1
|
Qiao Y, Tan C, Lai J, Wu J, Sun X, Chen J. Single-cell transcriptomic profiling of rat iridocorneal angle at perinatal stages: Revisiting the development of periocular mesenchyme. Exp Eye Res 2025; 252:110249. [PMID: 39855453 DOI: 10.1016/j.exer.2025.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The periocular mesenchyme (POM) gives rise to key structures in the ocular anterior segment, and its malformation leads to anterior segment dysgenesis (ASD) with iridocorneal angle (ICA) abnormalities. However, the transcriptional profile of the POM and the regulatory mechanisms governing cell-fate decision during anterior eye and ICA development remain poorly understood. In this study, we performed a comprehensive time-series analysis by sequencing rat anterior ocular samples collected at five consecutive perinatal stages: embryonic days 16.5 and 18.5, the day of birth, and postnatal days 4 and 8, at the single-cell level and validated a portion of in silico findings with immunostaining. High-quality transcriptomes were obtained from 59,416 cells with diverse embryonic origins. A prominent transcriptional shift was observed in POM cells, coinciding with anatomical alterations around the ICA shortly after birth. We illustrated the molecular signatures of five POM subclusters while tracing their developmental trajectories. Additionally, we identified key driver genes, as well as cell type-specific and stage-wise gene modules underlying lineage specification. Furthermore, the switch of regulon network and cellular crosstalk associated with POM maturation were unveiled. Lastly, we mapped ASD-relevant genes to this single-cell atlas, revealing distinct expression patterns. Collectively, this study provides a transcriptomic blueprint for understanding normal POM and ICA development, as well as a valuable reference for future research into ASD pathogenesis.
Collapse
Affiliation(s)
- Yunsheng Qiao
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Chen Tan
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Junyi Lai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Jihong Wu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Junyi Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, And Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
2
|
Wang D, Pu Y, Gao X, Zeng L, Li H. Potential Functions and Causal Associations of GNLY in Primary Open-Angle Glaucoma: Integration of Blood-Derived Proteome, Transcriptome, and Experimental Verification. J Inflamm Res 2025; 18:367-380. [PMID: 39802509 PMCID: PMC11725236 DOI: 10.2147/jir.s497525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Genome-wide association studies (GWAS) have identified multiple genetic loci associated with primary open-angle glaucoma (POAG). However, the mechanisms by which these loci contribute to POAG progression remain unclear. This study aimed to identify potential causative genes involved in the development of POAG. Methods We utilized multi-dimensional high-throughput data, integrating proteome-wide association study(PWAS), transcriptome-wide association study (TWAS), and summary data-based Mendelian randomization (SMR) analysis. This approach enabled the identification of genes influencing POAG risk by affecting gene expression and protein concentrations in the bloodstream. The key gene was validated through enzyme-linked immunosorbent assay (ELISA) analysis. Results PWAS identified 86 genes associated with altered blood protein levels in POAG patients. Of these, eight genes (SFTPD, CSK, COL18A1, TCN2, GZMK, RAB2A, TEK, and GNLY) were identified as likely causative for POAG (P SMR < 0.05). TWAS revealed that GNLY was significantly associated with POAG at the gene expression level. GNLY-interacting genes were found to play roles in immune dysregulation, inflammation, and apoptosis. Clinical and cell-based validation confirmed reduced GNLY expression in POAG groups. Conclusion This study reveals GNLY as a significant potential therapeutic target for managing primary open-angle glaucoma.
Collapse
Affiliation(s)
- Dangdang Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Yanyu Pu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Xi Gao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Lihong Zeng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| | - Hong Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Singh N, Kizhatil K, Duraikannu D, Choquet H, Saidas Nair K. Structural framework to address variant-gene relationship in primary open-angle glaucoma. Vision Res 2025; 226:108505. [PMID: 39520803 DOI: 10.1016/j.visres.2024.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Primary open-angle glaucoma (POAG) is a complex, multifactorial disease leading to progressive optic neuropathy and irreversible vision loss. Genome-Wide Association Studies (GWAS) have significantly advanced our understanding of the genetic loci associated with POAG. Expanding on these findings, Exome-Wide Association Studies (ExWAS) refine the genetic landscape by identifying rare coding variants with potential functional relevance. Post-GWAS in silico analyses, including fine-mapping, gene-based association testing, and pathway analysis, offer insights into target genes and biological mechanisms underlying POAG. This review aims to provide a comprehensive roadmap for the post-GWAS characterization of POAG genes. We integrate current knowledge from GWAS, ExWAS, and post-GWAS analyses, highlighting key genetic variants and pathways implicated in POAG. Recent advancements in genomics, such as ATAC-seq, CUT&RUN, and Hi-C, are crucial for identifying disease-relevant gene regulatory elements by profiling chromatin accessibility, histone modifications, and three-dimensional chromatin architecture. These approaches help pinpoint regulatory elements that influence gene expression in POAG. Expression Quantitative Trait Loci (eQTL) analysis and Transcriptome-Wide Association Studies (TWAS) elucidate the impact of these elements on gene expression and disease risk, while functional validations like enhancer reporter assays confirm their relevance. The integration of high-resolution genomics with functional assays and the characterization of genes in vivo using animal models provides a robust framework for unraveling the complex genetic architecture of POAG. This roadmap is essential for advancing our understanding and identification of genes and regulatory networks involved in POAG pathogenesis.
Collapse
Affiliation(s)
- Nivedita Singh
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892, USA.
| | - Krishnakumar Kizhatil
- Department of Ophthalmology and Visual Sciences, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | - Durairaj Duraikannu
- Departments of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Hélène Choquet
- Kaiser Permanente, Division of Research, Pleasanton, CA 94588, USA; Department of Health Systems Science Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA.
| | - K Saidas Nair
- Departments of Ophthalmology and Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
D’Esposito F, Zeppieri M, Cordeiro MF, Capobianco M, Avitabile A, Gagliano G, Musa M, Barboni P, Gagliano C. Insights on the Genetic and Phenotypic Complexities of Optic Neuropathies. Genes (Basel) 2024; 15:1559. [PMID: 39766826 PMCID: PMC11675667 DOI: 10.3390/genes15121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Optic neuropathies are a category of illnesses that ultimately cause damage to the optic nerve, leading to vision impairment and possible blindness. Disorders such as dominant optic atrophy (DOA), Leber hereditary optic neuropathy (LHON), and glaucoma demonstrate intricate genetic foundations and varied phenotypic manifestations. This narrative review study seeks to consolidate existing knowledge on the genetic and molecular mechanisms underlying ocular neuropathies, examine genotype-phenotype correlations, and assess novel therapeutic options to improve diagnostic and treatment methodologies. Methods: A systematic literature review was performed in October 2024, utilizing PubMed, Medline, the Cochrane Library, and ClinicalTrials.gov. Search terms encompassed "optic neuropathy", "genetic variants", "LHON", "DOA", "glaucoma", and "molecular therapies". Studies were chosen according to established inclusion criteria, concentrating on the genetic and molecular dimensions of optic neuropathies and their therapeutic ramifications. Results: The results indicate that DOA and LHON are mostly associated with the mitochondrial dysfunction resulting from pathogenic variants in nuclear genes, mainly OPA1, and mitochondrial DNA (mtDNA) genes, respectively. Glaucoma, especially its intricate variants, is linked to variants in genes like MYOC, OPTN, and TBK1. Molecular mechanisms, such as oxidative stress and inflammatory modulation, are pivotal in disease progression. Innovative therapeutics, including gene therapy, RNA-based treatments, and antioxidants such as idebenone, exhibit promise for alleviating optic nerve damage and safeguarding vision. Conclusions: Genetic and molecular investigations have markedly enhanced our comprehension of ocular neuropathies. The amalgamation of genetic and phenotypic data is essential for customized medical strategies. Additional research is required to enhance therapeutic strategies and fill the gaps in our understanding of the underlying pathophysiology. This interdisciplinary approach shows potential for enhancing patient outcomes in ocular neuropathies.
Collapse
MESH Headings
- Humans
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Atrophy, Hereditary, Leber/pathology
- Phenotype
- Glaucoma/genetics
- Glaucoma/therapy
- Glaucoma/pathology
- Optic Nerve Diseases/genetics
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Autosomal Dominant/pathology
- DNA, Mitochondrial/genetics
- Genetic Association Studies
Collapse
Affiliation(s)
- Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK; (F.D.)
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Maria Francesca Cordeiro
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK; (F.D.)
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London NW1 5QH, UK
| | - Matteo Capobianco
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Alessandro Avitabile
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Giuseppe Gagliano
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Piero Barboni
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Studio Oculistico d’Azeglio, 40123 Bologna, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| |
Collapse
|
5
|
Fuse N, Kimura M, Shimizu A, Koshiba S, Hamanaka T, Nakamura M, Ishida N, Sakai H, Ikeda Y, Mori K, Endo A, Nagasaki M, Katsuoka F, Yasuda J, Matsubara Y, Nakazawa T, Yamamoto M. Mutations of CYP1B1 and FOXC1 genes for childhood glaucoma in Japanese individuals. Jpn J Ophthalmol 2024; 68:688-701. [PMID: 39158757 PMCID: PMC11607050 DOI: 10.1007/s10384-024-01103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/20/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE To explore the frequency and positions of genetic mutations in CYP1B1 and FOXC1 in a Japanese population. STUDY DESIGN Molecular genetic analysis. METHODS Genomic DNA was extracted from 31 Japanese patients with childhood glaucoma (CG) from 29 families. We examined the CYP1B, FOXC1, and MYOC genes using Sanger sequencing and whole-exome sequencing (WES). RESULTS For CYP1B1, we identified 9 families that harbored novel mutations, p.A202T, p.D274E, p.Q340*, and p.V420G; the remaining mutations had been previously reported. When mapped to the CYP1B1 protein structure, all mutations appeared to influence the enzymatic activity of CYP1B1 by provoking structural deformity. Five patients were homozygotes or compound heterozygotes, supporting the recessive inheritance of the CYP1B1 mutations in CG. In contrast, four patients were heterozygous for the CYP1B1 mutation, suggesting the presence of regulatory region mutations or strong modifiers. For the FOXC1 gene, we identified 3 novel mutations, p.Q23fs, p.Q70R, and p.E163*, all of which were identified in a heterozygous state. No mutation was found in the MYOC gene in these CG patients. All individuals with CYP1B1 and FOXC1 mutations were severely affected by early-onset CG. In the CYP1B1-, FOXC1-, and MYOC-negative families, we also searched for variants in the other candidate genes reported for CG through WES, but could not find any mutations in these genes. CONCLUSIONS Our analyses of 29 CG families revealed 9 families with point mutations in the CYP1B1 gene, and four of those patients appeared to be heterozygotes, suggesting the presence of complex pathogenic mechanisms. FOXC1 appears to be another major causal gene of CG, indicating that panel sequencing of CYP1B1 and FOXC1 will be useful for diagnosis of CG in Japanese individuals.
Collapse
Affiliation(s)
- Nobuo Fuse
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, 2-1 Seiryo- machi, Aoba-ku, Sendai, 980-8573, Miyagi, Japan.
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo- machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan.
| | - Masae Kimura
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, 2-1 Seiryo- machi, Aoba-ku, Sendai, 980-8573, Miyagi, Japan
| | - Ai Shimizu
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo- machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, 2-1 Seiryo- machi, Aoba-ku, Sendai, 980-8573, Miyagi, Japan
| | - Teruhiko Hamanaka
- Department of Ophthalmology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, Shibuyaku, 150-8935, Tokyo, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, 650-0017, Kobe, Japan
| | - Nobuo Ishida
- Ishida Eye Clinic, 2-2-31 Honcho, Joetsu-shi, Niigata, 943-0832, Japan
| | - Hiroshi Sakai
- Urasoe Sakai Eye Clinic, 6-1-21 Miyagi, Urasoe, 901-2126, Okinawa, Japan
| | - Yoko Ikeda
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokouji, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Kazuhiko Mori
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi Hirokouji, Kamigyo-ku, Kyoto, 602-0841, Japan
| | - Atsushi Endo
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, 2-1 Seiryo- machi, Aoba-ku, Sendai, 980-8573, Miyagi, Japan
- Altech Corporation, Muscat Building 6F, 3-7-13, Nagamachi, Taihaku-ku, Sendai, 982-0011, Miyagi, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, 2-1 Seiryo- machi, Aoba-ku, Sendai, 980-8573, Miyagi, Japan
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research (CPIER), Kyoto University, 53, Shogoinkawahara-cho, Sakyo-ku, Kyoto City, 606-8507, Kyoto, Japan
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, 2-1 Seiryo- machi, Aoba-ku, Sendai, 980-8573, Miyagi, Japan
| | - Jun Yasuda
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, 2-1 Seiryo- machi, Aoba-ku, Sendai, 980-8573, Miyagi, Japan
| | - Yoichi Matsubara
- National Center for Child Health and Development, Research Institute 2-10-1 Okura Setagaya-ku, Tokyo, 157-8535, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo- machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, 2-1 Seiryo- machi, Aoba-ku, Sendai, 980-8573, Miyagi, Japan
| |
Collapse
|
6
|
Pilz RA, Skowronek D, Ehresmann T, Felbor U, Rath M. Novel postzygotic RASA1 mutation in a patient with Parkes Weber syndrome: A case report and literature review. Clin Case Rep 2024; 12:e9543. [PMID: 39498435 PMCID: PMC11532015 DOI: 10.1002/ccr3.9543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Key Clinical Message Not only germline but also postzygotic mutations in the RASA1 or EPHB4 genes can lead to capillary malformation-arteriovenous malformation (CM-AVM) syndrome. As it is not always possible to clinically distinguish between constitutional variants and postzygotic mosaicism, a sufficiently high sequencing depth must be used in genetic diagnostics to detect both. Abstract Capillary malformation-arteriovenous malformation (CM-AVM) syndrome, with or without Parkes Weber syndrome, is a rare autosomal dominant disease caused by pathogenic RASA1 or EPHB4 variants. Up to 80% of CM-AVM cases have an affected parent. Gene panel sequencing was performed for a 4-year-old girl with multiple CMs, two capillary stains on the left leg, and associated overgrowth of the second toe. We also reviewed published cases with mosaic RASA1 and EPHB4 mutations. A mosaic RASA1 loss-of-function mutation was detected with a variant allele frequency (VAF) of 20% in the blood and oral epithelial cells of the index patient. The literature review illustrates that the severity of the clinical phenotype does not correlate with the VAF. We also identified a germline nonsense variant in the patient's TEK gene. However, inactivating TEK variants do not cause a vascular phenotype but can confer an increased risk for primary congenital glaucoma with variable expressivity. The case presented here illustrates that the choice of the sequencing depth of a diagnostic next-generation sequencing test for CM-AVM patients should always take mosaicism into account and that a good knowledge of the sequenced genes and associated disease mechanisms is necessary for adequate genetic counseling.
Collapse
Affiliation(s)
- Robin A. Pilz
- Department of Human GeneticsUniversity Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of GreifswaldGreifswaldGermany
| | - Dariush Skowronek
- Department of Human GeneticsUniversity Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of GreifswaldGreifswaldGermany
| | | | - Ute Felbor
- Department of Human GeneticsUniversity Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of GreifswaldGreifswaldGermany
| | - Matthias Rath
- Department of Human GeneticsUniversity Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of GreifswaldGreifswaldGermany
- Institute for Molecular Medicine, MSH Medical School HamburgHamburgGermany
| |
Collapse
|
7
|
Maxwell G, Souzeau E. Childhood glaucoma: Implications for genetic counselling. Clin Genet 2024; 106:545-563. [PMID: 39206700 DOI: 10.1111/cge.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Childhood glaucoma is a heterogeneous group of ocular disorders defined by an age of onset from birth to 18 years. These vision-threatening disorders require early diagnosis, timely treatment, and lifelong management to maintain vision and minimise irreversible blindness. The genetics of childhood glaucoma is complex with both phenotypic and genetic heterogeneity. The purpose of this review is to summarise the different types of childhood glaucoma and their genetic architecture to aid in the genetic counselling process with patients and their families. We provide an overview of associated syndromes and discuss implications for genetic counselling, including genetic testing strategies, cascade genetic testing, and reproductive options.
Collapse
Affiliation(s)
- Giorgina Maxwell
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Schwakopf J, Romero CO, Lopez NN, Millar JC, Vetter ML, Bosco A. Schlemm's canal-selective Tie2/TEK knockdown induces sustained ocular hypertension in adult mice. Exp Eye Res 2024; 248:110114. [PMID: 39368692 PMCID: PMC11533709 DOI: 10.1016/j.exer.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Deficient Angiopoietin-Tie2 signaling is linked to ocular hypertension in glaucoma. Receptor Tie2/TEK expression and signaling at Schlemm's canal (SC) is indispensable for canal integrity and homeostatic regulation of aqueous humor outflow (AHO) and intraocular pressure (IOP), as validated by conditional deletion of Tie2, its ligands (Angpt1, Angpt2 and Angpt3/4) or regulators (Tie1 and PTPRB/VE-PTP). However, these Tie2/TEK knockouts and conditional knockouts are global or endothelial, preventing separation of systemic and ocular vascular defects that impact retinal or renal integrity. To develop a more targeted model of ocular hypertension induced by selective knockdown of Tie2/TEK expressed in SC, we combined the use of viral vectors to target the canal, and two distinct gene-editing strategies to disrupt the Tie2 gene. Adeno-associated virus (AAV2) is known to transduce rodent SC when delivered into the anterior chamber by intracameral injection. First, delivery of Cre recombinase via AAV2.Cre into R26tdTomato/+ reporter mice confirmed preferential and stable transduction in SC endothelium. Next, to disrupt Tie2 expression in SC, we injected AAV2.Cre into homozygous floxed Tie2 (Tie2FL/FL) mice. This led to attenuated Tie2 protein expression along the SC inner wall, decreased SC area and reduced trabecular meshwork (TM) cellularity. Functionally, IOP was significantly and steadily elevated, whereas AHO facility was reduced. In contrast, hemizygous Tie2FL/+ mice responded to AAV2.Cre with inconsistent and low IOP elevation, corroborating the dose-dependency of ocular hypertension on Tie2 expression/activation. In a second model using CRISPR/SaCas9 genome editing, wild-type C57BL/6 J mice injected with AAV2.saCas9-sgTie2 showed similar selective SC transduction and comparable IOP elevation in course and magnitude to that induced by AAV2.Cre in Tie2FL/FL mice. Together, our findings, demonstrate that selective Tie2 knockdown in SC is a targeted strategy that reliably induces chronic ocular hypertension and reproduces glaucomatous damage to the conventional outflow pathway, providing novel models of SC-Tie2 signaling loss valuable for preclinical studies.
Collapse
Affiliation(s)
- Joon Schwakopf
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Cesar O Romero
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Navita N Lopez
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Monica L Vetter
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA
| | - Alejandra Bosco
- Department of Neurobiology, University of Utah, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
9
|
Tolman N, Li T, Balasubramanian R, Li G, Bupp-Chickering V, Kelly RA, Simón M, Peregrin J, Montgomery C, Stamer WD, Qian J, John SWM. Single-cell profiling of trabecular meshwork identifies mitochondrial dysfunction in a glaucoma model that is protected by vitamin B3 treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621152. [PMID: 39829808 PMCID: PMC11741249 DOI: 10.1101/2024.11.01.621152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Since the trabecular meshwork (TM) is central to intraocular pressure (IOP) regulation and glaucoma, a deeper understanding of its genomic landscape is needed. We present a multimodal, single-cell resolution analysis of mouse limbal cells (includes TM). In total, we sequenced 9,394 wild-type TM cell transcriptomes. We discovered three TM cell subtypes with characteristic signature genes validated by immunofluorescence on tissue sections and whole-mounts. The subtypes are robust, being detected in datasets for two diverse mouse strains and in independent data from two institutions. Results show compartmentalized enrichment of critical pathways in specific TM cell subtypes. Distinctive signatures include increased expression of genes responsible for 1) extracellular matrix structure and metabolism (TM1 subtype), 2) secreted ligand signaling to support Schlemm's canal cells (TM2), and 3) contractile and mitochondrial/metabolic activity (TM3). ATAC-sequencing data identified active transcription factors in TM cells, including LMX1B. Mutations in LMX1B cause high IOP and glaucoma. LMX1B is emerging as a key transcription factor for normal mitochondrial function and its expression is much higher in TM3 cells than other limbal cells. To understand the role of LMX1B in TM function and glaucoma, we single-cell sequenced limbal cells from Lmx1b V265D/+ mutant mice. In V265D/+ mice, TM3 cells were uniquely affected by pronounced mitochondrial pathway changes. This supports a primary role of mitochondrial dysfunction within TM3 cells in initiating the IOP elevation that causes glaucoma in these mice. Importantly, treatment with vitamin B 3 (nicotinamide), to enhance mitochondrial function and metabolic resilience, significantly protected Lmx1b mutant mice from IOP elevation.
Collapse
|
10
|
Balasubramanian R, Kizhatil K, Li T, Tolman N, Bhandari A, Clark G, Bupp-Chickering V, Kelly RA, Zhou S, Peregrin J, Simón M, Montgomery C, Stamer WD, Qian J, John SWM. Transcriptomic profiling of Schlemm's canal cells reveals a lymphatic-biased identity and three major cell states. eLife 2024; 13:RP96459. [PMID: 39422453 PMCID: PMC11488849 DOI: 10.7554/elife.96459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Schlemm's canal (SC) is central in intraocular pressure regulation but requires much characterization. It has distinct inner and outer walls, each composed of Schlemm's canal endothelial cells (SECs) with different morphologies and functions. Recent transcriptomic studies of the anterior segment added important knowledge, but were limited in power by SEC numbers or did not focus on SC. To gain a more comprehensive understanding of SC biology, we performed bulk RNA sequencing on C57BL/6 J SC, blood vessel, and lymphatic endothelial cells from limbal tissue (~4,500 SECs). We also analyzed mouse limbal tissues by single-cell and single-nucleus RNA sequencing (C57BL/6 J and 129/Sj strains), successfully sequencing 903 individual SECs. Together, these datasets confirm that SC has molecular characteristics of both blood and lymphatic endothelia with a lymphatic phenotype predominating. SECs are enriched in pathways that regulate cell-cell junction formation pointing to the importance of junctions in determining SC fluid permeability. Importantly, and for the first time, our analyses characterize three molecular classes of SECs, molecularly distinguishing inner wall from outer wall SECs and discovering two inner wall cell states that likely result from local environmental differences. Further, and based on ligand and receptor expression patterns, we document key interactions between SECs and cells of the adjacent trabecular meshwork (TM) drainage tissue. Also, we present cell type expression for a collection of human glaucoma genes. These data provide a new molecular foundation that will enable the functional dissection of key homeostatic processes mediated by SECs as well as the development of new glaucoma therapeutics.
Collapse
Affiliation(s)
| | - Krishnakumar Kizhatil
- Department of Ophthalmology and Visual Sciences, The Ohio State University Medical CenterColumbusUnited States
| | - Taibo Li
- Department of Molecular Biology and Genetics, Johns Hopkins UniversityBaltimoreUnited States
| | - Nicholas Tolman
- Department of Ophthalmology, Columbia University Irving Medical CenterNew YorkUnited States
- Graduate School of Biomedical Sciences, Tufts University School of MedicineBostonUnited States
| | - Aakriti Bhandari
- Department of Ophthalmology, Columbia University Irving Medical CenterNew YorkUnited States
- Neuroscience Graduate Program, University of UtahSalt Lake CityUnited States
| | - Graham Clark
- Department of Ophthalmology and Visual Sciences, The Ohio State University Medical CenterColumbusUnited States
| | - Violet Bupp-Chickering
- Department of Ophthalmology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Ruth A Kelly
- Department of Ophthalmology, Duke UniversityDurhamUnited States
| | - Sally Zhou
- Department of Ophthalmology, Columbia University Irving Medical CenterNew YorkUnited States
- SUNY Downstate Health Sciences UniversityNew YorkUnited States
| | - John Peregrin
- Department of Ophthalmology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Marina Simón
- Department of Ophthalmology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Christa Montgomery
- Department of Ophthalmology, Columbia University Irving Medical CenterNew YorkUnited States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke UniversityDurhamUnited States
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Simon WM John
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| |
Collapse
|
11
|
Chacon-Camacho OF, Ordaz-Robles T, Cid-García MA, Hofmann-Blancas ME, Ledesma-Gil J, García-Huerta MM, Prado-Larrea C, Cortés-González V, Lozano-Garza RI, García-Vega D, Kim J, Khang R, Lee E, Zenteno JC. TEK gene-related primary congenital glaucoma: Phenotypic features and mutational spectrum in a Mexican cohort of 10 unrelated families. Am J Med Genet A 2024; 194:e63716. [PMID: 38847211 DOI: 10.1002/ajmg.a.63716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 10/25/2024]
Abstract
Primary congenital glaucoma (PCG) is one of the leading causes of visual damage and blindness, severely affecting the quality of life of affected children. It is characterized by cupping of the optic disc and loss of ganglion cells due to elevated intraocular pressure. While most PCG patients exhibit epiphora, photophobia, and buphthalmos with corneal opacity, variability in phenotypic manifestations is not uncommon. Prompt diagnosis and treatment of PCG affected individuals becomes relevant to preserve visual function throughout their lives. Most PCG cases are sporadic or autosomal recessive; however, an incompletely dominant autosomal dominant form arising from mutations in the TEK gene has recently been demonstrated. Here, we describe the clinical and mutational features of a cohort of Mexican patients with TEK-related PCG. Our results support the involvement of the TEK gene as an important cause of the disease in our ethnic group and expand the mutational spectrum causing PCG by reporting 10 novel disease-causing variants.
Collapse
Affiliation(s)
- Oscar Francisco Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Laboratorio 5 Edificio A-4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de, Mexico City, Mexico
| | - Thania Ordaz-Robles
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Department of Genetics, Fundación Hospital Nuestra Señora de la Luz, Mexico City, Mexico
| | - Marion Aline Cid-García
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Jasbeth Ledesma-Gil
- Glaucoma Department, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Carolina Prado-Larrea
- Glaucoma Department, Asociación para Evitar la Ceguera en México, I.A.P, Mexico City, Mexico
| | | | | | - Daphne García-Vega
- Department of Ophthalmology, Hospital de Pediatría Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | | | | | | | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Rare Diseases Diagnostic Unit, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
12
|
Torné O, Oikawa K, Teixeira LBC, Kiland JA, McLellan GJ. Trabecular Meshwork Abnormalities in a Model of Congenital Glaucoma Due to LTBP2 Mutation. Invest Ophthalmol Vis Sci 2024; 65:28. [PMID: 39432401 PMCID: PMC11500042 DOI: 10.1167/iovs.65.12.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose To characterize early trabecular meshwork (TM) morphologic abnormalities in a feline model of human primary congenital glaucoma (PCG) caused by mutation in LTBP2. Methods Eyes from 41 cats, including 19 normal and 22 homozygous for LTBP2 mutation, across various postnatal stages (birth, 2 weeks, 5 weeks, and 12 weeks) were paraformaldehyde fixed, anterior segments dissected, post-fixed in glutaraldehyde, osmicated, and processed and sectioned for transmission electron microscopy. Cell morphology, nuclear shape, and intertrabecular space (ITS) were quantitatively assessed, and the structure of the fibrillar extracellular matrix in the TM was systematically evaluated. Results The earliest differences in TM morphology between PCG and normal cats were identified at 2 weeks postnatally. Elastic fibers in the TM were discontinuous and disorganized (P = 0.0122), and by 5 weeks of age PCG cats presented significantly less ITS (P = 0.0076) and morphologically rounder TM cells than normal cats (P = 0.0293). By 12 weeks of age, the ITS was further collapsed (P < 0.0001), and the TM cells were morphologically elongated and attenuated in PCG compared to controls (P = 0.0028). Conclusions In this feline model of PCG due to LTBP2 mutation, development of ultrastructural TM extracellular matrix abnormalities are first observed by 2 weeks and cellular abnormalities by 5 weeks of age. By 12 weeks of age, when intraocular pressure becomes significantly elevated, the TM morphologic abnormalities are already well established. These findings suggest that the postnatal period between 0 and 5 weeks of age is critical for TM and PCG development and progression in cats.
Collapse
Affiliation(s)
- Odalys Torné
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Kazuya Oikawa
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Leandro B. C. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Julie A. Kiland
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Gillian J. McLellan
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin, United States
| |
Collapse
|
13
|
Kiyota N, Onay T, Leeaw P, Liu P, Deb DK, Thomson BR, Segrè AV, Wiggs JL, Quaggin SE. Glaucoma-Protective Human Single-Nucleotide Polymorphism in the Angpt2 Locus Increased ANGPT2 Expression and Schlemm Canal Area in Mice-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:2207-2212. [PMID: 39206543 DOI: 10.1161/atvbaha.124.321555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The ANGPT (angiopoietin)-TEK (tyrosine kinase, endothelial) vascular signaling pathway plays a key role in the formation of Schlemm canal, and loss-of-function mutations in the TEK or ANGPT1 gene are associated with primary congenital glaucoma in children. In genome-wide association studies, an association was identified between protection from primary open-angle glaucoma and the single-nucleotide polymorphism rs76020419 (G>T), located within a predicted miR-145-binding site in the 3' untranslated region of ANGPT2. To date, the functional impact of this variant in the anterior chamber of the eye remains largely unexplored. METHODS MT (mutant) mice harboring an orthologous rs76020419 minor allele (T) were generated using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9). Plasma and tissue samples, including eyes, were collected, and ANGPT2 expression was quantified using ELISA. Anterior segments from eyes were collected from WT (wild-type) and MT mice, and Schlemm canal area was quantified. RESULTS In the MT group, higher ANGPT2 concentrations were observed in the plasma, lungs, kidneys, and eyes (P=0.0212, P<0.001, P=0.0815, and P=0.0215, respectively). Additionally, the Schlemm canal was larger in MT mice compared with WT mice (P=0.0430). CONCLUSIONS The rs76020419 minor allele (T) is associated with increased levels of ANGPT2 and a larger Schlemm canal in mice. These findings suggest a potential protective mechanism in glaucoma.
Collapse
Affiliation(s)
- Naoki Kiyota
- Feinberg Cardiovascular and Renal Research Institute (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
- Division of Nephrology and Hypertension (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
| | - Tuncer Onay
- Feinberg Cardiovascular and Renal Research Institute (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
- Division of Nephrology and Hypertension (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
| | - Phoebe Leeaw
- Feinberg Cardiovascular and Renal Research Institute (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
- Division of Nephrology and Hypertension (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
| | - Pan Liu
- Feinberg Cardiovascular and Renal Research Institute (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
- Division of Nephrology and Hypertension (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
| | - Dilip K Deb
- Feinberg Cardiovascular and Renal Research Institute (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
- Division of Nephrology and Hypertension (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
| | - Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
- Division of Nephrology and Hypertension (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
| | - Ayellet V Segrè
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Boston (A.V.S., J.L.W.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA (A.V.S., J.L.W.)
- Broad Institute of Harvard and MIT, Cambridge, MA (A.V.S., J.L.W.)
| | - Janey L Wiggs
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Boston (A.V.S., J.L.W.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA (A.V.S., J.L.W.)
- Broad Institute of Harvard and MIT, Cambridge, MA (A.V.S., J.L.W.)
| | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
- Division of Nephrology and Hypertension (N.K., T.O., P. Leeaw, P. Liu, D.K.D., B.R.T., S.E.Q.), Northwestern University Feinberg School of Medicine, Chicago
| |
Collapse
|
14
|
Wang LH, Huang CH, Lin IC. Advances in Neuroprotection in Glaucoma: Pharmacological Strategies and Emerging Technologies. Pharmaceuticals (Basel) 2024; 17:1261. [PMID: 39458902 PMCID: PMC11510571 DOI: 10.3390/ph17101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Glaucoma is a major global health concern and the leading cause of irreversible blindness worldwide, characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons. This review focuses on the need for neuroprotective strategies in glaucoma management, addressing the limitations of current treatments that primarily target intraocular pressure (IOP) reduction. Despite effective IOP management, many patients continue to experience RGC degeneration, leading to irreversible blindness. This review provides an overview of both pharmacological interventions and emerging technologies aimed at directly protecting RGCs and the optic nerve, independent of IOP reduction. Pharmacological agents such as brimonidine, neurotrophic factors, memantine, Ginkgo biloba extract, citicoline, nicotinamide, insulin, and resveratrol show promise in preclinical and early clinical studies for their neuroprotective properties. Emerging technologies, including stem cell therapy, gene therapy, mitochondrial-targeted therapies, and nanotechnologies, offer innovative approaches for neuroprotection and regeneration of damaged RGCs. While these interventions hold significant potential, further research and clinical trials are necessary to confirm their efficacy and establish their role in clinical practice. This review highlights the multifaceted nature of neuroprotection in glaucoma, aiming to guide future research and clinical practice toward more effective management of glaucoma-induced neurodegeneration.
Collapse
Affiliation(s)
- Li-Hsin Wang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Chun-Hao Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
15
|
Pyatla G, Kabra M, Mandal AK, Zhang W, Mishra A, Bera S, Rathi S, Patnaik S, Anthony AA, Dixit R, Banerjee S, Shekhar K, Marmamula S, Kaur I, Khanna RC, Chakrabarti S. Potential Involvements of Cilia-Centrosomal Genes in Primary Congenital Glaucoma. Int J Mol Sci 2024; 25:10028. [PMID: 39337513 PMCID: PMC11431959 DOI: 10.3390/ijms251810028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Primary congenital glaucoma (PCG) occurs in children due to developmental abnormalities in the trabecular meshwork and anterior chamber angle. Previous studies have implicated rare variants in CYP1B1, LTBP2, and TEK and their interactions with MYOC, FOXC1, and PRSS56 in the genetic complexity and clinical heterogeneity of PCG. Given that some of the gene-encoded proteins are localized in the centrosomes (MYOC) and perform ciliary functions (TEK), we explored the involvement of a core centrosomal protein, CEP164, which is responsible for ocular development and regulation of intraocular pressure. Deep sequencing of CEP164 in a PCG cohort devoid of homozygous mutations in candidate genes (n = 298) and controls (n = 1757) revealed CEP164 rare pathogenic variants in 16 cases (5.36%). Co-occurrences of heterozygous alleles of CEP164 with other genes were seen in four cases (1.34%), and a physical interaction was noted for CEP164 and CYP1B1 in HEK293 cells. Cases of co-harboring alleles of the CEP164 and other genes had a poor prognosis compared with those with a single copy of the CEP164 allele. We also screened INPP5E, which synergistically interacts with CEP164, and observed a lower frequency of pathogenic variants (0.67%). Our data suggest the potential involvements of CEP164 and INPP5E and the yet unexplored cilia-centrosomal functions in PCG pathogenesis.
Collapse
Affiliation(s)
- Goutham Pyatla
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meha Kabra
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Anil K. Mandal
- Jasti V Ramanamma Children’s Eye Care Centre, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India;
| | - Wei Zhang
- Department of Ophthalmology, UMASS Medical School, Worcester, MA 01605, USA;
| | - Ashish Mishra
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Samir Bera
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sonika Rathi
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Satish Patnaik
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Alice A. Anthony
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Ritu Dixit
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Seema Banerjee
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Konegari Shekhar
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Srinivas Marmamula
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Inderjeet Kaur
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| | - Rohit C. Khanna
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye Care, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (S.B.); (K.S.); (S.M.); (R.C.K.)
| | - Subhabrata Chakrabarti
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, L.V. Prasad Eye Institute, Hyderabad 500034, Telangana, India; (G.P.); (M.K.); (A.M.); (S.B.); (S.R.); (S.P.); (A.A.A.); (R.D.); (I.K.)
| |
Collapse
|
16
|
Jensen AMG, Raska J, Fojtik P, Monti G, Lunding M, Bartova S, Pospisilova V, van der Lee SJ, Van Dongen J, Bossaerts L, Van Broeckhoven C, Dols-Icardo O, Lléo A, Bellini S, Ghidoni R, Hulsman M, Petsko GA, Sleegers K, Bohaciakova D, Holstege H, Andersen OM. The SORL1 p.Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer's disease. Proc Natl Acad Sci U S A 2024; 121:e2408262121. [PMID: 39226352 PMCID: PMC11406263 DOI: 10.1073/pnas.2408262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer's disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.
Collapse
Affiliation(s)
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Petr Fojtik
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Giulia Monti
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| | - Melanie Lunding
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| | - Simona Bartova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
| | - Liene Bossaerts
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
| | - Oriol Dols-Icardo
- Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona 08041, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED 28029, Madrid, Spain
| | - Alberto Lléo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED 28029, Madrid, Spain
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona 08025, Barcelona, Spain
| | - Sonia Bellini
- Molecular Markers Laboratory, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli 25125, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli 25125, Brescia, Italy
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| |
Collapse
|
17
|
Reis LM, Seese SE, Costakos D, Semina EV. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog Retin Eye Res 2024; 102:101288. [PMID: 39097141 PMCID: PMC11392650 DOI: 10.1016/j.preteyeres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Sarah E Seese
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
18
|
Balasubramanian R, Kizhatil K, Li T, Tolman N, Bhandari A, Clark G, Bupp-Chickering V, Kelly RA, Zhou S, Peregrin J, Simón M, Montgomery C, Stamer WD, Qian J, John SW. Transcriptomic profiling of Schlemm's canal cells reveals a lymphatic-biased identity and three major cell states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555823. [PMID: 37886472 PMCID: PMC10602040 DOI: 10.1101/2023.08.31.555823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Schlemm's canal (SC) is central in intraocular pressure regulation but requires much characterization. It has distinct inner and outer walls, each composed of Schlemm's canal endothelial cells (SECs) with different morphologies and functions. Recent transcriptomic studies of the anterior segment added important knowledge, but were limited in power by SEC numbers or did not focus on SC. To gain a more comprehensive understanding of SC biology, we performed bulk RNA sequencing on C57BL/6J SC, blood vessel, and lymphatic endothelial cells from limbal tissue (~4500 SECs). We also analyzed mouse limbal tissues by single-cell and single-nucleus RNA sequencing (C57BL/6J and 129/Sj strains), successfully sequencing 903 individual SECs. Together, these datasets confirm that SC has molecular characteristics of both blood and lymphatic endothelia with a lymphatic phenotype predominating. SECs are enriched in pathways that regulate cell-cell junction formation pointing to the importance of junctions in determining SC fluid permeability. Importantly, and for the first time, our analyses characterize 3 molecular classes of SECs, molecularly distinguishing inner wall from outer wall SECs and discovering two inner wall cell states that likely result from local environmental differences. Further, and based on ligand and receptor expression patterns, we document key interactions between SECs and cells of the adjacent trabecular meshwork (TM) drainage tissue. Also, we present cell type expression for a collection of human glaucoma genes. These data provide a new molecular foundation that will enable the functional dissection of key homeostatic processes mediated by SECs as well as the development of new glaucoma therapeutics.
Collapse
Affiliation(s)
| | - Krishnakumar Kizhatil
- Department of Ophthalmology and Visual Sciences, The Ohio State University Medical Center, Columbus, OH
| | - Taibo Li
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD
| | - Nicholas Tolman
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Aakriti Bhandari
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT
| | - Graham Clark
- Department of Ophthalmology and Visual Sciences, The Ohio State University Medical Center, Columbus, OH
| | | | | | - Sally Zhou
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- SUNY Downstate Health Sciences University, New York, NY
| | - John Peregrin
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
| | - Marina Simón
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
| | - Christa Montgomery
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
| | | | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Simon W.M. John
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| |
Collapse
|
19
|
Huang D, Norat P, Qi L, Chernatynskaya A, Cole JD, Mani VJ, Xu L, Liu X, Yang H. Consistent Intraocular Pressure Reduction by Solid Drug Nanoparticles in Fixed Combinations for Glaucoma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401648. [PMID: 38874068 PMCID: PMC11336906 DOI: 10.1002/advs.202401648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Efficient topical drug delivery remains a significant challenge in glaucoma management. Although nanoparticle formulations offer considerable promise, their complex preparation processes, co-delivery issues, and batch consistency have hindered their potential. A scalable fabrication strategy is developed here for preparing solid drug nanoparticles (SDNs) with enhanced drug delivery efficiency. Utilizing hydrophobic antiglaucoma drugs brimonidine (BM) and betaxolol (BX), uniform fixed combination BM/BX SDNs are fabricated through a continuous process, improving batch-to-batch consistency for combined glaucoma treatment. With trehalose being used as a lyoprotectant, BM/BX SDNs can be stored as dry powder and easily reconstituted in phosphate buffered saline. Importantly, reconstituted BM/BX SDNs form clear, homogenous solutions, and exhibit negligible cytotoxicity and irritation, making them well-suited for topical administration as eyedrops. Ex vivo and in vivo studies demonstrated that topically applied BM/BX SDNs permeate through the cornea significantly (about two fold to three fold) compared to their hydrophilic counterparts, i.e., brimonidine tartrate, and betaxolol hydrogen chloride. Notably, BM/BX SDNs displayed consistent intraocular pressure lowering effects in vivo in both normotensive rats and glaucoma mice. Collectively, this study demonstrates the potential of the scalable fabrication strategy and the resultant BM/BX SDNs for improving glaucoma management through eyedrops.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and EngineeringFuzhou UniversityFuzhouFujian350108China
- Linda and Bipin Doshi Department of Chemical and Biochemical EngineeringMissouri University of Science and TechnologyRollaMO65409USA
| | - Pedro Norat
- Department of BiologyUniversity of VirginiaCharlottesvilleVA22904USA
| | - Lin Qi
- Linda and Bipin Doshi Department of Chemical and Biochemical EngineeringMissouri University of Science and TechnologyRollaMO65409USA
| | - Anna Chernatynskaya
- Linda and Bipin Doshi Department of Chemical and Biochemical EngineeringMissouri University of Science and TechnologyRollaMO65409USA
| | - James D. Cole
- Department of BiologyUniversity of VirginiaCharlottesvilleVA22904USA
- Present address:
Department of PsychologyWest Virginia UniversityMorgantownWV26506USA
| | - Vimalin Jeyalatha Mani
- Linda and Bipin Doshi Department of Chemical and Biochemical EngineeringMissouri University of Science and TechnologyRollaMO65409USA
| | - Lei Xu
- Linda and Bipin Doshi Department of Chemical and Biochemical EngineeringMissouri University of Science and TechnologyRollaMO65409USA
| | - Xiaorong Liu
- Department of BiologyUniversity of VirginiaCharlottesvilleVA22904USA
- Department of PsychologyUniversity of VirginiaCharlottesvilleVA22904USA
- Program in Fundamental NeuroscienceUniversity of VirginiaCharlottesvilleVA22904USA
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical EngineeringMissouri University of Science and TechnologyRollaMO65409USA
| |
Collapse
|
20
|
Benard C, Le Loarer F, Gomez-Mascard A, Azmani R, Garcia J, Perret R, de Pinieux G, Miquelestorena-Standley E, Weingertner N, Karanian M, Meurgey A, Michot A, Tirode F, Truffaux N, Macagno N, Bouvier C. Comprehensive Molecular Characterization of a Large Series of Calcified Chondroid Mesenchymal Neoplasms Widening Their Morphologic Spectrum. Am J Surg Pathol 2024; 48:991-1004. [PMID: 39016330 DOI: 10.1097/pas.0000000000002260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Recently, FN1 fusions to receptor tyrosine kinase genes have been identified in soft tissue tumors with calcified chondroid matrix named calcifying chondroid mesenchymal neoplasms (CCMNs). We collected 33 cases of CCMN from the French network for soft tissue and bone tumors. We performed whole-exome RNA sequencing, expression analysis, and genome-wide DNA methylation profiling in 33, 30, and 20 cases of CCMN compared with a control group of tumors, including noncalcified tenosynovial giant cell tumor (TGCT). Among them, 15 cases showed morphologic overlap with soft tissue chondroma, 8 cases with tophaceous pseudogout, and 10 cases with chondroid TGCT. RNA-sequencing revealed a fusion of FN1 in 76% of cases (25/33) with different 5' partners, including most frequently FGFR2 (14 cases), TEK or FGFR1. Among CCMN associated with FGFR1 fusions, 2 cases had overexpression of FGF23 without tumor-induced osteomalacia. Four CCMN had PDGFRA::USP8 fusions; 3 of which had histologic features of TGCT and were located in the hip, foot, and temporomandibular joint (TMJ). All cases with FN1::TEK fusion were located at TMJ and had histologic features of TGCT with or without chondroid matrix. They formed a distinct cluster on unsupervised clustering analyses based on whole transcriptome and genome-wide methylome data. Our study confirms the high prevalence of FN1 fusions in CCMN. In addition, through transcriptome and methylome analyses, we have identified a novel subgroup of tumors located at the TMJ, exhibiting TGCT-like features and FN1::TEK fusions.
Collapse
Affiliation(s)
- Clément Benard
- Department of Pathology, Timone University Hospital, Marseille
| | - François Le Loarer
- Department of Biopathology, Bergonié Institute, Regional Comprehensive Cancer Center
- UMR1312, University of Bordeaux, Inserm, BRIC, BoRdeaux Institute of Oncology
| | | | | | - Jeremy Garcia
- Department of Pathology, Timone University Hospital, Marseille
| | - Raul Perret
- Department of Biopathology, Bergonié Institute, Regional Comprehensive Cancer Center
- UMR1312, University of Bordeaux, Inserm, BRIC, BoRdeaux Institute of Oncology
| | | | | | | | | | | | - Audrey Michot
- UMR1312, University of Bordeaux, Inserm, BRIC, BoRdeaux Institute of Oncology
- Department of Surgery, Bergonié Institute, Bordeaux
| | | | - Nathalene Truffaux
- UMR1312, University of Bordeaux, Inserm, BRIC, BoRdeaux Institute of Oncology
| | - Nicolas Macagno
- UMR1251, Aix Marseille Univ, MMG, Marmara Institute, Timone University Hospital
| | - Corinne Bouvier
- Department of Pathology, Timone University Hospital, Marseille
- UMR7051, INP, Equipe 8 GlioME - Gliomagenèse et MicroEnvironnement, Aix Marseille Univ, Marseille, France
| |
Collapse
|
21
|
Blue EE, Moore KJ, North KE, Desrosiers TA, Carmichael SL, White JJ, Chong JX, Bamshad MJ, Jenkins MM, Almli LM, Brody LC, Freedman SF, Reefhuis J, Romitti PA, Shaw GM, Werler M, Kay DM, Browne ML, Feldkamp ML, Finnell RH, Nembhard WN, Pangilinan F, Olshan AF. Exome sequencing identifies novel genes underlying primary congenital glaucoma in the National Birth Defects Prevention Study. Birth Defects Res 2024; 116:e2384. [PMID: 38990107 PMCID: PMC11245170 DOI: 10.1002/bdr2.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Primary congenital glaucoma (PCG) affects approximately 1 in 10,000 live born infants in the United States (U.S.). PCG has a autosomal recessive inheritance pattern, and variable expressivity and reduced penetrance have been reported. Likely causal variants in the most commonly mutated gene, CYP1B1, are less prevalent in the U.S., suggesting that alternative genes may contribute to the condition. This study utilized exome sequencing to investigate the genetic architecture of PCG in the U.S. and to identify novel genes and variants. METHODS We studied 37 family trios where infants had PCG and were part of the National Birth Defects Prevention Study (births 1997-2011), a U.S. multicenter study of birth defects. Samples underwent exome sequencing and sequence reads were aligned to the human reference sample (NCBI build 37/hg19). Variant filtration was conducted under de novo and Mendelian inheritance models using GEMINI. RESULTS Among candidate variants, CYP1B1 was most represented (five trios, 13.5%). Twelve probands (32%) had potentially pathogenic variants in other genes not previously linked to PCG but important in eye development and/or to underlie Mendelian conditions with potential phenotypic overlap (e.g., CRYBB2, RXRA, GLI2). CONCLUSION Variation in the genes identified in this population-based study may help to further explain the genetics of PCG.
Collapse
Affiliation(s)
- Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Kristin J Moore
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tania A Desrosiers
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suzan L Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Janson J White
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Jessica X Chong
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Michael J Bamshad
- Brotman-Baty Institute for Precision Medicine, Seattle, Washington, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mary M Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lynn M Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lawrence C Brody
- Division of Genomics and Society, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sharon F Freedman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Martha Werler
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts, USA
- Slone Epidemiology Center at Boston University, Boston, Massachusetts, USA
| | - Denise M Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Marilyn L Browne
- New York State Department of Health, Birth Defects Registry, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany School of Public Health, Rensselaer, New York, USA
| | - Marcia L Feldkamp
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Richard H Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Wendy N Nembhard
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Faith Pangilinan
- Division of Genomics and Society, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Greatbatch CJ, Lu Q, Hung S, Tran SN, Wing K, Liang H, Han X, Zhou T, Siggs OM, Mackey DA, Liu GS, Cook AL, Powell JE, Craig JE, MacGregor S, Hewitt AW. Deep Learning-Based Identification of Intraocular Pressure-Associated Genes Influencing Trabecular Meshwork Cell Morphology. OPHTHALMOLOGY SCIENCE 2024; 4:100504. [PMID: 38682030 PMCID: PMC11046128 DOI: 10.1016/j.xops.2024.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Purpose Genome-wide association studies have recently uncovered many loci associated with variation in intraocular pressure (IOP). Artificial intelligence (AI) can be used to interrogate the effect of specific genetic knockouts on the morphology of trabecular meshwork cells (TMCs) and thus, IOP regulation. Design Experimental study. Subjects Primary TMCs collected from human donors. Methods Sixty-two genes at 55 loci associated with IOP variation were knocked out in primary TMC lines. All cells underwent high-throughput microscopy imaging after being stained with a 5-channel fluorescent cell staining protocol. A convolutional neural network was trained to distinguish between gene knockout and normal control cell images. The area under the receiver operator curve (AUC) metric was used to quantify morphological variation in gene knockouts to identify potential pathological perturbations. Main Outcome Measures Degree of morphological variation as measured by deep learning algorithm accuracy of differentiation from normal controls. Results Cells where LTBP2 or BCAS3 had been perturbed demonstrated the greatest morphological variation from normal TMCs (AUC 0.851, standard deviation [SD] 0.030; and AUC 0.845, SD 0.020, respectively). Of 7 multigene loci, 5 had statistically significant differences in AUC (P < 0.05) between genes, allowing for pathological gene prioritization. The mitochondrial channel most frequently showed the greatest degree of morphological variation (33.9% of cell lines). Conclusions We demonstrate a robust method for functionally interrogating genome-wide association signals using high-throughput microscopy and AI. Genetic variations inducing marked morphological variation can be readily identified, allowing for the gene-based dissection of loci associated with complex traits. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Connor J. Greatbatch
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Qinyi Lu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Sandy Hung
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Son N. Tran
- Department of Information and Communication Technology, University of Tasmania, Hobart, Tasmania, Australia
| | - Kristof Wing
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Helena Liang
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Xikun Han
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Bedford Park, Australia
| | - Owen M. Siggs
- Cellular Genomics Group, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia
| | - David A. Mackey
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Joseph E. Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- UNSW Cellular Genomics Futures Institute, UNSW, Sydney, New South Wales, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Bedford Park, Australia
| | - Stuart MacGregor
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Brouillard P, Murtomäki A, Leppänen VM, Hyytiäinen M, Mestre S, Potier L, Boon LM, Revencu N, Greene A, Anisimov A, Salo MH, Hinttala R, Eklund L, Quéré I, Alitalo K, Vikkula M. Loss-of-function mutations of the TIE1 receptor tyrosine kinase cause late-onset primary lymphedema. J Clin Invest 2024; 134:e173586. [PMID: 38820174 PMCID: PMC11245153 DOI: 10.1172/jci173586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Primary lymphedema (PL), characterized by tissue swelling, fat accumulation, and fibrosis, results from defects in lymphatic vessels or valves caused by mutations in genes involved in development, maturation, and function of the lymphatic vascular system. Pathogenic variants in various genes have been identified in about 30% of PL cases. By screening of a cohort of 755 individuals with PL, we identified two TIE1 (tyrosine kinase with immunoglobulin- and epidermal growth factor-like domains 1) missense variants and one truncating variant, all predicted to be pathogenic by bioinformatic algorithms. The TIE1 receptor, in complex with TIE2, binds angiopoietins to regulate the formation and remodeling of blood and lymphatic vessels. The premature stop codon mutant encoded an inactive truncated extracellular TIE1 fragment with decreased mRNA stability, and the amino acid substitutions led to decreased TIE1 signaling activity. By reproducing the two missense variants in mouse Tie1 via CRISPR/Cas9, we showed that both cause edema and are lethal in homozygous mice. Thus, our results indicate that TIE1 loss-of-function variants can cause lymphatic dysfunction in patients. Together with our earlier demonstration that ANGPT2 loss-of-function mutations can also cause PL, our results emphasize the important role of the ANGPT2/TIE1 pathway in lymphatic function.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Aino Murtomäki
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marko Hyytiäinen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandrine Mestre
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Lucas Potier
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M. Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, VASCERN-VASCA Reference Centre, Brussels, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Arin Greene
- Department of Plastic and Oral Surgery, Lymphedema Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrey Anisimov
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miia H. Salo
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Isabelle Quéré
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
24
|
Tevar A, Aroca-Aguilar JD, Bonet-Fernández JM, Atienzar-Aroca R, Campos-Mollo E, Méndez-Hernández C, Morales-Fernández L, Leal Palmer I, Coca-Prados M, Martinez-de-la-Casa JM, Garcia-Feijoo J, Escribano J. The Increased Burden of Rare Variants in Four Matrix Metalloproteinase-Related Genes in Childhood Glaucoma Suggests a Complex Genetic Inheritance of the Disease. Int J Mol Sci 2024; 25:5757. [PMID: 38891949 PMCID: PMC11171635 DOI: 10.3390/ijms25115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Childhood glaucoma encompasses congenital and juvenile primary glaucoma, which are heterogeneous, uncommon, and irreversible optic neuropathies leading to visual impairment with a poorly understood genetic basis. Our goal was to identify gene variants associated with these glaucoma types by assessing the mutational burden in 76 matrix metalloproteinase-related genes. We studied 101 childhood glaucoma patients with no identified monogenic alterations using next-generation sequencing. Gene expression was assessed through immunohistochemistry. Functional analysis of selected gene variants was conducted in cultured cells and in zebrafish. Patients presented a higher proportion of rare variants in four metalloproteinase-related genes, including CPAMD8 and ADAMTSL4, compared to controls. ADAMTSL4 protein expression was observed in the anterior segment of both the adult human and zebrafish larvae's eye, including tissues associated with glaucoma. In HEK-293T cells, expression of four ADAMTSL4 variants identified in this study showed that two variants (p.Arg774Trp and p.Arg98Trp) accumulated intracellularly, inducing endoplasmic reticulum stress. Additionally, overexpressing these ADAMTSL4 variants in zebrafish embryos confirmed partial loss-of-function effects for p.Ser719Leu and p.Arg1083His. Double heterozygous functional suppression of adamtsl4 and cpamd8 zebrafish orthologs resulted in reduced volume of both the anterior eye chamber and lens within the chamber, supporting a genetic interaction between these genes. Our findings suggest that accumulation of partial functional defects in matrix metalloproteinase-related genes may contribute to increased susceptibility to early-onset glaucoma and provide further evidence supporting the notion of a complex genetic inheritance pattern underlying the disease.
Collapse
Affiliation(s)
- Angel Tevar
- Área de Genética, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (A.T.); (J.-D.A.-A.); (J.-M.B.-F.); (R.A.-A.)
- Biomedicine Institute, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.C.-M.); (C.M.-H.); (L.M.-F.); (J.-M.M.-d.-l.-C.); (J.G.-F.)
| | - José-Daniel Aroca-Aguilar
- Área de Genética, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (A.T.); (J.-D.A.-A.); (J.-M.B.-F.); (R.A.-A.)
- Biomedicine Institute, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.C.-M.); (C.M.-H.); (L.M.-F.); (J.-M.M.-d.-l.-C.); (J.G.-F.)
| | - Juan-Manuel Bonet-Fernández
- Área de Genética, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (A.T.); (J.-D.A.-A.); (J.-M.B.-F.); (R.A.-A.)
- Biomedicine Institute, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.C.-M.); (C.M.-H.); (L.M.-F.); (J.-M.M.-d.-l.-C.); (J.G.-F.)
| | - Raquel Atienzar-Aroca
- Área de Genética, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (A.T.); (J.-D.A.-A.); (J.-M.B.-F.); (R.A.-A.)
- Biomedicine Institute, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.C.-M.); (C.M.-H.); (L.M.-F.); (J.-M.M.-d.-l.-C.); (J.G.-F.)
| | - Ezequiel Campos-Mollo
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.C.-M.); (C.M.-H.); (L.M.-F.); (J.-M.M.-d.-l.-C.); (J.G.-F.)
- Servicio de Oftalmología, Hospital Virgen de los Lirios, 03804 Alcoy, Spain;
| | - Carmen Méndez-Hernández
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.C.-M.); (C.M.-H.); (L.M.-F.); (J.-M.M.-d.-l.-C.); (J.G.-F.)
- Servicio de Oftalmología, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura Morales-Fernández
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.C.-M.); (C.M.-H.); (L.M.-F.); (J.-M.M.-d.-l.-C.); (J.G.-F.)
- Servicio de Oftalmología, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Iñaki Leal Palmer
- Servicio de Oftalmología, Hospital Virgen de los Lirios, 03804 Alcoy, Spain;
| | - Miguel Coca-Prados
- Department of Ophthalmology and Visual Science, Yale University Medical School, New Haven, CT 06510, USA;
| | - Jose-Maria Martinez-de-la-Casa
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.C.-M.); (C.M.-H.); (L.M.-F.); (J.-M.M.-d.-l.-C.); (J.G.-F.)
- Servicio de Oftalmología, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julian Garcia-Feijoo
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.C.-M.); (C.M.-H.); (L.M.-F.); (J.-M.M.-d.-l.-C.); (J.G.-F.)
- Servicio de Oftalmología, Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julio Escribano
- Área de Genética, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (A.T.); (J.-D.A.-A.); (J.-M.B.-F.); (R.A.-A.)
- Biomedicine Institute, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (E.C.-M.); (C.M.-H.); (L.M.-F.); (J.-M.M.-d.-l.-C.); (J.G.-F.)
| |
Collapse
|
25
|
Al-Saei O, Malka S, Owen N, Aliyev E, Vempalli FR, Ocieczek P, Al-Khathlan B, Fakhro K, Moosajee M. Increasing the diagnostic yield of childhood glaucoma cases recruited into the 100,000 Genomes Project. BMC Genomics 2024; 25:484. [PMID: 38755526 PMCID: PMC11097485 DOI: 10.1186/s12864-024-10353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.
Collapse
Affiliation(s)
- Omayma Al-Saei
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Samantha Malka
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | - Paulina Ocieczek
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | | | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
- The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
26
|
Rämö JT, Gorman B, Weng LC, Jurgens SJ, Singhanetr P, Tieger MG, van Dijk EH, Halladay CW, Wang X, Brinks J, Choi SH, Luo Y, Pyarajan S, Nealon CL, Gorin MB, Wu WC, Sobrin L, Kaarniranta K, Yzer S, Palotie A, Peachey NS, Turunen JA, Boon CJ, Ellinor PT, Iyengar SK, Daly MJ, Rossin EJ. Rare genetic variation in VE-PTP is associated with central serous chorioretinopathy, venous dysfunction and glaucoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.08.24307013. [PMID: 38766240 PMCID: PMC11100937 DOI: 10.1101/2024.05.08.24307013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Central serous chorioretinopathy (CSC) is a fluid maculopathy whose etiology is not well understood. Abnormal choroidal veins in CSC patients have been shown to have similarities with varicose veins. To identify potential mechanisms, we analyzed genotype data from 1,477 CSC patients and 455,449 controls in FinnGen. We identified an association for a low-frequency (AF=0.5%) missense variant (rs113791087) in the gene encoding vascular endothelial protein tyrosine phosphatase (VE-PTP) (OR=2.85, P=4.5×10-9). This was confirmed in a meta-analysis of 2,452 CSC patients and 865,767 controls from 4 studies (OR=3.06, P=7.4×10-15). Rs113791087 was associated with a 56% higher prevalence of retinal abnormalities (35.3% vs 22.6%, P=8.0×10-4) in 708 UK Biobank participants and, surprisingly, with varicose veins (OR=1.31, P=2.3×10-11) and glaucoma (OR=0.82, P=6.9×10-9). Predicted loss-of-function variants in VEPTP, though rare in number, were associated with CSC in All of Us (OR=17.10, P=0.018). These findings highlight the significance of VE-PTP in diverse ocular and systemic vascular diseases.
Collapse
Affiliation(s)
- Joel T Rämö
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Massachusetts Eye and Ear, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bryan Gorman
- Center for Data and Computational Sciences (C-DACS), VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Lu-Chen Weng
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean J Jurgens
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Panisa Singhanetr
- Massachusetts Eye and Ear, Boston, MA, USA
- Mettapracharak Eye Institute, Mettapracharak (Wat Rai Khing) Hospital, Nakhon Pathom, Thailand
| | - Marisa G Tieger
- New England Eye Center, Tufts Medical Center, Boston, MA, USA
| | - Elon Hc van Dijk
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christopher W Halladay
- Center of Innovation in Long Term Services and Supports, Providence VA Medical Center, Providence, RI, USA
| | - Xin Wang
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joost Brinks
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Seung Hoan Choi
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Yuyang Luo
- Massachusetts Eye and Ear, Boston, MA, USA
| | - Saiju Pyarajan
- VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard School of Medicine, Boston, MA, USA
| | - Cari L Nealon
- Eye Clinic, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Michael B Gorin
- Department of Ophthalmology, David Geffen School of Medicine, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wen-Chih Wu
- Section of Cardiology, Medical Service, VA Providence Healthcare System, Providence, RI, USA
| | - Lucia Sobrin
- Harvard Medical School Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Suzanne Yzer
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neal S Peachey
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Joni A Turunen
- Folkhälsan Research Center, Biomedicum, Helsinki, Finland
- Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Camiel Jf Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sudha K Iyengar
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth J Rossin
- Harvard Medical School Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
27
|
Greatbatch CJ, Lu Q, Hung S, Barnett AJ, Wing K, Liang H, Han X, Zhou T, Siggs OM, Mackey DA, Cook AL, Senabouth A, Liu GS, Craig JE, MacGregor S, Powell JE, Hewitt AW. High throughput functional profiling of genes at intraocular pressure loci reveals distinct networks for glaucoma. Hum Mol Genet 2024; 33:739-751. [PMID: 38272457 PMCID: PMC11031357 DOI: 10.1093/hmg/ddae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/18/2023] [Accepted: 04/06/2024] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. METHODS 62 genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups, underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled with CellProfiler image analysis allowed for single-cell morphological profiling. RESULTS Many gene knockouts invoked DEGs relating to matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology. TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and PLEKHA7 increased granularity and intensity of actin and the cell-membrane. CONCLUSION High-throughput analysis of cellular structure and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong genetic basis.
Collapse
Affiliation(s)
- Connor J Greatbatch
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Qinyi Lu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Sandy Hung
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| | - Alexander J Barnett
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Kristof Wing
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Helena Liang
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane 4006, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, 1 Flinders Dr, Bedford Park, South Australia 5042, Australia
| | - Owen M Siggs
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, Short Street, St George Hospital KOGARAH UNSW, Sydney 2217, Australia
| | - David A Mackey
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- Lions Eye Institute, Centre for Vision Sciences, University of Western Australia, 2 Verdun Street Nedlands WA 6009, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, 17 Liverpool Street, Hobart, TAS 7000, Australia
| | - Anne Senabouth
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, 1 Flinders Dr, Bedford Park, South Australia 5042, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane 4006, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, East Melbourne 3002, Australia
| |
Collapse
|
28
|
Pan Y, Iwata T. Exploring the Genetic Landscape of Childhood Glaucoma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:454. [PMID: 38671671 PMCID: PMC11048810 DOI: 10.3390/children11040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Childhood glaucoma, a significant cause of global blindness, represents a heterogeneous group of disorders categorized into primary or secondary forms. Primary childhood glaucoma stands as the most prevalent subtype, comprising primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Presently, multiple genes are implicated in inherited forms of primary childhood glaucoma. This comprehensive review delves into genetic investigations into primary childhood glaucoma, with a focus on identifying causative genes, understanding their inheritance patterns, exploring essential biological pathways in disease pathogenesis, and utilizing animal models to study these mechanisms. Specifically, attention is directed towards genes such as CYP1B1 (cytochrome P450 family 1 subfamily B member 1), LTBP2 (latent transforming growth factor beta binding protein 2), TEK (TEK receptor tyrosine kinase), ANGPT1 (angiopoietin 1), and FOXC1 (forkhead box C1), all associated with PCG; and MYOC (myocilin), associated with JOAG. Through exploring these genetic factors, this review aims to deepen our understanding of the intricate pathogenesis of primary childhood glaucoma, thereby facilitating the development of enhanced diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
| |
Collapse
|
29
|
Jacobson A, Bohnsack BL. Factors and outcomes associated with corneal edema and Haabs striae in primary congenital glaucoma. J AAPOS 2024; 28:103860. [PMID: 38442850 DOI: 10.1016/j.jaapos.2024.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 03/07/2024]
Abstract
PURPOSE To identify specific factors and outcomes associated with corneal edema and Haabs striae in primary congenital glaucoma (PCG). METHODS The medical records of patients with PCG from 2011 to 2023 with >3 months' follow-up were reviewed retrospectively. Preoperative details and final outcomes were compared between eyes with and without corneal findings. The right eye of bilateral cases and the affected eye in unilateral cases were included. RESULTS A total of 58 patients (104 eyes, 69% male) underwent initial angle surgery at an average age of 297 ± 368 (median, 134) days. Corneal edema and Haabs striae were present preoperatively in 72 (69%) eyes of 41 patients and 68 (65%) eyes of 39 patients, respectively. Patients with corneal edema presented at a younger age (P < 0.0001) and with shorter axial length (P = 0.01) than those without edema. Univariate analysis showed that corneal edema was associated with worse visual acuity at final follow-up (OR = 4.4; 95% CI, 1.2-25.3). Patients with Haabs striae were older than those without striae (P = 0.04). After angle surgery, corneal edema was present at 1 month in 71% (95% CI, 52-84), at 2 months in 26% (95% CI, 12-42), at 3 months in 16% (95% CI, 6-30), and at 1 year in 3% (95% CI, 0-13). Corneal opacification did not resolve in 4 eyes of 3 patients after >4 years of follow-up. CONCLUSIONS In our study cohort, corneal edema resolved in the majority of PCG cases within 2-3 months of initial angle surgery but was associated with younger age at presentation and worse visual acuity at final follow-up.
Collapse
Affiliation(s)
- Adam Jacobson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
30
|
Yang H, Lu W, Sun X. Primary congenital glaucoma: We are always on the way. Taiwan J Ophthalmol 2024; 14:190-196. [PMID: 39027076 PMCID: PMC11253993 DOI: 10.4103/tjo.tjo-d-22-00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 07/20/2024] Open
Abstract
Primary congenital glaucoma (PCG), a developmental glaucoma occurring due to angle anomaly, earns growing concerns among ophthalmologists for its vision-damaging attribute. The incidence of PCG varies among races and geographic regions and is mostly genetically associated. Theories have been posed in attempt to address the etiology of this congenital maldevelopment and in the meanwhile providing evidence for feasibility of PCG surgeries. In regard to the clinical aspects of this entity, both the clinical characteristics and general principals of management are introduced, with angle surgeries highlighted for clarifying details including their success rates, key points for a successful surgical intervention, postoperative management, and follow-up strategies. Taking patients' vision-associated quality of life into consideration, we stressed that further perceptual learning and low vision rehabilitation are momentous. However, much has yet to be elucidated in respect of the truly comprehensive pathogenesis underneath as well as means by which clinical outcomes of PCG can be further improved. We are now looking forward to innovative therapeutic approaches like gene therapy in specific genes in the future, with the hope of improving their life-long visual quality in those young patients.
Collapse
Affiliation(s)
- Hongfang Yang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Wenhan Lu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Gupta V, Birla S, Varshney T, Somarajan BI, Gupta S, Gupta M, Panigrahi A, Singh A, Gupta D. In vivo identification of angle dysgenesis and its relation to genetic markers associated with glaucoma using artificial intelligence. Indian J Ophthalmol 2024; 72:339-346. [PMID: 38146977 PMCID: PMC11001234 DOI: 10.4103/ijo.ijo_1456_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/18/2023] [Accepted: 10/06/2023] [Indexed: 12/27/2023] Open
Abstract
PURPOSE To predict the presence of angle dysgenesis on anterior-segment optical coherence tomography (ADoA) by using deep learning (DL) and to correlate ADoA with mutations in known glaucoma genes. PARTICIPANTS In total, 800 high-definition anterior-segment optical coherence tomography (AS-OCT) images were included, of which 340 images were used to build the machine learning (ML) model. Images used to build the ML model included 170 scans of primary congenital glaucoma (16 patients), juvenile-onset open-angle glaucoma (62 patients), and adult-onset primary open-angle glaucoma eyes (37 patients); the rest were controls (n = 85). The genetic validation dataset consisted of another 393 images of patients with known mutations that were compared with 320 images of healthy controls. METHODS ADoA was defined as the absence of Schlemm's canal, the presence of hyperreflectivity over the region of the trabecular meshwork, or a hyperreflective membrane. DL was used to classify a given AS-OCT image as either having angle dysgenesis or not. ADoA was then specifically looked for on AS-OCT images of patients with mutations in the known genes for glaucoma. RESULTS The final prediction, which was a consensus-based outcome from the three optimized DL models, had an accuracy of >95%, a specificity of >97%, and a sensitivity of >96% in detecting ADoA in the internal test dataset. Among the patients with known gene mutations, ( MYOC, CYP1B1, FOXC1, and LTBP2 ) ADoA was observed among all the patients in the majority of the images, compared to only 5% of the healthy controls. CONCLUSION ADoA can be objectively identified using models built with DL.
Collapse
Affiliation(s)
- Viney Gupta
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shweta Birla
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Jawaharlal Nehru University, New Delhi, India
| | - Toshit Varshney
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Bindu I Somarajan
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shikha Gupta
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mrinalini Gupta
- Department of Biomedical Engineering Technical University of Munich, Munich, Germany
| | - Arnav Panigrahi
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Abhishek Singh
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
32
|
Gupta S, Zhang X, Panigrahi A, Shakha, Fang R, Strohmaier CA, Zhang HF, Weinreb RN, Gupta V, Huang AS. Reduced Aqueous Humor Outflow Pathway Arborization in Childhood Glaucoma Eyes. Transl Vis Sci Technol 2024; 13:23. [PMID: 38536170 PMCID: PMC10981159 DOI: 10.1167/tvst.13.3.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/16/2024] [Indexed: 04/01/2024] Open
Abstract
Purpose To compare aqueous humor outflow (AHO) pathway patterns between eyes of childhood glaucoma patients and non-glaucomatous patients receiving cataract surgery. Methods Aqueous angiography was performed in childhood glaucoma eyes (n = 5) receiving glaucoma surgery and in pediatric (n = 1) and healthy adult (n = 5) eyes receiving cataract surgery. Indocyanine green (0.4%) was introduced into the anterior chamber, and AHO was imaged using an angiographic camera (SPECTRALIS HRA+OCT with Flex Module). Images were acquired and analyzed (ImageJ with Analyze Skeleton 2D/3D plugin) from the nasal sides of the eyes, the usual site of glaucoma angle procedures. Image analysis endpoints included AHO vessel length, maximum vessel length, number of branches, number of branch junctions, and vessel density. Results Qualitatively, childhood glaucoma eyes demonstrated lesser AHO pathway arborization compared to pediatric and adult eyes without glaucoma. Quantitatively, childhood glaucoma and healthy adult cataract eyes showed similar AHO pathway average branch lengths and maximum branch lengths (P = 0.49-0.99). However, childhood glaucoma eyes demonstrated fewer branches (childhood glaucoma, 198.2 ± 35.3; adult cataract, 506 ± 59.5; P = 0.002), fewer branch junctions (childhood glaucoma, 74.6 ± 13.9; adult cataract, 202 ± 41.2; P = 0.019), and lower vessel densities (childhood glaucoma, 8% ± 1.4%; adult cataract, 17% ± 2.5%; P = 0.01). Conclusions Childhood glaucoma patients demonstrated fewer distal AHO pathways and lesser AHO pathway arborization. These anatomical alternations may result in a new source of trabecular meshwork-independent AHO resistance in this disease cohort. Translational Relevance Elevated distal outflow pathway resistance due to decreased AHO pathway arborization may explain some cases of failed trabecular bypass surgery in childhood glaucoma.
Collapse
Affiliation(s)
- Shikha Gupta
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi, India
| | - Xiaowei Zhang
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Arnav Panigrahi
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi, India
| | - Shakha
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi, India
| | - Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Clemens A. Strohmaier
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
- Department of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University, Linz, Austriav
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Robert N. Weinreb
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| | - Viney Gupta
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute for Medical Sciences, New Delhi, India
| | - Alex S. Huang
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
33
|
Kumar A, Han Y, Oatts JT. Genetic changes and testing associated with childhood glaucoma: A systematic review. PLoS One 2024; 19:e0298883. [PMID: 38386645 PMCID: PMC10883561 DOI: 10.1371/journal.pone.0298883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Many forms of childhood glaucoma have been associated with underlying genetic changes, and variants in many genes have been described. Currently, testing is variable as there are no widely accepted guidelines for testing. This systematic review aimed to summarize the literature describing genetic changes and testing practices in childhood glaucoma. This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) 2020 guidelines and registered with Prospero (ID CRD42023400467). A comprehensive review of Pubmed, Embase, and Cochrane databases was performed from inception through March 2, 2023 using the search terms: (glaucoma) AND (pediatric OR childhood OR congenital OR child OR infant OR infantile) AND (gene OR genetic OR genotype OR locus OR genomic OR mutation OR variant OR test OR screen OR panel). Information was extracted regarding genetic variants including genotype-phenotype correlation. Risk of bias was assessed using the Newcastle-Ottawa Scale. Of 1,916 records screened, 196 studies met inclusion criteria and 53 genes were discussed. Among study populations, mean age±SD at glaucoma diagnosis was 8.94±9.54 years and 50.4% were male. The most common gene discussed was CYP1B1, evaluated in 109 (55.6%) studies. CYP1B1 variants were associated with region and population-specific prevalence ranging from 5% to 86% among those with primary congenital glaucoma. MYOC variants were discussed in 31 (15.8%) studies with prevalence up to 36% among patients with juvenile open angle glaucoma. FOXC1 variants were discussed in 25 (12.8%) studies, which demonstrated phenotypic severity dependent on degree of gene expression and type of mutation. Overall risk of bias was low; the most common domains of bias were selection and comparability. Numerous genes and genetic changes have been associated with childhood glaucoma. Understanding the most common genes as well as potential genotype-phenotype correlation has the potential to improve diagnostic and prognostic outcomes for children with glaucoma.
Collapse
Affiliation(s)
- Anika Kumar
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - Ying Han
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - Julius T. Oatts
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
34
|
Loo Y, Chan ASY, Khor CC, Aung T, Wang Z. Rodent genetically modified models of glaucoma. Mol Aspects Med 2024; 95:101229. [PMID: 38039744 DOI: 10.1016/j.mam.2023.101229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Glaucoma, one of the leading causes of irreversible blindness worldwide, is a complex and heterogenous disease. While environmental factors are important, it is well-recognized that the disease has a strong heritable component. With the advent of large-cohort genome wide association studies, a myriad of genetic risk loci has been linked to different forms of glaucoma. Animal models have been an indispensable tool in characterizing these loci, especially if they lie within coding regions in the genome. Not only do these models connect genotype to phenotype, advancing our understanding of glaucoma pathogenesis in the process, they also have valuable utility as a platform for the pre-clinical testing of potential therapies. In this review, we will outline genetic models used for studying the major forms of glaucoma, including primary open angle glaucoma, normal tension glaucoma, primary angle closure glaucoma, pigmentary glaucoma, pseudoexfoliation glaucoma, and early onset glaucoma, including congenital and developmental glaucoma, and how studying these models have helped shed light on human glaucoma.
Collapse
Affiliation(s)
- Yunhua Loo
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Anita Sook Yee Chan
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Tin Aung
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Zhenxun Wang
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| |
Collapse
|
35
|
Venkatapathappa P, Sultana A, K S V, Mansour R, Chikkanarayanappa V, Rangareddy H. Ocular Pathology and Genetics: Transformative Role of Artificial Intelligence (AI) in Anterior Segment Diseases. Cureus 2024; 16:e55216. [PMID: 38435218 PMCID: PMC10908431 DOI: 10.7759/cureus.55216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
Artificial intelligence (AI) has become a revolutionary influence in the field of ophthalmology, providing unparalleled capabilities in data analysis and pattern recognition. This narrative review delves into the crucial role that AI plays, particularly in the context of anterior segment diseases with a genetic basis. Corneal dystrophies (CDs) exhibit significant genetic diversity, manifested by irregular substance deposition in the cornea. AI-driven diagnostic tools exhibit promising accuracy in the identification and classification of corneal diseases. Importantly, chat generative pre-trained transformer (ChatGPT)-4.0 shows significant advancement over its predecessor, ChatGPT-3.5. In the realm of glaucoma, AI significantly contributes to precise diagnostics through inventive algorithms and machine learning models, surpassing conventional methods. The incorporation of AI in predicting glaucoma progression and its role in augmenting diagnostic efficiency is readily apparent. Additionally, AI-powered models prove beneficial for early identification and risk assessment in cases of congenital cataracts, characterized by diverse inheritance patterns. Machine learning models achieving exceptional discrimination in identifying congenital cataracts underscore AI's remarkable potential. The review concludes by emphasizing the promising implications of AI in managing anterior segment diseases, spanning from early detection to the tailoring of personalized treatment strategies. These advancements signal a paradigm shift in ophthalmic care, offering optimism for enhanced patient outcomes and more streamlined healthcare delivery.
Collapse
Affiliation(s)
| | - Ayesha Sultana
- Pathology, St. George's University School of Medicine, St. George's, GRD
| | - Vidhya K S
- Bioinformatics, University of Visvesvaraya College of Engineering, Bangalore, IND
| | - Romy Mansour
- Ophthalmology, Lebanese American University Medical Center, Beirut, LBN
| | | | | |
Collapse
|
36
|
Schnabellehner S, Kraft M, Schoofs H, Ortsäter H, Mäkinen T. Penile cavernous sinusoids are Prox1-positive hybrid vessels. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2024; 6:e230014. [PMID: 38051669 PMCID: PMC10831540 DOI: 10.1530/vb-23-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Endothelial cells (ECs) of blood and lymphatic vessels have distinct identity markers that define their specialized functions. Recently, hybrid vasculatures with both blood and lymphatic vessel-specific features have been discovered in multiple tissues. Here, we identify the penile cavernous sinusoidal vessels (pc-Ss) as a new hybrid vascular bed expressing key lymphatic EC identity genes Prox1, Vegfr3,and Lyve1. Using single-cell transcriptome data of human corpus cavernosum tissue, we found heterogeneity within pc-S endothelia and observed distinct transcriptional alterations related to inflammatory processes in hybrid ECs in erectile dysfunction associated with diabetes. Molecular, ultrastructural, and functional studies further established hybrid identity of pc-Ss in mouse, and revealed their morphological adaptations and ability to perform lymphatic-like function in draining high-molecular-weight tracers. Interestingly, we found that inhibition of the key lymphangiogenic growth factor VEGF-C did not block the development of pc-Ss in mice, distinguishing them from other lymphatic and hybrid vessels analyzed so far. Our findings provide a detailed molecular characterization of hybrid pc-Ss and pave the way for the identification of molecular targets for therapies in conditions of dysregulated penile vasculature, including erectile dysfunction.
Collapse
Affiliation(s)
- Sarah Schnabellehner
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marle Kraft
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hans Schoofs
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Ortsäter
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
37
|
Chacon-Camacho OF, Arce-Gonzalez R, Sanchez-de la Rosa F, Urióstegui-Rojas A, Hofmann-Blancas ME, Mata-Flores F, Zenteno JC. Genetic Aspects of Glaucoma: An Updated Review. Curr Mol Med 2024; 24:1231-1249. [PMID: 37272463 DOI: 10.2174/1566524023666230602143617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023]
Abstract
Glaucoma is a group of diverse diseases characterized by cupping of the optic nerve head due to the loss of retinal ganglion cells. It is the most common cause of irreversible blindness throughout the world; therefore, its timely diagnosis and early detection through an ophthalmological examination are very important. We, herein, present the information on the epidemiology, pathophysiology, clinical diagnosis, and treatment of glaucoma. We also emphasize the investigations of the last decades that have allowed identifying numerous genes and susceptibility genetic factors. We have also described in detail the genes whose mutations cause or contribute to the development of the disease.
Collapse
Affiliation(s)
- Oscar Francisco Chacon-Camacho
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Laboratorio 5 Edificio A-4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocio Arce-Gonzalez
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Andrés Urióstegui-Rojas
- Department of Integral Ophthalmology, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | | | - Felipe Mata-Flores
- Department of Glaucoma, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
| | - Juan Carlos Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico
- Biochemistry Department, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
38
|
Agarwal R, Iezhitsa I. Genetic rodent models of glaucoma in representing disease phenotype and insights into the pathogenesis. Mol Aspects Med 2023; 94:101228. [PMID: 38016252 DOI: 10.1016/j.mam.2023.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Genetic rodent models are widely used in glaucoma related research. With vast amount of information revealed by human studies about genetic correlations with glaucoma, use of these models is relevant and required. In this review, we discuss the glaucoma endophenotypes and importance of their representation in an experimental animal model. Mice and rats are the most popular animal species used as genetic models due to ease of genetic manipulations in these animal species as well as the availability of their genomic information. With technological advances, induction of glaucoma related genetic mutations commonly observed in human is possible to achieve in rodents in a desirable manner. This approach helps to study the pathobiology of the disease process with the background of genetic abnormalities, reveals potential therapeutic targets and gives an opportunity to test newer therapeutic options. Various genetic manipulation leading to appearance of human relevant endophenotypes in rodents indicate their relevance in glaucoma pathology and the utility of these rodent models for exploring various aspects of the disease related to targeted mutation. The molecular pathways involved in the pathophysiology of glaucoma leading to elevated intraocular pressure and the disease hallmark, apoptosis of retinal ganglion cells and optic nerve degeneration, have been extensively explored in genetic rodent models. In this review, we discuss the consequences of various genetic manipulations based on the primary site of pathology in the anterior or the posterior segment. We discuss how these genetic manipulations produce features in rodents that can be considered a close representation of disease phenotype in human. We also highlight several molecular mechanisms revealed by using genetic rodent models of glaucoma including those involved in increased aqueous outflow resistance, loss of retinal ganglion cells and optic neuropathy. Lastly, we discuss the limitations of the use of genetic rodent models in glaucoma related research.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Malaysia.
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Malaysia
| |
Collapse
|
39
|
Rajasundaram S, Zebardast N, Mehta P, Khawaja AP, Warwick A, Duchinski K, Burgess S, Gill D, Segrè AV, Wiggs J. TIE1 and TEK signalling, intraocular pressure, and primary open-angle glaucoma: a Mendelian randomization study. J Transl Med 2023; 21:847. [PMID: 37996923 PMCID: PMC10668387 DOI: 10.1186/s12967-023-04737-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND In primary open-angle glaucoma (POAG), lowering intraocular pressure (IOP) is the only proven way of slowing vision loss. Schlemm's canal (SC) is a hybrid vascular and lymphatic vessel that mediates aqueous humour drainage from the anterior ocular chamber. Animal studies support the importance of SC endothelial angiopoietin-TEK signalling, and more recently TIE1 signalling, in maintaining normal IOP. However, human genetic support for a causal role of TIE1 and TEK signalling in lowering IOP is currently lacking. METHODS GWAS summary statistics were obtained for plasma soluble TIE1 (sTIE1) protein levels (N = 35,559), soluble TEK (sTEK) protein levels (N = 35,559), IOP (N = 139,555) and POAG (Ncases = 16,677, Ncontrols = 199,580). Mendelian randomization (MR) was performed to estimate the association of genetically proxied TIE1 and TEK protein levels with IOP and POAG liability. Where significant MR estimates were obtained, genetic colocalization was performed to assess the probability of a shared causal variant (PPshared) versus distinct (PPdistinct) causal variants underlying TIE1/TEK signalling and the outcome. Publicly available single-nucleus RNA-sequencing data were leveraged to investigate differential expression of TIE1 and TEK in the human ocular anterior segment. RESULTS Increased genetically proxied TIE1 signalling and TEK signalling associated with a reduction in IOP (- 0.21 mmHg per SD increase in sTIE1, 95% CI = - 0.09 to - 0.33 mmHg, P = 6.57 × 10-4, and - 0.14 mmHg per SD decrease in sTEK, 95% CI = - 0.03 to - 0.25 mmHg, P = 0.011), but not with POAG liability. Colocalization analysis found that the probability of a shared causal variant was greater for TIE1 and IOP than for TEK and IOP (PPshared/(PPdistinct + PPshared) = 0.98 for TIE1 and 0.30 for TEK). In the anterior segment, TIE1 and TEK were preferentially expressed in SC, lymphatic, and vascular endothelium. CONCLUSIONS This study provides novel human genetic support for a causal role of both TIE1 and TEK signalling in regulating IOP. Here, combined evidence from cis-MR and colocalization analyses provide stronger support for TIE1 than TEK as a potential IOP-lowering therapeutic target.
Collapse
Affiliation(s)
- Skanda Rajasundaram
- Faculty of Medicine, Imperial College London, London, UK.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Nazlee Zebardast
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Puja Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- UCL Institute of Cardiovascular Science, London, UK
| | | | - Alasdair Warwick
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Katherine Duchinski
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Ayellet V Segrè
- Faculty of Medicine, Imperial College London, London, UK
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Janey Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
40
|
Boese EA, Alward WLM, Kwon YH, Roos BR, Stone EM, Scheetz TE, Fingert JH. Thrombospondin Mutations and Patients With Primary Congenital Glaucoma in a United States Population. J Glaucoma 2023; 32:e156-e160. [PMID: 37327471 DOI: 10.1097/ijg.0000000000002254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
Mutations in the thrombospondin 1 ( THBS1 ) gene have been previously reported in primary congenital glaucoma (PCG) pedigrees that exhibit autosomal dominant inheritance with low penetrance. We sought to determine the role of THBS1 mutations in a cohort of 20 patients with PCG and 362 normal controls from Iowa using a combination of Sanger sequencing and whole exome sequencing. We detected 16 different THBS1 variants, including 4 rare, nonsynonymous variants (p.Thr611Met, p.Asn708Lys, p.Gln1089His, and p.Glu1166Lys). However, none of these variants were judged to be disease-causing mutations based on: 1) prevalence in cases and controls from Iowa, 2) prevalence in the public database gnomAD, 3) mutation analysis algorithms, and 4) THBS1 DNA sequence conservation. These results indicate THBS1 mutations are not a common cause of PCG in patients from Iowa and may be a rare cause of PCG overall.
Collapse
Affiliation(s)
- Erin A Boese
- Institute for Vision Research
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Wallace L M Alward
- Institute for Vision Research
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Young H Kwon
- Institute for Vision Research
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Ben R Roos
- Institute for Vision Research
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Edwin M Stone
- Institute for Vision Research
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Todd E Scheetz
- Institute for Vision Research
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - John H Fingert
- Institute for Vision Research
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
41
|
Ujiie N, Norden PR, Fang R, Beckmann L, Cai Z, Kweon J, Liu T, Tan C, Kuhn MS, Stamer WD, Aoto K, Quaggin SE, Zhang HF, Kume T. Differential roles of FOXC2 in the trabecular meshwork and Schlemm's canal in glaucomatous pathology. Life Sci Alliance 2023; 6:e202201721. [PMID: 37414529 PMCID: PMC10326420 DOI: 10.26508/lsa.202201721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
Impaired development and maintenance of Schlemm's canal (SC) are associated with perturbed aqueous humor outflow and intraocular pressure. The angiopoietin (ANGPT)/TIE2 signaling pathway regulates SC development and maintenance, whereas the molecular mechanisms of crosstalk between SC and the neural crest (NC)-derived neighboring tissue, the trabecular meshwork (TM), are poorly understood. Here, we show NC-specific forkhead box (Fox)c2 deletion in mice results in impaired SC morphogenesis, loss of SC identity, and elevated intraocular pressure. Visible-light optical coherence tomography analysis further demonstrated functional impairment of the SC in response to changes in intraocular pressure in NC-Foxc2 -/- mice, suggesting altered TM biomechanics. Single-cell RNA-sequencing analysis identified that this phenotype is predominately characterized by transcriptional changes associated with extracellular matrix organization and stiffness in TM cell clusters, including increased matrix metalloproteinase expression, which can cleave the TIE2 ectodomain to produce soluble TIE2. Moreover, endothelial-specific Foxc2 deletion impaired SC morphogenesis because of reduced TIE2 expression, which was rescued by deleting the TIE2 phosphatase VE-PTP. Thus, Foxc2 is critical in maintaining SC identity and morphogenesis via TM-SC crosstalk.
Collapse
Affiliation(s)
- Naoto Ujiie
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pieter R Norden
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Lisa Beckmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhen Cai
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Junghun Kweon
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Ting Liu
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Can Tan
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Megan S Kuhn
- Duke Eye Center, Duke University, Durham, NC, USA
| | | | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Ophthalmology, Northwestern University, Chicago, IL, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Ophthalmology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
42
|
Han X, Gharahkhani P, Hamel AR, Ong JS, Rentería ME, Mehta P, Dong X, Pasutto F, Hammond C, Young TL, Hysi P, Lotery AJ, Jorgenson E, Choquet H, Hauser M, Cooke Bailey JN, Nakazawa T, Akiyama M, Shiga Y, Fuller ZL, Wang X, Hewitt AW, Craig JE, Pasquale LR, Mackey DA, Wiggs JL, Khawaja AP, Segrè AV, MacGregor S. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. Nat Genet 2023; 55:1116-1125. [PMID: 37386247 PMCID: PMC10335935 DOI: 10.1038/s41588-023-01428-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Glaucoma, a leading cause of irreversible blindness, is a highly heritable human disease. Previous genome-wide association studies have identified over 100 loci for the most common form, primary open-angle glaucoma. Two key glaucoma-associated traits also show high heritability: intraocular pressure and optic nerve head excavation damage quantified as the vertical cup-to-disc ratio. Here, since much of glaucoma heritability remains unexplained, we conducted a large-scale multitrait genome-wide association study in participants of European ancestry combining primary open-angle glaucoma and its two associated traits (total sample size over 600,000) to substantially improve genetic discovery power (263 loci). We further increased our power by then employing a multiancestry approach, which increased the number of independent risk loci to 312, with the vast majority replicating in a large independent cohort from 23andMe, Inc. (total sample size over 2.8 million; 296 loci replicated at P < 0.05, 240 after Bonferroni correction). Leveraging multiomics datasets, we identified many potential druggable genes, including neuro-protection targets likely to act via the optic nerve, a key advance for glaucoma because all existing drugs only target intraocular pressure. We further used Mendelian randomization and genetic correlation-based approaches to identify novel links to other complex traits, including immune-related diseases such as multiple sclerosis and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Xikun Han
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Puya Gharahkhani
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andrew R Hamel
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jue Sheng Ong
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Miguel E Rentería
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Puja Mehta
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Xianjun Dong
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca Pasutto
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | | | - Terri L Young
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Pirro Hysi
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Andrew J Lotery
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California (KPNC), Oakland, CA, USA
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael Hauser
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Ophthalmology, Duke University, Durham, NC, USA
- Singapore Eye Research Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neuroscience, Université de Montréal, Montréal, Quebec, Canada
- Neuroscience Division, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | | | - Xin Wang
- 23andMe, Inc., Sunnyvale, CA, USA
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Melbourne, Victoria, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders Medical Centre, Flinders University, Bedford Park, South Australia, Australia
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A Mackey
- Centre for Ophthalmology and Visual Science, University of Western Australia, Lions Eye Institute, Perth, Western Australia, Australia
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Ayellet V Segrè
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Stuart MacGregor
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
43
|
Julian TH, Girach Z, Sanderson E, Guo H, Yu J, Cooper-Knock J, Black GC, Sergouniotis PI. Causal factors in primary open angle glaucoma: a phenome-wide Mendelian randomisation study. Sci Rep 2023; 13:9984. [PMID: 37340071 DOI: 10.1038/s41598-023-37144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
Primary open angle glaucoma (POAG) is a chronic, adult-onset optic neuropathy associated with characteristic optic disc and/or visual field changes. With a view to identifying modifiable risk factors for this common neurodegenerative condition, we performed a 'phenome-wide' univariable Mendelian randomisation (MR) study that involved analysing the relationship between 9661 traits and POAG. Utilised analytical approaches included weighted mode based estimation, the weighted median method, the MR Egger method and the inverse variance weighted (IVW) approach. Eleven traits related to POAG risk were identified including: serum levels of the angiopoietin-1 receptor (OR [odds ratio] = 1.11, IVW p = 2.34E-06) and the cadherin 5 protein (OR = 1.06, IVW p = 1.31E-06); intraocular pressure (OR = 2.46-3.79, IVW p = 8.94E-44-3.00E-27); diabetes (OR = 5.17, beta = 1.64, IVW p = 9.68E-04); and waist circumference (OR = 0.79, IVW p = 1.66E-05). Future research focussing on the effects of adiposity, cadherin 5 and angiopoietin-1 receptor on POAG development and progression is expected to provide key insights that might inform the provision of lifestyle modification advice and/or the development of novel therapies.
Collapse
Affiliation(s)
- Thomas H Julian
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Zain Girach
- Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Eleanor Sanderson
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hui Guo
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan Yu
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Johnathan Cooper-Knock
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Graeme C Black
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Panagiotis I Sergouniotis
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
44
|
Qiao Y, Shao T, Chen Y, Chen J, Sun X, Chen X. Screening of candidate genes at GLC3B and GLC3C loci in Chinese primary congenital glaucoma patients with targeted next generation sequencing. Ophthalmic Genet 2023; 44:133-138. [PMID: 36193031 DOI: 10.1080/13816810.2022.2109683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
BACKGROUND Primary congenital glaucoma (PCG) is characterized by developmental abnormalities of the anterior chamber angle. Although several genes have been associated with PCG, pathogenic mutations could only be detected in about 20% of Chinese patients. GLC3B (1p36.2-36.1) and GLC3C (14q24.3) loci were previously identified in PCG pedigrees via linkage analysis. However, no causative genes were reported in these loci. This study was designed to search for novel PCG-related genes in these genetic regions. MATERIALS AND METHODS DNA samples from 100 PCG patients and 200 normal controls were pooled and sequenced using a customized panel of 133 positional candidate genes located around GLC3B and GLC3C loci (±1Mb). PCG-related genes were prioritized by the distribution of variants between patients and controls. Confirmation of selected variants and co-segregation analysis were performed using Sanger sequencing. RESULTS Patient and control group contained 116 and 147 rare variants respectively after screening. Three genes (ZC2HC1C, VPS13D, and PGF) were prioritized according to the distribution of variants between the two groups. Rare variants of PGF were only identified in PCG patients. CONCLUSIONS To the best of our knowledge, this is the first study aiming at exploring novel PCG-related genes at GLC3B and GLC3C loci. Our preliminary results suggest that there are potential associations between ZC2HC1C, VPS13D, PGF, and PCG. However, larger cohort studies and functional assays are required to provide further evidence for the proposed genotype-phenotype association.
Collapse
Affiliation(s)
- Yunsheng Qiao
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tingting Shao
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuhong Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Junyi Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xueli Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Carstens N, Goolam S, Hulley M, Brandenburg JT, Ramsay M, Williams SEI. Exome-based mutation screening in South African children with primary congenital glaucoma. Eye (Lond) 2023; 37:362-368. [PMID: 35094026 PMCID: PMC9873788 DOI: 10.1038/s41433-022-01941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES To identify pathogenic variants in a cohort of 23 black South African children with sporadic primary congenital glaucoma (PCG) using an exome-based approach. METHODS Children with PCG were recruited from two Paediatric Ophthalmology Clinics in Johannesburg, South Africa. Whole exome sequencing was performed on genomic DNA. Of the 23 children, 19 were male and 19 had bilateral PCG. A variant prioritization strategy was employed whereby variants in known PCG genes (CYP1B1, LTBP2 and TEK) were evaluated first, followed by the identification of putative disease-causing variants in other genes related to eye diseases and phenotypes. RESULTS Validated pathogenic variants in the CYP1B1 gene (c.1169 G>A; p.Arg390His) and TEK gene (c.922 G>A; p.Gly308Arg) were identified in one child each. No LTBP2 mutations were identified in this cohort. In silico predictions identified potentially damaging rare variants in genes previously associated with eye development phenotypes or glaucoma in a further 12 children. CONCLUSIONS This study demonstrates the value of whole exome sequencing in identifying disease-causing variants in African children with PCG. It is the first report of a TEK disease-causing variant in an African PCG patient. Potential causative variants detected in PCG candidate genes warrant further investigation.
Collapse
Affiliation(s)
- Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Saadiah Goolam
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michaella Hulley
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michele Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Eileen Isabella Williams
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
46
|
Donnan MD, Deb DK, Onay T, Scott RP, Ni E, Zhou Y, Quaggin SE. Formation of the glomerular microvasculature is regulated by VEGFR-3. Am J Physiol Renal Physiol 2023; 324:F91-F105. [PMID: 36395385 PMCID: PMC9836230 DOI: 10.1152/ajprenal.00066.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Microvascular dysfunction is a key driver of kidney disease. Pathophysiological changes in the kidney vasculature are regulated by vascular endothelial growth factor receptors (VEGFRs), supporting them as potential therapeutic targets. The tyrosine kinase receptor VEGFR-3, encoded by FLT4 and activated by the ligands VEGF-C and VEGF-D, is best known for its role in lymphangiogenesis. Therapeutically targeting VEGFR-3 to modulate lymphangiogenesis has been proposed as a strategy to treat kidney disease. However, outside the lymphatics, VEGFR-3 is also expressed in blood vascular endothelial cells in several tissues including the kidney. Here, we show that Vegfr-3 is expressed in fenestrated microvascular beds within the developing and adult mouse kidney, which include the glomerular capillary loops. We found that expression levels of VEGFR-3 are dynamic during glomerular capillary loop development, with the highest expression observed during endothelial cell migration into the S-shaped glomerular body. We developed a conditional knockout mouse model for Vegfr-3 and found that loss of Vegfr-3 resulted in a striking glomerular phenotype characterized by aneurysmal dilation of capillary loops, absence of mesangial structure, abnormal interendothelial cell junctions, and poor attachment between glomerular endothelial cells and the basement membrane. In addition, we demonstrated that expression of the VEGFR-3 ligand VEGF-C by podocytes and mesangial cells is dispensable for glomerular development. Instead, VEGFR-3 in glomerular endothelial cells attenuates VEGFR-2 phosphorylation. Together, the results of our study support a VEGF-C-independent functional role for VEGFR-3 in the kidney microvasculature outside of lymphatic vessels, which has implications for clinical therapies that target this receptor.NEW & NOTEWORTHY Targeting VEGFR-3 in kidney lymphatics has been proposed as a method to treat kidney disease. However, expression of VEGFR-3 is not lymphatic-specific. We demonstrated developmental expression of VEGFR-3 in glomerular endothelial cells, with loss of Vegfr-3 leading to malformation of glomerular capillary loops. Furthermore, we showed that VEGFR-3 attenuates VEGFR-2 activity in glomerular endothelial cells independent of paracrine VEGF-C signaling. Together, these data provide valuable information for therapeutic development targeting these pathways.
Collapse
Affiliation(s)
- Michael D Donnan
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Dilip K Deb
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Tuncer Onay
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Rizaldy P Scott
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Eric Ni
- Lake Erie College of Osteopathic Medicine, Greensburg, Pennsylvania
| | - Yalu Zhou
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| |
Collapse
|
47
|
Smeland MF, Brouillard P, Prescott T, Boon LM, Hvingel B, Nordbakken CV, Nystad M, Holla ØL, Vikkula M. Biallelic ANGPT2 loss-of-function causes severe early-onset non-immune hydrops fetalis. J Med Genet 2023; 60:57-64. [PMID: 34876502 PMCID: PMC9811075 DOI: 10.1136/jmedgenet-2021-108179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hydrops fetalis, a pathological fluid accumulation in two or more body compartments, is aetiologically heterogeneous. We investigated a consanguineous family with recurrent pregnancy loss due to severe early-onset non-immune hydrops fetalis. METHODS AND RESULTS Whole exome sequencing in four fetuses with hydrops fetalis revealed that they were homozygous for the angiopoietin-2 (ANGPT2) variant Chr8 (GRCh37/Hg19): 6385085T>C, NM_001147.2:c.557A>G. The substitution introduces a cryptic, exonic splice site predicted to result in loss of 10 nucleotides with subsequent shift in reading frame, leading to a premature stop codon. RNA analysis in the heterozygous parents demonstrated loss of detectable mutant allele, indicative of loss-of-function via nonsense-mediated mRNA decay. Serum ANGPT2 levels were reduced in the parents. In a pregnancy with a healthy, heterozygous child, transiently increased fetal nuchal translucency was noted. CONCLUSION Pathogenic heterozygous ANGPT2 missense variants were recently shown to cause autosomal dominant primary lymphoedema. ANGPT2 is a ligand of the TIE1-TIE2 (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and 2) pathway. It is critical to the formation and remodelling of blood and lymphatic vessels and is involved in vessel maintenance. ANGPT2 knockout mice die from generalised lymphatic dysfunction. We show here that a homozygous pathogenic variant causes loss-of-function and results in severe early-onset hydrops fetalis. This is the first report of an autosomal recessive ANGPT2-related disorder in humans.
Collapse
Affiliation(s)
- Marie F. Smeland
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, Universite catholique de Louvain, Brussels, Belgium
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Laurence M Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, University Hospital Saint-Luc, Bruxelles, Belgium
| | - Bodil Hvingel
- Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| | - Cecilie V Nordbakken
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Mona Nystad
- Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway,Department of Clinical Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Øystein L. Holla
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Universite catholique de Louvain, Brussels, Belgium,Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, University Hospital Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
48
|
Whole-genome sequencing unravels novel genetic determinants and regulatory pathways associated with triamcinolone acetonide-induced ocular hypertension. Mol Genet Genomics 2023; 298:13-26. [PMID: 36222912 DOI: 10.1007/s00438-022-01958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/27/2022] [Indexed: 01/10/2023]
Abstract
Glucocorticosteroids commonly used to treat certain ocular inflammatory conditions cause an unwarranted elevation in intraocular pressure (IOP) leading to steroid-induced ocular hypertension (OHT). This study aims to identify novel genetic variants in the Indian population associated with steroid responsiveness, specifically to that of intravitreal Triamcinolone acetonide (TA) injections, which leads to OHT in 27% of the TA-treated Indian subjects. Genetic determinants and pathways regulating TA-OHT progression were investigated by applying whole-genome sequencing (WGS) on DNA extracted from 53 blood samples that included TA responders and non-responders. Sequencing analysis yielded 45 intronic and 49 exonic variants to be associated with TA-OHT, which are known to play a vital role in eye, heart, brain, and bone deformities. Of these, the most significant genetic variant associated with TA-OHT was further considered for molecular dynamics (MD) simulation studies. Variants in the CRPPA, PLOD1, ARHGAP1, TIMELESS and TNFSF4 genes were found to be directly implicating TA-OHT. Furthermore, these genes were enriched in pathways associated with cardiomyopathy, focal adhesion, extracellular matrix, and actin cytoskeleton reorganization. MD simulation studies revealed that the top significant variant (rs141625803) in the CRPPA gene possesses a high pathogenic and structurally destabilizing effect. Thus, novel genetic variants that could be significantly associated with the TA-OHT progression were identified in this study. Validation of these targets in a larger cohort of patients along with their functional analysis would inform on the disease, thereby adding to the existing knowledge on the pathophysiology of TA-OHT.
Collapse
|
49
|
Qiao Y, Sun Z, Tan C, Lai J, Sun X, Chen J. Intracameral Injection of AAV-DJ.COMP-ANG1 Reduces the IOP of Mice by Reshaping the Trabecular Outflow Pathway. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36520455 PMCID: PMC9769031 DOI: 10.1167/iovs.63.13.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The angiopoietin-1 (ANG1)-TIE signaling pathway orchestrates the development and maintenance of the Schlemm's canal (SC). In this study, we investigated the impact of adeno-associated virus (AAV)-mediated gene therapy with cartilage oligomeric matrix protein-ANG1 (COMP-ANG1) on trabecular outflow pathway. Methods Different serotypes of AAVs were compared for transduction specificity and efficiency in the anterior segment. The selected AAVs encoding COMP-ANG1 or ZsGreen1 (control) were delivered into the anterior chambers of wild-type C57BL/6J mice. The IOP and ocular surface were monitored regularly. Ocular perfusion was performed to measure the outflow facility and label flow patterns of the trabecular drainage pathway. Structural features of SC as well as limbal, retinal, and skin vessels were visualized by immunostaining. Ultrastructural changes in the SC and trabecular meshwork were observed under transmission electron microscopy. Results AAV-DJ could effectively infect the anterior segment. Intracameral injection of AAV-DJ.COMP-ANG1 lowered IOP in wild-type C57BL/6J mice. No signs of inflammation or angiogenesis were noticed. Four weeks after AAV injection, the conventional outflow facility and effective filtration area were increased significantly (P = 0.005 and P = 0.04, respectively). Consistently, the area of the SC was enlarged (P < 0.001) with increased density of giant vacuoles in the inner wall (P = 0.006). In addition, the SC endothelia lay on a more discontinuous basement membrane (P = 0.046) and a more porous juxtacanalicular tissue (P = 0.005) in the COMP-ANG1 group. Conclusions Intracamerally injected AAV-DJ.COMP-ANG1 offers a significant IOP-lowering effect by remodeling the trabecular outflow pathway of mouse eyes.
Collapse
Affiliation(s)
- Yunsheng Qiao
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongmou Sun
- University of Rochester, School of Medicine and Dentistry, Rochester, New York, New York, United States
| | - Chen Tan
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyi Lai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Junyi Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
50
|
Fu H, Siggs OM, Knight LS, Staffieri SE, Ruddle JB, Birsner AE, Collantes ER, Craig JE, Wiggs JL, D’Amato RJ. Thrombospondin 1 missense alleles induce extracellular matrix protein aggregation and TM dysfunction in congenital glaucoma. J Clin Invest 2022; 132:e156967. [PMID: 36453543 PMCID: PMC9711877 DOI: 10.1172/jci156967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Glaucoma is a highly heritable disease that is a leading cause of blindness worldwide. Here, we identified heterozygous thrombospondin 1 (THBS1) missense alleles altering p.Arg1034, a highly evolutionarily conserved amino acid, in 3 unrelated and ethnically diverse families affected by congenital glaucoma, a severe form of glaucoma affecting children. Thbs1R1034C-mutant mice had elevated intraocular pressure (IOP), reduced ocular fluid outflow, and retinal ganglion cell loss. Histology revealed an abundant, abnormal extracellular accumulation of THBS1 with abnormal morphology of juxtacanalicular trabecular meshwork (TM), an ocular tissue critical for aqueous fluid outflow. Functional characterization showed that the THBS1 missense alleles found in affected individuals destabilized the THBS1 C-terminus, causing protein misfolding and extracellular aggregation. Analysis using a range of amino acid substitutions at position R1034 showed that the extent of aggregation was correlated with the change in protein-folding free energy caused by variations in amino acid structure. Extracellular matrix (ECM) proteins, especially fibronectin, which bind to THBS1, also accumulated within THBS1 deposits. These results show that missense variants altering THBS1 p.Arg1034 can cause elevated IOP through a mechanism involving impaired TM fluid outflow in association with accumulation of aggregated THBS1 in the ECM of juxtacanalicular meshwork with altered morphology.
Collapse
Affiliation(s)
- Haojie Fu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Owen M. Siggs
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Lachlan S.W. Knight
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Sandra E. Staffieri
- Centre for Eye Research Australia (CERA), Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Ophthalmology, University of Melbourne, Department of Surgery, Parkville, Victoria, Australia
- Department of Ophthalmology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Jonathan B. Ruddle
- Department of Ophthalmology, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Amy E. Birsner
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | | | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Robert J. D’Amato
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|