1
|
Zheng T, Sheng J, Wang Z, Wu H, Zhang L, Wang S, Li J, Zhang Y, Lu G, Zhang L. Injured Myocardium-Targeted Theranostic Nanoplatform for Multi-Dimensional Immune-Inflammation Regulation in Acute Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414740. [PMID: 39836506 DOI: 10.1002/advs.202414740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Indexed: 01/23/2025]
Abstract
Pyroptosis is a key mode of programmed cell death during the early stages following acute myocardial infarction (AMI), driving immune-inflammatory responses. Cardiac resident macrophages (CRMs) are the primary mediators of cardiac immunity, and they serve a dual role through their shaping of both myocardial injury and post-AMI myocardial repair. To appropriately regulate AMI-associated inflammation, HM4oRL is herein designed, an innovative bifunctional therapeutic nanoplatform capable of inhibiting cardiomyocyte pyroptosis while reprogramming inflammatory signaling. This HM4oRL platform is composed of a core of 4-Octyl itaconate (4-OI)-loaded liposomes, a middle layer consisting of a metal-polyphenol network (MPN) film, and an optimized outer hybrid immune-cell membrane layer. The unique properties of this hybrid membrane layer facilitated HM4oRL targeting to the injured myocardium during early-stage AMI in mice, whereupon the release of 4-Ol and modified MPN synergistically inhibited cardiomyocyte pyroptosis while suppressing inflammatory monocytes/macrophage responses at the infarcted site. Mechanistically, HM4oRL preserved cardiac metabolic homeostasis through AMPK signaling activation, establishing favorable microenvironmental conditions for the reprogramming of CRM-mediated inflammation. Ultimately, HM4oRL treatment is able to resolve inflammation, enhance neovascularization, and suppress myocardial fibrosis, reducing the infarct size and enhancing post-AMI cardiac repair such that it is an innovative approach to the targeted treatment of AMI.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Jie Sheng
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Zhiyue Wang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Haoguang Wu
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Linlin Zhang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Sheng Wang
- Department of Radiology, Nanjing Jinling Hospital, Nanjing Medical University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Jianhua Li
- Department of Cardiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Yunming Zhang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Guangming Lu
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Longjiang Zhang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| |
Collapse
|
2
|
Gianopoulos I, Mantzoros CS, Daskalopoulou SS. Adiponectin and Adiponectin Receptors in Atherosclerosis. Endocr Rev 2025; 46:1-25. [PMID: 39106421 PMCID: PMC11720176 DOI: 10.1210/endrev/bnae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Adiponectin is an abundantly secreted hormone that communicates information between the adipose tissue, and the immune and cardiovascular systems. In metabolically healthy individuals, adiponectin is usually found at high levels and helps improve insulin responsiveness of peripheral tissues, glucose tolerance, and fatty acid oxidation. Beyond its metabolic functions in insulin-sensitive tissues, adiponectin plays a prominent role in attenuating the development of atherosclerotic plaques, partially through regulating macrophage-mediated responses. In this context, adiponectin binds to its receptors, adiponectin receptor 1 (AdipoR1) and AdipoR2 on the cell surface of macrophages to activate a downstream signaling cascade and induce specific atheroprotective functions. Notably, macrophages modulate the stability of the plaque through their ability to switch between proinflammatory responders, and anti-inflammatory proresolving mediators. Traditionally, the extremes of the macrophage polarization spectrum span from M1 proinflammatory and M2 anti-inflammatory phenotypes. Previous evidence has demonstrated that the adiponectin-AdipoR pathway influences M1-M2 macrophage polarization; adiponectin promotes a shift toward an M2-like state, whereas AdipoR1- and AdipoR2-specific contributions are more nuanced. To explore these concepts in depth, we discuss in this review the effect of adiponectin and AdipoR1/R2 on 1) metabolic and immune responses, and 2) M1-M2 macrophage polarization, including their ability to attenuate atherosclerotic plaque inflammation, and their potential as therapeutic targets for clinical applications.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA 02130, USA
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
3
|
Li J, Gong G, Zhang Y, Zheng Y, He Y, Chen M, He X, Zheng X, Gong X, Liu L, Zhou K, Zhao Z, Iv CWS, Hua Y, Li Y, Guo J. Polyphenol-Nanoengineered Monocyte Biohybrids for Targeted Cardiac Repair and Immunomodulation. Adv Healthc Mater 2025; 14:e2403595. [PMID: 39526529 DOI: 10.1002/adhm.202403595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction is one of the leading cause of cardiovascular death worldwide. Invasive interventional procedures and medications are applied to attenuate the attacks associated with ischemic heart disease by reestablishing blood flow and restoring oxygen supply. However, the overactivation of inflammatory responses and unsatisfactory drug delivery efficiency in the infarcted regions prohibit functional improvement. Here, a nanoengineered monocyte (MO)-based biohybrid system, referred to as CTAs @MOs, for the heart-targeted delivery of combinational therapeutic agents (CTAs) containing anti-inflammatory IL-10 and cardiomyogenic miR-19a to overcome the limitation of malperfusion within the infarcted myocardium through a polyphenol-mediated interfacial assembly, is reported. Systemic administration of CTAs@MOs bypasses extensive thoracotomy and intramyocardial administration risks, leading to infarcted heart-specific accumulation and sustained release of therapeutic agents, enabling immunomodulation of the proinflammatory microenvironment and promoting cardiomyocyte proliferation in sequence. Moreover, CTAs@MOs, which serve as a cellular biohybrid-based therapy, significantly improve cardiac function as evidenced by enhanced ejection fractions, increased fractional shortening, and diminished infarct sizes. This polyphenol nanoengineered biohybrid system represents a general and potent platform for the efficient treatment of cardiovascular disorders.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Mei Chen
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xianglian He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xue Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - C Wyatt Shields Iv
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Colorado, 80303, USA
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
4
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
5
|
Pan K, Li Q, Guo Z, Li Z. Healing action of Interleukin-4 (IL-4) in acute and chronic inflammatory conditions: Mechanisms and therapeutic strategies. Pharmacol Ther 2025; 265:108760. [PMID: 39615600 DOI: 10.1016/j.pharmthera.2024.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Interleukin-4 (IL-4), which is traditionally associated with inflammation, has emerged as a key player in tissue regeneration. Produced primarily by T-helper 2 (Th2) and other immune cells, IL-4 activates endogenous lymphocytes and promotes M2 macrophage polarization, both of which are crucial for tissue repair. Moreover, IL-4 stimulates the proliferation and differentiation of various cell types, contributing to efficient tissue regeneration, and shows promise for promoting tissue regeneration after injury. This review explores the multifaceted roles of IL-4 in tissue repair, summarizing its mechanisms and potential for clinical application. This review delves into the multifaceted functions of IL-4, including its immunomodulatory effects, its involvement in tissue regeneration, and its potential therapeutic applications. We discuss the mechanisms underlying IL-4-induced M2 macrophage polarization, a crucial process for tissue repair. Additionally, we explore innovative strategies for delivering IL-4, including gene therapy, protein-based therapies, and cell-based therapies. By leveraging the regenerative properties of IL-4, we can potentially develop novel therapies for various diseases, including chronic inflammatory disorders, autoimmune diseases, and organ injuries. While early research has shown promise for the application of IL-4 in regenerative medicine, further studies are needed to fully elucidate its therapeutic potential and optimize its use.
Collapse
Affiliation(s)
- Kai Pan
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China.
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zongjin Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Li Y. Novel Therapeutic Strategies Targeting Fibroblasts to Improve Heart Disease. J Cell Physiol 2025; 240:e31504. [PMID: 39690827 DOI: 10.1002/jcp.31504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Cardiac fibrosis represents the terminal pathological manifestation of various heart diseases, with the formation of fibroblasts playing a pivotal role in this process. Consequently, targeting the formation and function of fibroblasts holds significant potential for improving outcomes in heart disease. Recent research reveals the considerable potential of fibroblasts in ameliorating cardiac conditions, demonstrating different functional characteristics at various time points and spatial locations. Therefore, precise modulation of fibroblast activity may offer an effective approach for treating cardiac fibrosis and achieving targeted therapeutic outcomes. In this review, we focus on the fate and inhibition of fibroblasts, analyze their dynamic changes in cardiac diseases, and propose a framework for identifying markers of fibroblast activation mechanisms and selecting optimal time windows for therapeutic intervention. By synthesizing research findings in these areas, we aim to provide new strategies and directions for the precise treatment of fibroblasts in cardiac diseases.
Collapse
Affiliation(s)
- Yujuan Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Zhao Y, Tan M, Yin Y, Zhang J, Song Y, Li H, Yan L, Jin Y, Wu Z, Yang T, Jiang T, Li H. Comprehensive macro and micro views on immune cells in ischemic heart disease. Cell Prolif 2024; 57:e13725. [PMID: 39087342 PMCID: PMC11628753 DOI: 10.1111/cpr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.
Collapse
Affiliation(s)
- Yongjian Zhao
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of Geriatrics, Southwest HospitalThe Third Military Medical University (Army Medical University)ChongqingChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversityJiangsuChina
| | - Hang Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Lin Yan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yifeng Jin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ziyue Wu
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
8
|
Psarras S. The Macrophage-Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules 2024; 14:1403. [PMID: 39595580 PMCID: PMC11591949 DOI: 10.3390/biom14111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Stromal and immune cells and their interactions have gained the attention of cardiology researchers and clinicians in recent years as their contribution in cardiac repair is increasingly recognized. The repair process in the heart is a particularly critical constellation of complex molecular and cellular events and interactions that characteristically fail to ensure adequate recovery following injury, insult, or exposure to stress conditions in this regeneration-hostile organ. The tremendous consequence of this pronounced inability to maintain homeostatic states is being translated in numerous ways promoting progress into heart failure, a deadly, irreversible condition requiring organ transplantation. Fibrosis is in fact a repair response eventually promoting cardiac dysfunction and cardiac fibroblasts are the major cellular players in this process, overproducing collagens and other extracellular matrix components when activated. On the other hand, macrophages may differentially affect fibroblasts and cardiac repair depending on their status and subsets. The opposite interaction is also probable. We discuss here the multifaceted aspects and crosstalk of this cell dipole and the opportunities it may offer for beneficial manipulation approaches that will hopefully lead to progress in heart disease interventions.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 115 27 Athens, Greece
| |
Collapse
|
9
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
10
|
Roessler J, Zimmermann F, Heidecker B, Landmesser U, Haghikia A. Gut microbiota-related modulation of immune mechanisms in post-infarction remodelling and heart failure. ESC Heart Fail 2024. [PMID: 39385474 DOI: 10.1002/ehf2.14991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 10/12/2024] Open
Abstract
The immune system has long been recognized as a key driver in the progression of heart failure (HF). However, clinical trials targeting immune effectors have consistently failed to improve patient outcome across different HF aetiologies. The activation of the immune system in HF is complex, involving a broad network of pro-inflammatory and immune-modulating components, which complicates the identification of specific immune pathways suitable for therapeutic targeting. Increasing attention has been devoted to identifying gut microbial pathways that affect cardiac remodelling and metabolism and, thereby impacting the development of HF. In particular, gut microbiota-derived metabolites, absorbed by the host and transported to the peripheral circulation, can act as signalling molecules, influencing metabolism and immune homeostasis. Recent reports suggest that the gut microbiota plays a crucial role in modulating immune processes involved in HF. Here, we summarize recent advances in understanding the contributory role of gut microbiota in (auto-)immune pathways that critically determine the progression or alleviation of HF. We also thoroughly discuss potential gut microbiota-based intervention strategies to treat or decelerate HF progression.
Collapse
Affiliation(s)
- Johann Roessler
- University Hospital St Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Friederike Zimmermann
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Arash Haghikia
- University Hospital St Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité (DHZC), Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
11
|
Maaniitty E, Sinisilta S, Jalkanen J, Vasankari T, Biancari F, Gunn J, Jalkanen S, Airaksinen KJ, Hollmén M, Kiviniemi T. Distinct circulating cytokine levels in patients with angiography-proven coronary artery disease compared to disease-free controls. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2024; 22:200307. [PMID: 39091640 PMCID: PMC11292512 DOI: 10.1016/j.ijcrp.2024.200307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Background Systemic inflammation has a critical role in the development of symptomatic coronary artery disease (CAD). Identification of inflammatory pathways may provide a platform for novel therapeutic approaches. We sought to determine whether there are differences in circulating cytokine profiles between patients with CAD and disease-free controls as well as according to the severity of the disease. Methods Case-control study's population consisted of 452 patients who underwent diagnostic invasive coronary angiography due to clinical indications. We measured the serum concentrations of 48 circulating cytokines. Extent of CAD was assessed using the SYNTAX Score in 116 patients. Cytokine differences between groups were tested using Mann-Whitney U test and associations with CAD were explored using a logistic regression model. Results Overall, 310 patients had angiographically verified CAD whereas 142 had no angiographically-detected coronary atherosclerosis. In multivariable logistic regression models adjusted for age, sex, hypertension, atrial fibrillation, history of smoking and treatment for diabetes and hyperlipidemia, increased levels of interleukin 9 (OR 1.359, 95%CI 1.046-1.766, p = 0.022), IL-17 (1.491, 95%CI 1.115-1.994, p = 0.007) and tumor necrosis factor alpha (TNF-α) (OR 1.440, 95%CI 1.089-1.904, p = 0.011) were independently associated with CAD. Patients with SYNTAX Score>22 had increased levels of stromal cell-derived factor 1 alfa (SDF-1α), beta-nerve growth factor (β-NGF), IL-3 and decreased level of IL-17 compared to those with score ≤22 when adjusted for smoking and use of beta-blockers. Conclusions Patients with CAD have distinct circulating cytokine profiles compared to disease-free controls. Distinct cytokines may have pivotal roles at different stages of coronary atherosclerosis. ClinicalTrials.gov Identifier: NCT03444259 (https://clinicaltrials.gov/study/NCT03444259).
Collapse
Affiliation(s)
- Eveliina Maaniitty
- Heart Center, Turku University Hospital and University of Turku, POB 52, FI-20521, Turku, Finland
| | - Sami Sinisilta
- Heart Center, Turku University Hospital and University of Turku, POB 52, FI-20521, Turku, Finland
| | - Juho Jalkanen
- Vascular Surgery, Turku University Hospital and University of Turku, POB 52, FI-20521, Turku, Finland
| | - Tuija Vasankari
- Heart Center, Turku University Hospital and University of Turku, POB 52, FI-20521, Turku, Finland
| | - Fausto Biancari
- Heart Center, Turku University Hospital and University of Turku, POB 52, FI-20521, Turku, Finland
- Department of Medicine, South Karelia Central Hospital, University of Helsinki, Valto Käkelän Katu 1, FI-53130, Lappeenranta, Finland
| | - Jarmo Gunn
- Heart Center, Turku University Hospital and University of Turku, POB 52, FI-20521, Turku, Finland
| | - Sirpa Jalkanen
- Medicity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
| | - K.E. Juhani Airaksinen
- Heart Center, Turku University Hospital and University of Turku, POB 52, FI-20521, Turku, Finland
| | - Maija Hollmén
- Medicity Research Laboratory, University of Turku, Tykistökatu 6A, FI-20520, Turku, Finland
| | - Tuomas Kiviniemi
- Heart Center, Turku University Hospital and University of Turku, POB 52, FI-20521, Turku, Finland
| |
Collapse
|
12
|
Ismahil MA, Zhou G, Gao M, Bansal SS, Patel B, Limdi N, Xie M, Antipenko S, Rokosh G, Hamid T, Prabhu SD. Splenic CD169 + Tim4 + Marginal Metallophilic Macrophages Are Essential for Wound Healing After Myocardial Infarction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.09.24311769. [PMID: 39211861 PMCID: PMC11361232 DOI: 10.1101/2024.08.09.24311769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fidelity of wound healing after myocardial infarction (MI) is an important determinant of subsequent adverse cardiac remodeling and failure. Macrophages derived from infiltrating Ly6C hi blood monocytes are a key component of this healing response; however, the importance of other macrophage populations is unclear. Here, using a variety of in vivo murine models and orthogonal approaches, including surgical myocardial infarction, splenectomy, parabiosis, cell adoptive transfer, lineage tracing and cell tracking, RNA sequencing, and functional characterization, we establish in mice an essential role for splenic CD169 + Tim4 + marginal metallophilic macrophages (MMMs) in post-MI wound healing. Splenic CD169 + Tim4 + MMMs circulate in blood as Ly6C low cells expressing macrophage markers and help populate CD169 + Tim4 + CCR2 - LYVE1 low macrophages in the naïve heart. After acute MI, splenic MMMs augment phagocytosis, CCR3 and CCR4 expression, and robustly mobilize to the heart, resulting in marked expansion of cardiac CD169 + Tim4 + LyVE1 low macrophages with an immunomodulatory and pro-resolving gene signature. These macrophages are obligatory for apoptotic neutrophil clearance, suppression of inflammation, and induction of a reparative macrophage phenotype in the infarcted heart. Splenic MMMs are both necessary and sufficient for post-MI wound healing, and limit late pathological remodeling. Liver X receptor-α agonist-induced expansion of the splenic marginal zone and MMMs during acute MI alleviates inflammation and improves short- and long-term cardiac remodeling. Finally, humans with acute ST-elevation MI also exhibit expansion of circulating CD169 + Tim4 + macrophages. We conclude that splenic CD169 + Tim4 + MMMs are required for pro-resolving and reparative responses after MI and can be manipulated for therapeutic benefit to limit long-term heart failure. CLINICAL PERSPECTIVE What is new?: We establish for the first time that metallophilic marginal macrophages (MMMs) from the spleen, expressing the markers CD169 and Tim4, circulate in blood and traffic to the heart to help maintain the CD169 + Tim4 + CCR2 - LYVE1 low macrophage population in the heart. After acute myocardial infarction, splenic MMMs augment cardiac trafficking in response to chemotactic signals, resulting in expansion of CD169 + Tim4 + macrophages in the heart that play an essential role in post-MI efferocytosis, wound healing and repair while limiting longer term adverse cardiac remodeling. Analogous to mice, humans also exhibit circulating CD169 + Tim4 + macrophages in the blood that expand after acute ST segment elevation MI. What are the clinical implications?: This study highlights the importance of the cardiosplenic axis in acute MI, and the splenic marginal zone, in determining the course and outcome of post-MI LV remodeling.Pharmacological expansion of splenic marginal zone macrophages alleviated post-MI adverse LV remodeling and inflammation, suggesting that splenic modulation is a potential translational therapeutic approach for limiting post-MI inflammation and improving heart repair.
Collapse
|
13
|
Wang H, Rouhi N, Slotabec LA, Seale BC, Wen C, Filho F, Adenawoola MI, Li J. Myeloid Cells in Myocardial Ischemic Injury: The Role of the Macrophage Migration Inhibitory Factor. Life (Basel) 2024; 14:981. [PMID: 39202723 PMCID: PMC11355293 DOI: 10.3390/life14080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Ischemic heart disease, manifesting as myocardial infarction (MI), remains the leading cause of death in the western world. Both ischemia and reperfusion (I/R) cause myocardial injury and result in cardiac inflammatory responses. This sterile inflammation in the myocardium consists of multiple phases, involving cell death, tissue remodeling, healing, and scar formation, modulated by various cytokines, including the macrophage migration inhibitory factor (MIF). Meanwhile, different immune cells participate in these phases, with myeloid cells acting as first responders. They migrate to the injured myocardium and regulate the initial phase of inflammation. The MIF modulates the acute inflammatory response by affecting the metabolic profile and activity of myeloid cells. This review summarizes the role of the MIF in regulating myeloid cell subsets in MI and I/R injury and discusses emerging evidence of metabolism-directed cellular inflammatory responses. Based on the multifaceted role of the MIF affecting myeloid cells in MI or I/R, the MIF can be a therapeutic target to achieve metabolic balance under pathology and alleviate inflammation in the heart.
Collapse
Affiliation(s)
- Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Lily A. Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| | - Blaise C. Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Michael I. Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
14
|
Alshoubaki YK, Nayer B, Lu YZ, Salimova E, Lau SN, Tan JL, Amann-Zalcenstein D, Hickey PF, Del Monte-Nieto G, Vasanthakumar A, Martino MM. Tregs delivered post-myocardial infarction adopt an injury-specific phenotype promoting cardiac repair via macrophages in mice. Nat Commun 2024; 15:6480. [PMID: 39090108 PMCID: PMC11294480 DOI: 10.1038/s41467-024-50806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Regulatory T cells (Tregs) are key immune regulators that have shown promise in enhancing cardiac repair post-MI, although the mechanisms remain elusive. Here, we show that rapidly increasing Treg number in the circulation post-MI via systemic administration of exogenous Tregs improves cardiac function in male mice, by limiting cardiomyocyte death and reducing fibrosis. Mechanistically, exogenous Tregs quickly home to the infarcted heart and adopt an injury-specific transcriptome that mediates repair by modulating monocytes/macrophages. Specially, Tregs lead to a reduction in pro-inflammatory Ly6CHi CCR2+ monocytes/macrophages accompanied by a rapid shift of macrophages towards a pro-repair phenotype. Additionally, exogenous Treg-derived factors, including nidogen-1 and IL-10, along with a decrease in cardiac CD8+ T cell number, mediate the reduction of the pro-inflammatory monocyte/macrophage subset in the heart. Supporting the pivotal role of IL-10, exogenous Tregs knocked out for IL-10 lose their pro-repair capabilities. Together, this study highlights the beneficial use of a Treg-based therapeutic approach for cardiac repair with important mechanistic insights that could facilitate the development of novel immunotherapies for MI.
Collapse
Affiliation(s)
- Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | | | - Sin Nee Lau
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Jean L Tan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Daniela Amann-Zalcenstein
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Peter F Hickey
- Advanced Genomics Facility, Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Gonzalo Del Monte-Nieto
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
- Victorian Heart Institute, Monash University, Victorian Heart Hospital, Melbourne, Australia
| | - Ajithkumar Vasanthakumar
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- La Trobe University, Bundoora, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia.
- Victorian Heart Institute, Monash University, Victorian Heart Hospital, Melbourne, Australia.
| |
Collapse
|
15
|
Kanuri B, Sreejit G, Biswas P, Murphy AJ, Nagareddy PR. Macrophage heterogeneity in myocardial infarction: Evolution and implications for diverse therapeutic approaches. iScience 2024; 27:110274. [PMID: 39040061 PMCID: PMC11261154 DOI: 10.1016/j.isci.2024.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Given the extensive participation of myeloid cells (especially monocytes and macrophages) in both inflammation and resolution phases post-myocardial infarction (MI) owing to their biphasic role, these cells are considered as crucial players in the disease pathogenesis. Multiple studies have agreed on the significant contribution of macrophage polarization theory (M2 vs. M1) while determining the underlying reasons behind the observed biphasic effects; nevertheless, this simplistic classification attracts severe drawbacks. The advent of multiple advanced technologies based on OMICS platforms facilitated a successful path to explore comprehensive cellular signatures that could expedite our understanding of macrophage heterogeneity and plasticity. While providing an overall basis behind the MI disease pathogenesis, this review delves into the literature to discuss the current knowledge on multiple macrophage clusters, including the future directions in this research arena. In the end, our focus will be on outlining the possible therapeutic implications based on the emerging observations.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Gopalkrishna Sreejit
- Department of Pathology, New York University Grossman School of Medicine, New York City, NY, USA
| | - Priosmita Biswas
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, VIC, Australia
| | - Prabhakara R. Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| |
Collapse
|
16
|
Ramos-Regalado L, Alcover S, Badimon L, Vilahur G. The Influence of Metabolic Risk Factors on the Inflammatory Response Triggered by Myocardial Infarction: Bridging Pathophysiology to Treatment. Cells 2024; 13:1125. [PMID: 38994977 PMCID: PMC11240659 DOI: 10.3390/cells13131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Myocardial infarction (MI) sets off a complex inflammatory cascade that is crucial for effective cardiac healing and scar formation. Yet, if this response becomes excessive or uncontrolled, it can lead to cardiovascular complications. This review aims to provide a comprehensive overview of the tightly regulated local inflammatory response triggered in the early post-MI phase involving cardiomyocytes, (myo)fibroblasts, endothelial cells, and infiltrating immune cells. Next, we explore how the bone marrow and extramedullary hematopoiesis (such as in the spleen) contribute to sustaining immune cell supply at a cardiac level. Lastly, we discuss recent findings on how metabolic cardiovascular risk factors, including hypercholesterolemia, hypertriglyceridemia, diabetes, and hypertension, disrupt this immunological response and explore the potential modulatory effects of lifestyle habits and pharmacological interventions. Understanding how different metabolic risk factors influence the inflammatory response triggered by MI and unraveling the underlying molecular and cellular mechanisms may pave the way for developing personalized therapeutic approaches based on the patient's metabolic profile. Similarly, delving deeper into the impact of lifestyle modifications on the inflammatory response post-MI is crucial. These insights may enable the adoption of more effective strategies to manage post-MI inflammation and improve cardiovascular health outcomes in a holistic manner.
Collapse
Affiliation(s)
- Lisaidy Ramos-Regalado
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sebastià Alcover
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lina Badimon
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
17
|
Stairley RA, Trouten AM, Li S, Roddy PL, DeLeon-Pennell KY, Lee KH, Sucov HM, Liu C, Tao G. Anti-Ferroptotic Treatment Deteriorates Myocardial Infarction by Inhibiting Angiogenesis and Altering Immune Response. Antioxidants (Basel) 2024; 13:769. [PMID: 39061839 PMCID: PMC11273385 DOI: 10.3390/antiox13070769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Mammalian cardiomyocytes have limited regenerative ability. Cardiac disease, such as congenital heart disease and myocardial infarction, causes an initial loss of cardiomyocytes through regulated cell death (RCD). Understanding the mechanisms that govern RCD in the injured myocardium is crucial for developing therapeutics to promote heart regeneration. We previously reported that ferroptosis, a non-apoptotic and iron-dependent form of RCD, is the main contributor to cardiomyocyte death in the injured heart. To investigate the mechanisms underlying the preference for ferroptosis in cardiomyocytes, we examined the effects of anti-ferroptotic reagents in infarcted mouse hearts. The results revealed that the anti-ferroptotic reagent did not improve neonatal heart regeneration, and further compromised the cardiac function of juvenile hearts. On the other hand, ferroptotic cardiomyocytes played a supportive role during wound healing by releasing pro-angiogenic factors. The inhibition of ferroptosis in the regenerating mouse heart altered the immune and angiogenic responses. Our study provides insights into the preference for ferroptosis over other types of RCD in stressed cardiomyocytes, and guidance for designing anti-cell-death therapies for treating heart disease.
Collapse
Affiliation(s)
- Rebecca A. Stairley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
| | - Allison M. Trouten
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
| | - Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Patrick L. Roddy
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
| | - Kristine Y. DeLeon-Pennell
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Kyu-Ho Lee
- Department of Medicine Digestive Disease Research Core Center, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Henry M. Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Chun Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (R.A.S.); (A.M.T.); (S.L.); (P.L.R.); (H.M.S.)
| |
Collapse
|
18
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
19
|
Hu D, Li R, Li Y, Wang M, Wang L, Wang S, Cheng H, Zhang Q, Fu C, Qian Z, Wei Q. Inflammation-Targeted Nanomedicines Alleviate Oxidative Stress and Reprogram Macrophages Polarization for Myocardial Infarction Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308910. [PMID: 38582507 DOI: 10.1002/advs.202308910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Myocardial infarction (MI) is a critical global health challenge, with current treatments limited by the complex MI microenvironment, particularly the excessive oxidative stress and intense inflammatory responses that exacerbate cardiac dysfunction and MI progression. Herein, a mannan-based nanomedicine, Que@MOF/Man, is developed to target the inflammatory infarcted heart and deliver the antioxidative and anti-inflammatory agent quercetin (Que), thereby facilitating a beneficial myocardial microenvironment for cardiac repair. The presence of mannan on the nanoparticle surface enables selective internalization by macrophages rather than cardiomyocytes. Que@MOF/Man effectively neutralizes reactive oxygen species in macrophages to reduce oxidative stress and promote their differentiation into a reparative phenotype, reconciling the inflammatory response and enhancing cardiomyocyte survival through intercellular communication. Owing to the recruitment of macrophages into inflamed myocardium post-MI, in vivo, administration of Que@MOF/Man in MI rats revealed the specific distribution into the injured myocardium compared to free Que. Furthermore, Que@MOF/Man exhibited favorable results in resolving inflammation and protecting cardiomyocytes, thereby preventing further myocardial remodeling and improving cardiac function in MI rats. These findings collectively validate the rational design of an inflammation-targeted delivery strategy to mitigate oxidative stress and modulate the inflammation response in the injured heart, presenting a therapeutic avenue for MI treatment.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Lu Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shiqi Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Hongxin Cheng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qing Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Chenying Fu
- National Clinical Research Center for Geriatrics, Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine in Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
20
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
21
|
Wang M, Li C, Liu Y, Jin Y, Yu Y, Tan X, Zhang C. The effect of macrophages and their exosomes in ischemic heart disease. Front Immunol 2024; 15:1402468. [PMID: 38799471 PMCID: PMC11116575 DOI: 10.3389/fimmu.2024.1402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic heart disease (IHD) is a leading cause of disability and death worldwide, with immune regulation playing a crucial role in its pathogenesis. Various immune cells are involved, and as one of the key immune cells residing in the heart, macrophages play an indispensable role in the inflammatory and reparative processes during cardiac ischemia. Exosomes, extracellular vesicles containing lipids, nucleic acids, proteins, and other bioactive molecules, have emerged as important mediators in the regulatory functions of macrophages and hold promise as a novel therapeutic target for IHD. This review summarizes the regulatory mechanisms of different subsets of macrophages and their secreted exosomes during cardiac ischemia over the past five years. It also discusses the current status of clinical research utilizing macrophages and their exosomes, as well as strategies to enhance their therapeutic efficacy through biotechnology. The aim is to provide valuable insights for the treatment of IHD.
Collapse
Affiliation(s)
- Minrui Wang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuchang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanyuan Jin
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Yu
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiu Tan
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chunxiang Zhang
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Alvarez-Argote S, Almeida VA, Knas MC, Buday SL, Patterson M, O'Meara CC. Global IL4Rα blockade exacerbates heart failure after an ischemic event in mice and humans. Am J Physiol Heart Circ Physiol 2024; 326:H1080-H1093. [PMID: 38426866 PMCID: PMC11380969 DOI: 10.1152/ajpheart.00010.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Ischemic heart failure continues to be a highly prevalent disease among westernized countries and there is great interest in understanding the mechanisms preventing or exacerbating disease progression. The literature suggests an important role for the activation of interleukin-13 or interleukin-4 signaling in improving ischemic heart failure outcomes after myocardial infarction in mice. Dupilumab, a neutralizing antibody that inhibits the shared IL13/IL4 receptor subunit IL4Rα, is widely used for conditions such as ectopic dermatitis in humans. If global depletion of IL4Rα influences ischemic heart failure, either in mice or in humans taking dupilumab, is unknown. Here, we investigated the pathophysiological effects of global IL4Rα genetic deletion in adult mice after surgically induced myocardial infarction (MI). We also determined heart failure risk in patients with ischemic heart disease and concomitant usage of dupilumab using the collaborative patient data network TriNetX. Global deletion of IL4Rα results in exacerbated cardiac dysfunction associated with reduced capillary size after myocardial infarction in mice. In agreement with our findings in mice, dupilumab treatment significantly increased the risk of heart failure development in patients with preexisting diagnosis of ischemic heart disease. Our results indicate that systemic IL4Rα signaling is protective against heart failure development in adult mice and human patients specifically following an ischemic event. Thus, the compelling evidence presented hereby advocates for the development of a randomized clinical trial specifically investigating heart failure development after myocardial ischemia in patients taking dupilumab for another underlying condition.NEW & NOTEWORTHY A body of literature suggests a protective role for IL4Rα signaling postmyocardial infarction in mice. Here, our observational study demonstrates that humans taking the IL4Rα neutralizing antibody, dupilumab, have increased incidence of heart failure following an ischemic event. Similarly, global IL4Rα deletion in mice exacerbates heart failure postinfarct. To our knowledge, this is the first study reporting an adverse association in humans of dupilumab use with heart failure following a cardiac ischemic event.
Collapse
Affiliation(s)
- Santiago Alvarez-Argote
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Victor A Almeida
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Makenna C Knas
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sydney L Buday
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Michaela Patterson
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Caitlin C O'Meara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
23
|
Paccalet A, Badawi S, Pillot B, Augeul L, Mechtouff L, Harhous Z, Gouriou Y, Paillard M, Breuilly M, Amaz C, Varillon Y, Leboube S, Brun C, Prieur C, Rioufol G, Mewton N, Ovize M, Bidaux G, Bochaton T, Crola Da Silva C. Deleterious Anti-Inflammatory Macrophage Recruitment in Early Post-Infarction Phase: Unraveling the IL-6/MCP-1/STAT3 Axis. JACC Basic Transl Sci 2024; 9:593-604. [PMID: 38984050 PMCID: PMC11228110 DOI: 10.1016/j.jacbts.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/11/2024]
Abstract
Using a translational approach with an ST-segment myocardial infarction (STEMI) cohort and mouse model of myocardial infarction, we highlighted the role of the secreted IL-6 and MCP-1 cytokines and the STAT3 pathway in heart macrophage recruitment and activation. Cardiac myocytes secrete IL-6 and MCP-1 in response to hypoxic stress, leading to a recruitment and/or polarization of anti-inflammatory macrophages via the STAT3 pathway. In our preclinical model of myocardial infarction, neutralization of IL-6 and MCP-1 or STAT3 pathway reduced infarct size. Together, our data demonstrate that anti-inflammatory macrophages can be deleterious in the acute phase of STEMI.
Collapse
Affiliation(s)
- Alexandre Paccalet
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Sally Badawi
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Bruno Pillot
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Lionel Augeul
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Laura Mechtouff
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Zeina Harhous
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Yves Gouriou
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Mélanie Paillard
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Marine Breuilly
- CIQLE, LyMIC, LABEX CORTEX, Université Claude Bernard Lyon 1, Structure Fédérative de Recherche santé Lyon-Est CNRS UAR3453/Inserm US7, Lyon, France
| | - Camille Amaz
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Yvonne Varillon
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Simon Leboube
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Camille Brun
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Cyril Prieur
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Gilles Rioufol
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Nathan Mewton
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
- Intensive Cardiological Care Division, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, Bron, France
| | - Michel Ovize
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Gabriel Bidaux
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Thomas Bochaton
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Claire Crola Da Silva
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| |
Collapse
|
24
|
Yang B, Qiao Y, Yan D, Meng Q. Targeting Interactions between Fibroblasts and Macrophages to Treat Cardiac Fibrosis. Cells 2024; 13:764. [PMID: 38727300 PMCID: PMC11082988 DOI: 10.3390/cells13090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/13/2024] Open
Abstract
Excessive extracellular matrix (ECM) deposition is a defining feature of cardiac fibrosis. Most notably, it is characterized by a significant change in the concentration and volume fraction of collagen I, a disproportionate deposition of collagen subtypes, and a disturbed ECM network arrangement, which directly affect the systolic and diastolic functions of the heart. Immune cells that reside within or infiltrate the myocardium, including macrophages, play important roles in fibroblast activation and consequent ECM remodeling. Through both direct and indirect connections to fibroblasts, monocyte-derived macrophages and resident cardiac macrophages play complex, bidirectional, regulatory roles in cardiac fibrosis. In this review, we discuss emerging interactions between fibroblasts and macrophages in physiology and pathologic conditions, providing insights for future research aimed at targeting macrophages to combat cardiac fibrosis.
Collapse
Affiliation(s)
- Bo Yang
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| | - Yan Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Dong Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China;
| | - Qinghang Meng
- Center for Organoid and Regeneration Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou 511466, China;
| |
Collapse
|
25
|
Sun J, Peterson EA, Chen X, Wang J. ptx3a + fibroblast/epicardial cells provide a transient macrophage niche to promote heart regeneration. Cell Rep 2024; 43:114092. [PMID: 38607913 PMCID: PMC11092985 DOI: 10.1016/j.celrep.2024.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Macrophages conduct critical roles in heart repair, but the niche required to nurture and anchor them is poorly studied. Here, we investigated the macrophage niche in the regenerating heart. We analyzed cell-cell interactions through published single-cell RNA sequencing datasets and identified a strong interaction between fibroblast/epicardial (Fb/Epi) cells and macrophages. We further visualized the association of macrophages with Fb/Epi cells and the blockage of macrophage response without Fb/Epi cells in the regenerating zebrafish heart. Moreover, we found that ptx3a+ epicardial cells associate with reparative macrophages, and their depletion resulted in fewer reparative macrophages. Further, we identified csf1a expression in ptx3a+ cells and determined that pharmacological inhibition of the csf1a pathway or csf1a knockout blocked the reparative macrophage response. Moreover, we found that genetic overexpression of csf1a enhanced the reparative macrophage response with or without heart injury. Altogether, our studies illuminate a cardiac Fb/Epi niche, which mediates a beneficial macrophage response after heart injury.
Collapse
Affiliation(s)
- Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth A Peterson
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xin Chen
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Galili U, Li J, Schaer GL. Regeneration in Mice of Injured Skin, Heart, and Spinal Cord by α-Gal Nanoparticles Recapitulates Regeneration in Amphibians. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:730. [PMID: 38668224 PMCID: PMC11055133 DOI: 10.3390/nano14080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The healing of skin wounds, myocardial, and spinal cord injuries in salamander, newt, and axolotl amphibians, and in mouse neonates, results in scar-free regeneration, whereas injuries in adult mice heal by fibrosis and scar formation. Although both types of healing are mediated by macrophages, regeneration in these amphibians and in mouse neonates also involves innate activation of the complement system. These differences suggest that localized complement activation in adult mouse injuries might induce regeneration instead of the default fibrosis and scar formation. Localized complement activation is feasible by antigen/antibody interaction between biodegradable nanoparticles presenting α-gal epitopes (α-gal nanoparticles) and the natural anti-Gal antibody which is abundant in humans. Administration of α-gal nanoparticles into injuries of anti-Gal-producing adult mice results in localized complement activation which induces rapid and extensive macrophage recruitment. These macrophages bind anti-Gal-coated α-gal nanoparticles and polarize into M2 pro-regenerative macrophages that orchestrate accelerated scar-free regeneration of skin wounds and regeneration of myocardium injured by myocardial infarction (MI). Furthermore, injection of α-gal nanoparticles into spinal cord injuries of anti-Gal-producing adult mice induces recruitment of M2 macrophages, that mediate extensive angiogenesis and axonal sprouting, which reconnects between proximal and distal severed axons. Thus, α-gal nanoparticle treatment in adult mice mimics physiologic regeneration in amphibians. These studies further suggest that α-gal nanoparticles may be of significance in the treatment of human injuries.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (J.L.); (G.L.S.)
| | | | | |
Collapse
|
27
|
Chen Z, Zhu Y, Chen S, Li Z, Fu G, Wang Y. Immune patterns of cuproptosis in ischemic heart failure: A transcriptome analysis. J Cell Mol Med 2024; 28:e18187. [PMID: 38509725 PMCID: PMC10955177 DOI: 10.1111/jcmm.18187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
Cuproptosis is a recently discovered programmed cell death pattern that affects the tricarboxylic acid (TCA) cycle by disrupting the lipoylation of pyruvate dehydrogenase (PDH) complex components. However, the role of cuproptosis in the progression of ischemic heart failure (IHF) has not been investigated. In this study, we investigated the expression of 10 cuproptosis-related genes in samples from both healthy individuals and those with IHF. Utilizing these differential gene expressions, we developed a risk prediction model that effectively distinguished healthy and IHF samples. Furthermore, we conducted a comprehensive evaluation of the association between cuproptosis and the immune microenvironment in IHF, encompassing infiltrated immunocytes, immune reaction gene-sets and human leukocyte antigen (HLA) genes. Moreover, we identified two different cuproptosis-mediated expression patterns in IHF and explored the immune characteristics associated with each pattern. In conclusion, this study elucidates the significant influence of cuproptosis on the immune microenvironment in ischemic heart failure (IHF), providing valuable insights for future mechanistic research exploring the association between cuproptosis and IHF.
Collapse
Affiliation(s)
- Zhebin Chen
- Department of Cardiology, Sir Run Run Shaw HospitalSchool of Medicine, Zhejiang UniversityHangzhouPeople's Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceHangzhouPeople's Republic of China
| | - Yunhui Zhu
- Department of Cardiology, Sir Run Run Shaw HospitalSchool of Medicine, Zhejiang UniversityHangzhouPeople's Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceHangzhouPeople's Republic of China
| | - Songzan Chen
- Department of Cardiology, Sir Run Run Shaw HospitalSchool of Medicine, Zhejiang UniversityHangzhouPeople's Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceHangzhouPeople's Republic of China
| | - Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw HospitalSchool of Medicine, Zhejiang UniversityHangzhouPeople's Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceHangzhouPeople's Republic of China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw HospitalSchool of Medicine, Zhejiang UniversityHangzhouPeople's Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceHangzhouPeople's Republic of China
| | - Yao Wang
- Department of Cardiology, Sir Run Run Shaw HospitalSchool of Medicine, Zhejiang UniversityHangzhouPeople's Republic of China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceHangzhouPeople's Republic of China
| |
Collapse
|
28
|
Maccari S, Profumo E, Saso L, Marano G, Buttari B. Propranolol Promotes Monocyte-to-Macrophage Differentiation and Enhances Macrophage Anti-Inflammatory and Antioxidant Activities by NRF2 Activation. Int J Mol Sci 2024; 25:3683. [PMID: 38612493 PMCID: PMC11011821 DOI: 10.3390/ijms25073683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Adrenergic pathways represent the main channel of communication between the nervous system and the immune system. During inflammation, blood monocytes migrate within tissue and differentiate into macrophages, which polarize to M1 or M2 macrophages with tissue-damaging or -reparative properties, respectively. This study investigates whether the β-adrenergic receptor (β-AR)-blocking drug propranolol modulates the monocyte-to-macrophage differentiation process and further influences macrophages in their polarization toward M1- and M2-like phenotypes. Six-day-human monocytes were cultured with M-CSF in the presence or absence of propranolol and then activated toward an M1 pro-inflammatory state or an M2 anti-inflammatory state. The chronic exposure of monocytes to propranolol during their differentiation into macrophages promoted the increase in the M1 marker CD16 and in the M2 markers CD206 and CD163 and peroxisome proliferator-activated receptor ɣ expression. It also increased endocytosis and the release of IL-10, whereas it reduced physiological reactive oxygen species. Exposure to the pro-inflammatory conditions of propranolol-differentiated macrophages resulted in an anti-inflammatory promoting effect. At the molecular level, propranolol upregulated the expression of the oxidative stress regulators NRF2, heme oxygenase-1 and NQO1. By contributing to regulating macrophage activities, propranolol may represent a novel anti-inflammatory and immunomodulating compound with relevant therapeutic potential in several inflammatory diseases.
Collapse
Affiliation(s)
- Sonia Maccari
- Center for Gender Medicine, Italian National Institute of Health, 00161 Rome, Italy; (S.M.); (G.M.)
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy;
| | - Giuseppe Marano
- Center for Gender Medicine, Italian National Institute of Health, 00161 Rome, Italy; (S.M.); (G.M.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy;
| |
Collapse
|
29
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
30
|
Qin D, Zhang Y, Liu F, Xu X, Jiang H, Su Z, Xia L. Spatiotemporal development and the regulatory mechanisms of cardiac resident macrophages: Contribution in cardiac development and steady state. Acta Physiol (Oxf) 2024; 240:e14088. [PMID: 38230805 DOI: 10.1111/apha.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Cardiac resident macrophages (CRMs) are integral components of the heart and play significant roles in cardiac development, steady-state, and injury. Advances in sequencing technology have revealed that CRMs are a highly heterogeneous population, with significant differences in phenotype and function at different developmental stages and locations within the heart. In addition to research focused on diseases, recent years have witnessed a heightened interest in elucidating the involvement of CRMs in heart development and the maintenance of cardiac function. In this review, we primarily concentrated on summarizing the developmental trajectories, both spatial and temporal, of CRMs and their impact on cardiac development and steady-state. Moreover, we discuss the possible factors by which the cardiac microenvironment regulates macrophages from the perspectives of migration, proliferation, and differentiation under physiological conditions. Gaining insight into the spatiotemporal heterogeneity and regulatory mechanisms of CRMs is of paramount importance in comprehending the involvement of macrophages in cardiac development, injury, and repair, and also provides new ideas and therapeutic methods for treating heart diseases.
Collapse
Affiliation(s)
- Demeng Qin
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, China
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Xiang Xu
- Department of Business, Yancheng Blood Center, Yancheng, China
| | - Haiqiang Jiang
- Department of Laboratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, China
- International Genome Center, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Xu C, Tsihlis G, Chau K, Trinh K, Rogers NM, Julovi SM. Novel Perspectives in Chronic Kidney Disease-Specific Cardiovascular Disease. Int J Mol Sci 2024; 25:2658. [PMID: 38473905 PMCID: PMC10931927 DOI: 10.3390/ijms25052658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic kidney disease (CKD) affects > 10% of the global adult population and significantly increases the risk of cardiovascular disease (CVD), which remains the leading cause of death in this population. The development and progression of CVD-compared to the general population-is premature and accelerated, manifesting as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. CKD and CV disease combine to cause multimorbid cardiorenal syndrome (CRS) due to contributions from shared risk factors, including systolic hypertension, diabetes mellitus, obesity, and dyslipidemia. Additional neurohormonal activation, innate immunity, and inflammation contribute to progressive cardiac and renal deterioration, reflecting the strong bidirectional interaction between these organ systems. A shared molecular pathophysiology-including inflammation, oxidative stress, senescence, and hemodynamic fluctuations characterise all types of CRS. This review highlights the evolving paradigm and recent advances in our understanding of the molecular biology of CRS, outlining the potential for disease-specific therapies and biomarker disease detection.
Collapse
Affiliation(s)
- Cuicui Xu
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
| | - George Tsihlis
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
| | - Katrina Chau
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
- Blacktown Clinical School, School of Medicine, Western Sydney University, Sydney, NSW 2148, Australia
| | - Katie Trinh
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Department of Renal Services, Blacktown Hospital, Blacktown, NSW 2148, Australia;
| | - Natasha M. Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW 2145, Australia;
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| | - Sohel M. Julovi
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; (C.X.); (K.T.)
- Faculty of Medicine and Health, The University of Sydney, Science Rd., Camperdown, NSW 2050, Australia
| |
Collapse
|
32
|
Del Dosso A, Tadevosyan E, Berenson JR. Preclinical and clinical evaluation of the Janus Kinase inhibitor ruxolitinib in multiple myeloma. Oncotarget 2024; 15:65-75. [PMID: 38319731 PMCID: PMC10852065 DOI: 10.18632/oncotarget.28547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 02/08/2024] Open
Abstract
Multiple myeloma (MM) is the most common primary malignancy of the bone marrow. No established curative treatment is currently available for patients diagnosed with MM. In recent years, new and more effective drugs have become available for the treatment of this B-cell malignancy. These new drugs have often been evaluated together and in combination with older agents. However, even these novel combinations eventually become ineffective; and, thus, novel therapeutic approaches are necessary to help overcome resistance to these treatments. Recently, the Janus Kinase (JAK) family of tyrosine kinases, specifically JAK1 and JAK2, has been shown to have a role in the pathogenesis of MM. Preclinical studies have demonstrated a role for JAK signaling in direct and indirect growth of MM and downregulation of anti-tumor immune responses in these patients. Also, inhibition of JAK proteins enhances the anti-MM effects of other drugs used to treat MM. These findings have been confirmed in clinical studies which have further demonstrated the safety and efficacy of JAK inhibition as a means to overcome resistance to currently available anti-MM therapies. Additional studies will provide further support for this promising new therapeutic approach for treating patients with MM.
Collapse
Affiliation(s)
- Ashley Del Dosso
- ONCOtherapeutics, West Hollywood, CA 90069, USA
- These authors contributed equally to this work
| | - Elizabeth Tadevosyan
- Berenson Cancer Center, West Hollywood, CA 90069, USA
- These authors contributed equally to this work
| | - James R. Berenson
- ONCOtherapeutics, West Hollywood, CA 90069, USA
- Berenson Cancer Center, West Hollywood, CA 90069, USA
- Institute for Myeloma and Bone Cancer Research, West Hollywood, CA 90069, USA
| |
Collapse
|
33
|
Sansonetti M, Al Soodi B, Thum T, Jung M. Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Res Cardiol 2024; 119:1-33. [PMID: 38170281 PMCID: PMC10837257 DOI: 10.1007/s00395-023-01027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Despite the advances in treatment options, cardiovascular disease (CVDs) remains the leading cause of death over the world. Chronic inflammatory response and irreversible fibrosis are the main underlying pathophysiological causes of progression of CVDs. In recent decades, cardiac macrophages have been recognized as main regulatory players in the development of these complex pathophysiological conditions. Numerous approaches aimed at macrophages have been devised, leading to novel prospects for therapeutic interventions. Our review covers the advancements in macrophage-centric treatment plans for various pathologic conditions and examines the potential consequences and obstacles of employing macrophage-targeted techniques in cardiac diseases.
Collapse
Affiliation(s)
- Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Bashar Al Soodi
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625, Hannover, Germany.
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
34
|
Alvarez-Argote S, Paddock SJ, Flinn MA, Moreno CW, Knas MC, Almeida VA, Buday SL, Bakhshian Nik A, Patterson M, Chen YG, Lin CW, O’Meara CC. IL-13 promotes functional recovery after myocardial infarction via direct signaling to macrophages. JCI Insight 2024; 9:e172702. [PMID: 38051583 PMCID: PMC10906228 DOI: 10.1172/jci.insight.172702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
There is great interest in identifying signaling pathways that promote cardiac repair after myocardial infarction (MI). Prior studies suggest a beneficial role for IL-13 signaling in neonatal heart regeneration; however, the cell types mediating cardiac regeneration and the extent of IL-13 signaling in the adult heart after injury are unknown. We identified an abundant source of IL-13 and the related cytokine, IL-4, in neonatal cardiac type 2 innate lymphoid cells, but this phenomenon declined precipitously in adult hearts. Moreover, IL-13 receptor deletion in macrophages impaired cardiac function and resulted in larger scars early after neonatal MI. By using a combination of recombinant IL-13 administration and cell-specific IL-13 receptor genetic deletion models, we found that IL-13 signaling specifically to macrophages mediated cardiac functional recovery after MI in adult mice. Single transcriptomics revealed a subpopulation of cardiac macrophages in response to IL-13 administration. These IL-13-induced macrophages were highly efferocytotic and were identified by high IL-1R2 expression. Collectively, we elucidated a strongly proreparative role for IL-13 signaling directly to macrophages following cardiac injury. While this pathway is active in proregenerative neonatal stages, reactivation of macrophage IL-13 signaling is required to promote cardiac functional recovery in adults.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sydney L. Buday
- Department of Physiology
- Cardiovascular Research Center
- Department of Cell Biology, Neurobiology, and Anatomy
| | | | - Michaela Patterson
- Cardiovascular Research Center
- Department of Cell Biology, Neurobiology, and Anatomy
| | - Yi-Guang Chen
- Department of Pediatrics
- Department of Microbiology and Immunology, and
| | - Chien-Wei Lin
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
35
|
Ter Mors B, Spieler V, Merino Asumendi E, Gantert B, Lühmann T, Meinel L. Bioresponsive Cytokine Delivery Responding to Matrix Metalloproteinases. ACS Biomater Sci Eng 2024; 10:29-37. [PMID: 37102329 DOI: 10.1021/acsbiomaterials.2c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cytokines are regulated in acute and chronic inflammation, including rheumatoid arthritis (RA) and myocardial infarction (MI). However, the dynamic windows within which cytokine activity/inhibition is desirable in RA and MI change timely and locally during the disease. Therefore, traditional, static delivery regimens are unlikely to meet the idiosyncrasy of these highly dynamic pathophysiological and individual processes. Responsive delivery systems and biomaterials, sensing surrogate markers of inflammation (i.e., matrix metalloproteinases - MMPs) and answering with drug release, may present drug activity at the right time, manner, and place. This article discusses MMPs as surrogate markers for disease activity in RA and MI to clock drug discharge to MMP concentration profiles from MMP-responsive drug delivery systems and biomaterials.
Collapse
Affiliation(s)
- Björn Ter Mors
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valerie Spieler
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eduardo Merino Asumendi
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Benedikt Gantert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| |
Collapse
|
36
|
Moratal C, Murdaca J, Cruzel C, Zamiti-Smondel A, Heme N, Asarisi F, Neels JG, Ferrari E, Chinetti G. An exploratory human study investigating the influence of type 2 diabetes on macrophage phenotype after myocardial infarction. IJC HEART & VASCULATURE 2023; 49:101309. [PMID: 38020056 PMCID: PMC10679475 DOI: 10.1016/j.ijcha.2023.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Background Myocardial infarction (MI) is the primary cause of death in subjects with type 2 diabetes (T2D) and their in-hospital mortality after MI is still elevated compared with those without T2D. Therefore, it is of crucial importance to identify possible mechanisms of worse clinical outcomes and mortality in T2D subjects. Monocyte/macrophage-mediated immune response plays an important role in heart remodelling to limit functional deterioration after MI. Indeed, first pro-inflammatory macrophages digest damaged tissue, then anti-inflammatory macrophages become prevalent and promote tissue repair. Here, we hypothesize that the worse clinical outcomes in patients with T2D could be the consequence of a defective or a delayed polarization of macrophages toward an anti-inflammatory phenotype. Methods and results In an exploratory human study, circulating monocytes from male patients with or without T2D at different time-points after MI were in vitro differentiated toward pro- or anti-inflammatory macrophages. The results of this pilot study suggest that the phenotype of circulating monocytes, as well as the pro- and anti-inflammatory macrophage polarization, or the kinetics of the pro- and anti-inflammatory polarization, is not influenced by T2D. Conclusion Further studies will be necessary to understand the real contribution of macrophages after MI in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Emile Ferrari
- Université Côte d’Azur, CHU, INSERM, C3M, Nice, France
| | | |
Collapse
|
37
|
Li R, Chen B, Kubota A, Hanna A, Humeres C, Hernandez SC, Liu Y, Ma R, Tuleta I, Huang S, Venugopal H, Zhu F, Su K, Li J, Zhang J, Zheng D, Frangogiannis NG. Protective effects of macrophage-specific integrin α5 in myocardial infarction are associated with accentuated angiogenesis. Nat Commun 2023; 14:7555. [PMID: 37985764 PMCID: PMC10662477 DOI: 10.1038/s41467-023-43369-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Macrophages sense changes in the extracellular matrix environment through the integrins and play a central role in regulation of the reparative response after myocardial infarction. Here we show that macrophage integrin α5 protects the infarcted heart from adverse remodeling and that the protective actions are associated with acquisition of an angiogenic macrophage phenotype. We demonstrate that myeloid cell- and macrophage-specific integrin α5 knockout mice have accentuated adverse post-infarction remodeling, accompanied by reduced angiogenesis in the infarct and border zone. Single cell RNA-sequencing identifies an angiogenic infarct macrophage population with high Itga5 expression. The angiogenic effects of integrin α5 in macrophages involve upregulation of Vascular Endothelial Growth Factor A. RNA-sequencing of the macrophage transcriptome in vivo and in vitro followed by bioinformatic analysis identifies several intracellular kinases as potential downstream targets of integrin α5. Neutralization assays demonstrate that the angiogenic actions of integrin α5-stimulated macrophages involve activation of Focal Adhesion Kinase and Phosphoinositide 3 Kinase cascades.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akihiko Kubota
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Ma
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Harikrishnan Venugopal
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fenglan Zhu
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jun Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
38
|
Wang X, Shi H, Huang S, Zhang Y, He X, Long Q, Qian B, Zhong Y, Qi Z, Zhao Q, Ye X. Localized delivery of anti-inflammatory agents using extracellular matrix-nanostructured lipid carriers hydrogel promotes cardiac repair post-myocardial infarction. Biomaterials 2023; 302:122364. [PMID: 37883909 DOI: 10.1016/j.biomaterials.2023.122364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
A challenge in treating cardiac injury is the low heart-specificity of the drugs. Nanostructured lipid carriers (NLCs) are a relatively new format of lipid nanoparticles which have been used to deliver RNA and drugs. However, lipid nanoparticles exhibit higher affinity to the liver than the heart. To improve the delivery efficiency of NLCs into the heart, NLCs can be embedded into a scaffold and be locally released. In this study, a cardiac extracellular matrix (ECM) hydrogel-NLC composite was developed as a platform for cardiac repair. ECM-NLC composite gels at physiological conditions and releases payloads into the heart over weeks. ECM-NLC hydrogel carrying colchicine, an anti-inflammation agent, improved cardiac repair after myocardial infarction in mice. Transcriptome analysis indicated that Egfr downstream effectors participated in ECM-NLC-colchicine induced heart repair. In conclusion, ECM-NLC hydrogel is a potential platform for sustained and localized delivery of biomolecules into the heart, and loading appropriate medicines further increases the therapeutic efficacy of ECM-NLC hydrogel for cardiovascular diseases.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Hongpeng Shi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaojun He
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Long
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bei Qian
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Mami W, Znaidi-Marzouki S, Doghri R, Ben Ahmed M, Znaidi S, Messadi E. Inflammatory Bowel Disease Increases the Severity of Myocardial Infarction after Acute Ischemia-Reperfusion Injury in Mice. Biomedicines 2023; 11:2945. [PMID: 38001946 PMCID: PMC10669621 DOI: 10.3390/biomedicines11112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Increased risk of myocardial infarction (MI) has been linked to several inflammatory conditions, including inflammatory bowel disease (IBD). However, the relationship between IBD and MI remains unclear. Here, we implemented an original mouse model combining IBD and MI to determine IBD's impact on MI severity and the link between the two diseases. (2) Methods: An IBD model was established by dextran sulfate sodium (DSS) administration in drinking water, alone or with oral C. albicans (Ca) gavage. IBD severity was assessed by clinical/histological scores and intestinal/systemic inflammatory biomarker measurement. Mice were subjected to myocardial ischemia-reperfusion (IR), and MI severity was assessed by quantifying infarct size (IS) and serum cardiac troponin I (cTnI) levels. (3) Results: IBD mice exhibited elevated fecal lipocalin 2 (Lcn2) and IL-6 levels. DSS mice exhibited almost two-fold increase in IS compared to controls, with serum cTnI levels strongly correlated with IS. Ca inoculation tended to worsen DSS-induced systemic inflammation and IR injury, an observation which is not statistically significant. (4) Conclusions: This is the first proof-of-concept study demonstrating the impact of IBD on MI severity and suggesting mechanistic aspects involved in the IBD-MI connection. Our findings could pave the way for MI therapeutic approaches based on identified IBD-induced inflammatory mediators.
Collapse
Affiliation(s)
- Wael Mami
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia;
| | - Soumaya Znaidi-Marzouki
- Laboratoire de Transmission, Contrôle et Immunobiologie des Infections (LR16IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (S.Z.-M.); (M.B.A.)
| | - Raoudha Doghri
- Département d’Anatomie et Cytologie Pathologiques, Institut Salah-Azaeiz, Université El-Manar, Tunis 1006, Tunisia;
| | - Melika Ben Ahmed
- Laboratoire de Transmission, Contrôle et Immunobiologie des Infections (LR16IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia; (S.Z.-M.); (M.B.A.)
| | - Sadri Znaidi
- Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia;
- Unité Biologie et Pathogénicité Fongiques, Département Mycologie, Institut Pasteur, INRA, 75015 Paris, France
| | - Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia;
| |
Collapse
|
40
|
Qin A, Wen Z, Xiong S. Myocardial Mitochondrial DNA Drives Macrophage Inflammatory Response through STING Signaling in Coxsackievirus B3-Induced Viral Myocarditis. Cells 2023; 12:2555. [PMID: 37947632 PMCID: PMC10648438 DOI: 10.3390/cells12212555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Coxsackievirus B3 (CVB3), a single-stranded positive RNA virus, primarily infects cardiac myocytes and is a major causative pathogen for viral myocarditis (VMC), driving cardiac inflammation and organ dysfunction. However, whether and how myocardial damage is involved in CVB3-induced VMC remains unclear. Herein, we demonstrate that the CVB3 infection of cardiac myocytes results in the release of mitochondrial DNA (mtDNA), which functions as an important driver of cardiac macrophage inflammation through the stimulator of interferon genes (STING) dependent mechanism. More specifically, the CVB3 infection of cardiac myocytes promotes the accumulation of extracellular mtDNA. Such myocardial mtDNA is indispensable for CVB3-infected myocytes in that it induces a macrophage inflammatory response. Mechanistically, a CVB3 infection upregulates the expression of the classical DNA sensor STING, which is predominantly localized within cardiac macrophages in VMC murine models. Myocardial mtDNA efficiently triggers STING signaling in those macrophages, resulting in strong NF-kB activation when inducing the inflammatory response. Accordingly, STING-deficient mice are able to resist CVB3-induced cardiac inflammation, exhibiting minimal inflammation with regard to their functional cardiac capacities, and they exhibit higher survival rates. Moreover, our findings pinpoint myocardial mtDNA as a central element driving the cardiac inflammation of CVB3-induced VMC, and we consider the DNA sensor, STING, to be a promising therapeutic target for protecting against RNA viral infections.
Collapse
Affiliation(s)
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
41
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
42
|
Sasaki T, Kuse Y, Nakamura S, Shimazawa M, Hara H. Progranulin deficiency exacerbates cardiac remodeling after myocardial infarction. FASEB Bioadv 2023; 5:395-411. [PMID: 37810172 PMCID: PMC10551273 DOI: 10.1096/fba.2023-00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Myocardial infarction (MI) is a lethal disease that causes irreversible cardiomyocyte death and subsequent cardiovascular remodeling. We have previously shown that the administration of recombinant progranulin (PGRN) protects against myocardial ischemia and reperfusion injury. However, the post-MI role of PGRN remains unclear. In the present study, we investigated the effects of PGRN deficiency on cardiac remodeling after MI. Wild-type and PGRN-knockout mice were subjected to MI by ligation of the left coronary artery for histological, electrophysiological, and protein expression analysis. Cardiac macrophage subpopulations were analyzed by flow cytometry. Bone marrow-derived macrophages (BMDMs) were acquired and treated with LPS + IFN-γ and IL-4 to evaluate mRNA levels and phagocytic ability. PGRN expression was gradually increased in the whole heart at 1, 3, and 7 days after MI. Macrophages abundantly expressed PGRN at the border areas at 3 days post-MI. PGRN-knockout mice showed higher mortality, increased LV fibrosis, and severe arrhythmia following MI. PGRN deficiency increased the levels of CD206 and MerTK expression and macrophage infiltration in the infarcted myocardium, which was attributed to a larger subpopulation of cardiac CCR2+ Ly6Clow CD11b+ macrophages. PGRN-deficient BMDMs exhibited higher TGF-β, IL-4R, and lower IL-1β, IL-10 and increased acute phagocytosis following stimulation of LPS and IFN-γ. PGRN deficiency reduced survival and increased cardiac fibrosis following MI with the induction of abnormal subpopulation of cardiac macrophages early after MI, thereby providing insight into the relationship between properly initiating cardiac repair and macrophage polarization after MI.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
| | - Yoshiki Kuse
- Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
- Laboratory of Collaborative Research for Innovative Drug DiscoveryGifu Pharmaceutical UniversityGifuJapan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
- Laboratory of Collaborative Research for Innovative Drug DiscoveryGifu Pharmaceutical UniversityGifuJapan
| |
Collapse
|
43
|
Thorp EB. Cardiac macrophages and emerging roles for their metabolism after myocardial infarction. J Clin Invest 2023; 133:e171953. [PMID: 37712418 PMCID: PMC10503791 DOI: 10.1172/jci171953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Interest in cardioimmunology has reached new heights as the experimental cardiology field works to tap the unrealized potential of immunotherapy for clinical care. Within this space is the cardiac macrophage, a key modulator of cardiac function in health and disease. After a myocardial infarction, myeloid macrophages both protect and harm the heart. To varying degrees, such outcomes are a function of myeloid ontogeny and heterogeneity, as well as functional cellular plasticity. Diversity is further shaped by the extracellular milieu, which fluctuates considerably after coronary occlusion. Ischemic limitation of nutrients constrains the metabolic potential of immune cells, and accumulating evidence supports a paradigm whereby macrophage metabolism is coupled to divergent inflammatory consequences, although experimental evidence for this in the heart is just emerging. Herein we examine the heterogeneous cardiac macrophage response following ischemic injury, with a focus on integrating putative contributions of immunometabolism and implications for therapeutically relevant cardiac injury versus cardiac repair.
Collapse
|
44
|
Luo X, Jiang Y, Li Q, Yu X, Ma T, Cao H, Ke M, Zhang P, Tan J, Gong Y, Wang L, Gao L, Yang H. hESC-Derived Epicardial Cells Promote Repair of Infarcted Hearts in Mouse and Swine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300470. [PMID: 37505480 PMCID: PMC10520683 DOI: 10.1002/advs.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Myocardial infarction (MI) causes excessive damage to the myocardium, including the epicardium. However, whether pluripotent stem cell-derived epicardial cells (EPs) can be a therapeutic approach for infarcted hearts remains unclear. Here, the authors report that intramyocardial injection of human embryonic stem cell-derived EPs (hEPs) at the acute phase of MI ameliorates functional worsening and scar formation in mouse hearts, concomitantly with enhanced cardiomyocyte survival, angiogenesis, and lymphangiogenesis. Mechanistically, hEPs suppress MI-induced infiltration and cytokine-release of inflammatory cells and promote reparative macrophage polarization. These effects are blocked by a type I interferon (IFN-I) receptor agonist RO8191. Moreover, intelectin 1 (ITLN1), abundantly secreted by hEPs, interacts with IFN-β and mimics the effects of hEP-conditioned medium in suppression of IFN-β-stimulated responses in macrophages and promotion of reparative macrophage polarization, whereas ITLN1 downregulation in hEPs cancels beneficial effects of hEPs in anti-inflammation, IFN-I response inhibition, and cardiac repair. Further, similar beneficial effects of hEPs are observed in a clinically relevant porcine model of reperfused MI, with no increases in the risk of hepatic, renal, and cardiac toxicity. Collectively, this study reveals hEPs as an inflammatory modulator in promoting infarct healing via a paracrine mechanism and provides a new therapeutic approach for infarcted hearts.
Collapse
Affiliation(s)
- Xiao‐Ling Luo
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Qiang Li
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Xiu‐Jian Yu
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Teng Ma
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Hao Cao
- Department of Cardiovascular and Thoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Min‐Xia Ke
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Ji‐Liang Tan
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Yan‐Shan Gong
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Li Wang
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Huang‐Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
- Institute for Stem Cell and RegenerationCASBeijing100101China
| |
Collapse
|
45
|
Shi L, Du X, Li J, Zhang G. Bioinformatics and Systems Biology Approach to Identify the Pathogenetic Link Between Psoriasis and Cardiovascular Disease. Clin Cosmet Investig Dermatol 2023; 16:2283-2295. [PMID: 37635735 PMCID: PMC10460209 DOI: 10.2147/ccid.s421193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Objective This study aimed to identify hub genes and common pathways shared between psoriasis and cardiovascular disease (CVD) using bioinformatics analysis and predict the transcription factors (TFs) of hub genes. Methods GSE133555 data from the Gene Expression Omnibus (GEO) database were used to identify differentially expressed genes (DEGs) between involved and uninvolved skin lesions in psoriasis, employing the limma package in R. Additionally, CVD-related genes were obtained from the GeneCards database. The intersection of DEGs and CVD-related genes yielded CVD-DEGs. Gene Ontology and signaling pathway analyses were performed using the clusterProfiler package in R. Hub genes were identified by intersecting six algorithms in the CytoHubba plugin of Cytoscape. To identify potential biomarkers, the GSE14905 dataset was subjected to receiver operating characteristic analysis, resulting in the identification of eight central hub genes. Finally, the NetworkAnalyst web tool was used to identify the TFs of the eight hub genes. Results We identified 92 significant DEGs out of 1825 CVD-related genes in psoriasis obtained from the GSE13355 and GeneCard data. Functional enrichment analysis revealed the involvement of these genes in various signaling pathways, including the interleukin-17 signaling, tumor necrosis factor signaling, lipid and atherosclerosis, chemokine signaling, and cytokine signaling pathways in the immune system. The eight hub genes identified included interleukin-1 beta, C-X-C motif chemokine ligand 8, signal transducer and activator of transcription 3, C-C motif chemokine ligand 2, arginase 1, C-X-C motif chemokine receptor 4, cyclin D1, and matrix metallopeptidase 9, with forkhead box C1 also identified as an associated TF of these genes. These hub genes and TF may act as key regulators in the context of CVD. Conclusion This study identified several hub genes and signaling pathways associated with both CVD and psoriasis. These findings lay the groundwork for potential therapeutic interventions for patients with psoriasis affected by CVD.
Collapse
Affiliation(s)
- Liping Shi
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, People’s Republic of China
| | - Xiaoqing Du
- Department of Dermatology, Bethune International Peace Hospital, Shijiazhuang, People’s Republic of China
| | - Jing Li
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, People’s Republic of China
| | - Guoqiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Shijiazhuang, People’s Republic of China
| |
Collapse
|
46
|
Yang P, Chen Z, Huang W, Zhang J, Zou L, Wang H. Communications between macrophages and cardiomyocytes. Cell Commun Signal 2023; 21:206. [PMID: 37587464 PMCID: PMC10428630 DOI: 10.1186/s12964-023-01202-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/19/2023] [Indexed: 08/18/2023] Open
Abstract
The heart is a muscular organ that pumps blood throughout the body and is one of the most vital organs in human body. While cardiomyocytes are essential for maintaining the normal function of the heart, a variety of cardiovascular diseases such as coronary artery occlusion, arrhythmia, and myocarditis can lead to cardiomyocyte death, resulting in deterioration of heart function. The adult mammalian heart is incapable of regenerating sufficient cardiomyocytes following cardiac injuries, eventually leading to heart failure and death. Cardiac macrophages are ubiquitously distributed in the healthy heart and accumulated at the site of injury. Macrophages play essential roles in regulating homeostasis and proliferation of cardiomyocyte, promoting electrical conduction, and removing dead cardiomyocytes and debris through direct and indirect cell-cell crosstalk. In this review, we summarize the latest insights into the role of macrophages in maintaining cardiac homeostasis and the macrophage-cardiomyocyte crosstalk in both healthy and injured scenarios. Video Abstract.
Collapse
Affiliation(s)
- Pengbo Yang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziwei Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Wei Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Lihui Zou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Haiyan Wang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
47
|
Isidoro CA, Deniset JF. Pericardial Immune Cells and Their Evolving Role in Cardiovascular Pathophysiology. Can J Cardiol 2023; 39:1078-1089. [PMID: 37270165 DOI: 10.1016/j.cjca.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
The pericardium plays several homeostatic roles to support and maintain everyday cardiac function. Recent advances in techniques and experimental models have allowed for further exploration into the cellular contents of the pericardium itself. Of particular interest are the various immune cell populations present in the space within the pericardial fluid and fat. In contrast to immune cells of the comparable pleura, peritoneum and heart, pericardial immune cells appear to be distinct in their function and phenotype. Specifically, recent work has suggested these cells play critical roles in an array of pathophysiological conditions including myocardial infarction, pericarditis, and post-cardiac surgery complications. In this review, we spotlight the pericardial immune cells currently identified in mice and humans, the pathophysiological role of these cells, and the clinical significance of the immunocardiology axis in cardiovascular health.
Collapse
Affiliation(s)
- Carmina Albertine Isidoro
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Justin F Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, Alberta, Canada; Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
48
|
Rondeaux J, Groussard D, Renet S, Tardif V, Dumesnil A, Chu A, Di Maria L, Lemarcis T, Valet M, Henry JP, Badji Z, Vézier C, Béziau-Gasnier D, Neele AE, de Winther MPJ, Guerrot D, Brand M, Richard V, Durand E, Brakenhielm E, Fraineau S. Ezh2 emerges as an epigenetic checkpoint regulator during monocyte differentiation limiting cardiac dysfunction post-MI. Nat Commun 2023; 14:4461. [PMID: 37491334 PMCID: PMC10368741 DOI: 10.1038/s41467-023-40186-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Epigenetic regulation of histone H3K27 methylation has recently emerged as a key step during alternative immunoregulatory M2-like macrophage polarization; known to impact cardiac repair after Myocardial Infarction (MI). We hypothesized that EZH2, responsible for H3K27 methylation, could act as an epigenetic checkpoint regulator during this process. We demonstrate for the first time an ectopic EZH2, and putative, cytoplasmic inactive localization of the epigenetic enzyme, during monocyte differentiation into M2 macrophages in vitro as well as in immunomodulatory cardiac macrophages in vivo in the post-MI acute inflammatory phase. Moreover, we show that pharmacological EZH2 inhibition, with GSK-343, resolves H3K27 methylation of bivalent gene promoters, thus enhancing their expression to promote human monocyte repair functions. In line with this protective effect, GSK-343 treatment accelerated cardiac inflammatory resolution preventing infarct expansion and subsequent cardiac dysfunction in female mice post-MI in vivo. In conclusion, our study reveals that pharmacological epigenetic modulation of cardiac-infiltrating immune cells may hold promise to limit adverse cardiac remodeling after MI.
Collapse
Affiliation(s)
- Julie Rondeaux
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | | | - Sylvanie Renet
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Virginie Tardif
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Anaïs Dumesnil
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Alphonse Chu
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Léa Di Maria
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Théo Lemarcis
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Manon Valet
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Jean-Paul Henry
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Zina Badji
- CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | - Claire Vézier
- CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | | | - Annette E Neele
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Dominique Guerrot
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Nephrology, F-76000, Rouen, France
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, General Hospital, Mailbox 511, 501 Smyth Road, Ottawa, ON K1H8L6, Canada
| | - Vincent Richard
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Pharmacology, F-76000, Rouen, France
| | - Eric Durand
- Univ Rouen Normandie, Inserm EnVI UMR 1096, CHU Rouen, Department of Cardiology, F-76000, Rouen, France
| | - Ebba Brakenhielm
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France
| | - Sylvain Fraineau
- Univ Rouen Normandie, Inserm EnVI UMR 1096, F-76000, Rouen, France.
| |
Collapse
|
49
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
DeBerge M, Chaudhary R, Schroth S, Thorp EB. Immunometabolism at the Heart of Cardiovascular Disease. JACC Basic Transl Sci 2023; 8:884-904. [PMID: 37547069 PMCID: PMC10401297 DOI: 10.1016/j.jacbts.2022.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 08/08/2023]
Abstract
Immune cell function among the myocardium, now more than ever, is appreciated to regulate cardiac function and pathophysiology. This is the case for both innate immunity, which includes neutrophils, monocytes, dendritic cells, and macrophages, as well as adaptive immunity, which includes T cells and B cells. This function is fueled by cell-intrinsic shifts in metabolism, such as glycolysis and oxidative phosphorylation, as well as metabolite availability, which originates from the surrounding extracellular milieu and varies during ischemia and metabolic syndrome. Immune cell crosstalk with cardiac parenchymal cells, such as cardiomyocytes and fibroblasts, is also regulated by complex cellular metabolic circuits. Although our understanding of immunometabolism has advanced rapidly over the past decade, in part through valuable insights made in cultured cells, there remains much to learn about contributions of in vivo immunometabolism and directly within the myocardium. Insight into such fundamental cell and molecular mechanisms holds potential to inform interventions that shift the balance of immunometabolism from maladaptive to cardioprotective and potentially even regenerative. Herein, we review our current working understanding of immunometabolism, specifically in the settings of sterile ischemic cardiac injury or cardiometabolic disease, both of which contribute to the onset of heart failure. We also discuss current gaps in knowledge in this context and therapeutic implications.
Collapse
Affiliation(s)
| | | | - Samantha Schroth
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|