes in the Prostate cancer microenvironment, like their involvement in prostate cancer occurrence, progression, angiogenesis, epithelial-mesenchymal transition, metastasis, and drug resistance. We also present the latest findings regarding the function of exosomes as biomarkers, direct therapeutic targets in prostate cancer, and the challenges and advantages associated with using exosomes as natural carriers and in exosome-based immunotherapy. These findings are a promising avenue for the expansion of potential clinical approaches.
Collapse
Affiliation(s)
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Pourzeinali
- Amiralmomenin Hospital of Charoimagh, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Malekeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
41
|
Wu J, Shao W, Liu X, Zheng F, Wang Y, Cai P, Guo Z, Hu H, Yu G, Guo J, Yao L, Wu S, Li H. Microglial exosomes in paraquat-induced Parkinson's disease: Neuroprotection and biomarker clues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124035. [PMID: 38670424 DOI: 10.1016/j.envpol.2024.124035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The exact mechanisms underlying the initiation and exacerbation of Parkinson's disease (PD) by paraquat remain unclear. We have revealed that exosomes mediate neurotoxicity induced by low dose paraquat exposure by transmitting intercellular signaling. Exposure to 40 μM paraquat promoted exosome release from mouse microglia cells (BV2) in vitro. Paraquat exposure at 100 μM caused degeneration of mouse dopaminergic MN9D cells and inhibited microglia exosome uptake by fluorescently labeling exosomes. We established an incubation model for exosomes and dopaminergic neuron cells under PQ treatment. The results indicated that microglial exosomes alleviated degeneration, increasing proliferation and PD-related protein expression of dopaminergic neurons; however, paraquat reversed this effect. Then, through exosome high-throughput sequencing and qRT-PCR experiments, miR-92a-3p and miR-24-3p were observed to transfer from exosomes to dopaminergic neurons, inhibited by paraquat. The specificity of miR-92a-3p and miR-24-3p was verified in PD patients exosomes, indicating the potential diagnostic value of the exosomal miRNAs in paraquat-induced PD. These results suggest glia-neuron communication in paraquat-induced neurodegeneration and may identify stable paraquat-mediated PD biomarkers, offering clues for early recognition and prevention of pesticide-induced degenerative diseases.
Collapse
Affiliation(s)
- Jingwen Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fuzhou Center for Disease Control and Prevention, Fuzhou, 350200, China.
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Xu Liu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Yaping Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Ping Cai
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Jianhui Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Linlin Yao
- Affiliated Hospital of Jining Medical University, Jining, 272000, China.
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
42
|
Rai A, Claridge B, Lozano J, Greening DW. The Discovery of Extracellular Vesicles and Their Emergence as a Next-Generation Therapy. Circ Res 2024; 135:198-221. [PMID: 38900854 DOI: 10.1161/circresaha.123.323054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
From their humble discovery as cellular debris to cementing their natural capacity to transfer functional molecules between cells, the long-winded journey of extracellular vesicles (EVs) now stands at the precipice as a next-generation cell-free therapeutic tool to revolutionize modern-day medicine. This perspective provides a snapshot of the discovery of EVs to their emergence as a vibrant field of biology and the renaissance they usher in the field of biomedical sciences as therapeutic agents for cardiovascular pathologies. Rapid development of bioengineered EVs is providing innovative opportunities to overcome biological challenges of natural EVs such as potency, cargo loading and enhanced secretion, targeting and circulation half-life, localized and sustained delivery strategies, approaches to enhance systemic circulation, uptake and lysosomal escape, and logistical hurdles encompassing scalability, cost, and time. A multidisciplinary collaboration beyond the field of biology now extends to chemistry, physics, biomaterials, and nanotechnology, allowing rapid development of designer therapeutic EVs that are now entering late-stage human clinical trials.
Collapse
Affiliation(s)
- Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| | - Bethany Claridge
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
| | - Jonathan Lozano
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.R., B.C., J.L., D.W.G.)
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia (A.R., J.L., D.W.G.)
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (A.R., D.W.G.)
- Central Clinical School, Monash University, Melbourne, Victoria, Australia (A.R., D.W.G.)
| |
Collapse
|
43
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
44
|
Li X, Zhang C, Yue W, Jiang Y. Modulatory effects of cancer stem cell-derived extracellular vesicles on the tumor immune microenvironment. Front Immunol 2024; 15:1362120. [PMID: 38962016 PMCID: PMC11219812 DOI: 10.3389/fimmu.2024.1362120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer stem cells (CSCs), accounting for only a minor cell proportion (< 1%) within tumors, have profound implications in tumor initiation, metastasis, recurrence, and treatment resistance due to their inherent ability of self-renewal, multi-lineage differentiation, and tumor-initiating potential. In recent years, accumulating studies indicate that CSCs and tumor immune microenvironment act reciprocally in driving tumor progression and diminishing the efficacy of cancer therapies. Extracellular vesicles (EVs), pivotal mediators of intercellular communications, build indispensable biological connections between CSCs and immune cells. By transferring bioactive molecules, including proteins, nucleic acids, and lipids, EVs can exert mutual influence on both CSCs and immune cells. This interaction plays a significant role in reshaping the tumor immune microenvironment, creating conditions favorable for the sustenance and propagation of CSCs. Deciphering the intricate interplay between CSCs and immune cells would provide valuable insights into the mechanisms of CSCs being more susceptible to immune escape. This review will highlight the EV-mediated communications between CSCs and each immune cell lineage in the tumor microenvironment and explore potential therapeutic opportunities.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, College of Animal Science, Hebei North University, Zhangjiakou, Hebei, China
- Department of Gynecology and Obstetrics, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei Yue
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
| | - Yuening Jiang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
45
|
Laitano R, Calzetta L, Motta E, Puxeddu E, Rogliani P. Role of exosomes in exacerbations of asthma and COPD: a systematic review. Front Mol Biosci 2024; 11:1356328. [PMID: 38957448 PMCID: PMC11217169 DOI: 10.3389/fmolb.2024.1356328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease are chronic respiratory disorders characterized by airways obstruction and chronic inflammation. Exacerbations lead to worsening of symptoms and increased airflow obstruction in both airways diseases, and they are associated with increase in local and systemic inflammation. Exosomes are cell-derived membrane vesicles containing proteins, lipids, and nucleic acids that reflect their cellular origin. Through the transfer of these molecules, exosomes act as mediators of intercellular communication. Via selective delivery of their contents to target cells, exosomes have been proved to be involved in regulation of immunity and inflammation. Although, exosomes have been extensively investigated in different diseases, little is currently known about their role in asthma and COPD pathogenesis, and particularly in exacerbations. This review aims to systemically assess the potential role of exosomes in asthma and COPD exacerbations.
Collapse
Affiliation(s)
- Rossella Laitano
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Enrico Motta
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Ermanno Puxeddu
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
46
|
Chen T, Ellman DG, Fang S, Bak ST, Nørgård MØ, Svenningsen P, Andersen DC. Transfer of cardiomyocyte-derived extracellular vesicles to neighboring cardiac cells requires tunneling nanotubes during heart development. Theranostics 2024; 14:3843-3858. [PMID: 38994028 PMCID: PMC11234280 DOI: 10.7150/thno.91604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: Extracellular vesicles (EVs) are thought to mediate intercellular communication during development and disease. Yet, biological insight to intercellular EV transfer remains elusive, also in the heart, and is technically challenging to demonstrate. Here, we aimed to investigate biological transfer of cardiomyocyte-derived EVs in the neonatal heart. Methods: We exploited CD9 as a marker of EVs, and generated two lines of cardiomyocyte specific EV reporter mice: Tnnt2-Cre; double-floxed inverted CD9/EGFP and αMHC-MerCreMer; double-floxed inverted CD9/EGFP. The two mouse lines were utilized to determine whether developing cardiomyocytes transfer EVs to other cardiac cells (non-myocytes and cardiomyocytes) in vitro and in vivo and investigate the intercellular transport pathway of cardiomyocyte-derived EVs. Results: Genetic tagging of cardiomyocytes was confirmed in both reporter mouse lines and proof of concept in the postnatal heart showed that, a fraction of EGFP+/MYH1- non-myocytes exist firmly demonstrating in vivo cardiomyocyte-derived EV transfer. However, two sets of direct and indirect EGFP +/- cardiac cell co-cultures showed that cardiomyocyte-derived EGFP+ EV transfer requires cell-cell contact and that uptake of EGFP+ EVs from the medium is limited. The same was observed when co-cultiring with mouse macrophages. Further mechanistic insight showed that cardiomyocyte EV transfer occurs through type I tunneling nanotubes. Conclusion: While the current notion assumes that EVs are transferred through secretion to the surroundings, our data show that cardiomyocyte-derived EV transfer in the developing heart occurs through nanotubes between neighboring cells. Whether these data are fundamental and relate to adult hearts and other organs remains to be determined, but they imply that the normal developmental process of EV transfer goes through cell-cell contact rather than through the extracellular compartment.
Collapse
Affiliation(s)
- Ting Chen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ditte Gry Ellman
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Shu Fang
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Sara Thornby Bak
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mikkel Ørnfeldt Nørgård
- Department of Molecular Medicine, Unit of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Department of Molecular Medicine, Unit of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Ditte Caroline Andersen
- Andersen Group, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
47
|
Zhand S, Liao J, Castorina A, Yuen ML, Ebrahimi Warkiani M, Cheng YY. Small Extracellular Vesicle-Derived Circular RNA hsa_circ_0007386 as a Biomarker for the Diagnosis of Pleural Mesothelioma. Cells 2024; 13:1037. [PMID: 38920665 PMCID: PMC11201843 DOI: 10.3390/cells13121037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Pleural mesothelioma (PM) is a highly aggressive tumor that is caused by asbestos exposure and lacks effective therapeutic regimens. Current procedures for PM diagnosis are invasive and can take a long time to reach a definitive result. Small extracellular vesicles (sEVs) have been identified as important communicators between tumor cells and their microenvironment via their cargo including circular RNAs (circRNAs). CircRNAs are thermodynamically stable, highly conserved, and have been found to be dysregulated in cancer. This study aimed to identify potential biomarkers for PM diagnosis by investigating the expression of specific circRNA gene pattern (hsa_circ_0007386) in cells and sEVs using digital polymerase chain reaction (dPCR). For this reason, 5 PM, 14 non-PM, and one normal mesothelial cell line were cultured. The sEV was isolated from the cells using the gold standard ultracentrifuge method. The RNA was extracted from both cells and sEVs, cDNA was synthesized, and dPCR was run. Results showed that hsa_circ_0007386 was significantly overexpressed in PM cell lines and sEVs compared to non-PM and normal mesothelial cell lines (p < 0.0001). The upregulation of hsa_circ_0007386 in PM highlights its potential as a diagnostic biomarker. This study underscores the importance and potential of circRNAs and sEVs as cancer diagnostic tools.
Collapse
Affiliation(s)
- Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jiayan Liao
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Man-Lee Yuen
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Institute of Molecular Medicine, Sechenov First Moscow State University, Moscow 119991, Russia
| | - Yuen-Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
48
|
Yin KL, Sun T, Duan YX, Ye WT, Ming Li, Liao R. Nomograms incorporating hsa_circ_0029325 highly expressed in exosomes of hepatocellular carcinoma predict the postoperative outcomes. Discov Oncol 2024; 15:212. [PMID: 38836972 PMCID: PMC11153441 DOI: 10.1007/s12672-024-01060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Liquid biopsies, for example, exosomal circular RNA (circRNA) can be used to assess potential predictive markers for hepatocellular carcinoma (HCC) in patients after curative resection. This study aimed to search for effective prognostic biomarkers for HCC in patients after surgical resection based on exosomal circRNA expression profiles. We developed two nomograms incorporating circRNAs to predict the postoperative recurrence-free survival (RFS) and overall survival (OS) of HCC patients. METHOD Plasma exosomes isolated from HCC patients and healthy individuals were used for circRNA microarray analysis to explore differentially expressed circRNAs. Pearson correlation analysis was used to evaluate the correlation between circRNAs and clinicopathological features. Cox regression analysis was used to explore the correlation between circRNA and postoperative survival time as well as recurrence time. A nomogram based on circRNA and clinicopathological characteristics was established and further evaluated to predict prognosis and recurrence. RESULT Among 60 significantly upregulated circRNAs and 25 downregulated circRNAs, hsa_circ_0029325 was selected to verify its power for predicting HCC outcomes. The high expression level of exosomal hsa_circ_0029325 was significantly correlated with OS (P = 0.001, HR = 2.04, 95% CI 1.41-3.32) and RFS (P = 0.009, HR = 1.62, 95% CI 1.14-2.30). Among 273 HCC patients, multivariate regression analysis showed that hsa_circ_0029325 (HR = 1.96, 95% CI 1.21-3.18), tumor size (HR = 2.11, 95% CI 1.33-3.32), clinical staging (HR = 2.31, 95% CI 1.54-3.48), and tumor thrombus (HR = 1.74, 95% CI 1.12-2.7) were independent risk factors for poor prognosis in HCC patients after radical resection. These independent predictors of prognosis were incorporated into the two nomograms. The AUCs under the 1-year, 3-year, and 5-year survival and recurrence curves of the OS and RFS nomograms were 0.755, 0.749, and 0.742 and 0.702, 0.685, and 0.642, respectively. The C-index, calibration curves, and clinical decision curves showed that the two prediction models had good predictive performance. These results were verified in the validation cohort with 90 HCC patients. CONCLUSION Our study established two reliable nomograms for predicting recurrence and prognosis in HCC patients. We also show that it is feasible to screen potential predictive markers for HCC after curative resection through exosomal circRNA expression profile analysis.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Chongqing, 400016, China
| | - Taiwei Sun
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Chongqing, 400016, China
| | - Wen-Tao Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Chongqing, 400016, China
| | - Ming Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Chongqing, 400016, China.
| | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Chongqing, 400016, China.
| |
Collapse
|
49
|
Oberholster L, Du Pasquier R, Mathias A. Exploring the role of brain-derived extracellular vesicles in viral infections: from pathological insights to biomarker potential. Front Cell Infect Microbiol 2024; 14:1423394. [PMID: 38887492 PMCID: PMC11181307 DOI: 10.3389/fcimb.2024.1423394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by all cell types that play a central role in cell-to-cell communication. Since these vesicles serve as vehicles of cellular content (nucleic acids, proteins and lipids) with the potential to cross biological barriers, they represent a novel attractive window into an otherwise inaccessible organ, such as the brain. The composition of EVs is cell-type specific and mirrors the physiological condition of the cell-of-origin. Consequently, during viral infection, EVs undergo significant changes in their content and morphology, thereby reflecting alterations in the cellular state. Here, we briefly summarize the potential of brain-derived EVs as a lens into viral infection in the central nervous system, thereby: 1) uncovering underlying pathophysiological processes at play and 2) serving as liquid biopsies of the brain, representing a non-invasive source of biomarkers for monitoring disease activity. Although translating the potential of EVs from research to diagnosis poses complexities, characterizing brain-derived EVs in the context of viral infections holds promise to enhance diagnostic and therapeutic strategies, offering new avenues for managing infectious neurological diseases.
Collapse
Affiliation(s)
- Larise Oberholster
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Renaud Du Pasquier
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Amandine Mathias
- Laboratory of Neuroimmunology, Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
50
|
Suwakulsiri W, Xu R, Rai A, Shafiq A, Chen M, Greening DW, Simpson RJ. Comparative proteomic analysis of three major extracellular vesicle classes secreted from human primary and metastatic colorectal cancer cells: Exosomes, microparticles, and shed midbody remnants. Proteomics 2024; 24:e2300057. [PMID: 37507836 DOI: 10.1002/pmic.202300057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Cell-derived extracellular vesicles (EVs) are evolutionary-conserved secretory organelles that, based on their molecular composition, are important intercellular signaling regulators. At least three classes of circulating EVs are known based on mechanism of biogenesis: exosomes (sEVs/Exos), microparticles (lEVs/MPs), and shed midbody remnants (lEVs/sMB-Rs). sEVs/Exos are of endosomal pathway origin, microparticles (lEVs/MPs) from plasma membrane blebbing and shed midbody remnants (lEVs/sMB-Rs) arise from symmetric cytokinetic abscission. Here, we isolate sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs secreted from human isogenic primary (SW480) and metastatic (SW620) colorectal cancer (CRC) cell lines in milligram quantities for label-free MS/MS-based proteomic profiling. Purified EVs revealed selective composition packaging of exosomal protein markers in SW480/SW620-sEVs/Exos, metabolic enzymes in SW480/SW620-lEVs/MPs, while centralspindlin complex proteins, nucleoproteins, splicing factors, RNA granule proteins, translation-initiation factors, and mitochondrial proteins selectively traffic to SW480/SW620- lEVs/sMB-Rs. Collectively, we identify 39 human cancer-associated genes in EVs; 17 associated with SW480-EVs, 22 with SW620-EVs. We highlight oncogenic receptors/transporters selectively enriched in sEVs/Exos (EGFR/FAS in SW480-sEVs/Exos and MET, TGFBR2, ABCB1 in SW620-sEVs/Exos). Interestingly, MDK, STAT1, and TGM2 are selectively enriched in SW480-lEVs/sMB-Rs, and ADAM15 to SW620-lEVs/sMB-Rs. Our study reveals sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs have distinct protein signatures that open potential diagnostic avenues of distinct types of EVs for clinical utility.
Collapse
Affiliation(s)
- Wittaya Suwakulsiri
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Rong Xu
- Nanobiotechnology Laboratory, Centre Clinical, Australia Centre for Blood Diseases, School, Monash University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Adnan Shafiq
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|