1
|
Kapanaiah SKT, Grimm C, Kätzel D. Acute optogenetic induction of the prodromal endophenotype of CA1 hyperactivity causes schizophrenia-related deficits in cognition and salience attribution. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:90. [PMID: 39379378 PMCID: PMC11461789 DOI: 10.1038/s41537-024-00513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Hyperactivity of the human anterior hippocampus has been reported to spread from its CA1 subfield to the subiculum around the onset of first-episode psychosis and could be a cellular target for early therapeutic intervention in the schizophrenia prodrome. However, to what extent CA1 hyperactivity actually causes schizophrenia-related symptoms remains unknown. Here, we mimic this endophenotype by direct optogenetic activation of excitatory cells in the homologous mouse region, ventral CA1 (vCA1) and assess its consequence in multiple schizophrenia-related behavioural tests. We find that hyperactivity of vCA1 causes hyperlocomotion and impairments of spatial and object-related short-term habituation (spatial novelty-preference and novel-object recognition memory) and spatial working memory, whereas social interaction, spatial exploration, and anxiety remain unaltered. Stimulation of the ventral subiculum, in contrast, only increased locomotion and exploration. In conclusion, CA1 hyperactivity may be a direct driver of prodromal cognitive symptoms and of aberrant salience assignment leading to psychosis.
Collapse
Affiliation(s)
| | - Christina Grimm
- Institute of Applied Physiology, Ulm University, Ulm, Germany
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
- School of Engineering, Neuro-X Institute, EPFL, Lausanne, Switzerland
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Liu Z, Sun YH, Ren Y, Perez JM, Scott D, Tamminga C. Upregulated solute-carrier family genes in the hippocampus of schizophrenia can be rescued by antipsychotic medications. Schizophr Res 2024; 272:39-50. [PMID: 39182310 DOI: 10.1016/j.schres.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND AND HYPOTHESIS Our previous studies have found that functional changes in the hippocampal circuit from dentate gyrus (DG) to cornu ammonis 3 and 1 (CA3, CA1) are highly associated with schizophrenia (SZ). However, no studies have explored the genetic expression across the three and two human hippocampal subfields (DG-CA3-CA1 and CA3-CA1) between subjects with SZ and healthy controls (CT). STUDY DESIGN We matched cohorts between CT (n = 13) and SZ (n = 13). Among SZ, 6 subjects were on antipsychotics (AP) while 7 were off AP. We combined RNA-seq data from all three and two hippocampal subfields and performed differentially expressed gene analyses across DG-CA3-CA1 and CA3-CA1 affected by either SZ or AP. STUDY RESULTS We found that differentially expressed genes (DEGs) from effects of SZ and AP across DG-CA3-CA1 and CA3-CA1 were highly associated with gene ontology terms related to hormonal and immune signaling, cellular mitosis and apoptosis, ion and amino acid transports, and protein modification and degradation. Additionally, we found that multiple genes related to solute-carrier family and immune signaling were significantly upregulated across DG-CA3-CA1 and CA3-CA1 in patients with SZ relative to CT, and AP consistently and robustly repressed the expression of these upregulated genes in the DG-CA3-CA1 and CA3-CA1 from subjects with SZ. CONCLUSIONS Together, these data suggest that the upregulated solute-carrier family genes in the hippocampus might have important roles in the pathophysiology of SZ, and that AP may reduce the symptoms of psychosis in SZ via rescuing the solute-carrier gene expression.
Collapse
Affiliation(s)
- Zhengshan Liu
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| | - Yu H Sun
- Department of Biology, University of Rochester, Rochester, NY, United States of America
| | - Yue Ren
- Department of Biology, University of Rochester, Rochester, NY, United States of America
| | - Jessica Marie Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Daniel Scott
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Carol Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
3
|
Fang J, Cai R, Hu Y, Wang Y, Ling Y, Lv Y, Fang X, Zhang X, Zhou C. Aberrant brain functional connectivity mediates the effects of negative symptoms on cognitive function in schizophrenia: A structural equation model. J Psychiatr Res 2024; 177:109-117. [PMID: 39004002 DOI: 10.1016/j.jpsychires.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Schizophrenia is a severe psychiatric disorder, characterized by positive symptoms, negative symptoms, and cognitive deficits. Elucidating the mechanism of negative symptom and cognitive deficits could contribute to the treatment and prognosis of schizophrenia. We hypothesized that abnormal functional connectivity would be involved in the indirect effects of negative symptoms on cognitive function. METHODS A total of 150 schizophrenia male patients and 108 healthy controls matched for age, education and gender were enrolled in the study. The scores of Brief Negative Symptom Scale were divided into two factors: motivation and pleasure deficits (MAP) and diminished expression (EXP). Subsequently, a series of classic neurocognitive tests were used to evaluate cognitive functions. Resting-state fMRI data was collected from all participants. The Anatomical Automatic Labeling template was employed to establish regions of interest, thereby constructing the functional connectivity network across the entire brain. Eventually, scores of patients' negative symptoms scale, cognitive function, and strengths of abnormal functional connectivity were incorporated into a structural equation model to explore the interactions among variables. RESULTS MAP exhibited a distinctly and significantly negative impact on cognitive function. The functional connectivity between the left insula and left precuneus, along with that between the left precuneus and right angular gyrus, collectively served as intermediaries, contributing to the indirect effects of MAP and EXP on cognitive function. CONCLUSIONS Our findings demonstrated the moderating role of aberrant brain functional connectivity between negative symptoms and cognitive function, providing clues about the neural correlates of negative symptoms and cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Jin Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Renliang Cai
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yunshan Hu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuru Ling
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yiding Lv
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
4
|
Guha A, Hunter SK, Legget KT, McHugo M, Hoffman MC, Tregellas JR. Intrinsic Infant Hippocampal Function Supports Inhibitory Processing. Dev Psychobiol 2024; 66:e22529. [PMID: 39010701 PMCID: PMC11254329 DOI: 10.1002/dev.22529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024]
Abstract
Impaired cerebral inhibition is commonly observed in neurodevelopmental disorders and may represent a vulnerability factor for their development. The hippocampus plays a key role in inhibition among adults and undergoes significant and rapid changes during early brain development. Therefore, the structure represents an important candidate region for early identification of pathology that is relevant to inhibitory dysfunction. To determine whether hippocampal function corresponds to inhibition in the early postnatal period, the present study evaluated relationships between hippocampal activity and sensory gating in infants 4-20 weeks of age (N = 18). Resting-state functional magnetic resonance imaging was used to measure hippocampal activity, including the amplitude of low-frequency fluctuations (ALFFs) and fractional ALFF. Electroencephalography during a paired-stimulus paradigm was used to measure sensory gating (P50). Higher activity of the right hippocampus was associated with better sensory gating (P50 ratio), driven by a reduction in response to the second stimulus. These findings suggest that meaningful effects of hippocampal function can be detected early in infancy. Specifically, higher intrinsic hippocampal activity in the early postnatal period may support effective inhibitory processing. Future work will benefit from longitudinal analysis to clarify the trajectory of hippocampal function, alterations of which may contribute to the risk of neurodevelopmental disorders and represent an intervention target.
Collapse
Affiliation(s)
- Anika Guha
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - Sharon K. Hunter
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - Kristina T. Legget
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
- Research Service, Rocky Mountain Regional VA Medical Center
| | - Maureen McHugo
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - M. Camille Hoffman
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
| | - Jason R. Tregellas
- Department of Psychiatry, University of Colorado Anschutz Medical Campus
- Research Service, Rocky Mountain Regional VA Medical Center
| |
Collapse
|
5
|
Du N, Meng X, Li J, Shi L, Zhang X. Decline in Working Memory in Stable Schizophrenia May Be Related to Attentional Impairment: Mediating Effects of Negative Symptoms, a Cross-Sectional Study. Neuropsychiatr Dis Treat 2024; 20:149-158. [PMID: 38288268 PMCID: PMC10822768 DOI: 10.2147/ndt.s447965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
Background Schizophrenia (SCZ) is a severe mental illness, Cognitive deficits and negative symptoms (NS) are prevalent in individuals with SCZ and are crucial indicators of functional recovery. It is well known that cognitive symptoms and negative symptoms are interrelated and that negative symptoms can affect the ability to take cognitive tests. However, the specific relationship between attention, working memory (WM), and NS in stable SCZ remains unclear. This study aims to explore these associations and provide valuable insights for the subsequent treatment of SCZ. Methods We conducted a comprehensive assessment of 145 patients with stable SCZ using the Chinese Brief Neurocognitive Suite of Tests (C-BCT) and the Positive and Negative Symptom Scale (PANSS). Results Patients with abnormal cognition exhibited significantly higher PANSS total scores, cognitive symptom scores, and NS than those with normal cognition (P<0.05). Pearson's correlation analysis revealed significant positive correlations between digital breadth(DB) and continuous operation(CO) (r=0.389, P<0.001), as well as a significant negative correlation between DB and NS (r=-0.291, P<0.001). Moreover, CO showed a negative correlation with NS (r=-0.173, P<0.05). However, no significant correlations were found between the digital breadth-anterograde score and CO or NS (r=0.148, P>0.05; r=-0.068, P>0.05). Notably, NS were identified as a mediator in the relationship between attention and WM (effect size=0.024). Conclusion Our findings highlight significant associations between WM, attention, and NS in individuals with stable SCZ. Moreover, attention not only directly impacts WM but also indirectly influences it through NS. Addressing cognitive deficits and NS in the treatment of SCZ may lead to improved overall outcomes for affected individuals.
Collapse
Affiliation(s)
- Nan Du
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People’s Hospital, Hefei, 230022, People’s Republic of China
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People’s Hospital, Hefei, 230022, People’s Republic of China
| | - Xiaojing Meng
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People’s Hospital, Hefei, 230022, People’s Republic of China
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People’s Hospital, Hefei, 230022, People’s Republic of China
| | - Jingwei Li
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People’s Hospital, Hefei, 230022, People’s Republic of China
| | - Li Shi
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People’s Hospital, Hefei, 230022, People’s Republic of China
| | - Xulai Zhang
- Affiliated Psychological Hospital of Anhui Medical University, Hefei Fourth People’s Hospital, Hefei, 230022, People’s Republic of China
- Anhui Clinical Center for Mental and Psychological Diseases, Hefei Fourth People’s Hospital, Hefei, 230022, People’s Republic of China
| |
Collapse
|
6
|
Barth C, Nerland S, Jørgensen KN, Haatveit B, Wortinger LA, Melle I, Haukvik UK, Ueland T, Andreassen OA, Agartz I. Altered Sex Differences in Hippocampal Subfield Volumes in Schizophrenia. Schizophr Bull 2024; 50:107-119. [PMID: 37354490 PMCID: PMC10754184 DOI: 10.1093/schbul/sbad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
BACKGROUND AND HYPOTHESIS The hippocampus is a heterogenous brain structure that differs between the sexes and has been implicated in the pathophysiology of psychiatric illnesses. Here, we explored sex and diagnostic group differences in hippocampal subfield volumes, in individuals with schizophrenia spectrum disorder (SZ), bipolar disorders (BD), and healthy controls (CTL). STUDY DESIGN One thousand and five hundred and twenty-one participants underwent T1-weighted magnetic resonance imaging (SZ, n = 452, mean age 30.7 ± 9.2 [SD] years, males 59.1%; BD, n = 316, 33.7 ± 11.4, 41.5%; CTL, n = 753, 34.1 ± 9.1, 55.6%). Total hippocampal, subfield, and intracranial volumes were estimated with Freesurfer (v6.0.0). Analysis of covariance and multiple regression models were fitted to examine sex-by-diagnostic (sub)group interactions in volume. In SZ and BD, separately, associations between volumes and clinical as well as cognitive measures were examined between the sexes using regression models. STUDY RESULTS Significant sex-by-group interactions were found for the total hippocampus, dentate gyrus, molecular layer, presubiculum, fimbria, hippocampal-amygdaloid transition area, and CA4, indicating a larger volumetric deficit in male patients relative to female patients when compared with same-sex CTL. Subgroup analyses revealed that this interaction was driven by males with schizophrenia. Effect sizes were overall small (partial η < 0.02). We found no significant sex differences in the associations between hippocampal volumes and clinical or cognitive measures in SZ and BD. CONCLUSIONS Using a well-powered sample, our findings indicate that the pattern of morphological sex differences in hippocampal subfields is altered in individuals with schizophrenia relative to CTL, due to higher volumetric deficits in males.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Kjetil N Jørgensen
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Beathe Haatveit
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Laura A Wortinger
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
| | - Ingrid Melle
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Unn K Haukvik
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
- Department of Adult Mental Health, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, NORMENT, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, NORMENT, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
7
|
Alho J, Lahnakoski JM, Panula JM, Rikandi E, Mäntylä T, Lindgren M, Kieseppä T, Suvisaari J, Sams M, Raij TT. Hippocampus-Centered Network Is Associated With Positive Symptom Alleviation in Patients With First-Episode Psychosis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1197-1206. [PMID: 37336263 DOI: 10.1016/j.bpsc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Previous functional magnetic resonance imaging studies have reported widespread brain functional connectivity alterations in patients with psychosis. These studies have mostly used either resting-state or simple-task paradigms, thereby compromising experimental control or ecological validity, respectively. Additionally, in a conventional functional magnetic resonance imaging intrasubject functional connectivity analysis, it is difficult to identify which connections relate to extrinsic (stimulus-induced) and which connections relate to intrinsic (non-stimulus-related) neural processes. METHODS To mitigate these limitations, we used intersubject functional connectivity (ISFC) to analyze longitudinal functional magnetic resonance imaging data collected while 36 individuals with first-episode psychosis (FEP) and 29 age- and sex-matched population control participants watched scenes from the fantasy movie Alice in Wonderland at baseline and again at 1-year follow-up. Furthermore, to allow unconfounded comparison and to overcome possible circularity of ISFC, we introduced a novel approach wherein ISFC in both the FEP and population control groups was calculated with respect to an independent group of participants (not included in the analyses). RESULTS Using this independent-reference ISFC approach, we found an interaction effect wherein the independent-reference ISFC in individuals with FEP, but not in the control group participants, was significantly stronger at baseline than at follow-up in a network centered in the hippocampus and involving thalamic, striatal, and cortical regions, such as the orbitofrontal cortex. Alleviation of positive symptoms, particularly delusions, from baseline to follow-up was correlated with decreased network connectivity in patients with FEP. CONCLUSIONS These findings link deviation of naturalistic information processing in the hippocampus-centered network to positive symptoms.
Collapse
Affiliation(s)
- Jussi Alho
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Juha M Lahnakoski
- Institute of Neuroscience and Medicine, Brain, & Behaviour (INM-7), Research Center Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-universität Düsseldorf, Düsseldorf, Germany; Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jonatan M Panula
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Eva Rikandi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Mental Health Team, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Teemu Mäntylä
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Mental Health Team, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Maija Lindgren
- Mental Health Team, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tuula Kieseppä
- Mental Health Team, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jaana Suvisaari
- Mental Health Team, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Mikko Sams
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Tuukka T Raij
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Psychiatry, Helsinki University and Helsinki University Hospital, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland.
| |
Collapse
|
8
|
Farsi Z, Nicolella A, Simmons SK, Aryal S, Shepard N, Brenner K, Lin S, Herzog L, Moran SP, Stalnaker KJ, Shin W, Gazestani V, Song BJ, Bonanno K, Keshishian H, Carr SA, Pan JQ, Macosko EZ, Datta SR, Dejanovic B, Kim E, Levin JZ, Sheng M. Brain-region-specific changes in neurons and glia and dysregulation of dopamine signaling in Grin2a mutant mice. Neuron 2023; 111:3378-3396.e9. [PMID: 37657442 DOI: 10.1016/j.neuron.2023.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/19/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023]
Abstract
A genetically valid animal model could transform our understanding of schizophrenia (SCZ) disease mechanisms. Rare heterozygous loss-of-function (LoF) mutations in GRIN2A, encoding a subunit of the NMDA receptor, greatly increase the risk of SCZ. By transcriptomic, proteomic, and behavioral analyses, we report that heterozygous Grin2a mutant mice show (1) large-scale gene expression changes across multiple brain regions and in neuronal (excitatory and inhibitory) and non-neuronal cells (astrocytes and oligodendrocytes), (2) evidence of hypoactivity in the prefrontal cortex (PFC) and hyperactivity in the hippocampus and striatum, (3) an elevated dopamine signaling in the striatum and hypersensitivity to amphetamine-induced hyperlocomotion (AIH), (4) altered cholesterol biosynthesis in astrocytes, (5) a reduction in glutamatergic receptor signaling proteins in the synapse, and (6) an aberrant locomotor pattern opposite of that induced by antipsychotic drugs. These findings reveal potential pathophysiologic mechanisms, provide support for both the "hypo-glutamate" and "hyper-dopamine" hypotheses of SCZ, and underscore the utility of Grin2a-deficient mice as a genetic model of SCZ.
Collapse
Affiliation(s)
- Zohreh Farsi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ally Nicolella
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sameer Aryal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nate Shepard
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kira Brenner
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sherry Lin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Linnea Herzog
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sean P Moran
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine J Stalnaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Vahid Gazestani
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bryan J Song
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kevin Bonanno
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hasmik Keshishian
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan Z Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | | | - Borislav Dejanovic
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan Sheng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Grosu ȘA, Dobre M, Milanesi E, Hinescu ME. Blood-Based MicroRNAs in Psychotic Disorders-A Systematic Review. Biomedicines 2023; 11:2536. [PMID: 37760977 PMCID: PMC10525934 DOI: 10.3390/biomedicines11092536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Psychotic disorders are a heterogenous class of mental illness, with an intricate pathophysiology, involving genetics and environmental factors, and their interaction. The identification of accessible biomarkers in bodily systems such as blood may lead to more accurate diagnosis, and more effective treatments targeting dysfunctional pathways, and could assist in monitoring the disease evolution. This systematic review aims to highlight the dysregulated microRNAs (miRNAs) in the peripheral blood of patients with psychotic disorders. Using the PRISMA protocol, PubMed and Science Direct databases were investigated and 22 articles were included. Fifty-five different miRNAs were found differentially expressed in the blood of psychotic patients compared to controls. Seventeen miRNAs (miR-34a, miR-181b, miR-432, miR-30e, miR-21, miR-137, miR-134, miR-7, miR-92a, miR-1273d, miR-1303, miR-3064-5p, miR-3131, miR-3687, miR-4428, miR-4725-3p, and miR-5096) were dysregulated with the same trend (up- or down-regulation) in at least two studies. Of note, miR-34a and miR-181b were up-regulated in the blood of psychotic patients in seven and six studies, respectively. Moreover, the level of miR-181b in plasma was found to be positively correlated with the amelioration of negative symptoms. The panel of miRNAs identified in this review could be validated in future studies in large and well-characterized cohorts of psychotic patients.
Collapse
Affiliation(s)
- Ștefania-Alexandra Grosu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
| | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Elena Milanesi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Mihail Eugen Hinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| |
Collapse
|
10
|
Wen J, Zellner A, Braun NC, Bajaj T, Gassen NC, Peitz M, Brüstle O. Loss of function of FIP200 in human pluripotent stem cell-derived neurons leads to axonal pathology and hyperactivity. Transl Psychiatry 2023; 13:143. [PMID: 37137886 PMCID: PMC10156752 DOI: 10.1038/s41398-023-02432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
FIP200 plays important roles in homeostatic processes such as autophagy and signaling pathways such as focal adhesion kinase (FAK) signaling. Furthermore, genetic studies suggest an association of FIP200 mutations with psychiatric disorders. However, its potential connections to psychiatric disorders and specific roles in human neurons are not clear. We set out to establish a human-specific model to study the functional consequences of neuronal FIP200 deficiency. To this end, we generated two independent sets of isogenic human pluripotent stem cell lines with homozygous FIP200KO alleles, which were then used for the derivation of glutamatergic neurons via forced expression of NGN2. FIP200KO neurons exhibited pathological axonal swellings, showed autophagy deficiency, and subsequently elevated p62 protein levels. Moreover, monitoring the electrophysiological activity of neuronal cultures on multi-electrode arrays revealed that FIP200KO resulted in a hyperactive network. This hyperactivity could be abolished by glutamatergic receptor antagonist CNQX, suggesting a strengthened glutamatergic synaptic activation in FIP200KO neurons. Furthermore, cell surface proteomic analysis revealed metabolic dysregulation and abnormal cell adhesion-related processes in FIP200KO neurons. Interestingly, an ULK1/2-specific autophagy inhibitor could recapitulate axonal swellings and hyperactivity in wild-type neurons, whereas inhibition of FAK signaling was able to normalize the hyperactivity of FIP200KO neurons. These results suggest that impaired autophagy and presumably also disinhibition of FAK can contribute to the hyperactivity of FIP200KO neuronal networks, whereas pathological axonal swellings are primarily due to autophagy deficiency. Taken together, our study reveals the consequences of FIP200 deficiency in induced human glutamatergic neurons, which might, in the end, help to understand cellular pathomechanisms contributing to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jianbin Wen
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas Zellner
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Nils Christian Braun
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Nils Christian Gassen
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany.
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Wu X, Yan Q, Liu L, Xue X, Yao W, Li X, Li W, Ding S, Xia Y, Zhang D, Zhu F. Domesticated HERV-W env contributes to the activation of the small conductance Ca 2+-activated K + type 2 channels via decreased 5-HT4 receptor in recent-onset schizophrenia. Virol Sin 2023; 38:9-22. [PMID: 36007838 PMCID: PMC10006216 DOI: 10.1016/j.virs.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
The human endogenous retroviruses type W family envelope (HERV-W env) gene is located on chromosome 7q21-22. Our previous studies show that HERV-W env is elevated in schizophrenia and HERV-W env can increase calcium influx. Additionally, the 5-HTergic system and particularly 5-hydroxytryptamine (5-HT) receptors play a prominent role in the pathogenesis and treatment of schizophrenia. 5-hydroxytryptamine receptor 4 (5-HT4R) agonist can block calcium channels. However, the underlying relationship between HERV-W env and 5-HT4R in the etiology of schizophrenia has not been revealed. Here, we used enzyme-linked immunosorbent assay to detect the concentration of HERV-W env and 5-HT4R in the plasma of patients with schizophrenia and we found that there were decreased levels of 5-HT4R and a negative correlation between 5-HT4R and HERV-W env in schizophrenia. Overexpression of HERV-W env decreased the transcription and protein levels of 5-HT4R but increased small conductance Ca2+-activated K+ type 2 channels (SK2) expression levels. Further studies revealed that HERV-W env could interact with 5-HT4R. Additionally, luciferase assay showed that an essential region (-364 to -176 from the transcription start site) in the SK2 promoter was required for HERV-W env-induced SK2 expression. Importantly, 5-HT4R participated in the regulation of SK2 expression and promoter activity. Electrophysiological recordings suggested that HERV-W env could increase SK2 channel currents and the increase of SK2 currents was inhibited by 5-HT4R. In conclusion, HERV-W env could activate SK2 channels via decreased 5-HT4R, which might exhibit a novel mechanism for HERV-W env to influence neuronal activity in schizophrenia.
Collapse
Affiliation(s)
- Xiulin Wu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | | | - Xing Xue
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Yao
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuang Ding
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Dongyan Zhang
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
12
|
Omeiza NA, Bakre A, Ben-Azu B, Sowunmi AA, Abdulrahim HA, Chimezie J, Lawal SO, Adebayo OG, Alagbonsi AI, Akinola O, Abolaji AO, Aderibigbe AO. Mechanisms underpinning Carpolobia lutea G. Don ethanol extract's neurorestorative and antipsychotic-like activities in an NMDA receptor antagonist model of schizophrenia. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115767. [PMID: 36206872 DOI: 10.1016/j.jep.2022.115767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Persistent ketamine insults to the central nervous system block NMDA receptors and disrupt putative neurotransmission, oxido-nitrosative, and inflammatory pathways, resulting in schizophrenia-like symptoms in animals. Previously, the ethnomedicinal benefits of Carpolobia lutea against insomnia, migraine headache, and insanity has been documented, but the mechanisms of action remain incomplete. AIM OF THE STUDY Presently, we explored the neuro-therapeutic role of Carpolobia lutea ethanol extract (C. lutea) in ketamine-induced schizophrenia-like symptoms in mice. MATERIALS AND METHODS Sixty-four male Swiss (22 ± 2 g) mice were randomly assigned into eight groups (n = 8/group) and exposed to a reversal ketamine model of schizophrenia. For 14 days, either distilled water (10 mL/kg; p.o.) or ketamine (20 mg/kg; i.p.) was administered, following possible reversal treatments with C. lutea (100, 200, 400, and 800 mg/kg; p.o.), haloperidol (1 mg/kg, p.o.), or clozapine (5 mg/kg; p.o.) beginning on days 8-14. During the experiment, a battery of behavioral characterizations defining schizophrenia-like symptoms were obtained using ANY-maze software, followed by neurochemical, oxido-inflammatory and histological assessments in the mice brains. RESULTS A 7-day reversal treatment with C. lutea reversed predictors of positive, negative and cognitive symptoms of schizophrenia. C. lutea also mitigated ketamine-induced neurochemical derangements as evidenced by modulations of dopamine, glutamate, norepinephrine and serotonin neurotransmission. Also, the increased acetylcholinesterase activity, malondialdehyde nitrite, interleukin-6 and tumor necrosis-factor-α concentrations were reversed by C. lutea accompanied with elevated levels of catalase, superoxide dismutase and reduced glutathione. Furthermore, C. lutea reversed ketamine-induced neuronal alterations in the prefrontal cortex, hippocampus and cerebellum sections of the brain. CONCLUSION These findings suggest that C. lutea reverses the cardinal symptoms of ketamine-induced schizophrenia in a dose-dependent fashion by modulating the oxido-inflammatory and neurotransmitter-related mechanisms.
Collapse
Affiliation(s)
- Noah A Omeiza
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adewale Bakre
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Nigeria
| | - Abimbola A Sowunmi
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Halimat A Abdulrahim
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sodiq O Lawal
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusegun G Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Physiology, Neurophysiology Unit, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, Nigeria
| | - Abdullateef I Alagbonsi
- Department of Clinical Biology (Physiology), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Southern Province, Rwanda
| | - Olugbenga Akinola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, College of Medicine, University of Ibadan, Nigeria
| | - Amos O Abolaji
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adegbuyi O Aderibigbe
- Department of Pharmacology and Therapeutics, Neuropharmacology Unit, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
13
|
Spencer KM, Nakhnikian A, Hirano Y, Levin M. The contribution of gamma bursting to spontaneous gamma activity in schizophrenia. Front Hum Neurosci 2023; 17:1130897. [PMID: 37206313 PMCID: PMC10188978 DOI: 10.3389/fnhum.2023.1130897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/07/2023] [Indexed: 05/21/2023] Open
Abstract
Increased spontaneous gamma (30-100 Hz) activity (SGA) has been reported in the auditory cortex in schizophrenia. This phenomenon has been correlated with psychotic symptoms such as auditory hallucinations and could reflect the dysfunction of NMDA receptors on parvalbumin-expressing inhibitory interneurons. Previous findings are from time-averaged spectra, so it is unknown whether increased spontaneous gamma occurs at a constant level, or rather in bursts. To better understand the dynamical nature of spontaneous gamma activity in schizophrenia, here we examined the contribution of gamma bursting and the slope of the EEG spectrum to this phenomenon. The main results from this data set were previously reported. Participants were 24 healthy control participants (HC) and 24 matched participants with schizophrenia (SZ). The data were from EEG recordings during auditory steady-state stimulation, which were localized to bilateral pairs of dipoles in auditory cortex. Time-frequency analysis was performed using Morlet wavelets. Oscillation bursts in the gamma range were defined as periods during which power exceeded 2 standard deviations above the trial-wide average value for at least one cycle. We extracted the burst parameters power, count, and area, as well as non-burst trial power and spectral slope. Gamma burst power and non-burst trial power were greater in SZ than HC, but burst count and area did not differ. Spectral slope was less negative in SZ than HC. Regression modeling found that gamma burst power alone best predicted SGA for both HC and SZ (> = 90% of variance), while spectral slope made a small contribution and non-burst trial power did not influence SGA. Increased SGA in the auditory cortex in schizophrenia is accounted for by increased power within gamma bursts, rather than a tonic increase in gamma-range activity, or a shift in spectral slope. Further research will be necessary to determine if these measures reflect different network mechanisms. We propose that increased gamma burst power is the main component of increased SGA in SZ and could reflect abnormally increased plasticity in cortical circuits due to enhanced plasticity of synapses on parvalbumin-expressing inhibitory interneurons. Thus, increased gamma burst power may be involved in producing psychotic symptoms and cognitive dysfunction.
Collapse
Affiliation(s)
- Kevin M. Spencer
- Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- *Correspondence: Kevin M. Spencer,
| | - Alexander Nakhnikian
- Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Yoji Hirano
- Research Service, VA Boston Healthcare System, Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
14
|
Meram ED, Baajour S, Chowdury A, Kopchick J, Thomas P, Rajan U, Khatib D, Zajac-Benitez C, Haddad L, Amirsadri A, Stanley JA, Diwadkar VA. The topology, stability, and instability of learning-induced brain network repertoires in schizophrenia. Netw Neurosci 2023; 7:184-212. [PMID: 37333998 PMCID: PMC10270714 DOI: 10.1162/netn_a_00278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 07/21/2023] Open
Abstract
There is a paucity of graph theoretic methods applied to task-based data in schizophrenia (SCZ). Tasks are useful for modulating brain network dynamics, and topology. Understanding how changes in task conditions impact inter-group differences in topology can elucidate unstable network characteristics in SCZ. Here, in a group of patients and healthy controls (n = 59 total, 32 SCZ), we used an associative learning task with four distinct conditions (Memory Formation, Post-Encoding Consolidation, Memory Retrieval, and Post-Retrieval Consolidation) to induce network dynamics. From the acquired fMRI time series data, betweenness centrality (BC), a metric of a node's integrative value was used to summarize network topology in each condition. Patients showed (a) differences in BC across multiple nodes and conditions; (b) decreased BC in more integrative nodes, but increased BC in less integrative nodes; (c) discordant node ranks in each of the conditions; and (d) complex patterns of stability and instability of node ranks across conditions. These analyses reveal that task conditions induce highly variegated patterns of network dys-organization in SCZ. We suggest that the dys-connection syndrome that is schizophrenia, is a contextually evoked process, and that the tools of network neuroscience should be oriented toward elucidating the limits of this dys-connection.
Collapse
Affiliation(s)
- Emmanuel D. Meram
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shahira Baajour
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asadur Chowdury
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - John Kopchick
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Patricia Thomas
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Usha Rajan
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dalal Khatib
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Caroline Zajac-Benitez
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Luay Haddad
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alireza Amirsadri
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey A. Stanley
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Vaibhav A. Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
15
|
Zhu MH, Liu ZJ, Hu QY, Yang JY, Jin Y, Zhu N, Huang Y, Shi DH, Liu MJ, Tan HY, Zhao L, Lv QY, Yi ZH, Wu FC, Li ZZ. Amisulpride augmentation therapy improves cognitive performance and psychopathology in clozapine-resistant treatment-refractory schizophrenia: a 12-week randomized, double-blind, placebo-controlled trial. Mil Med Res 2022; 9:59. [PMID: 36253804 PMCID: PMC9578180 DOI: 10.1186/s40779-022-00420-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although clozapine is an effective option for treatment-resistant schizophrenia (TRS), there are still 1/3 to 1/2 of TRS patients who do not respond to clozapine. The main purpose of this randomized, double-blind, placebo-controlled trial was to explore the amisulpride augmentation efficacy on the psychopathological symptoms and cognitive function of clozapine-resistant treatment-refractory schizophrenia (CTRS) patients. METHODS A total of 80 patients were recruited and randomly assigned to receive initial clozapine plus amisulpride (amisulpride group) or clozapine plus placebo (placebo group). Positive and Negative Syndrome Scale (PANSS), Scale for the Assessment of Negative Symptoms (SANS), Clinical Global Impression (CGI) scale scores, Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Treatment Emergent Symptom Scale (TESS), laboratory measurements, and electrocardiograms (ECG) were performed at baseline, at week 6, and week 12. RESULTS Compared with the placebo group, amisulpride group had a lower PANSS total score, positive subscore, and general psychopathology subscore at week 6 and week 12 (PBonferroni < 0.01). Furthermore, compared with the placebo group, the amisulpride group showed an improved RBANS language score at week 12 (PBonferroni < 0.001). Amisulpride group had a higher treatment response rate (P = 0.04), lower scores of CGI severity and CGI efficacy at week 6 and week 12 than placebo group (PBonferroni < 0.05). There were no differences between the groups in body mass index (BMI), corrected QT (QTc) intervals, and laboratory measurements. This study demonstrates that amisulpride augmentation therapy can safely improve the psychiatric symptoms and cognitive performance of CTRS patients. CONCLUSION This study indicates that amisulpride augmentation therapy has important clinical significance for treating CTRS to improve clinical symptoms and cognitive function with tolerability and safety. Trial registration Clinicaltrials.gov identifier- NCT03652974. Registered August 31, 2018, https://clinicaltrials.gov/ct2/show/NCT03652974.
Collapse
Affiliation(s)
- Ming-Huan Zhu
- Clinical Research Center for Mental Disorders, School of Medicine, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Zhen-Jing Liu
- Qingdao Mental Health Center, Qingdao, 266034, Shandong, China
| | - Qiong-Yue Hu
- Qingdao Mental Health Center, Qingdao, 266034, Shandong, China
| | - Jia-Yu Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ying Jin
- Clinical Research Center for Mental Disorders, School of Medicine, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Na Zhu
- Clinical Research Center for Mental Disorders, School of Medicine, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Ying Huang
- Clinical Research Center for Mental Disorders, School of Medicine, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Dian-Hong Shi
- Clinical Research Center for Mental Disorders, School of Medicine, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Min-Jia Liu
- Clinical Research Center for Mental Disorders, School of Medicine, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Hong-Yang Tan
- Clinical Research Center for Mental Disorders, School of Medicine, Shanghai Pudong New Area Mental Health Center, Tongji University, Shanghai, 200124, China
| | - Lei Zhao
- Qingdao Mental Health Center, Qingdao, 266034, Shandong, China
| | - Qin-Yu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zheng-Hui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Feng-Chun Wu
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| | - Ze-Zhi Li
- Department of Psychiatry, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| |
Collapse
|
16
|
Alden EC, Smith MJ, Reilly JL, Wang L, Csernansky JG, Cobia DJ. Shape features of working memory-related deep-brain regions differentiate high and low community functioning in schizophrenia. Schizophr Res Cogn 2022; 29:100250. [PMID: 35368990 PMCID: PMC8968669 DOI: 10.1016/j.scog.2022.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 11/06/2022]
Abstract
We have previously shown that schizophrenia (SCZ) participants with high community functioning demonstrate better verbal working memory (vWM) performance relative to those with low community functioning. In the present study, we investigated whether neuroanatomical differences in regions supporting vWM also exist between schizophrenia groups that vary on community functioning. Utilizing magnetic resonance imaging, shape features of deep-brain nuclei known to be involved in vWM were calculated in samples of high functioning (HF-SCZ, n = 23) and low functioning schizophrenia participants (LF-SCZ, n = 18), as well as in a group of healthy control participants (CON, n = 45). Large deformation diffeomorphic metric mapping was employed to characterize surface anatomy of the caudate nucleus, globus pallidus, hippocampus, and thalamus. Statistical analyses involved linear mixed-effects models and vertex-wise contrast mapping to assess between-group differences in structural shape features, and Pearson correlations to evaluate relationships between shape metrics and vWM performance. We found significant between-group main effects in deep-brain surface anatomy across all structures. Post-hoc comparisons revealed HF-SCZ and LF-SCZ groups significantly differed on both caudate and hippocampal shape, however, significant correlations with vWM were only observed in hippocampal shape for both SCZ groups. Specifically, more abnormal hippocampal deformation was associated with lower vWM suggesting hippocampal shape is both a neural substrate for vWM deficits and a potential biomarker to predict or monitor the efficacy of cognitive rehabilitation. These findings add to a growing body of literature related to functional outcomes in schizophrenia by demonstrating unique shape patterns across the spectrum of community functioning in SCZ. Deep-brain abnormalities are present in patients regardless of functional severity. Caudate and hippocampal shape differ between community functioning-based groups. Verbal working memory relates to hippocampal shape in both patient groups.
Collapse
Affiliation(s)
- Eva C Alden
- Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, 710 N Lake Shore Drive, Chicago, IL 60611, USA.,Division of Neurocognitive Disorders, Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN 55904, USA
| | - Matthew J Smith
- School of Social Work, University of Michigan, 1080 South University Avenue, Ann Arbor, MI, USA
| | - James L Reilly
- Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, 710 N Lake Shore Drive, Chicago, IL 60611, USA
| | - Lei Wang
- Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, 710 N Lake Shore Drive, Chicago, IL 60611, USA.,Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John G Csernansky
- Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, 710 N Lake Shore Drive, Chicago, IL 60611, USA
| | - Derin J Cobia
- Northwestern University Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, 710 N Lake Shore Drive, Chicago, IL 60611, USA.,Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, USA
| |
Collapse
|
17
|
Disruptions in white matter microstructure associated with impaired visual associative memory in schizophrenia-spectrum illness. Eur Arch Psychiatry Clin Neurosci 2022; 272:971-983. [PMID: 34557990 DOI: 10.1007/s00406-021-01333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Episodic memory ability relies on hippocampal-prefrontal connectivity. However, few studies have examined relationships between memory performance and white matter (WM) microstructure in hippocampal-prefrontal pathways in schizophrenia-spectrum disorder (SSDs). Here, we investigated these relationships in individuals with first-episode psychosis (FEP) and chronic schizophrenia-spectrum disorders (SSDs) using tractography analysis designed to interrogate the microstructure of WM tracts in the hippocampal-prefrontal pathway. Measures of WM microstructure (fractional anisotropy [FA], radial diffusivity [RD], and axial diffusivity [AD]) were obtained for 47 individuals with chronic SSDs, 28 FEP individuals, 52 older healthy controls, and 27 younger healthy controls. Tractography analysis was performed between the hippocampus and three targets involved in hippocampal-prefrontal connectivity (thalamus, amygdala, nucleus accumbens). Measures of WM microstructure were then examined in relation to episodic memory performance separately across each group. Both those with FEP and chronic SSDs demonstrated impaired episodic memory performance. However, abnormal WM microstructure was only observed in individuals with chronic SSDs. Abnormal WM microstructure in the hippocampal-thalamic pathway in the right hemisphere was associated with poorer memory performance in individuals with chronic SSDs. These findings suggest that disruptions in WM microstructure in the hippocampal-prefrontal pathway may contribute to memory impairments in individuals with chronic SSDs but not FEP.
Collapse
|
18
|
Sarpal DK, Tarcijonas G, Calabro FJ, Foran W, Haas GL, Luna B, Murty VP. Context-specific abnormalities of the central executive network in first-episode psychosis: relationship with cognition. Psychol Med 2022; 52:2299-2308. [PMID: 33222723 PMCID: PMC9805803 DOI: 10.1017/s0033291720004201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cognitive impairments, which contribute to the profound functional deficits observed in psychotic disorders, have found to be associated with abnormalities in trial-level cognitive control. However, neural tasks operate within the context of sustained cognitive states, which can be assessed with 'background connectivity' following the removal of task effects. To date, little is known about the integrity of brain processes supporting the maintenance of a cognitive state in individuals with psychotic disorders. Thus, here we examine background connectivity during executive processing in a cohort of participants with first-episode psychosis (FEP). METHODS The following fMRI study examined background connectivity of the dorsolateral prefrontal cortex (DLPFC), during working memory engagement in a group of 43 patients with FEP, relative to 35 healthy controls (HC). Findings were also examined in relation to measures of executive function. RESULTS The FEP group relative to HC showed significantly lower background DLPFC connectivity with bilateral superior parietal lobule (SPL) and left inferior parietal lobule. Background connectivity between DLPFC and SPL was also positively associated with overall cognition across all subjects and in our FEP group. In comparison, resting-state frontoparietal connectivity did not differ between groups and was not significantly associated with overall cognition, suggesting that psychosis-related alterations in executive networks only emerged during states of goal-oriented behavior. CONCLUSIONS These results provide novel evidence indicating while frontoparietal connectivity at rest appears intact in psychosis, when engaged during a cognitive state, it is impaired possibly undermining cognitive control capacities in FEP.
Collapse
Affiliation(s)
- Deepak K. Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Goda Tarcijonas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gretchen L. Haas
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishnu P. Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
20
|
Behdani F, Hassanzadeh B, Eslamzadeh M, Moradi M, Hebrani P, Dadgarmoghaddam M, Shamsaki N. Can levetiracetam improve clinical symptoms in schizophrenic patients? A randomized placebo-controlled clinical trial. Int Clin Psychopharmacol 2022; 37:159-165. [PMID: 35661659 DOI: 10.1097/yic.0000000000000405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Schizophrenia is associated with persistent cognitive deficits, which worsen treatment outcomes despite increasing antipsychotic doses. This study aimed to assess the effect of levetiracetam on the severity of schizophrenia symptoms and cognitive deficits in these patients. MATERIALS AND METHODS In this randomized, controlled, three-blind randomized clinical trial approved by Mashhad University of Medical Sciences, Iran (IRCT20101130005280N31), forty chronic schizophrenic patients aged 18-60 years were randomly divided into two groups of levetiracetam and placebo. The levetiracetam group received levetiracetam for 8 weeks. The symptoms were evaluated by Positive and Negative Symptoms Scale (PANSS), Stroop test, Digit Span test and Wisconsin Test at baseline, 4th week, and 8th week. Data were analyzed through SPSS V. 23 software, descriptive tests and inferential statistics. RESULTS At the end of the study, all subscales of the PANSS questionnaire reduced significantly (P < 0.05). Also, all subscales of the cognitive tests had significant changes. The trends of digit span tests, correct number of consonants and inconsonant were increasing. While the trends related to consonant errors, inconsistent errors, consistent reaction time and nonconsistent reaction time were decreasing. The changes in the number of classes were increased while changes in preservation error were decreased. CONCLUSION The results showed that levetiracetam has significant effects on clinical symptoms, especially negative symptoms. Also, it impacts significantly on cognitive functions. It is recommended that it be added to the pharmacological regimen of these patients to improve their clinical symptoms, quality of life and treatment outcomes.
Collapse
Affiliation(s)
- Fatemeh Behdani
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences
| | - Behnaz Hassanzadeh
- Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Eslamzadeh
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences
| | - Marjan Moradi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences
| | - Paria Hebrani
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences
| | | | - Negar Shamsaki
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences
| |
Collapse
|
21
|
Structural and Functional Deviations of the Hippocampus in Schizophrenia and Schizophrenia Animal Models. Int J Mol Sci 2022; 23:ijms23105482. [PMID: 35628292 PMCID: PMC9143100 DOI: 10.3390/ijms23105482] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a grave neuropsychiatric disease which frequently onsets between the end of adolescence and the beginning of adulthood. It is characterized by a variety of neuropsychiatric abnormalities which are categorized into positive, negative and cognitive symptoms. Most therapeutical strategies address the positive symptoms by antagonizing D2-dopamine-receptors (DR). However, negative and cognitive symptoms persist and highly impair the life quality of patients due to their disabling effects. Interestingly, hippocampal deviations are a hallmark of schizophrenia and can be observed in early as well as advanced phases of the disease progression. These alterations are commonly accompanied by a rise in neuronal activity. Therefore, hippocampal formation plays an important role in the manifestation of schizophrenia. Furthermore, studies with animal models revealed a link between environmental risk factors and morphological as well as electrophysiological abnormalities in the hippocampus. Here, we review recent findings on structural and functional hippocampal abnormalities in schizophrenic patients and in schizophrenia animal models, and we give an overview on current experimental approaches that especially target the hippocampus. A better understanding of hippocampal aberrations in schizophrenia might clarify their impact on the manifestation and on the outcome of this severe disease.
Collapse
|
22
|
The Interplay between Vitamin D, Exposure of Anticholinergic Antipsychotics and Cognition in Schizophrenia. Biomedicines 2022; 10:biomedicines10051096. [PMID: 35625833 PMCID: PMC9138360 DOI: 10.3390/biomedicines10051096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/21/2023] Open
Abstract
Vitamin D deficiency is a frequent finding in schizophrenia and may contribute to neurocognitive dysfunction, a core element of the disease. However, there is limited knowledge about the neuropsychological profile of vitamin D deficiency-related cognitive deficits and their underlying molecular mechanisms. As an inductor of cytochrome P450 3A4, a lack of vitamin D might aggravate cognitive deficits by increased exposure to anticholinergic antipsychotics. This cross-sectional study aims to assess the relationship between 25-OH-vitamin D-serum concentrations, anticholinergic drug exposure and neurocognitive functioning (Brief Assessment of Cognition in Schizophrenia, BACS, and Trail Making Test, TMT) in 141 patients with schizophrenia. The anticholinergic drug exposure was estimated by adjusting the concentration of each drug for its individual muscarinic receptor affinity. Using regression analysis, we observed a positive relationship between vitamin D levels and processing speed (TMT-A and BACS Symbol Coding) as well as executive functioning (TMT-B and BACS Tower of London). Moreover, a negative impact of vitamin D on anticholinergic drug exposure emerged, but the latter did not significantly affect cognition. When other cognitive items were included as regressors, the impact of vitamin D remained only significant for the TMT-A. Among the different cognitive impairments in schizophrenia, vitamin D deficiency may most directly affect processing speed, which in turn may aggravate deficits in executive functioning. This finding is not explained by a cytochrome P450-mediated increased exposure to anticholinergic antipsychotics.
Collapse
|
23
|
Sedky AA, Raafat MH, Hamam GG, Sedky KA, Magdy Y. Effects of tamoxifen alone and in combination with risperidone on hyperlocomotion, hippocampal structure and bone in ketamine-induced model of psychosis in rats. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background and aim of the work
Protein kinase C activation with subsequent increase in oxidative stress (OXS) and reduction in brain derived neurotrophic factor (BDNF) are implicated in the pathophysiology of psychotic disorders and in osteoporosis. Accordingly PKC inhibitors such as tamoxifen could be a novel approach to psychotic illness and may reduce progression of osteoporosis. Since current antipsychotics such as risperidone have inconsistent effects on OXS and BDNF, combination with tamoxifen could be beneficial. Accordingly in this work, tamoxifen was used to investigate the impact of changes in OXS and BDNF on behavioral, hippocampus structural changes in a ketamine induced model of psychosis in rats. The impact of tamoxifen on the antipsychotic effects of risperidone and on its bone damaging effects was also determined.
Ketamine was chosen, because it is a valid model of psychosis. Hippocampus was chosen, since hippocampal overactivity is known to correlate with the severity of symptoms in psychosis. Hippocampal overactivity contributes to hyperdopaminergic state in ventral tegmental area and increase in DA release in nucleus accumbens, these are responsible for positive symptoms of schizophrenia and hyperlocomotion in rodents. Hyperlocomotion is considered a corelate of positive symptoms of psychotic illness in rodents and is considered primary outcome to assess manic-like behavior.
Methods
Rats were divided into seven groups (ten rats each (1) non-ketamine control and (2) ketamine treated groups (a ketamine control, b risperidone/ketamine, c tamoxifen/ketamine, d Risp/Tamox/ketamine risperidone, tamoxifen/risperidone) to test if TAM exhibited behavioral changes or potentiated those of risperidone); (e clomiphene/ketamine and f clomiphene/risperidone/ketamine) to verify that estrogen receptor modulators do not exhibit behavioral changes or potentiates those of risperidone. In addition, thus, the effects of tamoxifen are not due to estrogen effects but rather due to protein kinase c inhibition. Drugs were given for 4 weeks and ketamine was given daily in the last week. Effects of drugs on ketamine-induced hyperlocomotion (open field test) and hippocampus and bone biochemical (MDA, GSH, BDNF) and histological changes (Nissel granules, GFAP positive astrocytes in hippocampus were determined).
Electron microscopy scanning of the femur bone was done. Histomorphometric parameters measuring the: 1. Trabecular bone thickness and 2. The trabecular bone volume percentage.
Results
Tamoxifen reduced hyperlocomotion, and improved hippocampus structure in ketamine-treated rats, by reducing OXS (reduced malondialdehyde and increased glutathione) and increasing BDNF. These effects might be related to (PKC) inhibition, rather than estrogen modulation, since the anti-estrogenic drug clomiphene had no effect on hyperlocomotion. Tamoxifen enhanced the beneficial effects of risperidone on hippocampal OXS and BDNF, augmenting its effectiveness on hyperlocomotion and hippocampal structure. It also reduced risperidone-induced OXS and the associated bone damage.
Conclusions
PKC inhibitors, particularly tamoxifen, might be potential adjuncts to antipsychotics, by reducing OXS and increasing BDNF increasing their effectiveness while reducing their bone damaging effects.
Collapse
|
24
|
Huang Y, Wang W, Hei G, Yang Y, Long Y, Wang X, Xiao J, Xu X, Song X, Gao S, Shao T, Huang J, Wang Y, Zhao J, Wu R. Altered regional homogeneity and cognitive impairments in first-episode schizophrenia: A resting-state fMRI study. Asian J Psychiatr 2022; 71:103055. [PMID: 35303593 DOI: 10.1016/j.ajp.2022.103055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/11/2022] [Accepted: 02/27/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Patients with schizophrenia consistently present pervasive cognitive deficits, but the neurobiological mechanism of cognitive impairments remains unclear. By analyzing regional homogeneity (ReHo) of resting-state functional Magnetic Resonance Imaging, this study aimed to explore the association between brain functional alterations and cognitive deficits in first-episode schizophrenia (FES) with a relatively large sample. METHODS A total of 187 patients with FES and 100 healthy controls from 3 independent cohorts underwent resting-state functional magnetic resonance scans. The MATRICS Consensus Cognitive Battery (MCCB) was used to assess cognitive function. Partial correlation analysis was performed between abnormal ReHo values and the severity of symptoms and cognitive deficits. RESULTS Compared with healthy controls, ReHo values increased in right superior frontal cortex and decreased in right anterior cingulate cortex (ACC), left middle occipital gyrus (MOG), left cuneus, right posterior cingulate cortex (PCC), and right superior occipital gyrus in schizophrenia patients. ReHo values in ACC, PCC and superior occipital gyrus were correlated with PANSS scores. In addition, ReHo values in ACC and MOG were negatively correlated with working memory; left cuneus was positively correlated with multiple cognitive domains (speed of processing, attention/vigilance and social cognition); PCC was positively correlated with verbal learning; right superior occipital gyrus was positively correlated with speed of processing and social cognition. CONCLUSION In conclusion, we found widespread ReHo alterations and cognitive dysfunction in FES. And the pathophysiology mechanism of a wide range of cognitive deficits may be related to abnormal spontaneous brain activity.
Collapse
Affiliation(s)
- Yuyan Huang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Weiyan Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Gangrui Hei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Ye Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yujun Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiaoyi Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingmei Xiao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xijia Xu
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Xueqin Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Shuzhan Gao
- Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Tiannan Shao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jing Huang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Ying Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Renrong Wu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
25
|
Pillny M, Krkovic K, Buck L, Lincoln TM. From Memories of Past Experiences to Present Motivation? A Meta-analysis on the Association Between Episodic Memory and Negative Symptoms in People With Psychosis. Schizophr Bull 2022; 48:307-324. [PMID: 34635918 PMCID: PMC8886596 DOI: 10.1093/schbul/sbab120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Based on findings from cognitive science, it has been theorized that the reductions in motivation and goal-directed behavior in people with psychosis could stem from impaired episodic memory. In the current meta-analysis, we investigated this putative functional link between episodic memory deficits and negative symptoms. We hypothesized that episodic memory deficits in psychosis would be related to negative symptoms in general but would be more strongly related to amotivation than to reduced expressivity. We included 103 eligible studies (13,622 participants) in the analyses. Results revealed significant, moderate negative associations of episodic memory with negative symptoms in general (k = 103; r = -.23; z = -13.40; P ≤ .001; 95% CI [-.26; -.20]), with amotivation (k = 16; r = -.18; z = -6.6; P ≤ .001; 95% CI [-.23; -.13]) and with reduced expressivity (k = 15; r = -.18; z = -3.30; P ≤.001; 95% CI[-.29; -.07]). These associations were not moderated by sociodemographic characteristics, positive symptoms, depression, antipsychotic medication or type of negative symptom scale. Although these findings provide sound evidence for the association between episodic memory deficits and amotivation, the rather small magnitude and the unspecific pattern of this relationship also indicate that episodic memory deficits are unlikely to be the only factor relevant to amotivation. This implicates that future research should investigate episodic memory in conjunction with other factors that could account for the association of episodic memory deficits and amotivation in psychosis.
Collapse
Affiliation(s)
- Matthias Pillny
- Clinical Psychology and Psychotherapy, Universität Hamburg, Hamburg, Germany
| | - Katarina Krkovic
- Clinical Psychology and Psychotherapy, Universität Hamburg, Hamburg, Germany
| | - Laura Buck
- Clinical Psychology and Psychotherapy, Universität Hamburg, Hamburg, Germany
| | - Tania M Lincoln
- Clinical Psychology and Psychotherapy, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
26
|
Rao S, Tian L, Cao H, Baranova A, Zhang F. Involvement of the long intergenic non-coding RNA LINC00461 in schizophrenia. BMC Psychiatry 2022; 22:59. [PMID: 35081922 PMCID: PMC8790831 DOI: 10.1186/s12888-022-03718-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE LINC00461 is a highly conserved intergenic non-protein coding RNA that was implicated in schizophrenia at the genome-wide level. We aim to explore potential mechanisms underlying the involvement of LINC00461 in schizophrenia. METHODS We performed a meta-analysis to investigate the association of LINC00461 rs410216 with schizophrenia, and evaluate the effects of the rs410216 on hippocampal volume and function using the functional magnetic resonance imaging (fMRI) analysis. We utilized the GTEx dataset to profile the expression distribution of LINC00461 across different brain regions, and to investigate the potential impact of the risk SNPs on the expression of LINC00461 and other nearby genes. We compared blood expression levels of LINC00461 between schizophrenia patients and controls. RESULTS Here we show that single-nucleotide polymorphisms (SNPs) located in regulatory elements spanning the LINC00461 region are significantly associated with schizophrenia (index SNP rs410216, Pmeta = 1.43E-05); subjects carrying the risk allele of rs410216 showed decreased hippocampal volume. However, no significant association of the rs410216 variant with hippocampal activation was observed. Moreover, the expression level of LINC00461 mRNA was significantly lower in first-onset schizophrenia patients, and the risk allele also predicts a lower transcriptional level of LINC00461 in the hippocampus. CONCLUSION Together, these convergent lines of evidence implicate inadequate LINC00461 expression in the hippocampus in the development of schizophrenia, providing novel insight into the genetic architecture and biological etiology of schizophrenia.
Collapse
Affiliation(s)
- Shuquan Rao
- grid.461843.cState Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Lin Tian
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Hongbao Cao
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA
| | - Ancha Baranova
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA ,grid.415876.9Research Centre for Medical Genetics, Moscow, 115478 Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
27
|
Lang X, Wang D, Chen D, Xiu M, Zhou H, Wang L, Cao B, Zhang X. Association Between Hippocampal Subfields and Clinical Symptoms of First-Episode and Drug Naive Schizophrenia Patients During 12 Weeks of Risperidone Treatment. Neurotherapeutics 2022; 19:399-407. [PMID: 35099766 PMCID: PMC9130442 DOI: 10.1007/s13311-021-01174-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Small hippocampal size may be implicated in the pathogenesis and psychopathology of schizophrenia (SCZ). However, does the volume of hippocampal subfields in SCZ patients affect response to antipsychotic treatment? In this study, we used risperidone to treat first-episode drug naïve (FEDN) SCZ patients for 12 weeks, and then explored the relationship between baseline hippocampal subfield volumes, as well as any changes in these hippocampal subfield volumes during treatment, and improvement in their psychopathological symptoms. By adopting a state-of the-art automated algorithm, the hippocampal subfields were segmented in 43 FEDN SCZ inpatients at baseline and after 12 weeks of risperidone monotherapy, as well as in 30 matched healthy controls. We adopted the Positive and Negative Syndrome Scale (PANSS) to assess psychopathological symptoms in patients at baseline and at post-treatment. Before treatment, SCZ patients had no significant differences in total or subfield hippocampal volumes compared with healthy volunteers. However, we found a significant correlation between a smaller left CA1 at baseline and a lower PANSS total score and general psychopathology sub-score at post-treatment (both p < 0.05). Furthermore, the left CA1 at baseline was significantly smaller in responders, who had >50% improvement in PANSS total score, than in non-responders (p < 0.05). Our results suggest that smaller left CA1 volume may be a predicator for improvement in psychotic symptoms of FEDN SCZ patients.
Collapse
Affiliation(s)
- Xiaoe Lang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Dongmei Wang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Huixia Zhou
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada.
| | - Xiangyang Zhang
- Institute of Psychology, Key Laboratory of Mental Health, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Veselinović T, Neuner I. Progress and Pitfalls in Developing Agents to Treat Neurocognitive Deficits Associated with Schizophrenia. CNS Drugs 2022; 36:819-858. [PMID: 35831706 PMCID: PMC9345797 DOI: 10.1007/s40263-022-00935-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 12/11/2022]
Abstract
Cognitive impairments associated with schizophrenia (CIAS) represent a central element of the symptomatology of this severe mental disorder. CIAS substantially determine the disease prognosis and hardly, if at all, respond to treatment with currently available antipsychotics. Remarkably, all drugs presently approved for the treatment of schizophrenia are, to varying degrees, dopamine D2/D3 receptor blockers. In turn, rapidly growing evidence suggests the immense significance of systems other than the dopaminergic system in the genesis of CIAS. Accordingly, current efforts addressing the unmet needs of patients with schizophrenia are primarily based on interventions in other non-dopaminergic systems. In this review article, we provide a brief overview of the available evidence on the importance of specific systems in the development of CIAS. In addition, we describe the promising targets for the development of new drugs that have been used so far. In doing so, we present the most important candidates that have been investigated in the field of the specific systems in recent years and present a summary of the results available at the time of drafting this review (May 2022), as well as the currently ongoing studies.
Collapse
Affiliation(s)
- Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany.
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA-BRAIN, Aachen, Germany
| |
Collapse
|
29
|
Hippocampal Disinhibition Reduces Contextual and Elemental Fear Conditioning While Sparing the Acquisition of Latent Inhibition. eNeuro 2022; 9:ENEURO.0270-21.2021. [PMID: 34980662 PMCID: PMC8805190 DOI: 10.1523/eneuro.0270-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Hippocampal neural disinhibition, i.e., reduced GABAergic inhibition, is a key feature of schizophrenia pathophysiology. The hippocampus is an important part of the neural circuitry that controls fear conditioning and can also modulate prefrontal and striatal mechanisms, including dopamine signaling, which play a role in salience modulation. Consequently, hippocampal neural disinhibition may contribute to impairments in fear conditioning and salience modulation reported in schizophrenia. Therefore, we examined the effect of ventral hippocampus (VH) disinhibition in male rats on fear conditioning and salience modulation, as reflected by latent inhibition (LI), in a conditioned emotional response (CER) procedure. A flashing light was used as the conditioned stimulus (CS), and conditioned suppression was used to index conditioned fear. In experiment 1, VH disinhibition via infusion of the GABA-A receptor antagonist picrotoxin before CS pre-exposure and conditioning markedly reduced fear conditioning to both the CS and context; LI was evident in saline-infused controls but could not be detected in picrotoxin-infused rats because of the low level of fear conditioning to the CS. In experiment 2, VH picrotoxin infusions only before CS pre-exposure did not affect the acquisition of fear conditioning or LI. Together, these findings indicate that VH neural disinhibition disrupts contextual and elemental fear conditioning, without affecting the acquisition of LI. The disruption of fear conditioning resembles aversive conditioning deficits reported in schizophrenia and may reflect a disruption of neural processing both within the hippocampus and in projection sites of the hippocampus.
Collapse
|
30
|
Lee D, Seo J, Jeong HC, Lee H, Lee SB. The Perspectives of Early Diagnosis of Schizophrenia Through the Detection of Epigenomics-Based Biomarkers in iPSC-Derived Neurons. Front Mol Neurosci 2021; 14:756613. [PMID: 34867186 PMCID: PMC8633873 DOI: 10.3389/fnmol.2021.756613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
The lack of early diagnostic biomarkers for schizophrenia greatly limits treatment options that deliver therapeutic agents to affected cells at a timely manner. While previous schizophrenia biomarker research has identified various biological signals that are correlated with certain diseases, their reliability and practicality as an early diagnostic tool remains unclear. In this article, we discuss the use of atypical epigenetic and/or consequent transcriptional alterations (ETAs) as biomarkers of early-stage schizophrenia. Furthermore, we review the viability of discovering and applying these biomarkers through the use of cutting-edge technologies such as human induced pluripotent stem cell (iPSC)-derived neurons, brain models, and single-cell level analyses.
Collapse
Affiliation(s)
- Davin Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hae Chan Jeong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Hyosang Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
31
|
Geerts H, Roberts P, Spiros A. Exploring the relation between BOLD fMRI and cognitive performance using a computer-based quantitative systems pharmacology model: Applications to the COMTVAL158MET genotype and ketamine. Eur Neuropsychopharmacol 2021; 50:12-22. [PMID: 33951587 DOI: 10.1016/j.euroneuro.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
BOLD fMRI is increasingly used mostly in an observational way to probe the effect of genotypes or therapeutic intervention in normal and diseased subjects. We use a mechanism-based quantitative systems pharmacology computer model of a human cortical microcircuit, previously calibrated for the 2-back working memory paradigm, adding established biophysical principles, of glucose metabolism, oxygen consumption, neurovascular effects and the paramagnetic impact on blood oxygen levels to calculate a readout for the voxel-based BOLD fMRI signal. The objective was to study the effect of the Catechol-O-methyl Transferase Val158Met (COMT) genotype on performance and BOLD fMRI. While the simulation suggests that on average virtual COMTVV genotype subjects perform worse, subjects with lower GABA, lower 5-HT3 and higher 5-HT1A activation can improve cognitive performance to the level of COMTMM subjects but at the expense of higher BOLD fMRI signal. In a schizophrenia condition, increased NMDA, GABA tone and noise levels, and lower D1R activity can improve cognitive outcome with greater BOLD fMRI signal in COMT Val-carriers. We further generate hypotheses about why ketamine in healthy controls increases the BOLD fMRI signal but reduces cognitive performance. These simulations suggest a strong non-linear relationship between BOLD fMRI signal and cognitive performance. When validated, this mechanistic approach can be useful for moving beyond the descriptive nature of BOLD fMRI imaging and supporting the proper interpretation of imaging biomarkers in CNS disorders.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Hugo Geerts, 686 Westwind Dr, Berwyn, PA 19312, United States.
| | - Patrick Roberts
- In Silico Biosciences, Hugo Geerts, 686 Westwind Dr, Berwyn, PA 19312, United States
| | - Athan Spiros
- In Silico Biosciences, Hugo Geerts, 686 Westwind Dr, Berwyn, PA 19312, United States
| |
Collapse
|
32
|
Modeling intrahippocampal effects of anterior hippocampal hyperactivity relevant to schizophrenia using chemogenetic excitation of long axis-projecting mossy cells in the mouse dentate gyrus. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:101-111. [PMID: 34414387 PMCID: PMC8372626 DOI: 10.1016/j.bpsgos.2021.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The anterior hippocampus of individuals with early psychosis or schizophrenia is hyperactive, as is the ventral hippocampus in many rodent models for schizophrenia risk. Mossy cells (MCs) of the ventral dentate gyrus (DG) densely project in the hippocampal long axis, targeting both dorsal DG granule cells and inhibitory interneurons. MCs are responsive to stimulation throughout hippocampal subfields and thus may be suited to detect hyperactivity in areas where it originates such as CA1. Here, we tested the hypothesis that hyperactivation of ventral MCs activates dorsal DG granule cells to influence dorsal hippocampal function. Methods In CD-1 mice, we targeted dorsal DG-projecting ventral MCs using an adeno-associated virus intersectional strategy. In vivo fiber photometry recording of ventral MCs was performed during exploratory behaviors. We used excitatory chemogenetic constructs to test the effects of ventral MC hyperactivation on long-term spatial memory during an object location memory task. Results Photometry revealed that ventral MCs were activated during exploratory rearing. Ventral MCs made functional monosynaptic inputs to dorsal DG granule cells, and chemogenetic activation of ventral MCs modestly increased activity of dorsal DG granule cells measured by c-Fos. Finally, chemogenetic activation of ventral MCs during the training phase of an object location memory task impaired test performance 24 hours later, without effects on locomotion or object exploration. Conclusions These data suggest that ventral MC activation can directly excite dorsal granule cells and interfere with dorsal DG function, supporting future study of their in vivo activity in animal models for schizophrenia featuring ventral hyperactivity.
Collapse
|
33
|
Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging Biomarkers in Schizophrenia. Am J Psychiatry 2021; 178:509-521. [PMID: 33397140 PMCID: PMC8222104 DOI: 10.1176/appi.ajp.2020.20030340] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a complex neuropsychiatric syndrome with a heterogeneous genetic, neurobiological, and phenotypic profile. Currently, no objective biological measures-that is, biomarkers-are available to inform diagnostic or treatment decisions. Neuroimaging is well positioned for biomarker development in schizophrenia, as it may capture phenotypic variations in molecular and cellular disease targets, or in brain circuits. These mechanistically based biomarkers may represent a direct measure of the pathophysiological underpinnings of the disease process and thus could serve as true intermediate or surrogate endpoints. Effective biomarkers could validate new treatment targets or pathways, predict response, aid in selection of patients for therapy, determine treatment regimens, and provide a rationale for personalized treatments. In this review, the authors discuss a range of mechanistically plausible neuroimaging biomarker candidates, including dopamine hyperactivity, N-methyl-d-aspartate receptor hypofunction, hippocampal hyperactivity, immune dysregulation, dysconnectivity, and cortical gray matter volume loss. They then focus on the putative neuroimaging biomarkers for disease risk, diagnosis, target engagement, and treatment response in schizophrenia. Finally, they highlight areas of unmet need and discuss strategies to advance biomarker development.
Collapse
Affiliation(s)
- Nina V. Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL,Corresponding Author: Nina Vanessa Kraguljac, MD, Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, SC 501, 1720 7th Ave S, Birmingham, AL 35294-0017, 205-996-7171,
| | - William M. McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN
| | - Carolyn I. Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA
| | - Mauricio Tohen
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Charles B. Nemeroff
- Department of Psychiatry, University of Texas Dell Medical School, Austin, TX
| |
Collapse
|
34
|
Zhang Y, Liao J, Li Q, Zhang X, Liu L, Yan J, Zhang D, Yan H, Yue W. Altered Resting-State Brain Activity in Schizophrenia and Obsessive-Compulsive Disorder Compared With Non-psychiatric Controls: Commonalities and Distinctions Across Disorders. Front Psychiatry 2021; 12:681701. [PMID: 34093290 PMCID: PMC8176119 DOI: 10.3389/fpsyt.2021.681701] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022] Open
Abstract
Backgrounds: Schizophrenia (SCZ) and obsessive-compulsive disorder (OCD) are classified as two chronic psychiatric disorders with high comorbidity rate and shared clinical symptoms. Abnormal spontaneous brain activity within the cortical-striatal neural circuits has been observed in both disorders. However, it is unclear if the common or distinct neural abnormalities underlie the neurobiological substrates in the resting state. Methods: Resting-state fMRI data were collected from 88 patients with SCZ, 58 patients with OCD, and 72 healthy control subjects. First, we examined differences in amplitude of low-frequency fluctuations (ALFF) among three groups. Resting-state functional connectivity (rsFC) analysis with the brain region that showed different ALFF as the seed was then conducted to identify the changes in brain networks. Finally, we examined the correlation between the altered activities and clinical symptoms. Results: Both the patients with SCZ and OCD showed increased ALFF in the right hippocampus and decreased ALFF in the left posterior cingulate cortex (PCC). SCZ patients exhibited increased ALFF in the left caudate [voxel-level family-wise error (FWE) P < 0.05] and decreased rsFC between the left caudate and right cerebellum, which correlated with positive symptoms. The left caudate showed increased rsFC with the right thalamus and bilateral supplementary motor complex (SMC) in OCD patients (cluster-level FWE P < 0.05). Conclusions: The hippocampus and PCC are common regions presenting abnormal local spontaneous neuronal activities in both SCZ and OCD, while the abnormality of the striatum can reflect the differences. Increased ALFF in the striatum and symptom-related weakened rsFC between the caudate and cerebellum showed SCZ specificity. Enhanced rsFC between the caudate and SMC may be a key characteristic in OCD. Our research shows the similarities and differences between the two diseases from the perspective of resting-state fMRI, which provides clues to understand the disease and find methods for treatment.
Collapse
Affiliation(s)
- Yuyanan Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Jinmin Liao
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Qianqian Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Xiao Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Lijun Liu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Jun Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Hao Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health & National Clinical Research Center for Mental Disorders, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder (2018RU006), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
35
|
Sedky AA, Magdy Y. Reduction in TNF alpha and oxidative stress by liraglutide: Impact on ketamine-induced cognitive dysfunction and hyperlocomotion in rats. Life Sci 2021; 278:119523. [PMID: 33891942 DOI: 10.1016/j.lfs.2021.119523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/04/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Diabetes and psychotic disorders are occasionally comorbid. Possible pathophysiologies linking these disorders include inflammation and oxidative stress. Glucagon like peptide-1 (GLP-1) agonists modulate glucose metabolism and may exert neuroprotective effects via central GLP-1 receptors. AIM OF THE WORK To explore the effects of GLP-1 agonist, liraglutide, on ketamine-induced hyper-locomotion and cognitive dysfunction and the associated inflammation and oxidative stress in normoglycemic and diabetic rats. METHODS Rats were divided into: Chow fed (non-diabetic) and high fat diet fed/STZ (diabetic) groups: I. non-diabetic/control, non-diabetic/liraglutide, non-diabetic/ketamine, non-diabetic/ketamine/liraglutide groups. II. diabetic/control, diabetic/liraglutide, diabetic/ketamine and diabetic/ketamine/liraglutide groups. Hyperlocomotion and cognitive dysfunction were assessed using open field and water maze tests. Biochemical parameters were measured in serum and hippocampus. RESULTS Ketamine induced hyperlocomotion and cognitive dysfunction, with hippocampal histopathological changes. Increase in tumour necrosis factor (TNF)-alpha and oxidative stress and reduction in brain-derived neurotrophic factor (BDNF) were noted. These changes were augmented in diabetic compared to non-diabetic rats. Liraglutide significantly improved hyperlocomotion, and cognitive dysfunction and hippocampal histopathological changes in non-diabetic and diabetic rats. Improvement in glucose homeostasis, reduction in TNF alpha and malondialdehyde, and increase in glutathione and BDNF were observed in serum and hippocampus. CONCLUSION Beneficial effects of liraglutide on ketamine-induced hyperlocomotion and cognitive dysfunction are associated with reduction in TNF alpha and oxidative stress. Since effects of liraglutide occurred in diabetic and non-diabetic rats, glycemic and non-glycemic effects (via central GLP-1 receptors) might be involved. Targeting oxidative stress and inflammation by GLP-1 agonists, may be a promising approach in psychotic patients with diabetes.
Collapse
Affiliation(s)
| | - Yosra Magdy
- Department of Pharmacology, Ain Shams University, Cairo, Egypt
| |
Collapse
|
36
|
Influence of cytochrome P450 2D6 polymorphism on hippocampal white matter and treatment response in schizophrenia. NPJ SCHIZOPHRENIA 2021; 7:5. [PMID: 33514751 PMCID: PMC7846743 DOI: 10.1038/s41537-020-00134-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is expressed at high levels in the brain and plays a considerable role in the biotransformation and neurotransmission of dopamine. This raises the question of whether CYP2D6 variations and its impact on the brain can confer susceptibility to schizophrenia. We investigated the possible links among the CYP2D6 genotype, white matter (WM) integrity of the hippocampus, and the treatment response to antipsychotic drugs in Korean patients with schizophrenia (n = 106). Brain magnetic resonance imaging and genotyping for CYP2D6 were conducted at baseline. The severity of clinical symptoms and the treatment response were assessed using the Positive and Negative Syndrome Scale (PANSS). After genotyping, 43 participants were classified as intermediate metabolizers (IM), and the remainder (n = 63) were classified as extensive metabolizers (EM). IM participants showed significantly higher fractional anisotropy (FA) values in the right hippocampus compared to EM participants. Radial diffusivity (RD) values were significantly lower in the overlapping region of the right hippocampus in the IM group than in the EM group. After 4 weeks of antipsychotic treatment, the EM group showed more improvements in positive symptoms than the IM group. FAs and RDs in the CYP2D6-associated hippocampal WM region were significantly correlated with a reduction in the positive symptom subscale of the PANSS. Greater improvements in positive symptoms were negatively associated with FAs, and positively associated with RDs in the right hippocampal region. The findings suggest that CYP26D-associated hippocampal WM alterations could be a possible endophenotype for schizophrenia that accounts for individual differences in clinical features and treatment responses.
Collapse
|
37
|
Hu N, Luo C, Zhang W, Yang X, Xiao Y, Sweeney JA, Lui S, Gong Q. Hippocampal subfield alterations in schizophrenia: A selective review of structural MRI studies. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
38
|
Koh MT, Gallagher M. Using internal memory representations in associative learning to study hallucination-like phenomenon. Neurobiol Learn Mem 2020; 175:107319. [PMID: 33010386 PMCID: PMC7655598 DOI: 10.1016/j.nlm.2020.107319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/23/2022]
Abstract
Studies of Pavlovian conditioning have enriched our understanding of how relations among events can adaptively guide behavior through the formation and use of internal mental representations. In this review, we illustrate how internal representations flexibly integrate new updated information in reinforcer revaluation to influence relationships to impact actions and outcomes. We highlight representation-mediated learning to show the similarities in properties and functions between internally generated and directly activated representations, and how normal perception of internal representations could contribute to hallucinations. Converging evidence emerges from recent behavioral and neural activation studies using animal models of schizophrenia as well as clinical studies in patients to support increased tendencies in these populations to evoke internal representations from prior associative experience that approximate hallucination-like percepts. The heightened propensity is dependent on dopaminergic activation which is known to be sensitive to hippocampal overexcitability, a condition that has been observed in patients with psychosis. This presents a network that overlaps with cognitive neural circuits and offers a fresh approach for the development of therapeutic interventions targeting psychosis.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA.
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
39
|
Kätzel D, Wolff AR, Bygrave AM, Bannerman DM. Hippocampal Hyperactivity as a Druggable Circuit-Level Origin of Aberrant Salience in Schizophrenia. Front Pharmacol 2020; 11:486811. [PMID: 33178010 PMCID: PMC7596262 DOI: 10.3389/fphar.2020.486811] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
The development of current neuroleptics was largely aiming to decrease excessive dopaminergic signaling in the striatum. However, the notion that abnormal dopamine creates psychotic symptoms by causing an aberrant assignment of salience that drives maladaptive learning chronically during disease development suggests a therapeutic value of early interventions that correct salience-related neural processing. The mesolimbic dopaminergic output is modulated by several interconnected brain-wide circuits centrally involving the hippocampus and key relays like the ventral and associative striatum, ventral pallidum, amygdala, bed nucleus of the stria terminalis, nucleus reuniens, lateral and medial septum, prefrontal and cingulate cortex, among others. Unraveling the causal relationships between these circuits using modern neuroscience techniques holds promise for identifying novel cellular-and ultimately molecular-treatment targets for reducing transition to psychosis and symptoms of schizophrenia. Imaging studies in humans have implicated a hyperactivity of the hippocampus as a robust and early endophenotype in schizophrenia. Experiments in rodents, in turn, suggested that the activity of its output region-the ventral subiculum-may modulate dopamine release from ventral tegmental area (VTA) neurons in the ventral striatum. Even though these observations suggested a novel circuit-level target for anti-psychotic action, no therapy has yet been developed along this rationale. Recently evaluated treatment strategies-at least in part-target excess glutamatergic activity, e.g. N-acetyl-cysteine (NAC), levetiracetam, and mGluR2/3 modulators. We here review the evidence for the central implication of the hippocampus-VTA axis in schizophrenia-related pathology, discuss its symptom-related implications with a particular focus on aberrant assignment of salience, and evaluate some of its short-comings and prospects for drug discovery.
Collapse
Affiliation(s)
- Dennis Kätzel
- Institute for Applied Physiology, Ulm University, Ulm, Germany
| | - Amy R. Wolff
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Alexei M. Bygrave
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Xiu MH, Lang X, Chen DC, Cao B, Kosten TR, Cho RY, Shi H, Wei CW, Wu AS, Zhang XY. Cognitive Deficits and Clinical Symptoms with Hippocampal Subfields in First-Episode and Never-Treated Patients with Schizophrenia. Cereb Cortex 2020; 31:89-96. [PMID: 32901269 DOI: 10.1093/cercor/bhaa208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 11/13/2022] Open
Abstract
Memory dysfunction and associated hippocampal disturbances play crucial roles in cognitive impairment of schizophrenia. To examine the relationships between cognitive function and the hippocampal subfields (HSs) in first-episode never-treated (FENT) schizophrenia patients, the HSs were segmented in 39 FENT patients and 30 healthy controls using a state-of the-art automated algorithm. We found no significant differences in any HSs between the patients and controls. However, multivariate regression analysis showed that the left cornu ammonis 1 (CA1), left hippocampal tail, left presubiculum, and right molecular layer contributed 40% to the variance of the PANSS negative symptom score. After adjusting for sex, age, education, and intracranial volume, the partial correlation analysis showed that the volumes of left CA1, CA3, CA4, molecular layer, granule cell layer and both left and right subiculum were negatively correlated with the MATRICS consensus cognitive battery (MCCB) Hopkins Verbal Learning Test (HVLT). Multiple regression analysis showed that the left CA1 and CA3 hippocampal abnormalities contributed 66% to the variance of the HVLT. Our results suggest no detectable HS deficits were found in FENT schizophrenia patients. However, the HSs may be involved in the symptoms and cognitive deficits of schizophrenia patients in the early phase of their illness.
Collapse
Affiliation(s)
- Mei Hong Xiu
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - XiaoE Lang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 03000, China
| | - Da Chun Chen
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Bo Cao
- Department of Psychiatry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada
| | - Thomas R Kosten
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hui Shi
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Chang Wei Wei
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - An Shi Wu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiang Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
41
|
Wu JL, Haberman RP, Gallagher M, Koh MT. Probing for Conditioned Hallucinations Through Neural Activation in a Ketamine Mouse Model of Schizophrenia. Neurosci Bull 2020; 36:937-941. [PMID: 32367251 PMCID: PMC7410946 DOI: 10.1007/s12264-020-00507-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/31/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jenny L Wu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rebecca P Haberman
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
42
|
Duan X, He C, Ou J, Wang R, Xiao J, Li L, Wu R, Zhang Y, Zhao J, Chen H. Reduced Hippocampal Volume and Its Relationship With Verbal Memory and Negative Symptoms in Treatment-Naive First-Episode Adolescent-Onset Schizophrenia. Schizophr Bull 2020; 47:64-74. [PMID: 32691057 PMCID: PMC7825026 DOI: 10.1093/schbul/sbaa092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating neuroimaging evidence has shown remarkable volume reductions in the hippocampi of patients with schizophrenia. However, the relationship among hippocampal morphometry, clinical symptoms, and cognitive impairments in schizophrenia is still unclear. In this study, high-resolution structural magnetic resonance imaging data were acquired in 36 patients with adolescent-onset schizophrenia (AOS, age range: 13-18 years) and 30 age-, gender-, and education-matched typically developing controls (TDCs). Hippocampal volume was assessed automatically through volumetric segmentation and measurement. After adjusting for total intracranial volume, we found reduced hippocampal volume in individuals with AOS compared with TDCs, and the hippocampal volume was positively correlated with verbal memory and negatively correlated with negative symptoms in AOS. In addition, mediation analysis revealed the indirect effect of hippocampal volume on negative symptoms via verbal memory impairment. When the negative symptoms were represented by 2 dimensions of deficits in emotional expression (EXP) and deficits in motivation and pleasure (MAP), the indirect effect was significant for EXP but not for MAP. Our findings provide further evidence of hippocampal volume reduction in AOS and highlight verbal memory impairment as a mediator to influence the relationship between hippocampal morphometry and negative symptoms, especially the EXP dimension of negative symptoms, in individuals with AOS.
Collapse
Affiliation(s)
- Xujun Duan
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Changchun He
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China
| | - Runshi Wang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Jinming Xiao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Lei Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China
| | - Huafu Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, PR China,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China,To whom correspondence should be addressed; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; tel: 028-83208238, fax: 86-28-83208238, e-mail:
| |
Collapse
|
43
|
Assmann A, Richter A, Schütze H, Soch J, Barman A, Behnisch G, Knopf L, Raschick M, Schult A, Wüstenberg T, Behr J, Düzel E, Seidenbecher CI, Schott BH. Neurocan genome-wide psychiatric risk variant affects explicit memory performance and hippocampal function in healthy humans. Eur J Neurosci 2020; 53:3942-3959. [PMID: 32583466 DOI: 10.1111/ejn.14872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
Alterations of the brain extracellular matrix (ECM) can perturb the structure and function of brain networks like the hippocampus, a key region in human memory that is commonly affected in psychiatric disorders. Here, we investigated the potential effects of a genome-wide psychiatric risk variant in the NCAN gene encoding the ECM proteoglycan neurocan (rs1064395) on memory performance, hippocampal function and cortical morphology in young, healthy volunteers. We assessed verbal memory performance in two cohorts (N = 572, 302) and found reduced recall performance in risk allele (A) carriers across both cohorts. In 117 participants, we performed functional magnetic resonance imaging using a novelty-encoding task with visual scenes. Risk allele carriers showed higher false alarm rates during recognition, accompanied by inefficiently increased left hippocampal activation. To assess effects of rs1064395 on brain morphology, we performed voxel-based morphometry in 420 participants from four independent cohorts and found lower grey matter density in the ventrolateral and rostral prefrontal cortex of risk allele carriers. In silico eQTL analysis revealed that rs1064395 SNP is linked not only to increased prefrontal expression of the NCAN gene itself, but also of the neighbouring HAPLN4 gene, suggesting a more complex effect of the SNP on ECM composition. Our results suggest that the NCAN rs1064395 A allele is associated with lower hippocampus-dependent memory function, variation of prefrontal cortex structure and ECM composition. Considering the well-documented hippocampal and prefrontal dysfunction in bipolar disorder and schizophrenia, our results may reflect an intermediate phenotype by which NCAN rs1064395 contributes to disease risk.
Collapse
Affiliation(s)
- Anne Assmann
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany
| | - Joram Soch
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Humboldt University, Berlin, Germany
| | | | | | - Lea Knopf
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Matthias Raschick
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany.,Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Joachim Behr
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Medical School Brandenburg, Neuruppin, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Germany
| |
Collapse
|
44
|
Freedman R, Olsen-Dufour AM, Olincy A. P50 inhibitory sensory gating in schizophrenia: analysis of recent studies. Schizophr Res 2020; 218:93-98. [PMID: 32061454 PMCID: PMC7299819 DOI: 10.1016/j.schres.2020.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Inhibitory sensory gating of the P50 cerebral evoked potential to paired auditory stimuli (S1, S2) is a widely used paradigm for the study of schizophrenia and related conditions. Its use to measure genetic, treatment, and developmental effects requires a metric with more stable properties than the simple ratio of the paired responses. METHODS This study assessed the ratio P50S2μV/P50S1μV and P50S2μV co-varied for P50S1μV in all 27 independent published studies that compared schizophrenia patients with healthy controls from 2000 to 2019. The largest study from each research group was selected. The Colorado research group's studies were excluded to eliminate bias from the first report of the phenomenon. RESULTS Across the 27 studies encompassing 1179 schizophrenia patients and 1091 healthy controls, both P50S2μV co-varied for P50S1μV and P50S2μV/P50S1μV significantly separated the patients from the controls (both P < 0.0001). Effect size for P50S2μV co-varied for P50S1μV is d' = 1.23. The normal distribution of P50S2μV co-varied for P50S1μV detected influences of maternal inflammation and effects on behavior in a recent developmental study, an emerging use for the P50 inhibitory gating measure. P50S2μV/P50S1μV was not normally distributed. Results from two multi-site NIMH genetics collaborations also support the use of P50S2μV as a biomarker. CONCLUSION Both methods detect an abnormality of cerebral inhibition in schizophrenia with high significance across multiple independent laboratories. The normal distribution of P50S2μV co-varied for P50S1μV makes it more suitable for studies of genetic, treatment, and other influences on the development and expression of inhibitory deficits in schizophrenia.
Collapse
Affiliation(s)
- Robert Freedman
- Department of Psychiatry, University of Colorado Denver School of Medicine, Anschutz Medical Center, Mail Stop F546, Aurora, CO 80045, USA.
| | - Amanda M. Olsen-Dufour
- Department of Psychiatry, University of Colorado Denver School of Medicine, Anschutz Medical Center, Mail Stop F546, Aurora, CO 80045 USA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Denver School of Medicine, Anschutz Medical Center, Mail Stop F546, Aurora, CO 80045 USA
| | | |
Collapse
|
45
|
Bobilev AM, Perez JM, Tamminga CA. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 2020; 217:71-85. [PMID: 31227207 DOI: 10.1016/j.schres.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) and its individual structures have been extensively implicated in schizophrenia pathophysiology, with considerable efforts aimed at identifying structural and functional differences in this brain region. The major structures of the MTL for which prominent differences have been revealed include the hippocampus, the amygdala and the superior temporal gyrus (STG). The different functions of each of these regions have been comprehensively characterized, and likely contribute differently to schizophrenia. While neuroimaging studies provide an essential framework for understanding the role of these MTL structures in various aspects of the disease, ongoing efforts have sought to employ molecular measurements in order to elucidate the biology underlying these macroscopic differences. This review provides a summary of the molecular findings in three major MTL structures, and discusses convergent findings in cellular architecture and inter-and intra-cellular networks. The findings of this effort have uncovered cell-type, network and gene-level specificity largely unique to each brain region, indicating distinct molecular origins of disease etiology. Future studies should test the functional implications of these molecular changes at the circuit level, and leverage new advances in sequencing technology to further refine our understanding of the differential contribution of MTL structures to schizophrenia.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Jessica M Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| |
Collapse
|
46
|
Shimada T, Ito S, Makabe A, Yamanushi A, Takenaka A, Kawano K, Kobayashi M. Aerobic exercise and cognitive functioning in schizophrenia: Results of a 1-year follow-up from a randomized controlled trial. Psychiatry Res 2020; 286:112854. [PMID: 32078891 DOI: 10.1016/j.psychres.2020.112854] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 11/20/2022]
Abstract
We previously reported that adding combined, individual, and group aerobic exercise (AE) interventions to the treatment as usual (TAU) for schizophrenia showed significant improvements in cognition and other outcomes compared to those with TAU alone in a randomized controlled trial. Following the promising results of our previous study, this 1-year follow-up study evaluated the improvements in cognition and other outcomes with TAU + AE compared to those with TAU alone. Of 41 randomized patients, 40 were included in the intent-to-treat population-20 in the TAU + AE and 20 in the TAU alone; all patients completed the 1-year follow-up. Mixed models were applied to assess changes in outcome measures over time from baseline to 1-year follow-up. At 1-year follow-up, the TAU + AE demonstrated significant group by time interaction effects in several cognitive domains, intrinsic motivation, negative symptom, interpersonal relations, and functional outcome compared with the TAU alone. Our results demonstrate that the improvements in cognition and other outcomes with TAU + AE were maintained and that functional outcome improved over 1-year follow-up. These findings show that the improvements sustained for each outcome over 1 year have the potential to offer opportunities for greater transitions to improvement of functional outcome.
Collapse
Affiliation(s)
- Takeshi Shimada
- Medical Corporation Seitaikai Mental Support Soyokaze Hospital, Nagano, Japan.
| | - Shoko Ito
- Medical Corporation Seitaikai Mental Support Soyokaze Hospital, Nagano, Japan
| | - Aya Makabe
- Medical Corporation Seitaikai Mental Support Soyokaze Hospital, Nagano, Japan
| | - Ayumi Yamanushi
- Medical Corporation Seitaikai Mental Support Soyokaze Hospital, Nagano, Japan
| | - Ami Takenaka
- Medical Corporation Seitaikai Mental Support Soyokaze Hospital, Nagano, Japan
| | - Kojiro Kawano
- Medical Corparation Yuaikai Tikumaso Mental Hospital, Nagano, Japan
| | - Masayoshi Kobayashi
- Department of Health Sciences, Graduate School of Medicine, Shinshu University, Nagano, Japan
| |
Collapse
|
47
|
García-García R, Guerrero JF, Lavilla-Miyasato M, Magdalena JR, Ordoño JF, Llansola M, Montoliu C, Teruel-Martí V, Felipo V. Hyperammonemia alters the mismatch negativity in the auditory evoked potential by altering functional connectivity and neurotransmission. J Neurochem 2020; 154:56-70. [PMID: 31840253 DOI: 10.1111/jnc.14941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/18/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022]
Abstract
Minimal hepatic encephalopathy (MHE) is a neuropsychiatric syndrome produced by central nervous system dysfunction subsequent to liver disease. Hyperammonemia and inflammation act synergistically to alter neurotransmission, leading to the cognitive and motor alterations in MHE, which are reproduced in rat models of chronic hyperammonemia. Patients with MHE show altered functional connectivity in different neural networks and a reduced response in the cognitive potential mismatch negativity (MMN), which correlates with attention deficits. The mechanisms by which MMN is altered in MHE remain unknown. The objectives of this work are as follows: To assess if rats with chronic hyperammonemia reproduce the reduced response in the MMN found in patients with MHE. Analyze the functional connectivity between the areas (CA1 area of the dorsal hippocampus, prelimbic cortex, primary auditory cortex, and central inferior colliculus) involved in the generation of the MMN and its possible alterations in hyperammonemia. Granger causality analysis has been applied to detect the net flow of information between the population neuronal activities recorded from a local field potential approach. Analyze if altered MMN response in hyperammonemia is associated with alterations in glutamatergic and GABAergic neurotransmission. Extracellular levels of the neurotransmitters and/or membrane expression of their receptors have been analyzed after the tissue isolation of the four target sites. The results show that rats with chronic hyperammonemia show reduced MMN response in hippocampus, mimicking the reduced MMN response of patients with MHE. This is associated with altered functional connectivity between the areas involved in the generation of the MMN. Hyperammonemia also alters membrane expression of glutamate and GABA receptors in hippocampus and reduces the changes in extracellular GABA and glutamate induced by the MMN paradigm of auditory stimulus in hippocampus of control rats. The changes in glutamatergic and GABAergic neurotransmission and in functional connectivity between the brain areas analyzed would contribute to the impairment of the MMN response in rats with hyperammonemia and, likely, also in patients with MHE.
Collapse
Affiliation(s)
- Raquel García-García
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Juan F Guerrero
- Group of Digital Signal Processing, Department of Electronic Engineer. School of Superior Engineer, University of Valencia, Valencia, Spain
| | | | - Jose R Magdalena
- Group of Digital Signal Processing, Department of Electronic Engineer. School of Superior Engineer, University of Valencia, Valencia, Spain
| | - Juan F Ordoño
- Neurophysiology Service, Hospital Arnau de Vilanova, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Research Foundation Hospital Clínico Valencia. INCLIVA Valencia, Valencia, Spain.,Department of Pathology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Vicent Teruel-Martí
- Laboratory of Neuronal Circuits, Department of Anatomy and Human Embriology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| |
Collapse
|
48
|
Lander SS, Chornyy S, Safory H, Gross A, Wolosker H, Gaisler‐Salomon I. Glutamate dehydrogenase deficiency disrupts glutamate homeostasis in hippocampus and prefrontal cortex and impairs recognition memory. GENES BRAIN AND BEHAVIOR 2020; 19:e12636. [DOI: 10.1111/gbb.12636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sergiy Chornyy
- Department of PsychologyUniversity of Haifa Haifa Israel
| | - Hazem Safory
- Department of Biochemistry, The Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | - Amit Gross
- Department of PsychologyUniversity of Haifa Haifa Israel
| | - Herman Wolosker
- Department of Biochemistry, The Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | | |
Collapse
|
49
|
Tang X, Lyu G, Chen M, Huang W, Lin Y. Amygdalar and Hippocampal Morphometry Abnormalities in First-Episode Schizophrenia Using Deformation-Based Shape Analysis. Front Psychiatry 2020; 11:677. [PMID: 32765318 PMCID: PMC7379331 DOI: 10.3389/fpsyt.2020.00677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/29/2020] [Indexed: 11/14/2022] Open
Abstract
In this study, we investigated and quantified the amygdalar and hippocampal morphometry abnormalities exerted by first-episode schizophrenia using a total of 92 patients and 106 healthy control participants. Magnetic resonance imaging (MRI) based automated segmentation was conducted to obtain the amygdalar and hippocampal segmentations. Disease-versus-control volume differences of the bilateral amygdalas and hippocampi were quantified. In addition, deformation-based statistical shape analysis was employed to quantify the region-specific shape abnormalities of each structure of interest. To better identify the key relevant areas in the pathology of first-episode schizophrenia, each structure was divided into four subregions; CA1, CA2, CA3 combined with dentate gyrus for the hippocampus in each hemisphere and basolateral, basomedial, centromedial, and lateral nucleus for the amygdala in each hemisphere. We observed significant global volume reduction and localized shape atrophy in each of the four structures of interest. The amygdalar shape abnormalities mainly occurred at the basolateral and centromedial subregions, whereas the hippocampal shape abnormalities mainly concentrated on the CA1 and CA2 subregions. For the same structure, the one on the right hemisphere was affected more by the disease pathology than that on the left hemisphere. To conclude, we have successfully quantified the global and local morphometric abnormalities of the bilateral amygdalas and hippocampi using a sophisticated statistical analysis pipeline and high-field subregion segmentations, with MRI data of a considerable sample size. This study is one of the very first of such kind in first-episode schizophrenia analyses.
Collapse
Affiliation(s)
- Xiaoying Tang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiwen Lyu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Minhua Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Electrical and Electronic Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
| | - Weikai Huang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yin Lin
- Department of Psychology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
50
|
Ma YN, Sun YX, Wang T, Wang H, Zhang Y, Su YA, Li JT, Si TM. Subchronic MK-801 treatment during adolescence induces long-term, not permanent, excitatory-inhibitory imbalance in the rat hippocampus. Eur J Pharmacol 2020; 867:172807. [DOI: 10.1016/j.ejphar.2019.172807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/28/2023]
|