1
|
Pascut D, Giraudi PJ, Banfi C, Ghilardi S, Tiribelli C, Bondesan A, Caroli D, Grugni G, Sartorio A. Characterization of Circulating Protein Profiles in Individuals with Prader-Willi Syndrome and Individuals with Non-Syndromic Obesity. J Clin Med 2024; 13:5697. [PMID: 39407757 PMCID: PMC11476631 DOI: 10.3390/jcm13195697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Prader-Willi syndrome (PWS) is a rare genetic disorder characterized by distinctive physical, cognitive, and behavioral manifestations, coupled with profound alterations in appetite regulation, leading to severe obesity and metabolic dysregulation. These clinical features arise from disruptions in neurodevelopment and neuroendocrine regulation, yet the molecular intricacies of PWS remain incompletely understood. Methods: This study aimed to comprehensively profile circulating neuromodulatory factors in the serum of 53 subjects with PWS and 34 patients with non-syndromic obesity, utilizing a proximity extension assay with the Olink Target 96 neuro-exploratory and neurology panels. The ANOVA p-values were adjusted for multiple testing using the Benjamani-Hochberg method. Protein-protein interaction networks were generated in STRING V.12. Corrplots were calculated with R4.2.2 by using the Hmisc, Performance Analytics, and Corrplot packages Results: Our investigation explored the potential genetic underpinnings of the circulating protein signature observed in PWS, revealing intricate connections between genes in the PWS critical region and the identified circulating proteins associated with impaired oxytocin, NAD metabolism, and sex-related neuromuscular impairment involving, CD38, KYNU, NPM1, NMNAT1, WFIKKN1, and GDF-8/MSTN. The downregulation of CD38 in individuals with PWS (p < 0.01) indicates dysregulation of oxytocin release, implicating pathways associated with NAD metabolism in which KYNU and NMNAT1 are involved and significantly downregulated in PWS (p < 0.01 and p < 0.05, respectively). Sex-related differences in the circulatory levels of WFIKKN1 and GDF-8/MSTN (p < 0.05) were also observed. Conclusions: This study highlights potential circulating protein biomarkers associated with impaired oxytocin, NAD metabolism, and sex-related neuromuscular impairment in PWS individuals with potential clinical implications.
Collapse
Affiliation(s)
- Devis Pascut
- Fondazione Italiana Fegato—ONLUS, Liver Cancer Unit, 34149 Trieste, Italy;
| | - Pablo José Giraudi
- Fondazione Italiana Fegato—ONLUS, Metabolic Liver Disease Unit, 34149 Trieste, Italy
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (C.B.)
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (C.B.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato—ONLUS, Liver Cancer Unit, 34149 Trieste, Italy;
- Fondazione Italiana Fegato—ONLUS, Metabolic Liver Disease Unit, 34149 Trieste, Italy
| | - Adele Bondesan
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| | - Diana Caroli
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| | - Graziano Grugni
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy; (A.B.); (G.G.); (A.S.)
| |
Collapse
|
2
|
Wang SE, Xiong Y, Jang MA, Park KS, Donahue M, Velez J, Jin J, Jiang YH. Newly developed oral bioavailable EHMT2 inhibitor as a potential epigenetic therapy for Prader-Willi syndrome. Mol Ther 2024; 32:2662-2675. [PMID: 38796700 PMCID: PMC11405540 DOI: 10.1016/j.ymthe.2024.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
Prader-Willi syndrome (PWS) is the prototypic genomic disorder resulting from deficiency of paternally expressed genes in the human chromosome 15q11-q13 region. The unique molecular mechanism involving epigenetic modifications renders PWS as the most attractive candidate to explore a proof-of-concept of epigenetic therapy in humans. The premise is that epigenetic modulations could reactivate the repressed PWS candidate genes from the maternal chromosome and offer therapeutic benefit. Our prior study identifies an EHMT2/G9a inhibitor, UNC0642, that reactivates the expression of PWS genes via reduction of H3K9me2. However, low brain permeability and poor oral bioavailability of UNC0642 preclude its advancement into translational studies in humans. In this study, a newly developed inhibitor, MS152, modified from the structure of UNC0642, has better brain penetration and greater potency and selectivity against EHMT2/G9a. MS152 reactivated maternally silenced PWS genes in PWS patient fibroblasts and in brain and liver tissues of PWS mouse models. Importantly, the molecular efficacy of oral administration is comparable with the intraperitoneal route. MS152 treatment in newborns ameliorates the perinatal lethality and poor growth, maintaining reactivation in a PWS mouse model at postnatal 90 days. Our findings provide strong support for MS152 as a first-in-class inhibitor to advance the epigenetic therapy of PWS in humans.
Collapse
Affiliation(s)
- Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Meaghan Donahue
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA
| | - Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06520, USA.
| |
Collapse
|
3
|
Bhalla K, Rosier K, Monnens Y, Meulemans S, Vervoort E, Thorrez L, Agostinis P, Meier DT, Rochtus A, Resnick JL, Creemers JWM. Similar metabolic pathways are affected in both Congenital Myasthenic Syndrome-22 and Prader-Willi Syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167175. [PMID: 38626828 DOI: 10.1016/j.bbadis.2024.167175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Loss of prolyl endopeptidase-like (PREPL) encoding a serine hydrolase with (thio)esterase activity leads to the recessive metabolic disorder Congenital Myasthenic Syndrome-22 (CMS22). It is characterized by severe neonatal hypotonia, feeding problems, growth retardation, and hyperphagia leading to rapid weight gain later in childhood. The phenotypic similarities with Prader-Willi syndrome (PWS) are striking, suggesting that similar pathways are affected. The aim of this study was to identify changes in the hypothalamic-pituitary axis in mouse models for both disorders and to examine mitochondrial function in skin fibroblasts of patients and knockout cell lines. We have demonstrated that Prepl is downregulated in the brains of neonatal PWS-IC-p/+m mice. In addition, the hypothalamic-pituitary axis is similarly affected in both Prepl-/- and PWS-IC-p/+m mice resulting in defective orexigenic signaling and growth retardation. Furthermore, we demonstrated that mitochondrial function is altered in PREPL knockout HEK293T cells and can be rescued with the supplementation of coenzyme Q10. Finally, PREPL-deficient and PWS patient skin fibroblasts display defective mitochondrial bioenergetics. The mitochondrial dysfunction in PWS fibroblasts can be rescued by overexpression of PREPL. In conclusion, we provide the first molecular parallels between CMS22 and PWS, raising the possibility that PREPL substrates might become therapeutic targets for treating both disorders.
Collapse
Affiliation(s)
- Kritika Bhalla
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Karen Rosier
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Yenthe Monnens
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Meulemans
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium
| | - Ellen Vervoort
- Laboratory for Cell Death Research & Therapy, VIB, Department of Cellular and Molecular Medicine, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieven Thorrez
- Department of Development and Regeneration, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research & Therapy, VIB, Department of Cellular and Molecular Medicine, Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anne Rochtus
- Department of Development and Regeneration, UZ Leuven, 3000 Leuven, Belgium
| | - James L Resnick
- Department of Molecular genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology, Department of Human genetics, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Lin R, Mitsuhashi H, Fiori LM, Denniston R, Ibrahim EC, Belzung C, Mechawar N, Turecki G. SNORA69 is up-regulated in the lateral habenula of individuals with major depressive disorder. Sci Rep 2024; 14:8258. [PMID: 38589409 PMCID: PMC11001866 DOI: 10.1038/s41598-024-58278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Major depressive disorder (MDD) is a complex and potentially debilitating illness whose etiology and pathology remains unclear. Non-coding RNAs have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified small nucleolar RNA (snoRNA) expression by small RNA sequencing in the lateral habenula (LHb) of individuals with MDD (n = 15) and psychiatrically-healthy controls (n = 15). We uncovered five snoRNAs that exhibited differential expression between MDD and controls (FDR < 0.01). Specifically, SNORA69 showed increased expression in MDD and was technically validated via RT-qPCR. We further investigated the expression of Snora69 in the LHb and peripheral blood of an unpredicted chronic mild stress (UCMS) mouse model of depression. Snora69 was specifically up-regulated in mice that underwent the UCMS paradigm. SNORA69 is known to guide pseudouridylation onto 5.8S and 18S rRNAs. We quantified the relative abundance of pseudouridines on 5.8S and 18S rRNA in human post-mortem LHb samples and found increased abundance of pseudouridines in the MDD group. Overall, our findings indicate the importance of brain snoRNAs in the pathology of MDD. Future studies characterizing SNORA69's role in MDD pathology is warranted.
Collapse
Affiliation(s)
- Rixing Lin
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Haruka Mitsuhashi
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Laura M Fiori
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Ryan Denniston
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - El Cherif Ibrahim
- CNRS, INT, Institute Neuroscience Timone, Aix-Marseille Université, Marseille, France
| | - Catherine Belzung
- Imaging Brain and Neuropsychiatry iBraiN U1253, INSERM, Université de Tours, Tours, France
| | - Naguib Mechawar
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Qiu L, Chang A, Ma R, Strong TV, Okun MS, Foote KD, Wexler A, Gunduz A, Miller JL, Halpern CH. Neuromodulation for the treatment of Prader-Willi syndrome - A systematic review. Neurotherapeutics 2024; 21:e00339. [PMID: 38430811 PMCID: PMC10920723 DOI: 10.1016/j.neurot.2024.e00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Prader-Willi syndrome (PWS) is a complex, genetic disorder characterized by multisystem involvement, including hyperphagia, maladaptive behaviors and endocrinological derangements. Recent developments in advanced neuroimaging have led to a growing understanding of PWS as a neural circuit disorder, as well as subsequent interests in the application of neuromodulatory therapies. Various non-invasive and invasive device-based neuromodulation methods, including vagus nerve stimulation (VNS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and deep brain stimulation (DBS) have all been reported to be potentially promising treatments for addressing the major symptoms of PWS. In this systematic literature review, we summarize the recent literature that investigated these therapies, discuss the underlying circuits which may underpin symptom manifestations, and cover future directions of the field. Through our comprehensive search, there were a total of 47 patients who had undergone device-based neuromodulation therapy for PWS. Two articles described VNS, 4 tDCS, 1 rTMS and 2 DBS, targeting different symptoms of PWS, including aberrant behavior, hyperphagia and weight. Multi-center and multi-country efforts will be required to advance the field given the low prevalence of PWS. Finally, given the potentially vulnerable population, neuroethical considerations and dialogue should guide the field.
Collapse
Affiliation(s)
- Liming Qiu
- Department of Neurosurgery, University of Pennsylvania Health System, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew Chang
- Department of Neurosurgery, University of Pennsylvania Health System, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ruoyu Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Michael S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Anna Wexler
- Department of Medical Ethics & Health Policy, University of Pennsylvania, Philadelphia, PA, USA
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jennifer L Miller
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Casey H Halpern
- Department of Neurosurgery, University of Pennsylvania Health System, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Correa-da-Silva F, Carter J, Wang XY, Sun R, Pathak E, Kuhn JMM, Schriever SC, Maya-Monteiro CM, Jiao H, Kalsbeek MJ, Moraes-Vieira PMM, Gille JJP, Sinnema M, Stumpel CTRM, Curfs LMG, Stenvers DJ, Pfluger PT, Lutter D, Pereira AM, Kalsbeek A, Fliers E, Swaab DF, Wilkinson L, Gao Y, Yi CX. Microglial phagolysosome dysfunction and altered neural communication amplify phenotypic severity in Prader-Willi Syndrome with larger deletion. Acta Neuropathol 2024; 147:64. [PMID: 38556574 PMCID: PMC10982101 DOI: 10.1007/s00401-024-02714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear. Our study employed postmortem hypothalamic tissues from PWS T1 and T2 individuals, conducting transcriptomic analyses and cell-specific protein profiling in white matter, neurons, and glial cells to unravel the cellular and molecular basis of phenotypic severity in PWS sub-genotypes. In PWS T1, key pathways for cell structure, integrity, and neuronal communication are notably diminished, while glymphatic system activity is heightened compared to PWS T2. The microglial defect in PWS T1 appears to stem from gene haploinsufficiency, as global and myeloid-specific Cyfip1 haploinsufficiency in murine models demonstrated. Our findings emphasize microglial phagolysosome dysfunction and altered neural communication as crucial contributors to the severity of PWS T1's phenotype.
Collapse
Affiliation(s)
- Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jenny Carter
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Xin-Yuan Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Rui Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ekta Pathak
- Computational Discovery Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - José Manuel Monroy Kuhn
- Computational Discovery Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Clarissa M Maya-Monteiro
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Han Jiao
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Martin J Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Johan J P Gille
- Department of Clinical Genetics, Amsterdam University Medical Centers, location VUMC. University of Amsterdam, Amsterdam, The Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Leopold M G Curfs
- Governor Kremers Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Paul T Pfluger
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominik Lutter
- Computational Discovery Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Alberto M Pereira
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Lawrence Wilkinson
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands.
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Zeidler M, Tavares-Ferreira D, Brougher J, Price TJ, Kress M. NOCICEPTRA2.0 - A comprehensive ncRNA atlas of human native and iPSC-derived sensory neurons. iScience 2023; 26:108525. [PMID: 38162030 PMCID: PMC10755718 DOI: 10.1016/j.isci.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are pivotal in gene regulation during development and disease. MicroRNAs have been extensively studied in neurogenesis. However, limited knowledge exists about the developmental signatures of other ncRNA species in sensory neuron differentiation, and human dorsal root ganglia (DRG) ncRNA expression remains undocumented. To address this gap, we generated a comprehensive atlas of small ncRNA species during iPSC-derived sensory neuron differentiation. Utilizing iPSC-derived sensory neurons and human DRG RNA sequencing, we unveiled signatures describing developmental processes. Our analysis identified ncRNAs associated with various sensory neuron stages. Striking similarities in ncRNA expression signatures between human DRG and iPSC-derived neurons support the latter as a model to bridge the translational gap between preclinical findings and human disorders. In summary, our research sheds light on the role of ncRNA species in human nociceptors, and NOCICEPTRA2.0 offers a comprehensive ncRNA database for sensory neurons that researchers can use to explore ncRNA regulators in nociceptors thoroughly.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Omiqa Bioinformatics, Berlin, Germany
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX, USA
| | | | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Dallas, TX, USA
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Hoyos Sanchez MC, Bayat T, Gee RRF, Fon Tacer K. Hormonal Imbalances in Prader-Willi and Schaaf-Yang Syndromes Imply the Evolution of Specific Regulation of Hypothalamic Neuroendocrine Function in Mammals. Int J Mol Sci 2023; 24:13109. [PMID: 37685915 PMCID: PMC10487939 DOI: 10.3390/ijms241713109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior, including stress response, reproduction, growth, sleep, and feeding, several of which are affected in patients with Prader-Willi (PWS) and Schaaf-Yang syndrome (SYS). PWS is caused by paternal deletion, maternal uniparental disomy, or imprinting defects that lead to loss of expression of a maternally imprinted region of chromosome 15 encompassing non-coding RNAs and five protein-coding genes; SYS patients have a mutation in one of them, MAGEL2. Throughout life, PWS and SYS patients suffer from musculoskeletal deficiencies, intellectual disabilities, and hormonal abnormalities, which lead to compulsive behaviors like hyperphagia and temper outbursts. Management of PWS and SYS is mostly symptomatic and cures for these debilitating disorders do not exist, highlighting a clear, unmet medical need. Research over several decades into the molecular and cellular roles of PWS genes has uncovered that several impinge on the neuroendocrine system. In this review, we will discuss the expression and molecular functions of PWS genes, connecting them with hormonal imbalances in patients and animal models. Besides the observed hormonal imbalances, we will describe the recent findings about how the loss of individual genes, particularly MAGEL2, affects the molecular mechanisms of hormone secretion. These results suggest that MAGEL2 evolved as a mammalian-specific regulator of hypothalamic neuroendocrine function.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Tara Bayat
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| |
Collapse
|
9
|
Rochedy A, Valette M, Tauber M, Poulain JP. Food socialization of children with Prader-Willi syndrome: an interdisciplinary problematization. Front Nutr 2023; 10:1177348. [PMID: 37346908 PMCID: PMC10280295 DOI: 10.3389/fnut.2023.1177348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 06/23/2023] Open
Abstract
Eating "disorders" of people with Prader-Willi syndrome are frequently reported in the biomedical literature. The eating behaviors are presented as a syndrome-specific trajectory over the course of a lifetime. Infants initially show anorexic behavior, which then develops into hyperphagia that lasts from childhood to adulthood and is characterized by strong cravings for food and relentless thinking about it. However, the sociocultural determinants of these food practices are not fully understood. In the first section of this article, we carry out a literature review of medical articles published on disordered eating in children with PWS. The second section draws on a social science perspective and offers an interdisciplinary problematization using the concept of food socialization. To conclude, the third section explores the challenges facing research and new questions that emerge from the alternative problematization that is the PWS Food Social Norms Internalization (FSNI) theory.
Collapse
Affiliation(s)
- Amandine Rochedy
- Université Toulouse—Jean Jaurès, Toulouse, France
- UMR5044 Centre d'Etude et de Recherche Travail, Organisation, Pouvoir (CERTOP), Toulouse, Midi-Pyrénées, France
| | - Marion Valette
- Reference Center of Prader-Willi Syndrome and Other Syndromes with Eating Disorders PRADORT, Children’s Hospital, Toulouse, France
- UMR1295, Centre for Epidemiology and Research in Population Health (CERPOP), Toulouse, France
| | - Maithé Tauber
- Reference Center of Prader-Willi Syndrome and Other Syndromes with Eating Disorders PRADORT, Children’s Hospital, Toulouse, France
- INSERM UMR1291 Institut Toulousain des Maladies Infectieuses et Inflammatoires, Toulouse, France
| | - Jean Pierre Poulain
- Université Toulouse—Jean Jaurès, Toulouse, France
- UMR5044 Centre d'Etude et de Recherche Travail, Organisation, Pouvoir (CERTOP), Toulouse, Midi-Pyrénées, France
- Chair of “Food Studies: Food, Cultures and Health”, Taylor’s Toulouse University Center, Taylor’s University, Kuala Lumpur, Malaysia
- Faculty of Social Sciences and Leisure Management and Centre for Asian Modernisation Studies, Taylor’s University, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Koppes EA, Johnson MA, Moresco JJ, Luppi P, Lewis DW, Stolz DB, Diedrich JK, Yates JR, Wek RC, Watkins SC, Gollin SM, Park HJ, Drain P, Nicholls RD. Insulin secretion deficits in a Prader-Willi syndrome β-cell model are associated with a concerted downregulation of multiple endoplasmic reticulum chaperones. PLoS Genet 2023; 19:e1010710. [PMID: 37068109 PMCID: PMC10138222 DOI: 10.1371/journal.pgen.1010710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/27/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in β-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.16 Mb deletions of the silent, maternal- (control) and active, paternal-allele (PWS). PWS β-cells demonstrated a significant cell autonomous reduction in basal and glucose-stimulated insulin secretion. Further, proteomic analyses revealed reduced levels of cellular and secreted hormones, including all insulin peptides and amylin, concomitant with reduction of at least ten endoplasmic reticulum (ER) chaperones, including GRP78 and GRP94. Critically, differentially expressed genes identified by whole transcriptome studies included reductions in levels of mRNAs encoding these secreted peptides and the group of ER chaperones. In contrast to the dosage compensation previously seen for ER chaperones in Grp78 or Grp94 gene knockouts or knockdown, compensation is precluded by the stress-independent deficiency of ER chaperones in PWS β-cells. Consistent with reduced ER chaperones levels, PWS INS-1 β-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. Combined, the findings suggest that a chronic shortage of ER chaperones in PWS β-cells leads to a deficiency of protein folding and/or delay in ER transit of insulin and other cargo. In summary, our results illuminate the pathophysiological basis of pancreatic β-cell hormone deficits in PWS, with evolutionary implications for the multigenic PWS-domain, and indicate that PWS-imprinted genes coordinate concerted regulation of ER chaperone biosynthesis and β-cell secretory pathway function.
Collapse
Affiliation(s)
- Erik A Koppes
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marie A Johnson
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James J Moresco
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patrizia Luppi
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dale W Lewis
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jolene K Diedrich
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Hyun Jung Park
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Peter Drain
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robert D Nicholls
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
11
|
Salminen I, Read S, Crespi B. Do the diverse phenotypes of Prader-Willi syndrome reflect extremes of covariation in typical populations? Front Genet 2022; 13:1041943. [PMID: 36506301 PMCID: PMC9731222 DOI: 10.3389/fgene.2022.1041943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
The phenotypes of human imprinted neurogenetic disorders can be hypothesized as extreme alterations of typical human phenotypes. The imprinted neurogenetic disorder Prader-Willi syndrome (PWS) features covarying phenotypes that centrally involve altered social behaviors, attachment, mood, circadian rhythms, and eating habits, that can be traced to altered functioning of the hypothalamus. Here, we conducted analyses to investigate the extent to which the behavioral variation shown in typical human populations for a set of PWAS-associated traits including autism spectrum cognition, schizotypal cognition, mood, eating, and sleeping phenotypes shows covariability that recapitulates the covariation observed in individuals with PWS. To this end, we collected data from 296 typical individuals for this set of phenotypes, and showed, using principal components analysis, evidence of a major axis reflecting key covarying PWS traits. We also reviewed the literature regarding neurogenetic syndromes that overlap in their affected traits with PWS, to determine their prevalence and properties. These findings demonstrate that a notable suite of syndromes shows phenotypic overlap with PWS, implicating a large set of imprinted and non-imprinted genes, some of which interact, in the phenotypes of this disorder. Considered together, these findings link variation in and among neurogenetic disorders with variation in typical populations, especially with regard to pleiotropic effects mediated by the hypothalamus. This work also implicates effects of imprinted gene variation on cognition and behavior in typical human populations.
Collapse
|
12
|
Chao Y, Qin Y, Zou X, Wang X, Hu C, Xia F, Zou C. Promising therapeutic aspects in human genetic imprinting disorders. Clin Epigenetics 2022; 14:146. [PMID: 36371218 PMCID: PMC9655922 DOI: 10.1186/s13148-022-01369-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon of monoallelic gene expression pattern depending on parental origin. In humans, congenital imprinting disruptions resulting from genetic or epigenetic mechanisms can cause a group of diseases known as genetic imprinting disorders (IDs). Genetic IDs involve several distinct syndromes sharing homologies in terms of genetic etiologies and phenotypic features. However, the molecular pathogenesis of genetic IDs is complex and remains largely uncharacterized, resulting in a lack of effective therapeutic approaches for patients. In this review, we begin with an overview of the genomic and epigenomic molecular basis of human genetic IDs. Notably, we address ethical aspects as a priority of employing emerging techniques for therapeutic applications in human IDs. With a particular focus, we delineate the current field of emerging therapeutics for genetic IDs. We briefly summarize novel symptomatic drugs and highlight the key milestones of new techniques and therapeutic programs as they stand today which can offer highly promising disease-modifying interventions for genetic IDs accompanied by various challenges.
Collapse
Affiliation(s)
- Yunqi Chao
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Yifang Qin
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Xinyi Zou
- grid.13402.340000 0004 1759 700XZhejiang University City College, Hangzhou, 310015 Zhejiang China
| | - Xiangzhi Wang
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Chenxi Hu
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Fangling Xia
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Chaochun Zou
- grid.13402.340000 0004 1759 700XDepartment of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| |
Collapse
|
13
|
Chao Y, Gao L, Wang X, Cai Y, Shu Y, Zou X, Qin Y, Hu C, Dai Y, Zhu M, Shen Z, Zou C. Dysregulated adipose tissue expansion and impaired adipogenesis in Prader-Willi syndrome children before obesity-onset. Metabolism 2022; 136:155295. [PMID: 36007622 DOI: 10.1016/j.metabol.2022.155295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Prader-Willi syndrome (PWS) is a rare genetic imprinting disorder resulting from the expression loss of genes on the paternally inherited chromosome 15q11-13. Early-onset life-thriving obesity and hyperphagia represent the clinical hallmarks of PWS. The noncoding RNA gene SNORD116 within the minimal PWS genetic lesion plays a critical role in the pathogenesis of the syndrome. Despite advancements in understanding the genetic basis for PWS, the pathophysiology of obesity development in PWS remains largely uncharacterized. Here, we aimed to investigate the signatures of adipose tissue development and expansion pathways and associated adipose biology in PWS children without obesity-onset at an early stage, mainly from the perspective of the adipogenesis process, and further elucidate the underlying molecular mechanisms. METHODS We collected inguinal (subcutaneous) white adipose tissues (ingWATs) from phase 1 PWS and healthy children with normal weight aged from 6 M to 2 Y. Adipose morphology and histological characteristics were assessed. Primary adipose stromal vascular fractions (SVFs) were isolated, cultured in vitro, and used to determine the capacity and function of white and beige adipogenic differentiation. High-throughput RNA-sequencing (RNA-seq) was performed in adipose-derived mesenchymal stem cells (AdMSCs) to analyze transcriptome signatures in PWS subjects. Transient repression of SNORD116 was conducted to evaluate its functional relevance in adipogenesis. The changes in alternative pre-mRNA splicing were investigated in PWS and SNORD116 deficient cells. RESULTS In phase 1 PWS children, impaired white adipose tissue (WAT) development and unusual fat expansion occurred long before obesity onset, which was characterized by the massive enlargement of adipocytes accompanied by increased apoptosis. White and beige adipogenesis programs were impaired and differentiated adipocyte functions were disturbed in PWS-derived SVFs, despite increased proliferation capacity, which were consistent with the results of RNA-seq analysis of PWS AdMSCs. We also experimentally validated disrupted beige adipogenesis in adipocytes with transient SNORD116 downregulation. The transcript and protein levels of PPARγ, the adipogenesis master regulator, were significantly lower in PWS than in control AdMSCs as well as in SNORD116 deficient AdMSCs/adipocytes than in scramble (Scr) cells, resulting in the inhibited adipogenic program. Additionally, through RNA-seq, we observed aberrant transcriptome-wide alterations in alternative RNA splicing patterns in PWS cells mediated by SNORD116 loss and specifically identified a changed PRDM16 gene splicing profile in vitro. CONCLUSIONS Imbalance in the WAT expansion pathway and developmental disruption are primary defects in PWS displaying aberrant adipocyte hypertrophy and impaired adipogenesis process, in which SNORD116 deficiency plays a part. Our findings suggest that dysregulated adiposity specificity existing at an early phase is a potential pathological mechanism exacerbating hyperphagic obesity onset in PWS. This mechanistic evidence on adipose biology in young PWS patients expands knowledge regarding the pathogenesis of PWS obesity and may aid in developing a new therapeutic strategy targeting disturbed adipogenesis and driving AT plasticity to combat abnormal adiposity and associated metabolic disorders for PWS patients.
Collapse
Affiliation(s)
- Yunqi Chao
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Lei Gao
- Department of Urology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Xiangzhi Wang
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Yuqing Cai
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Yingying Shu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Xinyi Zou
- Zhejiang University City College, Hangzhou 310015, Zhejiang, China
| | - Yifang Qin
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Chenxi Hu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Yangli Dai
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Mingqiang Zhu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Zheng Shen
- Lab Center, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China
| | - Chaochun Zou
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, Zhejiang, China.
| |
Collapse
|
14
|
Oxytocin-based therapies for treatment of Prader-Willi and Schaaf-Yang syndromes: evidence, disappointments, and future research strategies. Transl Psychiatry 2022; 12:318. [PMID: 35941105 PMCID: PMC9360032 DOI: 10.1038/s41398-022-02054-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
The prosocial neuropeptide oxytocin is being developed as a potential treatment for various neuropsychiatric disorders including autism spectrum disorder (ASD). Early studies using intranasal oxytocin in patients with ASD yielded encouraging results and for some time, scientists and affected families placed high hopes on the use of intranasal oxytocin for behavioral therapy in ASD. However, a recent Phase III trial obtained negative results using intranasal oxytocin for the treatment of behavioral symptoms in children with ASD. Given the frequently observed autism-like behavioral phenotypes in Prader-Willi and Schaaf-Yang syndromes, it is unclear whether oxytocin treatment represents a viable option to treat behavioral symptoms in these diseases. Here we review the latest findings on intranasal OT treatment, Prader-Willi and Schaaf-Yang syndromes, and propose novel research strategies for tailored oxytocin-based therapies for affected individuals. Finally, we propose the critical period theory, which could explain why oxytocin-based treatment seems to be most efficient in infants, but not adolescents.
Collapse
|
15
|
Reference Genes across Nine Brain Areas of Wild Type and Prader-Willi Syndrome Mice: Assessing Differences in Igfbp7, Pcsk1, Nhlh2 and Nlgn3 Expression. Int J Mol Sci 2022; 23:ijms23158729. [PMID: 35955861 PMCID: PMC9369261 DOI: 10.3390/ijms23158729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Prader−Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by the deletion or inactivation of paternally expressed imprinted genes at the chromosomal region 15q11−q13. The PWS-critical region (PWScr) harbors tandemly repeated non-protein coding IPW-A exons hosting the intronic SNORD116 snoRNA gene array that is predominantly expressed in brain. Paternal deletion of PWScr is associated with key PWS symptoms in humans and growth retardation in mice (PWScr model). Dysregulation of the hypothalamic−pituitary axis (HPA) is thought to be causally involved in the PWS phenotype. Here we performed a comprehensive reverse transcription quantitative PCR (RT-qPCR) analysis across nine different brain regions of wild-type (WT) and PWScr mice to identify stably expressed reference genes. Four methods (Delta Ct, BestKeeper, Normfinder and Genorm) were applied to rank 11 selected reference gene candidates according to their expression stability. The resulting panel consists of the top three most stably expressed genes suitable for gene-expression profiling and comparative transcriptome analysis of WT and/or PWScr mouse brain regions. Using these reference genes, we revealed significant differences in the expression patterns of Igfbp7, Nlgn3 and three HPA associated genes: Pcsk1, Pcsk2 and Nhlh2 across investigated brain regions of wild-type and PWScr mice. Our results raise a reasonable doubt on the involvement of the Snord116 in posttranscriptional regulation of Nlgn3 and Nhlh2 genes. We provide a valuable tool for expression analysis of specific genes across different areas of the mouse brain and for comparative investigation of PWScr mouse models to discover and verify different regulatory pathways affecting this complex disorder.
Collapse
|
16
|
Duis J, Pullen LC, Picone M, Friedman N, Hawkins S, Sannar E, Pfalzer AC, Shelton AR, Singh D, Zee PC, Glaze DG, Revana A. Diagnosis and management of sleep disorders in Prader-Willi syndrome. J Clin Sleep Med 2022; 18:1687-1696. [PMID: 35172921 PMCID: PMC9163612 DOI: 10.5664/jcsm.9938] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clinical experience and a growing body of evidence suggest that sleep disturbances are common in people with Prader-Willi syndrome (PWS). PWS is a rare neuroendocrine disorder characterized by early hypotonia and feeding difficulties; developmental delays; endocrinopathies; and behavioral concerns, especially rigidity, anxiety, and behavioral outbursts. PWS is also characterized by decreased resting energy expenditure and transition to hyperphagia and obesity. We propose that, for many people with PWS, clinical diagnosis and management of sleep disorders is an unmet need. We present current information to suggest disordered sleep is a significant burden for individuals with PWS and often overlooked. While central and obstructive sleep apnea are more widely recognized in PWS, other sleep disorders have increasingly gained recognition, including hypersomnia, narcolepsy-like phenotypes, and insomnia. Sleep disorders can impact behavior, cognition, and quality of life and health for individuals with PWS. Our goal is to bring sleep disorders to the forefront of therapeutic intervention for patients with PWS. This paper presents a review of the literature and recommendations for clinical practice based on published research and our clinical experience as sleep specialists, geneticists, psychiatrists, pediatricians, otolaryngologists, and pulmonologists with extensive experience with this patient population. We recommend that management of sleep be considered an integral part of successful medical management of PWS. Further research concerning sleep problems in PWS is urgently needed to develop best practices and work toward a consensus statement for medical management to meet the needs of people with PWS. CITATION Duis J, Pullen LC, Picone M, et al. Diagnosis and management of sleep disorders in Prader-Willi syndrome. J Clin Sleep Med. 2022;18(6):1687-1696.
Collapse
Affiliation(s)
- Jessica Duis
- Section of Genetics and Inherited Metabolic Diseases, Section of Pediatrics Special Care Clinic, Prader-Willi Syndrome Multidisciplinary Clinic, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado,Address correspondence to: Jessica Duis, MD, MS, Assistant Professor of Pediatrics and Genetics, Section of Genetics and Inherited Metabolic Diseases, Section of Pediatrics Special Care Clinic, Director, Prader-Willi Syndrome Multidisciplinary Clinic, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, 13123 E 16th Ave, Aurora, CO 80045; Tel: (303) 724-2370;
| | | | | | - Norman Friedman
- Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephen Hawkins
- Breathing Institute, Children’s Hospital Colorado, Aurora, Colorado
| | - Elise Sannar
- Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Deepan Singh
- Department of Psychiatry, Maimonides Medical Center, Brooklyn, New York
| | - Phyllis C. Zee
- Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel G. Glaze
- The Children’s Sleep Center, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas
| | - Amee Revana
- Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
17
|
Isles AR. The contribution of imprinted genes to neurodevelopmental and neuropsychiatric disorders. Transl Psychiatry 2022; 12:210. [PMID: 35597773 PMCID: PMC9124202 DOI: 10.1038/s41398-022-01972-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Imprinted genes are a subset of mammalian genes that are subject to germline parent-specific epigenetic modifications leading monoallelic expression. Imprinted gene expression is particularly prevalent in the brain and it is unsurprising that mutations affecting their expression can lead to neurodevelopmental and/or neuropsychiatric disorders in humans. Here I review the evidence for this, detailing key neurodevelopmental disorders linked to imprinted gene clusters on human chromosomes 15q11-q13 and 14q32, highlighting genes and possible regulatory links between these different syndromes. Similarly, rare copy number variant mutations at imprinted clusters also provide strong links between abnormal imprinted gene expression and the predisposition to severe psychiatric illness. In addition to direct links between brain-expressed imprinted genes and neurodevelopmental and/or neuropsychiatric disorders, I outline how imprinted genes that are expressed in another tissue hotspot, the placenta, contribute indirectly to abnormal brain and behaviour. Specifically, altered nutrient provisioning or endocrine signalling by the placenta caused by abnormal expression of imprinted genes may lead to increased prevalence of neurodevelopmental and/or neuropsychiatric problems in both the offspring and the mother.
Collapse
Affiliation(s)
- Anthony R. Isles
- grid.5600.30000 0001 0807 5670MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ UK
| |
Collapse
|
18
|
Müller HL, Tauber M, Lawson EA, Özyurt J, Bison B, Martinez-Barbera JP, Puget S, Merchant TE, van Santen HM. Hypothalamic syndrome. Nat Rev Dis Primers 2022; 8:24. [PMID: 35449162 DOI: 10.1038/s41572-022-00351-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
Abstract
Hypothalamic syndrome (HS) is a rare disorder caused by disease-related and/or treatment-related injury to the hypothalamus, most commonly associated with rare, non-cancerous parasellar masses, such as craniopharyngiomas, germ cell tumours, gliomas, cysts of Rathke's pouch and Langerhans cell histiocytosis, as well as with genetic neurodevelopmental syndromes, such as Prader-Willi syndrome and septo-optic dysplasia. HS is characterized by intractable weight gain associated with severe morbid obesity, multiple endocrine abnormalities and memory impairment, attention deficit and reduced impulse control as well as increased risk of cardiovascular and metabolic disorders. Currently, there is no cure for this condition but treatments for general obesity are often used in patients with HS, including surgery, medication and counselling. However, these are mostly ineffective and no medications that are specifically approved for the treatment of HS are available. Specific challenges in HS are because the syndrome represents an adverse effect of different diseases, and that diagnostic criteria, aetiology, pathogenesis and management of HS are not completely defined.
Collapse
Affiliation(s)
- Hermann L Müller
- Department of Paediatrics and Paediatric Hematology/Oncology, University Children's Hospital, Klinikum Oldenburg AöR, Carl von Ossietzky University, Oldenburg, Germany.
| | - Maithé Tauber
- Centre de Référence du Syndrome de Prader-Willi et autres syndromes avec troubles du comportement alimentaire, Hôpital des Enfants, CHU-Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jale Özyurt
- Biological Psychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| | - Brigitte Bison
- Department of Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Juan-Pedro Martinez-Barbera
- Developmental Biology and Cancer Programme, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Stephanie Puget
- Service de Neurochirurgie, Hôpital Necker-Enfants Malades, Sorbonne Paris Cité, Paris, France
- Service de Neurochirurgie, Hopital Pierre Zobda Quitman, Martinique, France
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hanneke M van Santen
- Department of Paediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
19
|
Dietary Conjugated Linoleic Acid Reduces Body Weight and Fat in Snord116m+/p- and Snord116m-/p- Mouse Models of Prader-Willi Syndrome. Nutrients 2022; 14:nu14040860. [PMID: 35215509 PMCID: PMC8880678 DOI: 10.3390/nu14040860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Prader–Willi Syndrome (PWS) is a human genetic condition that affects up to 1 in 10,000 live births. Affected infants present with hypotonia and developmental delay. Hyperphagia and increasing body weight follow unless drastic calorie restriction is initiated. Recently, our laboratory showed that one of the genes in the deleted locus causative for PWS, Snord116, maintains increased expression of hypothalamic Nhlh2, a basic helix–loop–helix transcription factor. We have previously also shown that obese mice with a deletion of Nhlh2 respond to a conjugated linoleic acid (CLA) diet with weight and fat loss. In this study, we investigated whether mice with a paternal deletion of Snord116 (Snord116m+/p−) would respond similarly. We found that while Snord116m+/p− mice and mice with a deletion of both Snord116 alleles were not significantly obese on a high-fat diet, they did lose body weight and fat on a high-fat/CLA diet, suggesting that the genotype did not interfere with CLA actions. There were no changes in food intake or metabolic rate, and only moderate differences in exercise performance. RNA-seq and microbiome analyses identified hypothalamic mRNAs, and differentially populated gut bacteria, that support future mechanistic analyses. CLA may be useful as a food additive to reduce obesity in humans with PWS.
Collapse
|
20
|
Baldini L, Robert A, Charpentier B, Labialle S. Phylogenetic and molecular analyses identify SNORD116 targets involved in the Prader Willi syndrome. Mol Biol Evol 2021; 39:6454102. [PMID: 34893870 PMCID: PMC8789076 DOI: 10.1093/molbev/msab348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The eutherian-specific SNORD116 family of repeated box C/D snoRNA genes is suspected to play a major role in the Prader–Willi syndrome (PWS), yet its molecular function remains poorly understood. Here, we combined phylogenetic and molecular analyses to identify candidate RNA targets. Based on the analysis of several eutherian orthologs, we found evidence of extensive birth-and-death and conversion events during SNORD116 gene history. However, the consequences for phylogenetic conservation were heterogeneous along the gene sequence. The standard snoRNA elements necessary for RNA stability and association with dedicated core proteins were the most conserved, in agreement with the hypothesis that SNORD116 generate genuine snoRNAs. In addition, one of the two antisense elements typically involved in RNA target recognition was largely dominated by a unique sequence present in at least one subset of gene paralogs in most species, likely the result of a selective effect. In agreement with a functional role, this ASE exhibited a hybridization capacity with putative mRNA targets that was strongly conserved in eutherians. Moreover, transient downregulation experiments in human cells showed that Snord116 controls the expression and splicing levels of these mRNAs. The functions of two of them, diacylglycerol kinase kappa and Neuroligin 3, extend the description of the molecular bases of PWS and reveal unexpected molecular links with the Fragile X syndrome and autism spectrum disorders.
Collapse
Affiliation(s)
- Laeya Baldini
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Anne Robert
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | | |
Collapse
|
21
|
Wang T, Li J, Yang L, Wu M, Ma Q. The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Front Cell Dev Biol 2021; 9:730014. [PMID: 34760887 PMCID: PMC8573313 DOI: 10.3389/fcell.2021.730014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting is a term used for an intergenerational epigenetic inheritance and involves a subset of genes expressed in a parent-of-origin-dependent way. Imprinted genes are expressed preferentially from either the paternally or maternally inherited allele. Long non-coding RNAs play essential roles in regulating this allele-specific expression. In several well-studied imprinting clusters, long non-coding RNAs have been found to be essential in regulating temporal- and spatial-specific establishment and maintenance of imprinting patterns. Furthermore, recent insights into the epigenetic pathological mechanisms underlying human genomic imprinting disorders suggest that allele-specific expressed imprinted long non-coding RNAs serve as an upstream regulator of the expression of other protein-coding or non-coding imprinted genes in the same cluster. Aberrantly expressed long non-coding RNAs result in bi-allelic expression or silencing of neighboring imprinted genes. Here, we review the emerging roles of long non-coding RNAs in regulating the expression of imprinted genes, especially in human imprinting disorders, and discuss three strategies targeting the central long non-coding RNA UBE3A-ATS for the purpose of developing therapies for the imprinting disorders Prader-Willi syndrome and Angelman syndrome. In summary, a better understanding of long non-coding RNA-related mechanisms is key to the development of potential therapeutic targets for human imprinting disorders.
Collapse
Affiliation(s)
- Tingxuan Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
22
|
Cimino I, Rimmington D, Tung YCL, Lawler K, Larraufie P, Kay RG, Virtue S, Lam BYH, Fagnocchi L, Ma MKL, Saudek V, Zvetkova I, Vidal-Puig A, Yeo GSH, Farooqi IS, Pospisilik JA, Gribble FM, Reimann F, O'Rahilly S, Coll AP. Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity. Sci Rep 2021; 11:17571. [PMID: 34475432 PMCID: PMC8413370 DOI: 10.1038/s41598-021-96278-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Neuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/-p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/-p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/-p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/-p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/-p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/-p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.
Collapse
Affiliation(s)
- Irene Cimino
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Debra Rimmington
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Y C Loraine Tung
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust‑MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Pierre Larraufie
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France
| | - Richard G Kay
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Samuel Virtue
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Marcella K L Ma
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Vladimir Saudek
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Ilona Zvetkova
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Giles S H Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust‑MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - J Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Frank Reimann
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK
| | - Anthony P Coll
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0SL, UK.
| |
Collapse
|
23
|
Langouët M, Gorka D, Orniacki C, Dupont-Thibert CM, Chung MS, Glatt-Deeley HR, Germain N, Crandall LJ, Cotney JL, Stoddard CE, Lalande M, Chamberlain SJ. Specific ZNF274 binding interference at SNORD116 activates the maternal transcripts in Prader-Willi syndrome neurons. Hum Mol Genet 2021; 29:3285-3295. [PMID: 32977341 DOI: 10.1093/hmg/ddaa210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022] Open
Abstract
Prader-Willi syndrome (PWS) is characterized by neonatal hypotonia, developmental delay and hyperphagia/obesity. This disorder is caused by the absence of paternally expressed gene products from chromosome 15q11-q13. We previously demonstrated that knocking out ZNF274, a Kruppel-associated box-A-domain zinc finger protein capable of recruiting epigenetic machinery to deposit the H3K9me3 repressive histone modification, can activate expression from the normally silent maternal allele of SNORD116 in neurons derived from PWS induced pluripotent stem cells (iPSCs). However, ZNF274 has many other targets in the genome in addition to SNORD116. Depleting ZNF274 will surely affect the expression of other important genes and disrupt other pathways. Here, we used CRISPR/Cas9 to delete ZNF274 binding sites at the SNORD116 locus to determine whether activation of the maternal copy of SNORD116 could be achieved without altering ZNF274 protein levels. We obtained similar activation of gene expression from the normally silenced maternal allele in neurons derived from PWS iPSCs, compared with ZNF274 knockout, demonstrating that ZNF274 is directly involved in the repression of SNORD116. These results suggest that interfering with ZNF274 binding at the maternal SNORD116 locus is a potential therapeutic strategy for PWS.
Collapse
Affiliation(s)
- Maéva Langouët
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Dea Gorka
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Clarisse Orniacki
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Clémence M Dupont-Thibert
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Michael S Chung
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Heather R Glatt-Deeley
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Noelle Germain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Leann J Crandall
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Christopher E Stoddard
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Marc Lalande
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
24
|
Zhang K, Liu S, Gu W, Lv Y, Yu H, Gao M, Wang D, Zhao J, Li X, Gai Z, Zhao S, Liu Y, Yuan Y. Transmission of a Novel Imprinting Center Deletion Associated With Prader-Willi Syndrome Through Three Generations of a Chinese Family: Case Presentation, Differential Diagnosis, and a Lesson Worth Thinking About. Front Genet 2021; 12:630650. [PMID: 34504512 PMCID: PMC8421676 DOI: 10.3389/fgene.2021.630650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a complex genetic syndrome caused by the loss of function of genes in 15q11-q13 that are subject to regulation by genomic imprinting and expressed from the paternal allele only. The main clinical features of PWS patients are hypotonia during the neonatal and infantile stages, accompanied by delayed neuropsychomotor development, hyperphagia, obesity, hypogonadism, short stature, small hands and feet, mental disabilities, and behavioral problems. However, PWS has a clinical overlap with other disorders, especially those with other gene variations or chromosomal imbalances but sharing part of the similar clinical manifestations with PWS, which are sometimes referred to as Prader-Willi syndrome-like (PWS-like) disorders. Furthermore, it is worth mentioning that significant obesity as a consequence of hyperphagia in PWS usually develops between the ages of 1 and 6 years, which makes early diagnosis difficult. Thus, PWS is often not clinically recognized in infants and, on the other hand, may be wrongly suspected in obese and intellectually disabled patients. Therefore, an accurate investigation is necessary to differentiate classical PWS from PWS-like phenotypes, which is imperative for further treatment. For PWS, it is usually sporadic, and very rare family history and affected siblings have been described. Here, we report the clinical and molecular findings in a three-generation family with a novel 550-kb microdeletion affecting the chromosome 15 imprinting center (IC). Overall, the present study finds that the symptoms of our patient are somewhat different from those of typical PWS cases diagnosed and given treatment in our hospital. The familial occurrence and clinical features were challenging to our diagnostic strategy. The microdeletion included a region within the complex small nuclear ribonucleoprotein polypeptide protein N (SNRPN) gene locus encompassing the PWS IC and was identified by using a variety of techniques. Haplotype studies suggest that the IC microdeletion was vertically transmitted from an unaffected paternal grandmother to an unaffected father and then caused PWS in two sibling grandchildren when the IC microdeletion was inherited paternally. Based on the results of our study, preimplantation genetic diagnosis (PGD) was applied successfully to exclude imprinting deficiency in preimplantation embryos before transfer into the mother's uterus. Our study may be especially instructive regarding accurate diagnosis, differential diagnosis, genetic counseling, and PGD for familial PWS patients.
Collapse
Affiliation(s)
- Kaihui Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, China
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Jinan, China
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Shu Liu
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wenjun Gu
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqiang Lv
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Haihua Yu
- Neonatal Intensive Care Unit, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Min Gao
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Dong Wang
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Jianyuan Zhao
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoying Li
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Shimin Zhao
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center of Genetics and Development, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Yiyuan Yuan
- Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering and School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
SnoRNA in Cancer Progression, Metastasis and Immunotherapy Response. BIOLOGY 2021; 10:biology10080809. [PMID: 34440039 PMCID: PMC8389557 DOI: 10.3390/biology10080809] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary A much larger number of small nucleolar RNA (snoRNA) have been found encoded within our genomes than we ever expected to see. The activities of the snoRNAs were thought restricted to the nucleolus, where they were first discovered. Now, however, their significant number suggests that their functions are more diverse. Studies in cancers have shown snoRNA levels to associate with different stages of disease progression, including with metastasis. In addition, relationships between snoRNA levels and response to immunotherapies, have been reported. Emerging technologies now allow snoRNA to be targeted directly in cancers, and the therapeutic value of this is being explored. Abstract Small nucleolar RNA (snoRNA) were one of our earliest recognised classes of non-coding RNA, but were largely ignored by cancer investigators due to an assumption that their activities were confined to the nucleolus. However, as full genome sequences have become available, many new snoRNA genes have been identified, and multiple studies have shown their functions to be diverse. The consensus now is that many snoRNA are dysregulated in cancers, are differentially expressed between cancer types, stages and metastases, and they can actively modify disease progression. In addition, the regulation of the snoRNA class is dominated by the cancer-supporting mTOR signalling pathway, and they may have particular significance to immune cell function and anti-tumour immune responses. Given the recent advent of therapeutics that can target RNA molecules, snoRNA have robust potential as drug targets, either solely or in the context of immunotherapies.
Collapse
|
26
|
Zahova SK, Humby T, Davies JR, Morgan JE, Isles AR. Comparison of mouse models reveals a molecular distinction between psychotic illness in PWS and schizophrenia. Transl Psychiatry 2021; 11:433. [PMID: 34417445 PMCID: PMC8379171 DOI: 10.1038/s41398-021-01561-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Prader-Willi Syndrome (PWS) is a neurodevelopmental disorder caused by mutations affecting paternal chromosome 15q11-q13, and characterized by hypotonia, hyperphagia, impaired cognition, and behavioural problems. Psychotic illness is a challenging problem for individuals with PWS and has different rates of prevalence in distinct PWS genotypes. Previously, we demonstrated behavioural and cognitive endophenotypes of relevance to psychiatric illness in a mouse model for one of the associated PWS genotypes, namely PWS-IC, in which deletion of the imprinting centre leads to loss of paternally imprinted gene expression and over-expression of Ube3a. Here we examine the broader gene expression changes that are specific to the psychiatric endophenotypes seen in this model. To do this we compared the brain transcriptomic profile of the PWS-IC mouse to the PWS-cr model that carries a deletion of the PWS minimal critical interval spanning the snoRNA Snord116 and Ipw. Firstly, we examined the same behavioural and cognitive endophenotypes of relevance to psychiatric illness in the PWS-cr mice. Unlike the PWS-IC mice, PWS-cr exhibit no differences in locomotor activity, sensory-motor gating, and attention. RNA-seq analysis of neonatal whole brain tissue revealed a greater number of transcriptional changes between PWS-IC and wild-type littermates than between PWS-cr and wild-type littermates. Moreover, the differentially expressed genes in the PWS-IC brain were enriched for GWAS variants of episodes of psychotic illness but, interestingly, not schizophrenia. These data illustrate the molecular pathways that may underpin psychotic illness in PWS and have implications for potential therapeutic interventions.
Collapse
Affiliation(s)
- Simona K Zahova
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Trevor Humby
- School of Psychology, Cardiff University, Cardiff, UK
| | - Jennifer R Davies
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Joanne E Morgan
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
27
|
Correa‐da‐Silva F, Fliers E, Swaab DF, Yi C. Hypothalamic neuropeptides and neurocircuitries in Prader Willi syndrome. J Neuroendocrinol 2021; 33:e12994. [PMID: 34156126 PMCID: PMC8365683 DOI: 10.1111/jne.12994] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Prader-Willi Syndrome (PWS) is a rare and incurable congenital neurodevelopmental disorder, resulting from the absence of expression of a group of genes on the paternally acquired chromosome 15q11-q13. Phenotypical characteristics of PWS include infantile hypotonia, short stature, incomplete pubertal development, hyperphagia and morbid obesity. Hypothalamic dysfunction in controlling body weight and food intake is a hallmark of PWS. Neuroimaging studies have demonstrated that PWS subjects have abnormal neurocircuitry engaged in the hedonic and physiological control of feeding behavior. This is translated into diminished production of hypothalamic effector peptides which are responsible for the coordination of energy homeostasis and satiety. So far, studies with animal models for PWS and with human post-mortem hypothalamic specimens demonstrated changes particularly in the infundibular and the paraventricular nuclei of the hypothalamus, both in orexigenic and anorexigenic neural populations. Moreover, many PWS patients have a severe endocrine dysfunction, e.g. central hypogonadism and/or growth hormone deficiency, which may contribute to the development of increased fat mass, especially if left untreated. Additionally, the role of non-neuronal cells, such as astrocytes and microglia in the hypothalamic dysregulation in PWS is yet to be determined. Notably, microglial activation is persistently present in non-genetic obesity. To what extent microglia, and other glial cells, are affected in PWS is poorly understood. The elucidation of the hypothalamic dysfunction in PWS could prove to be a key feature of rational therapeutic management in this syndrome. This review aims to examine the evidence for hypothalamic dysfunction, both at the neuropeptidergic and circuitry levels, and its correlation with the pathophysiology of PWS.
Collapse
Affiliation(s)
- Felipe Correa‐da‐Silva
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Chun‐Xia Yi
- Department of Endocrinology and MetabolismAmsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Laboratory of EndocrinologyAmsterdam University Medical Center (UMC)University of AmsterdamAmsterdamThe Netherlands
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceAn Institute of the Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| |
Collapse
|
28
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Baldini L, Charpentier B, Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D snoRNAs. Noncoding RNA 2021; 7:ncrna7020030. [PMID: 34066559 PMCID: PMC8162545 DOI: 10.3390/ncrna7020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.
Collapse
Affiliation(s)
| | - Bruno Charpentier
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| | - Stéphane Labialle
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| |
Collapse
|
30
|
Kocher MA, Huang FW, Le E, Good DJ. Snord116 Post-transcriptionally Increases Nhlh2 mRNA Stability: Implications for Human Prader-Willi Syndrome. Hum Mol Genet 2021; 30:1101-1110. [PMID: 33856031 DOI: 10.1093/hmg/ddab103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
The smallest genomic region causing Prader-Willi Syndrome (PWS) deletes the non-coding RNA SNORD116 cluster; however, the function of SNORD116 remains a mystery. Previous work in the field revealed the tantalizing possibility that expression of NHLH2, a gene previously implicated in both obesity and hypogonadism, was downregulated in PWS patients and differentiated stem cells. In silico RNA: RNA modeling identified several potential interaction domains between SNORD116 and NHLH2 mRNA. One of these interaction domains was highly conserved in most vertebrate NHLH2 mRNAs examined. A construct containing the Nhlh2 mRNA, including its 3'-UTR, linked to a c-myc tag was transfected into a hypothalamic neuron cell line in the presence and absence of exogenously-expressed Snord116. Nhlh2 mRNA expression was upregulated in the presence of Snord116 dependent on the length and type of 3'UTR used on the construct. Furthermore, use of actinomycin D to stop new transcription in N29/2 cells demonstrated that the upregulation occurred through increased stability of the Nhlh2 mRNA in the 45 minutes immediately following transcription. In silico modeling also revealed that a single nucleotide variant (SNV) in the NHLH2 mRNA could reduce the predicted interaction strength of the NHLH2:SNORD116 diad. Indeed, use of an Nhlh2 mRNA construct containing this SNV significantly reduces the ability of Snord116 to increase Nhlh2 mRNA levels. For the first time, these data identify a motif and mechanism for SNORD116-mediated regulation of NHLH2, clarifying the mechanism by which deletion of the SNORD116 snoRNAs locus leads to PWS phenotypes.
Collapse
Affiliation(s)
- Matthew A Kocher
- Translational Biology, Medicine and Health Graduate Program, 1 Riverside Circle, Virginia Tech, Roanoke, VA 24016
| | - Fenix W Huang
- Biocomplexity Institute & Initiative, University of Virginia, 995 Research Park Blvd, Town Center III, 4th Floor, Charlottesville, VA 22911
| | - Erin Le
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive (0913), Integrated Life Sciences Building, Virginia Tech, Blacksburg, VA 24060
| | - Deborah J Good
- Translational Biology, Medicine and Health Graduate Program, 1 Riverside Circle, Virginia Tech, Roanoke, VA 24016.,Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive (0913), Integrated Life Sciences Building, Virginia Tech, Blacksburg, VA 24060
| |
Collapse
|
31
|
Tauber M, Hoybye C. Endocrine disorders in Prader-Willi syndrome: a model to understand and treat hypothalamic dysfunction. Lancet Diabetes Endocrinol 2021; 9:235-246. [PMID: 33647242 DOI: 10.1016/s2213-8587(21)00002-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Prader-Willi syndrome is a rare genetic neurodevelopmental disorder resulting from the loss of expression of maternally imprinted genes located in the paternal chromosomal region, 15q11-13. Impaired hypothalamic development and function is the cause of most of the phenotypes comprising the developmental trajectory of Prader-Willi syndrome: from anorexia at birth to excessive weight gain preceding hyperphagia, and early severe obesity with hormonal deficiencies, behavioural problems, and dysautonomia. Growth hormone deficiency, hypogonadism, hypothyroidism, premature adrenarche, corticotropin deficiency, precocious puberty, and glucose metabolism disorders are the main endocrine dysfunctions observed. Additionally, as a result of hypothalamic dysfunction, oxytocin and ghrelin systems are impaired in most patients. Standard pituitary and gonadal hormone replacement therapies are required. In this Review, we discuss Prader-Willi syndrome as a model of hypothalamic dysfunction, and provide a comprehensive description of the accumulated knowledge on genetics, pathophysiology, and treatment approaches of this rare disorder.
Collapse
Affiliation(s)
- Maithé Tauber
- Centre de Référence du Syndrome de Prader-Willi, Hôpital des Enfants, Toulouse, France; Axe Pédiatrique du CIC 9302/INSERM, Hôpital des Enfants, Toulouse, France; Institut Toulousain des Maladies Infectieuses et Inflammatoires, INSERM UMR1291, CNRS UMR5051, Université Toulouse III, Toulouse, France, France; International Prader-Willi Syndrome Organisation, Cambridge, UK.
| | - Charlotte Hoybye
- International Prader-Willi Syndrome Organisation, Cambridge, UK; Department of Endocrinology, Karolinska University Hospital and Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
Kummerfeld DM, Raabe CA, Brosius J, Mo D, Skryabin BV, Rozhdestvensky TS. A Comprehensive Review of Genetically Engineered Mouse Models for Prader-Willi Syndrome Research. Int J Mol Sci 2021; 22:3613. [PMID: 33807162 PMCID: PMC8037846 DOI: 10.3390/ijms22073613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a neurogenetic multifactorial disorder caused by the deletion or inactivation of paternally imprinted genes on human chromosome 15q11-q13. The affected homologous locus is on mouse chromosome 7C. The positional conservation and organization of genes including the imprinting pattern between mice and men implies similar physiological functions of this locus. Therefore, considerable efforts to recreate the pathogenesis of PWS have been accomplished in mouse models. We provide a summary of different mouse models that were generated for the analysis of PWS and discuss their impact on our current understanding of corresponding genes, their putative functions and the pathogenesis of PWS. Murine models of PWS unveiled the contribution of each affected gene to this multi-facetted disease, and also enabled the establishment of the minimal critical genomic region (PWScr) responsible for core symptoms, highlighting the importance of non-protein coding genes in the PWS locus. Although the underlying disease-causing mechanisms of PWS remain widely unresolved and existing mouse models do not fully capture the entire spectrum of the human PWS disorder, continuous improvements of genetically engineered mouse models have proven to be very powerful and valuable tools in PWS research.
Collapse
Affiliation(s)
- Delf-Magnus Kummerfeld
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Juergen Brosius
- Institute of Experimental Pathology (ZMBE), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingding Mo
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
| | - Boris V. Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| | - Timofey S. Rozhdestvensky
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany;
| |
Collapse
|
33
|
Mendiola AJP, LaSalle JM. Epigenetics in Prader-Willi Syndrome. Front Genet 2021; 12:624581. [PMID: 33659026 PMCID: PMC7917289 DOI: 10.3389/fgene.2021.624581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder that affects approximately 1 in 20,000 individuals worldwide. Symptom progression in PWS is classically characterized by two nutritional stages. Stage 1 is hypotonia characterized by poor muscle tone that leads to poor feeding behavior causing failure to thrive in early neonatal life. Stage 2 is followed by the development of extreme hyperphagia, also known as insatiable eating and fixation on food that often leads to obesity in early childhood. Other major features of PWS include obsessive-compulsive and hoarding behaviors, intellectual disability, and sleep abnormalities. PWS is genetic disorder mapping to imprinted 15q11.2-q13.3 locus, specifically at the paternally expressed SNORD116 locus of small nucleolar RNAs and noncoding host gene transcripts. SNORD116 is processed into several noncoding components and is hypothesized to orchestrate diurnal changes in metabolism through epigenetics, according to functional studies. Here, we review the current status of epigenetic mechanisms in PWS, with an emphasis on an emerging role for SNORD116 in circadian and sleep phenotypes. We also summarize current ongoing therapeutic strategies, as well as potential implications for more common human metabolic and psychiatric disorders.
Collapse
Affiliation(s)
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Huang X, Chen J, Hu W, Li L, He H, Guo H, Liao Q, Ye M, Tang D, Dai Y. A report on seven fetal cases associated with 15q11-q13 microdeletion and microduplication. Mol Genet Genomic Med 2021; 9:e1605. [PMID: 33538077 PMCID: PMC8104164 DOI: 10.1002/mgg3.1605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Background The 15q11‐q13 region contains three breakpoints (BP1 to BP3), and copy number variations often occur in the region. Aims 15q11‐q13 microdeletion and microduplication are usually associated with Prader‐Willi and Angelman syndromes, respectively. It is not yet clear to what extent microdeletion and microduplication affect the physical health of the fetus and the child. In this study, we examined seven fetuses ranging in gestational age from 15 to 27 weeks. Materials & Methods Detailed prenatal screening and laboratory examinations were performed, while karyotype analysis and chromosomal microarray analysis (CMA) of the amniotic fluid and umbilical cord blood were applied for genetic analysis. Results CMA analysis showed that four fetuses harbored a microdeletion and one fetus showed a microduplication at 15q11.2 BP1‐BP2, two fetuses had a microdeletion at 15q11‐q13 BP2‐BP3, and one fetus had an additional microdeletion at 16p13.11. Discussion There is no clear standard for the clinical diagnosis of 15q11‐q13 microdeletion and microduplication, some of them have clinical phenotypes or are clinically affected. Conclusion Therefore, parents of such fetuses should be informed of the possibility of microdeletions or microduplications to mitigate the psychological burden, and medical consultation and assistance should be provided when communicating the results of the mid‐gestation screening.
Collapse
Affiliation(s)
- Xiuzhu Huang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Jieping Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Wenlong Hu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lu Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Huiyan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Hui Guo
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Qiuyan Liao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Mei Ye
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, China
| |
Collapse
|
35
|
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, hypotonia, learning disability, as well as a range of psychiatric conditions. The conservation of the PWS genetic interval on chromosome 15q11-q13 in human, and a cluster of genes on mouse chromosome 7, has facilitated the use of mice as animal models for PWS. Some models faithfully mimic the loss of all gene expression from the paternally inherited PWS genetic interval, whereas others target smaller regions or individual genes. Collectively, these models have provided insight into the mechanisms, many of which lead to alterations in hypothalamic function, underlying the core symptoms of PWS, including growth retardation, hyperphagia and metabolism, reproductive maturation and endophenotypes of relevance to behavioral and psychiatric problems. Here we review and summarize these studies.
Collapse
Affiliation(s)
- Simona Zahova
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Anthony R Isles
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
36
|
Salles J, Lacassagne E, Eddiry S, Franchitto N, Salles JP, Tauber M. What can we learn from PWS and SNORD116 genes about the pathophysiology of addictive disorders? Mol Psychiatry 2021; 26:51-59. [PMID: 33082508 DOI: 10.1038/s41380-020-00917-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Addictive disorders have been much investigated and many studies have underlined the role of environmental factors such as social interaction in the vulnerability to and maintenance of addictive behaviors. Research on addiction pathophysiology now suggests that certain behavioral disorders are addictive, one example being food addiction. Yet, despite the growing body of knowledge on addiction, it is still unknown why only some of the individuals exposed to a drug become addicted to it. This observation has prompted the consideration of genetic heritage, neurodevelopmental trajectories, and gene-environment interactions in addiction vulnerability. Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder in which children become addicted to food and show early social impairment. PWS is caused by the deficiency of imprinted genes located on the 15q11-q13 chromosome. Among them, the SNORD116 gene was identified as the minimal gene responsible for the PWS phenotype. Several studies have also indicated the role of the Snord116 gene in animal and cellular models to explain PWS pathophysiology and phenotype (including social impairment and food addiction). We thus present here the evidence suggesting the potential involvement of the SNORD116 gene in addictive disorders.
Collapse
Affiliation(s)
- Juliette Salles
- Université de Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Service de psychiatrie et psychologie, psychiatrie Toulouse, F-31000, Toulouse, France.,Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, F-31000, Toulouse, France
| | - Emmanuelle Lacassagne
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Sanaa Eddiry
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Nicolas Franchitto
- Université de Toulouse III, F-31000, Toulouse, France.,CHU de Toulouse, Service d'addictologie clinique, urgences réanimation médecine, F-31000, Toulouse, France
| | - Jean-Pierre Salles
- Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France
| | - Maithé Tauber
- Université de Toulouse III, F-31000, Toulouse, France. .,Inserm Unité 1043, CNRS 5828, Université Paul Sabatier, Toulouse III, F-31000, Toulouse, France. .,CHU de Toulouse, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, F-31000, Toulouse, France. .,CHU de Toulouse, Centre de référence du Syndrome de Prader-Willi et autres syndromes avec troubles du comportement alimentaire, Unité d'endocrinologie, obésités, maladies osseuses, génétique et gynécologie médicale, F-31000, Toulouse, France.
| |
Collapse
|
37
|
Berteotti C, Liguori C, Pace M. Dysregulation of the orexin/hypocretin system is not limited to narcolepsy but has far-reaching implications for neurological disorders. Eur J Neurosci 2020; 53:1136-1154. [PMID: 33290595 DOI: 10.1111/ejn.15077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Neuropeptides orexin A and B (OX-A/B, also called hypocretin 1 and 2) are released selectively by a population of neurons which projects widely into the entire central nervous system but is localized in a restricted area of the tuberal region of the hypothalamus, caudal to the paraventricular nucleus. The OX system prominently targets brain structures involved in the regulation of wake-sleep state switching, and also orchestrates multiple physiological functions. The degeneration and dysregulation of the OX system promotes narcoleptic phenotypes both in humans and animals. Hence, this review begins with the already proven involvement of OX in narcolepsy, but it mainly discusses the new pre-clinical and clinical insights of the role of OX in three major neurological disorders characterized by sleep impairment which have been recently associated with OX dysfunction, such as Alzheimer's disease, stroke and Prader Willi syndrome, and have been emerged over the past 10 years to be strongly associated with the OX dysfunction and should be more considered in the future. In the light of the impairment of the OX system in these neurological disorders, it is conceivable to speculate that the integrity of the OX system is necessary for a healthy functioning body.
Collapse
Affiliation(s)
- Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
38
|
Hebras J, Marty V, Personnaz J, Mercier P, Krogh N, Nielsen H, Aguirrebengoa M, Seitz H, Pradere JP, Guiard BP, Cavaille J. Reassessment of the involvement of Snord115 in the serotonin 2c receptor pathway in a genetically relevant mouse model. eLife 2020; 9:60862. [PMID: 33016258 PMCID: PMC7673782 DOI: 10.7554/elife.60862] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
SNORD115 has been proposed to promote the activity of serotonin (HTR2C) receptor via its ability to base pair with its pre-mRNA and regulate alternative RNA splicing and/or A-to-I RNA editing. Because SNORD115 genes are deleted in most patients with the Prader-Willi syndrome (PWS), diminished HTR2C receptor activity could contribute to the impaired emotional response and/or compulsive overeating characteristic of this disease. In order to test this appealing but never demonstrated hypothesis in vivo, we created a CRISPR/Cas9-mediated Snord115 knockout mouse. Surprisingly, we uncovered only modest region-specific alterations in Htr2c RNA editing profiles, while Htr2c alternative RNA splicing was unchanged. These subtle changes, whose functional relevance remains uncertain, were not accompanied by any discernible defects in anxio-depressive-like phenotypes. Energy balance and eating behavior were also normal, even after exposure to high-fat diet. Our study raises questions concerning the physiological role of SNORD115, notably its involvement in behavioural disturbance associated with PWS.
Collapse
Affiliation(s)
- Jade Hebras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Virginie Marty
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean Personnaz
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut National de la Santé et de la Recherche Médicale (INSERM), France Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse Université Paul Sabatier, Toulouse, France
| | - Pascale Mercier
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Centre National de la Recherche Scientifique UMR5089, Toulouse, France
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marion Aguirrebengoa
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Hervé Seitz
- IGH (CNRS and University of Montpellier), Montpellier, France
| | - Jean-Phillipe Pradere
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut National de la Santé et de la Recherche Médicale (INSERM), France Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université de Toulouse Université Paul Sabatier, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Jérôme Cavaille
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
39
|
Chen H, Victor AK, Klein J, Tacer KF, Tai DJ, de Esch C, Nuttle A, Temirov J, Burnett LC, Rosenbaum M, Zhang Y, Ding L, Moresco JJ, Diedrich JK, Yates JR, Tillman HS, Leibel RL, Talkowski ME, Billadeau DD, Reiter LT, Potts PR. Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production. JCI Insight 2020; 5:138576. [PMID: 32879135 PMCID: PMC7526459 DOI: 10.1172/jci.insight.138576] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Prader-Willi syndrome (PWS) is a developmental disorder caused by loss of maternally imprinted genes on 15q11-q13, including melanoma antigen gene family member L2 (MAGEL2). The clinical phenotypes of PWS suggest impaired hypothalamic neuroendocrine function; however, the exact cellular defects are unknown. Here, we report deficits in secretory granule (SG) abundance and bioactive neuropeptide production upon loss of MAGEL2 in humans and mice. Unbiased proteomic analysis of Magel2pΔ/m+ mice revealed a reduction in components of SG in the hypothalamus that was confirmed in 2 PWS patient-derived neuronal cell models. Mechanistically, we show that proper endosomal trafficking by the MAGEL2-regulated WASH complex is required to prevent aberrant lysosomal degradation of SG proteins and reduction of mature SG abundance. Importantly, loss of MAGEL2 in mice, NGN2-induced neurons, and human patients led to reduced neuropeptide production. Thus, MAGEL2 plays an important role in hypothalamic neuroendocrine function, and cellular defects in this pathway may contribute to PWS disease etiology. Moreover, these findings suggest unanticipated approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Helen Chen
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - A Kaitlyn Victor
- Department of Neurology, Department of Pediatrics, and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Derek Jc Tai
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Celine de Esch
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Alexander Nuttle
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lisa C Burnett
- Levo Therapeutics, Inc., Skokie, Illinois, USA.,Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael Rosenbaum
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Li Ding
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Heather S Tillman
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Michael E Talkowski
- Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lawrence T Reiter
- Department of Neurology, Department of Pediatrics, and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
40
|
The RDoC approach for translational psychiatry: Could a genetic disorder with psychiatric symptoms help fill the matrix? the example of Prader-Willi syndrome. Transl Psychiatry 2020; 10:274. [PMID: 32772048 PMCID: PMC7415132 DOI: 10.1038/s41398-020-00964-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
The Research Domain Criteria project (RDoc) proposes a new classification system based on information from several fields in order to encourage translational perspectives. Nevertheless, integrating genetic markers into this classification has remained difficult because of the lack of powerful associations between targeted genes and RDoC domains. We hypothesized that genetic diseases with psychiatric manifestations would be good models for RDoC gene investigations and would thereby extend the translational approach to involve targeted gene pathways. To explore this possibility, we reviewed the current knowledge on Prader-Willi syndrome, a genetic disorder caused by the absence of expression of some of the genes of the chromosome 15q11-13 region inherited from the father. Indeed, we found that the associations between genes of the PW locus and the modification identified in the relevant behavioral, physiological, and brain imaging studies followed the structure of the RDoC matrix and its six domains (positive valence, negative valence, social processing, cognitive systems, arousal/regulatory systems, and sensorimotor systems).
Collapse
|
41
|
Wu RN, Hung WC, Chen CT, Tsai LP, Lai WS, Min MY, Wong SB. Firing activity of locus coeruleus noradrenergic neurons decreases in necdin-deficient mice, an animal model of Prader-Willi syndrome. J Neurodev Disord 2020; 12:21. [PMID: 32727346 PMCID: PMC7389383 DOI: 10.1186/s11689-020-09323-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by multiple respiratory, cognitive, endocrine, and behavioral symptoms, such as central apnea, intellectual disabilities, exaggerated stress responses, and temper tantrums. The locus coeruleus noradrenergic system (LC-NE) modulates a diverse range of behaviors, including arousal, learning, pain modulation, and stress-induced negative affective states, which are possibly correlated with the pathogenesis of PWS phenotypes. Therefore, we evaluated the LC-NE neuronal activity of necdin-deficient mice, an animal model of PWS. METHODS Heterozygous necdin-deficient mice (B6.Cg-Ndntm1ky) were bred from wild-type (WT) females to generate WT (+m/+p) and heterozygotes (+m/-p) animals, which were examined of LC-NE neuronal activity, developmental reflexes, and plethysmography. RESULTS On slice electrophysiology, LC-NE neurons of Ndntm1ky mice with necdin deficiency showed significantly decreased spontaneous activities and impaired excitability, which was mediated by enhanced A-type voltage-dependent potassium currents. Ndntm1ky mice also exhibited the neonatal phenotypes of PWS, such as hypotonia and blunt respiratory responses to hypercapnia. CONCLUSIONS LC-NE neuronal firing activity decreased in necdin-deficient mice, suggesting that LC, the primary source of norepinephrine in the central nervous system, is possibly involved in PWS pathogenesis.
Collapse
Affiliation(s)
- Rui-Ni Wu
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jiangguo Rd, Xindian Dist, New Taipei City, 23142, Taiwan
| | - Wei-Chen Hung
- Department of Life Science, College of Life Science, National Taiwan University, No. 1, Sec 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Ching-Tsuey Chen
- Department of Life Science, College of Life Science, National Taiwan University, No. 1, Sec 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Li-Ping Tsai
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jiangguo Rd, Xindian Dist, New Taipei City, 23142, Taiwan
- School of Medicine, Tzu Chi University, No. 701, Sec 3, Jhongyang Rd, Hualien, 97071, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, No. 1, Sec 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Ming-Yuan Min
- Department of Life Science, College of Life Science, National Taiwan University, No. 1, Sec 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Shi-Bing Wong
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 289, Jiangguo Rd, Xindian Dist, New Taipei City, 23142, Taiwan.
- School of Medicine, Tzu Chi University, No. 701, Sec 3, Jhongyang Rd, Hualien, 97071, Taiwan.
| |
Collapse
|
42
|
Pace M, Falappa M, Freschi A, Balzani E, Berteotti C, Lo Martire V, Kaveh F, Hovig E, Zoccoli G, Amici R, Cerri M, Urbanucci A, Tucci V. Loss of Snord116 impacts lateral hypothalamus, sleep, and food-related behaviors. JCI Insight 2020; 5:137495. [PMID: 32365348 DOI: 10.1172/jci.insight.137495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Imprinted genes are highly expressed in the hypothalamus; however, whether specific imprinted genes affect hypothalamic neuromodulators and their functions is unknown. It has been suggested that Prader-Willi syndrome (PWS), a neurodevelopmental disorder caused by lack of paternal expression at chromosome 15q11-q13, is characterized by hypothalamic insufficiency. Here, we investigate the role of the paternally expressed Snord116 gene within the context of sleep and metabolic abnormalities of PWS, and we report a significant role of this imprinted gene in the function and organization of the 2 main neuromodulatory systems of the lateral hypothalamus (LH) - namely, the orexin (OX) and melanin concentrating hormone (MCH) - systems. We observed that the dynamics between neuronal discharge in the LH and the sleep-wake states of mice with paternal deletion of Snord116 (PWScrm+/p-) are compromised. This abnormal state-dependent neuronal activity is paralleled by a significant reduction in OX neurons in the LH of mutant mice. Therefore, we propose that an imbalance between OX- and MCH-expressing neurons in the LH of mutant mice reflects a series of deficits manifested in the PWS, such as dysregulation of rapid eye movement (REM) sleep, food intake, and temperature control.
Collapse
Affiliation(s)
- Marta Pace
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, Italy
| | - Matteo Falappa
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, Italy.,Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), Università degli Studi di Genova, Genova, Italy
| | - Andrea Freschi
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, Italy
| | - Edoardo Balzani
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, Italy
| | - Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Viviana Lo Martire
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Fatemeh Kaveh
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Giovanna Zoccoli
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Valter Tucci
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, via Morego 30, Italy
| |
Collapse
|
43
|
Abstract
Excess fatty acid accumulation in nonadipose tissues leads to cell dysfunction and cell death that is linked to the pathogenesis of inherited and acquired human diseases. Study of this process, known as lipotoxicity, has provided new insights into the regulation of lipid homeostasis and has revealed new molecular pathways involved in lipid-induced cellular stress. The discovery that disruption of specific small nucleolar RNAs protects against fatty acid-induced cell death and remodels metabolism in vivo opens new opportunities for understanding how nutrient signals influence cellular and systemic metabolic homeostasis through RNA biology.
Collapse
Affiliation(s)
- Jean E Schaffer
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
|
45
|
Tan Q, Orsso CE, Deehan EC, Triador L, Field CJ, Tun HM, Han JC, Müller TD, Haqq AM. Current and emerging therapies for managing hyperphagia and obesity in Prader-Willi syndrome: A narrative review. Obes Rev 2020; 21:e12992. [PMID: 31889409 DOI: 10.1111/obr.12992] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022]
Abstract
In early childhood, individuals with Prader-Willi syndrome (PWS) experience excess weight gain and severe hyperphagia with food compulsivity, which often leads to early onset morbid obesity. Effective treatments for appetite suppression and weight control are currently unavailable for PWS. Our aim to further understand the pathogenesis of PWS led us to carry out a comprehensive search of the current and emerging therapies for managing hyperphagia and extreme weight gain in PWS. A literature search was performed using PubMed and the following keywords: "PWS" AND "therapy" OR "[drug name]"; reference lists, pharmaceutical websites, and the ClinicalTrials.gov registry were also reviewed. Articles presenting data from current standard treatments in PWS and also clinical trials of pharmacological agents in the pipeline were selected. Current standard treatments include dietary restriction/modifications, exercise, and growth hormone replacement, which appear to have limited efficacy for appetite and weight control in patients with PWS. The long-term safety and effectiveness of bariatric surgery in PWS remains unknown. However, many promising pharmacotherapies are in development and, if approved, will bring much needed choices into the PWS pharmacological armamentarium. With the progress that is currently being made in our understanding of PWS, an effective treatment may not be far off.
Collapse
Affiliation(s)
- Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Camila E Orsso
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Edward C Deehan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Lucila Triador
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hein Min Tun
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Joan C Han
- Departments of Pediatrics and Physiology, College of Medicine, University of Tennessee Health Science Center and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| | - Andrea M Haqq
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
46
|
Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res 2020; 48:1627-1651. [PMID: 31828325 PMCID: PMC7038934 DOI: 10.1093/nar/gkz1140] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are short non-protein-coding RNAs with a long-recognized role in tuning ribosomal and spliceosomal function by guiding ribose methylation and pseudouridylation at targeted nucleotide residues of ribosomal and small nuclear RNAs, respectively. SnoRNAs are increasingly being implicated in regulation of new types of post-transcriptional processes, for example rRNA acetylation, modulation of splicing patterns, control of mRNA abundance and translational efficiency, or they themselves are processed to shorter stable RNA species that seem to be the principal or alternative bioactive isoform. Intriguingly, some display unusual cellular localization under exogenous stimuli, or tissue-specific distribution. Here, we discuss the new and unforeseen roles attributed to snoRNAs, focusing on the presumed mechanisms of action. Furthermore, we review the experimental approaches to study snoRNA function, including high resolution RNA:protein and RNA:RNA interaction mapping, techniques for analyzing modifications on targeted RNAs, and cellular and animal models used in snoRNA biology research.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia
| | - Janja Božič
- Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia
| | - Boris Rogelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, SI1000 Ljubljana, Slovenia.,Jozef Stefan Institute, Department of Biotechnology, Jamova cesta 39, SI1000 Ljubljana, Slovenia.,Biomedical Research Institute BRIS, Puhova ulica 10, SI1000 Ljubljana, Slovenia.,University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI1000 Ljubljana, Slovenia
| |
Collapse
|
47
|
Salminen I, Read S, Hurd P, Crespi B. Does SNORD116 mediate aspects of psychosis in Prader-Willi syndrome? Evidence from a non-clinical population. Psychiatry Res 2020; 286:112858. [PMID: 32065983 DOI: 10.1016/j.psychres.2020.112858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022]
Abstract
The paternally expressed gene SNORD116 encodes a set of short nucleolar RNAs that affect the expression of hundreds of other genes via epigenetic interactions. Lack of expression for SNORD116 has been implicated in major phenotypes of Prader-Willi Syndrome (PWS). Rates of psychosis and autism spectrum disorders are greatly increased in PWS, but the genetic and epigenetic causes of these increases remain unknown. We genotyped a large population of typical individuals for five SNPs within SNORD116 and phenotyped them for variation in schizotypal and autism spectrum traits. SNORD116 SNP and haplotype variation mediated variation exclusively in the Schizotypal Personality Questionnaire - Ideas of Reference subscale, which reflects variation in aspects of paranoia. The effect was restricted to females. SNORD116 represents, in addition to UBE3A and NDN-MAGEL2, a third, independent locus in the 15q11-q13 imprinted region that preferentially or exclusively affects levels of paranoia. This convergent pattern may reflect a common neural pathway affected by multiple genes, or an effect of interactions between the imprinted loci.
Collapse
Affiliation(s)
- Iiro Salminen
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Silven Read
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Pete Hurd
- Department of Psychology and Centre for Neuroscience, University of Alberta, Edmonton, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
48
|
Tan Q, Potter KJ, Burnett LC, Orsso CE, Inman M, Ryman DC, Haqq AM. Prader-Willi-Like Phenotype Caused by an Atypical 15q11.2 Microdeletion. Genes (Basel) 2020; 11:genes11020128. [PMID: 31991769 PMCID: PMC7073628 DOI: 10.3390/genes11020128] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
We report a 17-year-old boy who met most of the major Prader–Willi syndrome (PWS) diagnostic criteria, including infantile hypotonia and poor feeding followed by hyperphagia, early-onset morbid obesity, delayed development, and characteristic facial features. However, unlike many children with PWS, he had spontaneous onset of puberty and reached a tall adult stature without growth hormone replacement therapy. A phenotype-driven genetic analysis using exome sequencing identified a heterozygous microdeletion of 71 kb in size at chr15:25,296,613-25,367,633, genome build hg 19. This deletion does not affect the SNURF-SNRPN locus, but results in the loss of several of the PWS-associated non-coding RNA species, including the SNORD116 cluster. We compared with six previous reports of patients with PWS who carried small atypical deletions encompassing the snoRNA SNORD116 cluster. These patients share similar core symptoms of PWS while displaying some atypical features, suggesting that other genes in the region may make lesser phenotypic contributions. Altogether, these rare cases provide convincing evidence that loss of the paternal copy of the SNORD116 snoRNA is sufficient to cause most of the major clinical features of PWS.
Collapse
Affiliation(s)
- Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Kathryn J. Potter
- University of Alberta Hospital, Stollery Children’s Hospital, Edmonton, AB T6G 2B7, Canada;
| | | | - Camila E. Orsso
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Mark Inman
- Department of Pediatrics, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| | - Davis C. Ryman
- Levo Therapeutics, Inc., Skokie, IL 60077, USA; (L.C.B.); (D.C.R.)
| | - Andrea M. Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Correspondence: ; Tel.: +1-(780)-492-0015
| |
Collapse
|
49
|
Germain ND, Levine ES, Chamberlain SJ. IPSC Models of Chromosome 15Q Imprinting Disorders: From Disease Modeling to Therapeutic Strategies. ADVANCES IN NEUROBIOLOGY 2020; 25:55-77. [PMID: 32578144 DOI: 10.1007/978-3-030-45493-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chromosome 15q11-q13 region of the human genome is regulated by genomic imprinting, an epigenetic phenomenon in which genes are expressed exclusively from one parental allele. Several genes within the 15q11-q13 region are expressed exclusively from the paternally inherited chromosome 15. At least one gene UBE3A, shows exclusive expression of the maternal allele, but this allele-specific expression is restricted to neurons. The appropriate regulation of imprinted gene expression across chromosome 15q11-q13 has important implications for human disease. Three different neurodevelopmental disorders result from aberrant expression of imprinted genes in this region: Prader-Willi syndrome (PWS), Angelman syndrome (AS), and 15q duplication syndrome.
Collapse
Affiliation(s)
- Noelle D Germain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
50
|
Lafaille FG, Harschnitz O, Lee YS, Zhang P, Hasek ML, Kerner G, Itan Y, Ewaleifoh O, Rapaport F, Carlile TM, Carter-Timofte ME, Paquet D, Dobbs K, Zimmer B, Gao D, Rojas-Duran MF, Kwart D, Rattina V, Ciancanelli MJ, McAlpine JL, Lorenzo L, Boucherit S, Rozenberg F, Halwani R, Henry B, Amenzoui N, Alsum Z, Marques L, Church JA, Al-Muhsen S, Tardieu M, Bousfiha AA, Paludan SR, Mogensen TH, Quintana-Murci L, Tessier-Lavigne M, Smith GA, Notarangelo LD, Studer L, Gilbert W, Abel L, Casanova JL, Zhang SY. Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nat Med 2019; 25:1873-1884. [PMID: 31806906 PMCID: PMC7376819 DOI: 10.1038/s41591-019-0672-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/30/2019] [Indexed: 12/24/2022]
Abstract
Herpes simplex virus-1 (HSV-1) encephalitis (HSE) is typically sporadic. Inborn errors of TLR3- and DBR1-mediated central nervous system cell-intrinsic immunity can account for forebrain and brainstem HSE, respectively. We report five unrelated patients with forebrain HSE, each heterozygous for one of four rare variants of SNORA31, encoding a small nucleolar RNA of the H/ACA class that are predicted to direct the isomerization of uridine residues to pseudouridine in small nuclear RNA and ribosomal RNA. We show that CRISPR/Cas9-introduced bi- and monoallelic SNORA31 deletions render human pluripotent stem cell (hPSC)-derived cortical neurons susceptible to HSV-1. Accordingly, SNORA31-mutated patient hPSC-derived cortical neurons are susceptible to HSV-1, like those from TLR3- or STAT1-deficient patients. Exogenous interferon (IFN)-β renders SNORA31- and TLR3- but not STAT1-mutated neurons resistant to HSV-1. Finally, transcriptome analysis of SNORA31-mutated neurons revealed normal responses to TLR3 and IFN-α/β stimulation but abnormal responses to HSV-1. Human SNORA31 thus controls central nervous system neuron-intrinsic immunity to HSV-1 by a distinctive mechanism.
Collapse
MESH Headings
- Adult
- Central Nervous System/immunology
- Central Nervous System/virology
- Child, Preschool
- Encephalitis, Herpes Simplex/genetics
- Encephalitis, Herpes Simplex/immunology
- Encephalitis, Herpes Simplex/pathology
- Encephalitis, Herpes Simplex/virology
- Female
- Genetic Predisposition to Disease
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Humans
- Immunity/genetics
- Infant
- Male
- Metagenome/genetics
- Metagenome/immunology
- Middle Aged
- Neurons/immunology
- Neurons/virology
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/immunology
Collapse
Affiliation(s)
- Fabien G Lafaille
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Oliver Harschnitz
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Yoon Seung Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mary L Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Osefame Ewaleifoh
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | | - Madalina E Carter-Timofte
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Dominik Paquet
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY, USA
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bastian Zimmer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Daxing Gao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Maria F Rojas-Duran
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dylan Kwart
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY, USA
| | - Vimel Rattina
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jessica L McAlpine
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Flore Rozenberg
- Virology Department, Paris Descartes University, Sorbonne Paris Cité University, Welfare Services Paris Hospital, Hospital Group Paris Center University, Paris, France
| | - Rabih Halwani
- Sharjah Institute for Medical Research (SIMR), Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Benoit Henry
- Department of Infectious Diseases, Pitié-Salpêtrière Hospital, Paris, France
| | - Naima Amenzoui
- Clinical Immunology Unit, Children's Ibn Rushd Hospital and Clinical Immunology Laboratory, Inflammation and Allergy LICIA, Faculty of Medicine and Pharmacy, Hassan Ii University, Casablanca, Morocco
| | - Zobaida Alsum
- Immunology Research Laboratory, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Laura Marques
- Pediatric Department, Infectious Diseases and Immunodeficiencies Unit, Porto Hospital Center, Porto, Portugal
| | - Joseph A Church
- Department of Pediatrics, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Saleh Al-Muhsen
- Prince Naif Center for Immunology Research, King Saud University, Riyadh, Saudi Arabia
| | - Marc Tardieu
- South Paris University Hospital, Paris Hospital Welfare Services, Department of Pediatric Neurology, Paris, France
| | - Ahmed Aziz Bousfiha
- Clinical Immunology Unit, Children's Ibn Rushd Hospital and Clinical Immunology Laboratory, Inflammation and Allergy LICIA, Faculty of Medicine and Pharmacy, Hassan Ii University, Casablanca, Morocco
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trine Hyrup Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lluis Quintana-Murci
- Unit of Human Evolutionary Genetics, CNRS UMR2000, Institut Pasteur, Paris, France
| | - Marc Tessier-Lavigne
- Biogen, Cambridge, MA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Wendy Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France.
- Paris Descartes University, Imagine Institute, Paris, France.
- Pediatric Immuno-Hematology Unit, Necker Hospital for Sick Children, Paris, France.
- Howard Hughes Medical Institute, New York, NY, USA.
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, Paris, France.
- Paris Descartes University, Imagine Institute, Paris, France.
| |
Collapse
|