1
|
Zurlo L, Dal Bò E, Gentili C, Cecchetto C. Olfactory dysfunction in schizophrenia and other psychotic disorders: A comprehensive and updated meta-analysis. Schizophr Res 2024; 275:62-75. [PMID: 39671833 DOI: 10.1016/j.schres.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Olfaction plays a key role in our daily life, influencing food enjoyment, threat detection, mood and social relationships. Numerous studies have provided evidence of abnormal olfactory function in schizophrenia and other psychotic disorders. This pre-registered meta-analysis was conducted to (a) provide an updated overview of olfactory function in schizophrenia-spectrum disorders, and (b) examine the modulatory effects of demographic and clinical variables on distinct olfactory abilities. We complied with the PRISMA guidelines, searching throughout PubMed, MEDLINE, and PsycInfo, until the 12th of August 2023. A total of 73 publications were included, comprising data from 3282 patients and 3321 healthy controls. Results revealed that (a) patients performed significantly worse in higher-order olfactory tests (identification and discrimination) compared to healthy controls, while no differences were observed in odor sensitivity; (b) patients' performance in odor identification was moderated by education, as well as disease duration and negative symptoms. Our findings support the presence of olfactory impairments in schizophrenia-spectrum disorders, leading to significantly poorer performance in both odor identification and discrimination, but not sensitivity, when compared to healthy controls.
Collapse
Affiliation(s)
- Letizia Zurlo
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35131 Padua, Italy.; Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padua, Italy
| | - Elisa Dal Bò
- Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padua, Italy
| | - Claudio Gentili
- Padova Neuroscience Center (PNC), University of Padua, Via Orus 2/B, 35131 Padua, Italy.; Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padua, Italy
| | - Cinzia Cecchetto
- Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padua, Italy..
| |
Collapse
|
2
|
Kristensen TD, Ambrosen KS, Raghava JM, Syeda WT, Dhollander T, Lemvigh CK, Bojesen KB, Barber AD, Nielsen MØ, Rostrup E, Pantelis C, Fagerlund B, Glenthøj BY, Ebdrup BH. Structural and functional connectivity in relation to executive functions in antipsychotic-naïve patients with first episode schizophrenia and levels of glutamatergic metabolites. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:72. [PMID: 39217180 PMCID: PMC11366027 DOI: 10.1038/s41537-024-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Patients with schizophrenia exhibit structural and functional dysconnectivity but the relationship to the well-documented cognitive impairments is less clear. This study investigates associations between structural and functional connectivity and executive functions in antipsychotic-naïve patients experiencing schizophrenia. Sixty-four patients with schizophrenia and 95 matched controls underwent cognitive testing, diffusion weighted imaging and resting state functional magnetic resonance imaging. In the primary analyses, groupwise interactions between structural connectivity as measured by fixel-based analyses and executive functions were investigated using multivariate linear regression analyses. For significant structural connections, secondary analyses examined whether functional connectivity and associations with executive functions also differed for the two groups. In group comparisons, patients exhibited cognitive impairments across all executive functions compared to controls (p < 0.001), but no group difference were observed in the fixel-based measures. Primary analyses revealed a groupwise interaction between planning abilities and fixel-based measures in the left anterior thalamic radiation (p = 0.004), as well as interactions between cognitive flexibility and fixel-based measures in the isthmus of corpus callosum and cingulum (p = 0.049). Secondary analyses revealed increased functional connectivity between grey matter regions connected by the left anterior thalamic radiation (left thalamus with pars opercularis p = 0.018, and pars orbitalis p = 0.003) in patients compared to controls. Moreover, a groupwise interaction was observed between cognitive flexibility and functional connectivity between contralateral regions connected by the isthmus (precuneus p = 0.028, postcentral p = 0.012), all p-values corrected for multiple comparisons. We conclude that structural and functional connectivity appear to associate with executive functions differently in antipsychotic-naïve patients with schizophrenia compared to controls.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Warda T Syeda
- Melbourne Brain Center Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Anita D Barber
- Department of Psychiatry, Zucker Hillside Hospital and Zucker School of Medicine at Hofstra/Northwell, Northwell, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Christos Pantelis
- Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Birgitte Fagerlund
- Child and Adolescent Psychiatry, Mental Health Centre, Copenhagen University Hospital, Hellerup, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Romero-Miguel D, Casquero-Veiga M, Lamanna-Rama N, Torres-Sánchez S, MacDowell KS, García-Partida JA, Santa-Marta C, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. N-acetylcysteine during critical neurodevelopmental periods prevents behavioral and neurochemical deficits in the Poly I:C rat model of schizophrenia. Transl Psychiatry 2024; 14:14. [PMID: 38191622 PMCID: PMC10774365 DOI: 10.1038/s41398-023-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
Schizophrenia is a chronic neurodevelopmental disorder with an inflammatory/prooxidant component. N-acetylcysteine (NAC) has been evaluated in schizophrenia as an adjuvant to antipsychotics, but its role as a preventive strategy has not been sufficiently explored. We aimed to evaluate the potential of NAC administration in two-time windows before the onset of symptoms in a schizophrenia-like maternal immune stimulation (MIS) rat model. Pregnant Wistar rats were injected with Poly I:C or Saline on gestational day (GD) 15. Three different preventive approaches were evaluated: 1) NAC treatment during periadolescence in the offspring (from postnatal day [PND] 35 to 49); 2) NAC treatment during pregnancy after MIS challenge until delivery (GD15-21); and 3) NAC treatment throughout all pregnancy (GD1-21). At postnatal day (PND) 70, prepulse inhibition (PPI) and anxiety levels were evaluated. In vivo magnetic resonance (MR) imaging was acquired on PND100 to assess structural changes in gray and white matter, and brain metabolite concentrations. Additionally, inflammation and oxidative stress (IOS) markers were measured ex vivo in selected brain regions. MIS offspring showed behavioral, neuroanatomical, and biochemical alterations. Interestingly, NAC treatment during periadolescence prevented PPI deficits and partially counteracted some biochemical imbalances. Moreover, NAC treatments during pregnancy not only replicated the beneficial outcomes reported by the treatment in periadolescence, but also prevented some neuroanatomical deficits, including reductions in hippocampal and corpus callosum volumes. This study suggests that early reduction of inflammation and prooxidation could help prevent the onset of schizophrenia-like symptoms, supporting the importance of anti-IOS compounds in ameliorating this disorder.
Collapse
Grants
- MLS was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III (project number PI17/01766, and grant number BA21/00030), co-financed by the European Regional Development Fund (ERDF), “A way to make Europe”; project PID2021-128862OB-I00 funded by MCIN /AEI /10.13039/501100011033 / FEDER, UE, CIBER de Salud Mental - Instituto de Salud Carlos III (project number CB07/09/0031); Delegación del Gobierno para el Plan Nacional sobre Drogas (project number 2017/085, 2022/008917); and Fundación Alicia Koplowitz.
- DRM was supported by Consejería de Educación e investigación, Comunidad de Madrid, co-funded by the European Social Fund “Investing in your future” (grant, PEJD-2018-PRE/BMD-7899).
- MCV was supported by a predoctoral grant from Fundación Tatiana Pérez de Guzmán el Bueno.
- NLR was supported by the Instituto de investigación Sanitaria Gregorio Marañón, “Programa Intramural de Impulso a la I+D+I 2019”.
- EBD, JAG-P and ST-S work was supported by the “Fondo Europeo de Desarrollo Regional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad” (RTI2018-099778-B-I00); from the “Plan Nacional sobre Drogas, Ministerio de Sanidad, Consumo y Bienestar Social” (2019I041); from the “Ministerio de Salud-Instituto de Salud Carlos III” (PI18/01691); from the “Programa Operativo de Andalucía FEDER, Iniciativa Territorial Integrada ITI 2014-2020 Consejería Salud y Familias, Junta de Andalucía” (PI-0080-2017, PI-0009-2017), "Consejería de Salud y Familias, Junta de Andalucía" (PI-0134-2018 and PEMP-0008-2020); from the "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía" (P20_00958 and CTS-510); from the CEIMAR (CEIJ-003); from the “Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz-INiBICA” (LI19/06IN-CO22; IN-C09); from the “CIBERSAM”: CIBER-Consorcio Centro de Investigación Biomédica en Red- (CB07/09/0033), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955684.
- JCL was supported by the Ministerio de Economía y Competitividad, MINECO-EU-FEDER (SAF2016-75500-R) and Ministerio de Ciencia e Innovación (PID2019-109033RB-I00).
- MD work was supported by Ministerio de Ciencia e Innovación (MCIN) and Instituto de Salud Carlos III (PT20/00044). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).
Collapse
Affiliation(s)
- Diego Romero-Miguel
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain
| | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, 28040, Madrid, Spain
- Cardiovascular Imaging and Population Studies, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain
| | - Sonia Torres-Sánchez
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, 28040, Spain
| | - José A García-Partida
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | | | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, 28040, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain.
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain.
- Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain.
- Grupo de Fisiopatología y Farmacología del Sistema Digestivo de la Universidad Rey Juan Carlos (NeuGut), Alcorcón (Madrid), 28922, Spain.
| |
Collapse
|
4
|
Gao T, Wang X, Cen H, Li X, Zhai Z, Lu C, Dong Y, Zhang S, Zhuo K, Xiang Q, Wang Y, Liu D. Cross-modal associative memory impairment in schizophrenia. Neuropsychologia 2023; 191:108721. [PMID: 37918479 DOI: 10.1016/j.neuropsychologia.2023.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Impaired associative memory function in patients with schizophrenia has received considerable attention. However, previous studies have primarily concentrated on unisensory materials, which limits our understanding of the broader implications of this impairment. In this study, we sought to expand on this knowledge by examining two types of associative memory domains in individuals with schizophrenia, leveraging both visual (Vis) and auditory (Aud) materials. A total of 32 patients with schizophrenia and 29 healthy controls were recruited to participate in the study. Each participant participated in an experiment composed of three paradigms in which different abstract materials (Aud-Aud, Aud-Vis, and Vis-Vis) were presented. Subsequently, the discriminability scores of the two groups were calculated and compared in different modal tasks. Results from the study indicated that individuals with schizophrenia demonstrated varying degrees of associative memory dysfunction in both the same and cross-modalities, with the latter having a significantly lower score than healthy controls (t = 4.120, p < 0.001). Additionally, the cross-modal associative memory function was significantly and negatively correlated with the severity of negative symptoms among individuals diagnosed with schizophrenia (r = -0.362, p = 0.042). This study provides evidence of abnormalities in the processing and memorization of information that integrates multiple sensory modalities in individuals with schizophrenia. This is of great significance for further understanding the cognitive symptoms and pathological mechanisms of schizophrenia, potentially guiding the development of relevant interventions and treatment methods.
Collapse
Affiliation(s)
- Tianhao Gao
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Xiaoliang Wang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Haixin Cen
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Xuan Li
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Zhaolin Zhai
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Chang Lu
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Yuke Dong
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Suzhen Zhang
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Kaiming Zhuo
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Qiong Xiang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Yan Wang
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.
| | - Dengtang Liu
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China; Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China; Institute of Mental Health, Fudan University, Shanghai, 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
5
|
Kristensen TD, Raghava JM, Skjerbæk MW, Dhollander T, Syeda W, Ambrosen KS, Bojesen KB, Nielsen MØ, Pantelis C, Glenthøj BY, Ebdrup BH. Fibre density and fibre-bundle cross-section of the corticospinal tract are distinctly linked to psychosis-specific symptoms in antipsychotic-naïve patients with first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1797-1812. [PMID: 37012463 PMCID: PMC10713712 DOI: 10.1007/s00406-023-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Multiple lines of research support the dysconnectivity hypothesis of schizophrenia. However, findings on white matter (WM) alterations in patients with schizophrenia are widespread and non-specific. Confounding factors from magnetic resonance image (MRI) processing, clinical diversity, antipsychotic exposure, and substance use may underlie some of the variability. By application of refined methodology and careful sampling, we rectified common confounders investigating WM and symptom correlates in a sample of strictly antipsychotic-naïve first-episode patients with schizophrenia. Eighty-six patients and 112 matched controls underwent diffusion MRI. Using fixel-based analysis (FBA), we extracted fibre-specific measures such as fibre density and fibre-bundle cross-section. Group differences on fixel-wise measures were examined with multivariate general linear modelling. Psychopathology was assessed with the Positive and Negative Syndrome Scale. We separately tested multivariate correlations between fixel-wise measures and predefined psychosis-specific versus anxio-depressive symptoms. Results were corrected for multiple comparisons. Patients displayed reduced fibre density in the body of corpus callosum and in the middle cerebellar peduncle. Fibre density and fibre-bundle cross-section of the corticospinal tract were positively correlated with suspiciousness/persecution, and negatively correlated with delusions. Fibre-bundle cross-section of isthmus of corpus callosum and hallucinatory behaviour were negatively correlated. Fibre density and fibre-bundle cross-section of genu and splenium of corpus callosum were negative correlated with anxio-depressive symptoms. FBA revealed fibre-specific properties of WM abnormalities in patients and differentiated associations between WM and psychosis-specific versus anxio-depressive symptoms. Our findings encourage an itemised approach to investigate the relationship between WM microstructure and clinical symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark.
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Martin W Skjerbæk
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | - Warda Syeda
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Victoria, Australia
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christos Pantelis
- Developmental Imaging, Murdoch Children's Research Institute, Victoria, Australia
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Zhang T, Wei Y, Cui H, Tang X, Xu L, Hu Y, Tang Y, Liu H, Chen T, Li C, Wang J. Associations between age and neurocognition in individuals at clinical high risk and first-episode psychosis. Psychiatry Res 2023; 327:115385. [PMID: 37567111 DOI: 10.1016/j.psychres.2023.115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Neurocognitive deficits differ with age during the early stages of psychosis. This study aimed to explore age-related differences (9-35 years old) in the neurocognitive performance of a large clinical population. In total, 1059 individuals with first-episode psychosis (FEP), 794 individuals with a clinical high risk of psychosis (CHR), and 774 well-matched healthy controls (HC) were recruited between 2016 and 2021. Neurocognitive assessments were performed using the Chinese version of the Measurement and Treatment Research to Improve Cognition in Schizophrenia Battery(MCCB). The MCCB subtest scores differed significantly among the groups across the age span. The mean scores of subtests in CHR individuals were approximately one standard deviation(SD) lower than that of HC, while that of FEP patients was approximately two SDs. The adolescents performed better than the adults in the HC, CHR, and FEP groups. In the HC group, a stronger correlation was found between age and cognitive function, and more neurocognitive domains were affected by age than in the CHR and FEP groups. These results emphasize that neurocognitive deficits in psychosis are present at the pre-onset stage and deteriorate at the first-episode stage across the age span, implicating the development of specific strategies that could monitor the cognitive trajectory in early psychosis.
Collapse
Affiliation(s)
- TianHong Zhang
- Shanghai Mental Health Center, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiaotong University School of Medicine, 600 Wanping Nan Road, Shanghai 200030, China
| | - YanYan Wei
- Shanghai Mental Health Center, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiaotong University School of Medicine, 600 Wanping Nan Road, Shanghai 200030, China
| | - HuiRu Cui
- Shanghai Mental Health Center, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiaotong University School of Medicine, 600 Wanping Nan Road, Shanghai 200030, China
| | - XiaoChen Tang
- Shanghai Mental Health Center, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiaotong University School of Medicine, 600 Wanping Nan Road, Shanghai 200030, China
| | - LiHua Xu
- Shanghai Mental Health Center, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiaotong University School of Medicine, 600 Wanping Nan Road, Shanghai 200030, China
| | - YeGang Hu
- Shanghai Mental Health Center, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiaotong University School of Medicine, 600 Wanping Nan Road, Shanghai 200030, China
| | - YingYing Tang
- Shanghai Mental Health Center, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiaotong University School of Medicine, 600 Wanping Nan Road, Shanghai 200030, China
| | - HaiChun Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Chen
- Big Data Research Lab, University of Waterloo, Ontario, Canada; Senior Research Fellow, Labor and Worklife Program, Harvard University, Cambridge, MA, United States
| | - ChunBo Li
- Shanghai Mental Health Center, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiaotong University School of Medicine, 600 Wanping Nan Road, Shanghai 200030, China
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center (20DZ2253800), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiaotong University School of Medicine, 600 Wanping Nan Road, Shanghai 200030, China; Chinese Academy of Science, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Gupta N, Gupta M, Esang M. Lost in Translation: Challenges in the Diagnosis and Treatment of Early-Onset Schizophrenia. Cureus 2023; 15:e39488. [PMID: 37362509 PMCID: PMC10290525 DOI: 10.7759/cureus.39488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Early-onset schizophrenia (EOS) is a heterogeneous condition that has a serious, insidious clinical course and poor long-term mental health outcomes. The clinical presentations are highly complex due to the overlapping symptomatology with other illnesses, which contributes to a delay in the diagnosis. The objective of the review is to study if an earlier age of onset (AAO) of EOS has poor clinical outcomes, the diagnostic challenges of EOS, and effective treatment strategies. The review provides a comprehensive literature search of 5966 articles and summarizes 126 selected for empirical evidence to methodically consider challenges in diagnosing and treating EOS for practicing clinicians. The risk factors of EOS are unique but have been shared with many other neuropsychiatric illnesses. Most of the risk factors, including genetics and obstetric complications, are nonmodifiable. The role of early diagnosis in reducing the duration of untreated psychosis (DUP) remains critical to reducing overall morbidity. Many specific issues contribute to the risk and clinical outcomes. Therefore, issues around diagnostic ambiguity, treatment resistance, nonadherence, and rehospitalizations further extend the DUP. There is hesitancy to initiate clozapine early, even though the empirical evidence strongly supports its use. There is a growing body of research that suggests the use of long-acting injectables to address nonadherence, and these measures are largely underutilized in acute settings. The clinical presentations of EOS are complex. In addition to the presence of specific risk factors, patients with an early onset of illness are also at a higher risk for treatment resistance. While there is a need to develop tools for early diagnosis, established evidence-based measures to address nonadherence, psychoeducation, and resistance must be incorporated into the treatment planning.
Collapse
Affiliation(s)
- Nihit Gupta
- Psychiatry, Dayton Children's Hospital, Dayton, USA
| | - Mayank Gupta
- Psychiatry and Behavioral Sciences, Southwood Psychiatric Hospital, Pittsburgh, USA
| | - Michael Esang
- Psychiatry and Behavioral Sciences, Clarion Psychiatric Center, Clarion, USA
| |
Collapse
|
8
|
Nestor PG, Levin LK, Stone WS, Giuliano AJ, Seidman LJ, Levitt JJ. Brain structural abnormalities of the associative striatum in adolescents and young adults at genetic high-risk of schizophrenia: Implications for illness endophenotypes. J Psychiatr Res 2022; 155:355-362. [PMID: 36179416 DOI: 10.1016/j.jpsychires.2022.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Dysfunction in cortico-striatal circuitry represents a core component of the pathophysiology in schizophrenia (SZ) but its potential as a candidate endophenotype of the illness is often confounded by neuroleptic medication. METHODS Accordingly, 26 adolescent and young adult participants at genetic high-risk for schizophrenia, but who were asymptomatic and neuroleptic naïve, and 28 age-matched controls underwent 1.5T structural magnetic resonance imaging of the striatum, manually parcellated into limbic (LST), associative (AST), and sensorimotor (SMST) functional subregions. RESULTS In relation to their age peers, participants at genetic high-risk for schizophrenia showed overall lower striatal gray matter volume with their most pronounced loss, bilaterally in the AST, but not the LST or SMST. Neuropsychological testing revealed reduced executive functioning for genetically at-risk participants, although the groups did not differ significantly in overall intelligence or oral reading. For controls but not for at-genetic high-risk participants, stronger executive functioning correlated with increased bilateral AST volume. CONCLUSIONS Reduced bilateral AST volume in genetic high-risk adolescents and young adults, accompanied by heritable loss of higher cognitive brain-behavior relationships, might serve as a useful endophenotype of SZ.
Collapse
Affiliation(s)
- Paul G Nestor
- Department of Psychology, University of Massachusetts, Boston, MA, USA; Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, 02301, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Laura K Levin
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Anthony J Giuliano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Larry J Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center, Harvard Medical School, Boston, MA, 02115, USA
| | - James J Levitt
- Clinical Neuroscience Division, Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA, 02301, USA; Harvard Medical School, Boston, MA, 02115, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Is it possible to stage schizophrenia? A systematic review. Transl Psychiatry 2022; 12:197. [PMID: 35545617 PMCID: PMC9095725 DOI: 10.1038/s41398-022-01889-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION A staging model is a clinical tool used to define the development of a disease over time. In schizophrenia, authors have proposed different theoretical staging models of increasing complexity. Therefore, the aims of our study were to provide an updated and critical view of the proposed clinical staging models for schizophrenia and to review the empirical data that support them. METHODS Systematic literature review following PRISMA guidelines. From the PubMed database and backward reference search, a total of 141 records were retrieved, but only 20 were selected according to the inclusion criteria: (a) available in English; (b) participants with schizophrenia ≥ 18 years; and (c) theoretical and empirical research studies intended to develop, validate, and/or improve staging models of schizophrenia. RESULTS Different clinical staging models for schizophrenia were identified, information about the proposed stages was tabulated and presented in the Results section (Tables 1, 2). Most of which include neuroimaging, functioning, and psychopathology, but only two models add objective biomarkers and none include patient point of view. However, few models have been psychometrically tested or used small samples and thus have been validated only partially. In addition, five studies proposed therapeutic interventions according to the stage of the disorder from a theoretical point of view. DISCUSSION In conclusion, it is possible to stage schizophrenia, but the models developed have several limitations. Empirical validation and inclusion of more specific biomarkers and measures of other life areas affected by schizophrenia could help in the development of more valid models.
Collapse
|
10
|
Wang Y, Braam EE, Wannan CMJ, Van Rheenen TE, Chan RCK, Nelson B, McGorry PD, Yung AR, Lin A, Brewer WJ, Koutsogiannis J, Wood SJ, Velakoulis D, Pantelis C, Cropley VL. Investigation of structural brain correlates of neurological soft signs in individuals at ultra-high risk for psychosis. Eur Arch Psychiatry Clin Neurosci 2021; 271:1475-1485. [PMID: 34467451 DOI: 10.1007/s00406-021-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/04/2021] [Indexed: 11/30/2022]
Abstract
Increased severity of neurological soft signs (NSS) in schizophrenia have been associated with abnormal brain morphology in cerebello-thalamo-cortical structures, but it is unclear whether similar structures underlie NSS prior to the onset of psychosis. The present study investigated the relationship between severity of NSS and grey matter volume (GMV) in individuals at ultra-high risk for psychosis (UHR) stratified for later conversion to psychosis. Structural T1-weighted MRI scans were obtained from 56 antipsychotic-naïve UHR individuals and 35 healthy controls (HC). The UHR individuals had follow-up data (mean follow-up: 5.2 years) to ascertain clinical outcome. Using whole-brain voxel-based morphometry, the relationship between NSS and GMV at baseline was assessed in UHR, HC, as well as individuals who later transitioned (UHR-P, n = 25) and did not transition (UHR-NP, n = 31) to psychosis. NSS total and subscale scores except motor coordination were significantly higher in UHR compared to HC. Higher signs were also found in UHR-P, but not UHR-NP. Total NSS was not associated with GMV in the whole sample or in each group. However, in UHR-P individuals, greater deficits in sensory integration was associated with lower GMV in the left cerebellum, right insula, and right middle frontal gyrus. In conclusion, NSS are present in UHR individuals, particularly those who later transitioned to a psychotic disorder. While these signs show little overall variation with GMV, the association of sensory integration deficits with lower GMV in UHR-P suggests that certain brain areas may be implicated in the development of specific neurological abnormalities in the psychosis prodrome.
Collapse
Affiliation(s)
- Ya Wang
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.,Neuropsychology and Applied Cognitive Neuroscience Lab, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Esmee E Braam
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia
| | - Cassandra M J Wannan
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.,Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Lab, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Barnaby Nelson
- Orygen, Melbourne, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Patrick D McGorry
- Orygen, Melbourne, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Alison R Yung
- Orygen, Melbourne, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.,School of Health Sciences, University of Manchester, Manchester, UK.,Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Ashleigh Lin
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Warrick J Brewer
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - John Koutsogiannis
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Stephen J Wood
- Orygen, Melbourne, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.,School of Psychology, University of Birmingham, Edgbaston, UK
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.,Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Health, Melbourne, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia. .,Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia.
| |
Collapse
|
11
|
MRI-Based Markers of Changes in the Supragranular Cortical Layer in Individuals at Clinically High Risk of Endogenous Psychosis. Bull Exp Biol Med 2021; 171:483-488. [PMID: 34553301 DOI: 10.1007/s10517-021-05256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 10/20/2022]
Abstract
We analyzed morphometric MRI parameters indirectly attesting to structural changes in the supragranular layer in 33 non-converted individuals at clinical high risk for endogenous psychosis (follow-up period of 6.7±0.6 years) and in 34 sex- and age-matched healthy controls. In the group of clinical high-risk individuals, changes indicative of potential predominance of supragranular thinning in comparison with a decrease of infragranular cortical layer thickness were revealed. The results are discussed in the context of the concepts of resilience and risk markers of developing endogenous psychosis.
Collapse
|
12
|
Fronto-Parietal Gray Matter Volume Loss Is Associated with Decreased Working Memory Performance in Adolescents with a First Episode of Psychosis. J Clin Med 2021; 10:jcm10173929. [PMID: 34501377 PMCID: PMC8432087 DOI: 10.3390/jcm10173929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cognitive maturation during adolescence is modulated by brain maturation. However, it is unknown how these processes intertwine in early onset psychosis (EOP). Studies examining longitudinal brain changes and cognitive performance in psychosis lend support for an altered development of high-order cognitive functions, which parallels progressive gray matter (GM) loss over time, particularly in fronto-parietal brain regions. We aimed to assess this relationship in a subsample of 33 adolescents with first-episode EOP and 47 matched controls over 2 years. Backwards stepwise regression analyses were conducted to determine the association and predictive value of longitudinal brain changes over cognitive performance within each group. Fronto-parietal GM volume loss was positively associated with decreased working memory in adolescents with psychosis (frontal left (B = 0.096, p = 0.008); right (B = 0.089, p = 0.015); parietal left (B = 0.119, p = 0.007), right (B = 0.125, p = 0.015)) as a function of age. A particular decrease in frontal left GM volume best predicted a significant amount (22.28%) of the variance of decreased working memory performance over time, accounting for variance in age (14.9%). No such association was found in controls. Our results suggest that during adolescence, EOP individuals seem to follow an abnormal neurodevelopmental trajectory, in which fronto-parietal GM volume reduction is associated with the differential age-related working memory dysfunction in this group.
Collapse
|
13
|
Reduced cortical thickness of the paracentral lobule in at-risk mental state individuals with poor 1-year functional outcomes. Transl Psychiatry 2021; 11:396. [PMID: 34282119 PMCID: PMC8289863 DOI: 10.1038/s41398-021-01516-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Although widespread cortical thinning centered on the fronto-temporal regions in schizophrenia has been reported, the findings in at-risk mental state (ARMS) patients have been inconsistent. In addition, it remains unclear whether abnormalities of cortical thickness (CT) in ARMS individuals, if present, are related to their functional decline irrespective of future psychosis onset. In this multicenter study in Japan, T1-weighted magnetic resonance imaging was performed at baseline in 107 individuals with ARMS, who were subdivided into resilient (77, good functional outcome) and non-resilient (13, poor functional outcome) groups based on the change in Global Assessment of Functioning scores during 1-year follow-up, and 104 age- and sex-matched healthy controls recruited at four scanning sites. We measured the CT of the entire cortex and performed group comparisons using FreeSurfer software. The relationship between the CT and cognitive functioning was examined in an ARMS subsample (n = 70). ARMS individuals as a whole relative to healthy controls exhibited a significantly reduced CT, predominantly in the fronto-temporal regions, which was partly associated with cognitive impairments, and an increased CT in the left parietal and right occipital regions. Compared with resilient ARMS individuals, non-resilient ARMS individuals exhibited a significantly reduced CT of the right paracentral lobule. These findings suggest that ARMS individuals partly share CT abnormalities with patients with overt schizophrenia, potentially representing general vulnerability to psychopathology, and also support the role of cortical thinning in the paracentral lobule as a predictive biomarker for short-term functional decline in the ARMS population.
Collapse
|
14
|
Del Re EC, Stone WS, Bouix S, Seitz J, Zeng V, Guliano A, Somes N, Zhang T, Reid B, Lyall A, Lyons M, Li H, Whitfield-Gabrieli S, Keshavan M, Seidman LJ, McCarley RW, Wang J, Tang Y, Shenton ME, Niznikiewicz MA. Baseline Cortical Thickness Reductions in Clinical High Risk for Psychosis: Brain Regions Associated with Conversion to Psychosis Versus Non-Conversion as Assessed at One-Year Follow-Up in the Shanghai-At-Risk-for-Psychosis (SHARP) Study. Schizophr Bull 2021; 47:562-574. [PMID: 32926141 PMCID: PMC8480195 DOI: 10.1093/schbul/sbaa127] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess cortical thickness (CT) and surface area (SA) of frontal, temporal, and parietal brain regions in a large clinical high risk for psychosis (CHR) sample, and to identify cortical brain abnormalities in CHR who convert to psychosis and in the whole CHR sample, compared with the healthy controls (HC). METHODS Magnetic resonance imaging, clinical, and cognitive data were acquired at baseline in 92 HC, 130 non-converters, and 22 converters (conversion assessed at 1-year follow-up). CT and SA at baseline were calculated for frontal, temporal, and parietal subregions. Correlations between regions showing group differences and clinical scores and age were also obtained. RESULTS CT but not SA was significantly reduced in CHR compared with HC. Two patterns of findings emerged: (1) In converters, CT was significantly reduced relative to non-converters and controls in the banks of superior temporal sulcus, Heschl's gyrus, and pars triangularis and (2) CT in the inferior parietal and supramarginal gyrus, and at trend level in the pars opercularis, fusiform, and middle temporal gyri was significantly reduced in all high-risk individuals compared with HC. Additionally, reduced CT correlated significantly with older age in HC and in non-converters but not in converters. CONCLUSIONS These results show for the first time that fronto-temporo-parietal abnormalities characterized all CHR, that is, both converters and non-converters, relative to HC, while CT abnormalities in converters relative to CHR-NC and HC were found in core auditory and language processing regions.
Collapse
Affiliation(s)
- Elisabetta C Del Re
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston
Healthcare System, Brockton Division, and Harvard Medical School,
Boston, MA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
| | - Johanna Seitz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
| | - Anthony Guliano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
| | - Nathaniel Somes
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of
Medicine, Shanghai Key Laboratory of Psychotic Disorders, SHARP
Program, Shanghai China
| | - Benjamin Reid
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
| | - Amanda Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
- Department of Psychiatry, Massachusetts General Hospital and Harvard
Medical School, Boston, MA
| | - Monica Lyons
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
- Department of Psychiatry, Massachusetts General Hospital and Harvard
Medical School, Boston, MA
| | - Huijun Li
- Florida A&M University, Department of Psychology,
Tallahassee, FL
| | | | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
| | - Larry J Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
- Department of Psychiatry, Massachusetts General Hospital and Harvard
Medical School, Boston, MA
| | - Robert W McCarley
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston
Healthcare System, Brockton Division, and Harvard Medical School,
Boston, MA
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of
Medicine, Shanghai Key Laboratory of Psychotic Disorders, SHARP
Program, Shanghai China
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiaotong University School of
Medicine, Shanghai Key Laboratory of Psychotic Disorders, SHARP
Program, Shanghai China
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham
and Women’s Hospital, and Harvard Medical School, Boston,
MA
- Department of Psychiatry, Massachusetts General Hospital and Harvard
Medical School, Boston, MA
- Department of Radiology, Brigham and Women’s Hospital, and
Harvard Medical School, Boston, MA
- Research and Development, VA Boston Healthcare System,
Boston, MA
| | - Margaret A Niznikiewicz
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston
Healthcare System, Brockton Division, and Harvard Medical School,
Boston, MA
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard
Medical School, Boston, MA
- To whom correspondence should be addressed; e-mail:
| |
Collapse
|
15
|
Distress severity in perceptual anomalies moderates the relationship between prefrontal brain structure and psychosis proneness in nonclinical individuals. Eur Arch Psychiatry Clin Neurosci 2021; 271:1111-1122. [PMID: 33532868 PMCID: PMC8354976 DOI: 10.1007/s00406-020-01229-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
In the general population, psychosis risk phenotypes occur independently of attenuated prodromal syndromes. Neurobiological correlates of vulnerability could help to understand their meaningfulness. Interactions between the occurrence of psychotic-like experiences (PLE) and other psychological factors e.g., distress related to PLE, may distinguish psychosis-prone individuals from those without risk of future psychotic disorder. We aimed to investigate whether (a) correlates of total PLE and distress, and (b) symptom dimension-specific moderation effects exist at the brain structural level in non-help-seeking adults reporting PLE below and above the screening criterion for clinical high-risk (CHR). We obtained T1-weighted whole-brain MRI scans from 104 healthy adults from the community without psychosis CHR states for voxel-based morphometry (VBM). Brain structural associations with PLE and PLE distress were analysed with multiple linear regression models. Moderation of PLE by distress severity of two types of positive symptoms from the Prodromal Questionnaire (PQ-16) screening inventory was explored in regions-of-interest after VBM. Total PQ-16 score was positively associated with grey matter volume (GMV) in prefrontal regions, occipital fusiform and lingual gyri (p < 0.05, FDR peak-level corrected). Overall distress severity and GMV were not associated. Examination of distress severity on the positive symptom dimensions as moderators showed reduced strength of the association between PLE and rSFG volume with increased distress severity for perceptual PLE. In this study, brain structural variation was related to PLE level, but not distress severity, suggesting specificity. In healthy individuals, positive relationships between PLE and prefrontal volumes may indicate protective features, which supports the insufficiency of PLE for the prediction of CHR. Additional indicators of vulnerability, such as distress associated with perceptual PLE, change the positive brain structure relationship. Brain structural findings may strengthen clinical objectives through disentanglement of innocuous and risk-related PLE.
Collapse
|
16
|
Does cortical brain morphology act as a mediator between childhood trauma and transition to psychosis in young individuals at ultra-high risk? Schizophr Res 2020; 224:116-125. [PMID: 33071072 DOI: 10.1016/j.schres.2020.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Childhood trauma, particularly sexual abuse, has been associated with transition to psychosis in individuals at "ultra-high risk" (UHR). This study investigated whether the effects of various forms of childhood trauma on transition to psychosis are mediated by cortical thickness and surface area abnormalities. METHODS This prospective study used data from 62 UHR individuals from a previous (PACE 400) cohort study. At follow-up, 24 individuals had transitioned to psychosis (UHR-T) and 38 individuals had not transitioned (UHR-NT). Student-t/Mann-Whitney-U tests were performed to assess morphological differences in childhood trauma (low/high) and transition. Mediation analyses were conducted using regression and bootstrapping techniques. RESULTS UHR individuals with high sexual trauma histories presented with decreased cortical thickness in bilateral middle temporal gyri and the left superior frontal gyrus compared to those with low sexual trauma. Participants with high physical abuse had increased cortical thickness in the right middle frontal gyrus compared to those with low physical abuse. No differences were found for emotional abuse or physical/emotional neglect. Reduced cortical thickness in the right middle temporal gyrus and increased surface area in the right cingulate were found in UHR-T compared to UHR-NT individuals. Sexual abuse had an indirect effect on transition to psychosis, where decreased cortical thickness in the right middle temporal gyrus was a mediator. CONCLUSIONS Results suggest that childhood sexual abuse negatively impacted on cortical development of the right temporal gyrus, and this heightened the risk of transition to psychosis in our sample. Further longitudinal studies are needed to precisely understand this link.
Collapse
|
17
|
Tomyshev AS, Lebedeva IS, Kananovich PS, Pomytkin AN, Bazhenova DA, Kaleda VG. Multimodal MRI of Conduction Tracts and Anatomy of the Cerebral Gray Matter in Familial Risk of Affective Disorders and Schizophrenia. Bull Exp Biol Med 2020; 169:614-618. [PMID: 32986216 DOI: 10.1007/s10517-020-04939-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 11/27/2022]
Abstract
The present study analyzed diffusion characteristics of white matter tracts and grey matter anatomy in 48 mentally healthy participants, including first-degree relatives of patients with schizophrenia (N=13) and affective spectrum disorders (N=13). The subgroup with familial risk of schizophrenia displayed abnormalities in the structural connectivity and increased cortical thickness in the superior frontal gyrus. No differences in the analyzed characteristics were revealed in the subgroup with familial risk for affective disorders. The results are discussed within the framework of the concepts of endophenotypes and processes reflecting compensatory and protective mechanisms.
Collapse
Affiliation(s)
- A S Tomyshev
- Research Center of Mental Health, Moscow, Russia.
| | - I S Lebedeva
- Research Center of Mental Health, Moscow, Russia
| | | | - A N Pomytkin
- Research Center of Mental Health, Moscow, Russia
| | - D A Bazhenova
- Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - V G Kaleda
- Research Center of Mental Health, Moscow, Russia
| |
Collapse
|
18
|
Cheng B, Qi X, Liang C, Zhang L, Ma M, Li P, Liu L, Cheng S, Yao Y, Chu X, Ye J, Wen Y, Jia Y, Zhang F. Integrative Genomic Enrichment Analysis Identified the Brain Regions and Development Stages Related to Anorexia Nervosa and Obsessive-Compulsive Disorder. Cereb Cortex 2020; 30:6481-6489. [PMID: 32770201 DOI: 10.1093/cercor/bhaa214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Our aim is to explore the spatial and temporal features of anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) considering different brain regions and development stages. The gene sets related to 16 brain regions and nine development stages were obtained from a brain spatial and temporal transcriptomic dataset. Using the genome-wide association study data, transcriptome-wide association study (TWAS) was conducted to identify the genes whose imputed expressions were associated with AN and OCD, respectively. The mRNA expression profiles were analyzed by GEO2R to obtain differentially expressed genes. Gene set enrichment analysis was conducted to detect the spatial and temporal features related to AN and OCD using the TWAS and mRNA expression analysis results. We observed multiple common association signals shared by TWAS and mRNA expression analysis of AN, such as the primary auditory cortex vs. cerebellar cortex in fetal development and earlier vs. later fetal development in the somatosensory cortex. For OCD, we also detected multiple common association signals, such as medial prefrontal cortex vs. amygdala in adulthood and fetal development vs. infancy in mediodorsal nucleus of thalamus. Our study provides novel clues for describing the spatial and temporal features of brain development in the pathogenesis of AN and OCD.
Collapse
Affiliation(s)
- Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xin Qi
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
19
|
Avery SN, Armstrong K, McHugo M, Vandekar S, Blackford JU, Woodward ND, Heckers S. Relational Memory in the Early Stage of Psychosis: A 2-Year Follow-up Study. Schizophr Bull 2020; 47:75-86. [PMID: 32657351 PMCID: PMC7825006 DOI: 10.1093/schbul/sbaa081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Relational memory, the ability to bind information into complex memories, is moderately impaired in early psychosis and severely impaired in chronic schizophrenia, suggesting relational memory may worsen throughout the course of illness. METHODS We examined relational memory in 66 early psychosis patients and 64 healthy control subjects, with 59 patients and 52 control subjects assessed longitudinally at baseline and 2-year follow-up. Relational memory was assessed with 2 complementary tasks, to test how individuals learn relationships between items (face-scene binding task) and make inferences about trained relationships (associative inference task). RESULTS The early psychosis group showed impaired relational memory in both tasks relative to the healthy control group. The ability to learn relationships between items remained impaired in early psychosis patients, while the ability to make inferences about trained relationships improved, although never reaching the level of healthy control performance. Early psychosis patients who did not progress to schizophrenia at follow-up had better relational memory than patients who did. CONCLUSIONS Relational memory impairments, some of which improve and are less severe in patients who do not progress to schizophrenia, are a target for intervention in early psychosis.
Collapse
Affiliation(s)
- Suzanne N Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN,Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN,To whom correspondence should be addressed; Vanderbilt Psychiatric Hospital, 1601 23rd Avenue South, Room 3060, Nashville, TN 37212; tel: (615)-322-2665, fax: (615)-343-8400, e-mail:
| |
Collapse
|
20
|
Zamberletti E, Rubino T. Impact of Endocannabinoid System Manipulation on Neurodevelopmental Processes Relevant to Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:616-626. [PMID: 32855107 DOI: 10.1016/j.bpsc.2020.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
The neurodevelopmental hypothesis of schizophrenia has received much support from epidemiological and neuropathological studies and provides a framework to explain how early developmental abnormalities might manifest as psychosis in early adulthood. According to this theory, the onset of schizophrenia is likely the result of a complex interplay between a genetic predisposition and environmental factors whose respective influence might contribute to the etiology and progression of the disorder. The two most sensitive windows for neurodevelopment are the prenatal/perinatal and the adolescent windows, both of which are characterized by specific processes impinging upon brain structure and functionality, whose alterations may contribute to the onset of schizophrenia. An increasing number of articles suggest the involvement of the endocannabinoid system in the modulation of at least some of these processes, especially in the prenatal/perinatal window. Thus, it is not surprising that disturbing the physiological role of endocannabinoid signaling in these sensitive windows might alter the correct formation of neuronal networks, eventually predisposing to neuropsychiatric diseases later in life. We review the most recent preclinical studies that evaluated the impact of endocannabinoid system modulation in the two sensitive developmental windows on neurodevelopmental processes that possess a specific relevance to schizophrenia.
Collapse
Affiliation(s)
- Erica Zamberletti
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Busto Arsizio, Varese, Italy.
| |
Collapse
|
21
|
Impaired olfactory ability associated with larger left hippocampus and rectus volumes at earliest stages of schizophrenia: A sign of neuroinflammation? Psychiatry Res 2020; 289:112909. [PMID: 32387788 DOI: 10.1016/j.psychres.2020.112909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 11/22/2022]
Abstract
Impaired olfactory identification has been reported as a first sign of schizophrenia during the earliest stages of illness, including before illness onset. The aim of this study was to examine the relationship between volumes of these regions (amygdala, hippocampus, gyrus rectus and orbitofrontal cortex) and olfactory ability in three groups of participants: healthy control participants (Ctls), patients with first-episode schizophrenia (FE-Scz) and chronic schizophrenia patients (Scz). Exploratory analyses were performed in a sample of individuals at ultra-high risk (UHR) for psychosis in a co-submission paper (Masaoka et al., 2020). The relationship to brain structural measures was not apparent prior to psychosis onset, but was only evident following illness onset, with a different pattern of relationships apparent across illness stages (FE-Scz vs Scz). Path analysis found that lower olfactory ability was related to larger volumes of the left hippocampus and gyrus rectus in the FE-Scz group. We speculate that larger hippocampus and rectus in early schizophrenia are indicative of swelling, potentially caused by an active neurochemical or immunological process, such as inflammation or neurotoxicity, which is associated with impaired olfactory ability. The volumetric decreases in the chronic stage of Scz may be due to degeneration resulting from an active immune process and its resolution.
Collapse
|
22
|
Drake RJ, Husain N, Marshall M, Lewis SW, Tomenson B, Chaudhry IB, Everard L, Singh S, Freemantle N, Fowler D, Jones PB, Amos T, Sharma V, Green CD, Fisher H, Murray RM, Wykes T, Buchan I, Birchwood M. Effect of delaying treatment of first-episode psychosis on symptoms and social outcomes: a longitudinal analysis and modelling study. Lancet Psychiatry 2020; 7:602-610. [PMID: 32563307 PMCID: PMC7606908 DOI: 10.1016/s2215-0366(20)30147-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Delayed treatment for first episodes of psychosis predicts worse outcomes. We hypothesised that delaying treatment makes all symptoms more refractory, with harm worsening first quickly, then more slowly. We also hypothesised that although delay impairs treatment response, worse symptoms hasten treatment, which at presentation mitigates the detrimental effect of treatment delay on symptoms. METHODS In this longitudinal analysis and modelling study, we included two longitudinal cohorts of patients with first-episode psychosis presenting to English early intervention services from defined catchments: NEDEN (recruiting 1003 patients aged 14-35 years from 14 services between Aug 1, 2005, and April 1, 2009) and Outlook (recruiting 399 patients aged 16-35 years from 11 services between April 1, 2006, and Feb 28, 2009). Patients were assessed at baseline, 6 months, and 12 months with the Positive and Negative Symptom Scale (PANSS), Calgary Depression Scale for Schizophrenia, Mania Rating Scale, Insight Scale, and Social and Occupational Functioning Assessment Scale. Regression was used to compare different models of the relationship between duration of untreated psychosis (DUP) and total symptoms at 6 months. Growth curve models of symptom subscales tested predictions arising from our hypotheses. FINDINGS We included 948 patients from the NEDEN study and 332 patients from the Outlook study who completed baseline assessments and were prescribed dopamine antagonist antipsychotics. For both cohorts, the best-fitting models were logarithmic, describing a curvilinear relationship of DUP to symptom severity: longer DUP predicted reduced treatment response, but response worsened more slowly as DUP lengthened. Increasing DUP by ten times predicted reduced improvement in total symptoms (ie, PANSS total) by 7·339 (95% CI 5·762 to 8·916; p<0·0001) in NEDEN data and 3·846 (1·689 to 6·003; p=0·0005) in Outlook data. This was true of treatment response for all symptom types. Nevertheless, longer DUP was not associated with worse presentation for any symptoms except depression in NEDEN (coefficients 0·099 [95% CI 0·033 to 0·164]; p=0·0028 in NEDEN and 0·007 [-0·081 to 0·095]; p=0·88 in Outlook). INTERPRETATION Long DUP was associated with reduced treatment response across subscales, consistent with a harmful process upstream of individual symptoms' mechanisms; response appeared to worsen quickly at first, then more slowly. These associations underscore the importance of rapid access to a comprehensive range of treatments, especially in the first weeks after psychosis onset. FUNDING UK Department of Health, National Institute of Health Research, and Medical Research Council.
Collapse
Affiliation(s)
- Richard J Drake
- Division of Psychology & Mental Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; Greater Manchester Mental Health NHS Foundation Trust, Prestwich, Manchester, UK.
| | - Nusrat Husain
- Division of Psychology & Mental Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; Lancashire Care & South Cumbria NHS Foundation Trust, Preston, Lancashire, UK
| | - Max Marshall
- Lancashire Care & South Cumbria NHS Foundation Trust, Preston, Lancashire, UK
| | - Shôn W Lewis
- Division of Psychology & Mental Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; Greater Manchester Mental Health NHS Foundation Trust, Prestwich, Manchester, UK
| | - Barbara Tomenson
- Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK
| | - Imran B Chaudhry
- Division of Neuroscience & Experimental Psychology, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; Department of Psychiatry, Ziauddin University, Karachi, Pakistan
| | - Linda Everard
- Birmingham and Solihull NHS, Mental Health Foundation, Trust, Birmingham, UK
| | - Swaran Singh
- Department of Mental Health & Wellbeing, University of Warwick, Warwick, UK
| | - Nick Freemantle
- Institute for Clinical Trials, University College London, London, UK
| | - David Fowler
- School of Psychology, University of Sussex, Brighton, UK; Sussex Partnership NHS Foundation Trust, Worthing, UK
| | - Peter B Jones
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; NIHR Collaboration for Leadership in Applied Health Research & Care East of England, Cambridge, UK
| | - Tim Amos
- School of Clinical Sciences, University of Bristol, Bristol, UK; Avon & Wiltshire Mental Health Partnership NHS Trust, Chippenham, UK
| | - Vimal Sharma
- Chester Medical School, University of Chester, Chester, UK; Cheshire & Wirral Partnership NHS Foundation Trust, Chester, UK
| | - Chloe D Green
- Manchester Academic Health Science Centre, Manchester, UK; Greater Manchester Mental Health NHS Foundation Trust, Prestwich, Manchester, UK
| | - Helen Fisher
- MRC Centre for Social, Genetic & Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NIHR Maudsley Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Til Wykes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NIHR Maudsley Biomedical Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Iain Buchan
- Division of Informatics, Imaging & Data Sciences, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Salford Royal NHS Foundation Trust, Salford, UK; Institute of Population Health Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Max Birchwood
- Department of Mental Health & Wellbeing, University of Warwick, Warwick, UK
| |
Collapse
|
23
|
Abstract
Psychotic disorders are severe, debilitating, and even fatal. The development of targeted and effective interventions for psychosis depends upon on clear understanding of the timing and nature of disease progression to target processes amenable to intervention. Strong evidence suggests early and ongoing neuroprogressive changes, but timing and inflection points remain unclear and likely differ across cognitive, clinical, and brain measures. Additionally, granular evidence across modalities is particularly sparse in the "bridging years" between first episode and established illness-years that may be especially critical for improving outcomes and during which interventions may be maximally effective. Our objective is the systematic, multimodal characterization of neuroprogression through the early course of illness in a cross-diagnostic sample of patients with psychosis. We aim to (1) interrogate neurocognition, structural brain measures, and network connectivity at multiple assessments over the first eight years of illness to map neuroprogressive trajectories, and (2) examine trajectories as predictors of clinical and functional outcomes. We will recruit 192 patients with psychosis and 36 healthy controls. Assessments will occur at baseline and 8- and 16-month follow ups using clinical, cognitive, and imaging measures. We will employ an accelerated longitudinal design (ALD), which permits ascertainment of data across a longer timeframe and at more frequent intervals than would be possible in a single cohort longitudinal study. Results from this study are expected to hasten identification of actionable treatment targets that are closely associated with clinical outcomes, and identify subgroups who share common neuroprogressive trajectories toward the development of individualized treatments.
Collapse
|
24
|
Nenadić I. [Brain imaging in schizophrenia : A review of current trends and developments]. DER NERVENARZT 2020; 91:18-25. [PMID: 31919551 DOI: 10.1007/s00115-019-00857-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Imaging methods have become the main approach for identifying dysfunctional neuronal networks in schizophrenia. This review article presents recent results of disorders of neuronal networks at structural and functional levels and summarizes the current developments. Large multicenter analyses have further established patterns of regional brain alterations, while novel methods in magnetic resonance (MR) morphometry have contributed to differentiating early from delayed brain structural changes. The use of machine learning approaches has not only enabled the establishment of classification models using biological data for future differential diagnostic use, it has also facilitated multivariate models for outcome prediction following therapeutic interventions. Novel methods, such as BrainAGE, a surrogate marker of accelerated brain aging processes, have added to longitudinal studies to gain insights into the brain structural dynamics from early brain developmental alterations to progressive structural brain changes after disease onset.
Collapse
Affiliation(s)
- Igor Nenadić
- Klinik für Psychiatrie und Psychotherapie, Philipps Universität Marburg & Universitätsklinikum Gießen und Marburg (UKGM), Rudolf-Bultmann-Straße 8, 35039, Marburg, Deutschland.
| |
Collapse
|
25
|
The Complex Relationship Among Formal Thought Disorders, Neurocognition, and Functioning in Nonacutely Ill Schizophrenia Patients. J Nerv Ment Dis 2020; 208:48-55. [PMID: 31738225 DOI: 10.1097/nmd.0000000000001087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aims of the present study were to 1) evaluate clinical differences between patients suffering from schizophrenia (SZ) with mild versus moderate/severe formal thought disorder (FTD); 2) explore relationships between dimensions of FTD, neuropsychological domains, and global functioning; and 3) compare clinical dimensions of FTD in early and late SZ. One hundred thirty-six individuals with schizophrenia were recruited and evaluated during a nonacute phase of illness. FTD was assessed with the Thought, Language, and Communication Scale. Partial correlations, t-tests, and stepwise regression were undertaken to address the study aims. Patients with moderate/severe FTD performed worse than those with mild FTD for processing speed, reasoning and problem solving, and social cognition, and demonstrated poorer global functioning. Early SZ did not differ from late SZ in terms of negative FTD and difficulty in abstract thinking (DAT). Negative FTD was correlated with reasoning and problem solving; DAT was correlated with social cognition. All clinical dimensions of FTD, regardless of neurocognitive impairment, accounted for a significant amount of variance in global functioning. FTD predicted global functioning, regardless of neurocognitive factors. Due to their stability in different phases of the course of the disease and their strong relationship with other core variables, Neg-FTD and DAT should be investigated as an intermediate phenotype of the illness.
Collapse
|
26
|
Makowski C, Lewis JD, Lepage C, Malla AK, Joober R, Lepage M, Evans AC. Structural Associations of Cortical Contrast and Thickness in First Episode Psychosis. Cereb Cortex 2019; 29:5009-5021. [PMID: 30844050 PMCID: PMC6918925 DOI: 10.1093/cercor/bhz040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 01/22/2023] Open
Abstract
There is growing evidence that psychosis is characterized by brain network abnormalities. Analyzing morphological abnormalities with T1-weighted structural MRI may be limited in discovering the extent of deviations in cortical associations. We assess whether structural associations of either cortical white-gray contrast (WGC) or cortical thickness (CT) allow for a better understanding of brain structural relationships in first episode of psychosis (FEP) patients. Principal component and structural covariance analyses were applied to WGC and CT derived from T1-weighted MRI for 116 patients and 88 controls, to explore sets of brain regions that showed group differences, and associations with symptom severity and cognitive ability in patients. We focused on 2 principal components: one encompassed primary somatomotor regions, which showed trend-like group differences in WGC, and the second included heteromodal cortices. Patients' component scores were related to general psychopathology for WGC, but not CT. Structural covariance analyses with WGC revealed group differences in pairwise correlations across widespread brain regions, mirroring areas derived from PCA. More group differences were uncovered with WGC compared with CT. WGC holds potential as a proxy measure of myelin from commonly acquired T1-weighted MRI and may be sensitive in detecting systems-level aberrations in early psychosis, and relationships with clinical/cognitive profiles.
Collapse
Affiliation(s)
- Carolina Makowski
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
- Department of Psychiatry, McGill University, Verdun, Canada
| | - John D Lewis
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Claude Lepage
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Ashok K Malla
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Martin Lepage
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| |
Collapse
|
27
|
Systematic review and multi-modal meta-analysis of magnetic resonance imaging findings in 22q11.2 deletion syndrome: Is more evidence needed? Neurosci Biobehav Rev 2019; 107:143-153. [DOI: 10.1016/j.neubiorev.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 08/07/2019] [Accepted: 09/02/2019] [Indexed: 11/20/2022]
|
28
|
Forbes M, Stefler D, Velakoulis D, Stuckey S, Trudel JF, Eyre H, Boyd M, Kisely S. The clinical utility of structural neuroimaging in first-episode psychosis: A systematic review. Aust N Z J Psychiatry 2019; 53:1093-1104. [PMID: 31113237 DOI: 10.1177/0004867419848035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Australian and US guidelines recommend routine brain imaging, either computed tomography or magnetic resonance imaging, to exclude structural lesions in presentations for first-episode psychosis. The aim of this review was to examine the evidence for the appropriateness and clinical utility of this recommendation by assessing the frequency of abnormal radiological findings in computed tomography and magnetic resonance imaging scans among patients with first-episode psychosis. METHODS PubMed and Embase database were searched from inception to April 2018 using appropriate MeSH or Emtree terms. Studies were included in the review if they reported data on computed tomography or magnetic resonance imaging scan findings of individuals with first-episode psychosis. No restriction on the geographical location of the study or the age of participants was applied. We calculated the percentage of abnormal radiological findings in each study, separately by the two diagnostic methods. RESULTS There were 16 suitable studies published between 1988 and 2017, reporting data on an overall 2312 patients with first-episode psychosis. Most were observational studies with a retrospective design and the majority examined patients with computed tomography. While structural abnormalities were a relatively common finding, these rarely required clinical intervention (range across studies: 0-60.7%; median: 3.5%) and were very rarely the cause of the psychotic symptoms (range: 0-3.3%; median: 0%). Only 2 of the 16 studies concluded that brain imaging should be routinely ordered in first-episode psychosis. CONCLUSION There is insufficient evidence to suggest that brain imaging should be routinely ordered for patients presenting with first-episode psychosis without associated neurological or cognitive impairment. The appropriate screening procedure for structural brain lesions is conventional history-taking, mental status and neurological examination. If intracranial pathology is suspected clinically, a magnetic resonance imaging or computed tomography scan should be performed depending on the clinical signs, the acuity and the suspected pathology. National guidelines should reflect evidence-based data.
Collapse
Affiliation(s)
- Malcolm Forbes
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| | - Denes Stefler
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Parkville, VIC, Australia.,Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Stephen Stuckey
- Monash Imaging, Diagnostic Neuroradiology and MRI, Monash Health, Clayton, VIC, Australia.,Department of Imaging, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | | | - Harris Eyre
- Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia.,Innovation Institute, Texas Medical Centre, Houston, TX, USA
| | - Melinda Boyd
- School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Steve Kisely
- Innovation Institute, Texas Medical Centre, Houston, TX, USA
| |
Collapse
|
29
|
Vargas T, Damme KSF, Mittal VA. Bullying victimization in typically developing and clinical high risk (CHR) adolescents: A multimodal imaging study. Schizophr Res 2019; 213:40-47. [PMID: 30528926 PMCID: PMC6555683 DOI: 10.1016/j.schres.2018.11.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bullying has been shown to increase the risk of developing a psychotic disorder. To date, no studies have examined brain behavior relationships within the context of bullying victimization in clinical high-risk (CHR) youth, a group characterized by both gray and white matter abnormalities. The present study employed multimodal neuroimaging to examine possible neural mechanisms associated with bullying victimization. METHODS CHR and healthy volunteers underwent clinical interviews, parent reports and MRI scans. Regions of interest (ROIs) were picked based on sensitivity to environmental stress, including hippocampal, amygdala, and orbitofrontal cortex (OFC) structural ROIs, and uncinate fasciculus white matter integrity. RESULTS CHR individuals were more exposed to bullying victimization than healthy volunteers, and bullying was associated with depressive symptoms across the whole sample. CHR individuals exhibited smaller volumes in OFC, but not in other ROIs. Increased bullying exposure was associated with lower medial OFC volumes in CHR and HV groups independently. Results ought to be interpreted as preliminary, as they did not survive correction at the whole brain level. DISCUSSION Bullying victimization may affect or be affected by volumetric OFC differences in both healthy and CHR individuals. However, given CHR showed greater exposure to bullying as well as underlying vulnerability (e.g. lower volumes), results also point to etiological clues and novel intervention targets, though future replication is needed in better powered samples.
Collapse
Affiliation(s)
- Teresa Vargas
- Northwestern University, Department of Psychology, USA.
| | | | - Vijay A. Mittal
- Northwestern University Department of Psychology,Northwestern University Department of Psychiatry,Northwestern University Department of Medical Social Sciences,Northwestern University Institute for Policy Research,Northwestern University Institute for Innovations in Developmental Sciences
| |
Collapse
|
30
|
Avery SN, Armstrong K, Blackford JU, Woodward ND, Cohen N, Heckers S. Impaired relational memory in the early stage of psychosis. Schizophr Res 2019; 212:113-120. [PMID: 31402078 PMCID: PMC6791765 DOI: 10.1016/j.schres.2019.07.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/28/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Humans constantly take in vast amounts of information, which must be filtered, flexibly manipulated, and integrated into cohesive relational memories in order to choose relevant behaviors. Relational memory is impaired in chronic schizophrenia, which has been linked to hippocampal dysfunction. It is unclear whether relational memory is impaired in the early stage of psychosis. METHODS We studied eye movements during a face-scene pairs task as an indirect measure of relational memory in 89 patients in the early stage of psychosis and 84 healthy control participants. During testing, scenes were overlaid with three equally-familiar faces and participants were asked to recall the matching (i.e. previously-paired) face. During Match trials, one face had been previously paired with the scene. During Non-Match trials, no faces matched the scene. Forced-choice explicit recognition was recorded as a direct measure of relational memory. RESULTS Healthy control subjects rapidly (within 250-500 ms) showed preferential viewing of the matching face during Match trials. In contrast, preferential viewing was delayed in patients in the early stage of psychosis. Explicit recognition of the matching face was also impaired in the patient group. CONCLUSIONS This study provides novel evidence for a relational memory deficit in the early stage of psychosis. Patients showed deficits in both explicit recognition as well as abnormal eye-movement patterns during memory recall. Eye movements provide a promising avenue for the study of relational memory in psychosis, as they allow for the assessment of rapid, nonverbal memory processes.
Collapse
Affiliation(s)
- Suzanne N. Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | - Jennifer U. Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212 USA,Research Health Scientist, Research and Development, Department of Veterans Affairs Medical Center, Nashville, TN
| | - Neil D. Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| | - Neal Cohen
- Beckman Institute for Advanced Science and Technology, and Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212 USA
| |
Collapse
|
31
|
Wannan CMJ, Cropley VL, Chakravarty MM, Van Rheenen TE, Mancuso S, Bousman C, Everall I, McGorry PD, Pantelis C, Bartholomeusz CF. Hippocampal subfields and visuospatial associative memory across stages of schizophrenia-spectrum disorder. Psychol Med 2019; 49:2452-2462. [PMID: 30511607 DOI: 10.1017/s0033291718003458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND While previous studies have identified relationships between hippocampal volumes and memory performance in schizophrenia, these relationships are not apparent in healthy individuals. Further, few studies have examined the role of hippocampal subfields in illness-related memory deficits, and no study has examined potential differences across varying illness stages. The current study aimed to investigate whether individuals with early and established psychosis exhibited differential relationships between visuospatial associative memory and hippocampal subfield volumes. METHODS Measurements of visuospatial associative memory performance and grey matter volume were obtained from 52 individuals with a chronic schizophrenia-spectrum disorder, 28 youth with recent-onset psychosis, 52 older healthy controls, and 28 younger healthy controls. RESULTS Both chronic and recent-onset patients had impaired visuospatial associative memory performance, however, only chronic patients showed hippocampal subfield volume loss. Both chronic and recent-onset patients demonstrated relationships between visuospatial associative memory performance and hippocampal subfield volumes in the CA4/dentate gyrus and the stratum that were not observed in older healthy controls. There were no group by volume interactions when chronic and recent-onset patients were compared. CONCLUSIONS The current study extends the findings of previous studies by identifying particular hippocampal subfields, including the hippocampal stratum layers and the dentate gyrus, that appear to be related to visuospatial associative memory ability in individuals with both chronic and first-episode psychosis.
Collapse
Affiliation(s)
- Cassandra M J Wannan
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
- The Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- The Cooperative Research Centre for Mental Health, Melbourne, Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
| | - Vanessa L Cropley
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Canada
- Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, Canada
| | - Tamsyn E Van Rheenen
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Sam Mancuso
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Chad Bousman
- Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Ian Everall
- The Cooperative Research Centre for Mental Health, Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, South Carlton, Victoria, Australia
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK
- Florey Institute for Neuroscience & Mental Health, Parkville, VIC, Australia
| | - Patrick D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- The Cooperative Research Centre for Mental Health, Melbourne, Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Electrical and Electronic Engineering, Centre for Neural Engineering, University of Melbourne, South Carlton, Victoria, Australia
- Florey Institute for Neuroscience & Mental Health, Parkville, VIC, Australia
| | - Cali F Bartholomeusz
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
- The Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Lewandowski KE. Mapping cognitive trajectories across the course of illness in psychosis. Schizophr Res 2019; 210:48-49. [PMID: 30595442 PMCID: PMC6597326 DOI: 10.1016/j.schres.2018.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Kathryn E Lewandowski
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States of America; Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
33
|
Tomyshev AS, Lebedeva IS, Akhadov TA, Omelchenko MA, Rumyantsev AO, Kaleda VG. Alterations in white matter microstructure and cortical thickness in individuals at ultra-high risk of psychosis: A multimodal tractography and surface-based morphometry study. Psychiatry Res Neuroimaging 2019; 289:26-36. [PMID: 31132567 DOI: 10.1016/j.pscychresns.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/24/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of white matter (WM) and grey matter pathology in subjects at ultra-high risk of psychosis (UHR), although a limited number of diffusion-weighted magnetic resonance imaging (DW-MRI) and surface-based morphometry (SBM) studies have revealed anatomically inconsistent results. The present multimodal study applies tractography and SBM to analyze WM microstructure, whole-brain cortical anatomy, and potential interconnections between WM and grey matter abnormalities in UHR subjects. Thirty young male UHR patients and 30 healthy controls underwent DW-MRI and T1-weighted MRI. Fractional anisotropy; mean, radial, and axial diffusivity in 18 WM tracts; and vertex-based cortical thickness, area, and volume were analyzed. We found increased radial diffusivity in the left anterior thalamic radiation and reduced bilateral thickness across the frontal, temporal, and parietal cortices. No correlations between WM and grey matter abnormalities were identified. These results provide further evidence that WM microstructure abnormalities and cortical anatomical changes occur in the UHR state. Disruption of structural connectivity in the prefrontal-subcortical circuitry, likely caused by myelin pathology, and cortical thickness reduction affecting the networks presumably involved in processing and coordination of external and internal information streams may underlie the widespread deficits in neurocognitive and social functioning that are consistently reported in UHR subjects.
Collapse
Affiliation(s)
- Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 34 Kashirskoe shosse, 115522 Moscow, Russia.
| | - Irina S Lebedeva
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, 34 Kashirskoe shosse, 115522 Moscow, Russia
| | - Tolibdzhon A Akhadov
- Department of Radiology, Children's Clinical and Research Institute of Emergency Surgery and Trauma, Moscow, Russia
| | - Maria A Omelchenko
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| | - Andrey O Rumyantsev
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| | - Vasiliy G Kaleda
- Department of Endogenous Mental Disorders, Mental Health Research Center, Moscow, Russia
| |
Collapse
|
34
|
Mullier E, Roine T, Griffa A, Xin L, Baumann PS, Klauser P, Cleusix M, Jenni R, Alemàn-Gómez Y, Gruetter R, Conus P, Do KQ, Hagmann P. N-Acetyl-Cysteine Supplementation Improves Functional Connectivity Within the Cingulate Cortex in Early Psychosis: A Pilot Study. Int J Neuropsychopharmacol 2019; 22:478-487. [PMID: 31283822 PMCID: PMC6672595 DOI: 10.1093/ijnp/pyz022] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND There is increasing evidence that redox dysregulation, which can lead to oxidative stress and eventually to impairment of oligodendrocytes and parvalbumin interneurons, may underlie brain connectivity alterations in schizophrenia. Accordingly, we previously reported that levels of brain antioxidant glutathione in the medial prefrontal cortex were positively correlated with increased functional connectivity along the cingulum bundle in healthy controls but not in early psychosis patients. In a recent randomized controlled trial, we observed that 6-month supplementation with a glutathione precursor, N-acetyl-cysteine, increased brain glutathione levels and improved symptomatic expression and processing speed. METHODS We investigated the effect of N-acetyl-cysteine supplementation on the functional connectivity between regions of the cingulate cortex, which have been linked to positive symptoms and processing speed decline. In this pilot study, we compared structural connectivity and resting-state functional connectivity between early psychosis patients treated with 6-month N-acetyl-cysteine (n = 9) or placebo (n = 11) supplementation with sex- and age-matched healthy control subjects (n = 74). RESULTS We observed that 6-month N-acetyl-cysteine supplementation increases functional connectivity along the cingulum and more precisely between the caudal anterior part and the isthmus of the cingulate cortex. These functional changes can be partially explained by an increase of centrality of these regions in the functional brain network. CONCLUSIONS N-acetyl-cysteine supplementation has a positive effect on functional connectivity within the cingulate cortex in early psychosis patients. To our knowledge, this is the first study suggesting that increased brain glutathione levels via N-acetyl-cysteine supplementation may improve brain functional connectivity.
Collapse
Affiliation(s)
- Emeline Mullier
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Correspondence: Emeline Mullier, Centre de recherche en Radiologie RC7, CHUV, Rue du Bugnon 46, 1011 Lausanne, Suisse ()
| | - Timo Roine
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Turku Brain and Mind Center, University of Turku, Turku, Finland,Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alessandra Griffa
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU Amsterdam, Amsterdam, The Netherlands
| | - Lijing Xin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philipp S Baumann
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Yasser Alemàn-Gómez
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Medical Image Analysis Laboratory (MIAL), Centre d’Imagerie BioMédicale (CIBM), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philippe Conus
- Treatment and Early Intervention in Psychosis Program (TIPP), Service of General Psychiatry, Department of Psychiatry, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland,Treatment and Early Intervention in Psychosis Program (TIPP), Service of General Psychiatry, Department of Psychiatry, Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
35
|
Di Biase MA, Cropley VL, Cocchi L, Fornito A, Calamante F, Ganella EP, Pantelis C, Zalesky A. Linking Cortical and Connectional Pathology in Schizophrenia. Schizophr Bull 2019; 45:911-923. [PMID: 30215783 PMCID: PMC6581130 DOI: 10.1093/schbul/sby121] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Schizophrenia is associated with cortical thickness (CT) deficits and breakdown in white matter microstructure. Whether these pathological processes are related remains unclear. We used multimodal neuroimaging to investigate the relationship between regional cortical thinning and breakdown in adjacent infracortical white matter as a function of age and illness duration. Structural magnetic resonance and diffusion images were acquired in 218 schizophrenia patients and 167 age-matched healthy controls to map CT and fractional anisotropy in regionally adjacent infracortical white matter at various cortical depths. We found a robust and reproducible relationship between thickness and anisotropy deficits, which were inversely correlated across cortical regions (r = -.5, P < .0001): the most anisotropic infracortical white matter was found adjacent to regions with extensive cortical thinning. This pattern was evident in early (20 y: r = -.3, P = .005) and middle life (30 y: r = -.4, P = .004, 40 y: r = -.3, P = .04), but not beyond 50 years (P > .05). Frontal pathology contributed most to this pattern, with cortical thinning in patients compared to controls at all ages (P < .05); in contrast to initially elevated frontal white matter anisotropy in patients at 30 years, followed by rapid white matter decline with age (rate of annual decline; patients: 0.0012, controls 0.0006, P < .001). Our findings point to pathological dependencies between gray and white matter in a large sample of schizophrenia patients. We argue that elevated frontal anisotropy reflects regionally-specific, compensatory responses to cortical thinning, which are eventually overwhelmed with increasing illness duration.
Collapse
Affiliation(s)
- Maria Angelique Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,Department of Psychiatry, The University of Melbourne, Parkville, Australia,To whom correspondence should be addressed; Psychiatry Neuroimaging Laboratory, Brigham & Women’s Hospital, Harvard Medical School, 1249 Boylston Street, 3rd Floor, Boston, MA 02215, US; tel: 617-525-6105, fax: 617-525-6170, e-mail:
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexander Fornito
- Brain and Mental Health Research Hub, Monash University, Clayton, Australia
| | - Fernando Calamante
- Sydney Imaging and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, Australia
| | - Eleni P Ganella
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia,Cooperative Research Centre for Mental Health, Carlton, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia,Cooperative Research Centre for Mental Health, Carlton, Australia,North Western Mental Health, Melbourne Health, Parkville, Australia,Centre for Neural Engineering, Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Australia,Department of Psychiatry, The University of Melbourne, Parkville, Australia,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, Australia
| |
Collapse
|
36
|
Delfin C, Krona H, Andiné P, Ryding E, Wallinius M, Hofvander B. Prediction of recidivism in a long-term follow-up of forensic psychiatric patients: Incremental effects of neuroimaging data. PLoS One 2019; 14:e0217127. [PMID: 31095633 PMCID: PMC6522126 DOI: 10.1371/journal.pone.0217127] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/04/2019] [Indexed: 02/06/2023] Open
Abstract
One of the primary objectives in forensic psychiatry, distinguishing it from other psychiatric disciplines, is risk management. Assessments of the risk of criminal recidivism are performed on a routine basis, as a baseline for risk management for populations involved in the criminal justice system. However, the risk assessment tools available to clinical practice are limited in their ability to predict recidivism. Recently, the prospect of incorporating neuroimaging data to improve the prediction of criminal behavior has received increased attention. In this study we investigated the feasibility of including neuroimaging data in the prediction of recidivism by studying whether the inclusion of resting-state regional cerebral blood flow measurements leads to an incremental increase in predictive performance over traditional risk factors. A subsample (N = 44) from a cohort of forensic psychiatric patients who underwent single-photon emission computed tomography neuroimaging and clinical psychiatric assessment during their court-ordered forensic psychiatric investigation were included in a long-term (ten year average time at risk) follow-up. A Baseline model with eight empirically established risk factors, and an Extended model which also included resting-state regional cerebral blood flow measurements from eight brain regions were estimated using random forest classification and compared using several predictive performance metrics. Including neuroimaging data in the Extended model increased the area under the receiver operating characteristic curve (AUC) from .69 to .81, increased accuracy from .64 to .82 and increased the scaled Brier score from .08 to .25, supporting the feasibility of including neuroimaging data in the prediction of recidivism in forensic psychiatric patients. Although our results hint at potential benefits in the domain of risk assessment, several limitations and ethical challenges are discussed. Further studies with larger, carefully characterized clinical samples utilizing higher-resolution neuroimaging techniques are warranted.
Collapse
Affiliation(s)
- Carl Delfin
- Centre for Ethics, Law and Mental Health, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Regional Forensic Psychiatric Clinic, Växjö, Sweden
| | - Hedvig Krona
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Child and Adolescent Psychiatry, Lund, Sweden
| | - Peter Andiné
- Centre for Ethics, Law and Mental Health, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Forensic Psychiatric Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Forensic Psychiatry, National Board of Forensic Medicine, Gothenburg, Sweden
| | - Erik Ryding
- Department of Clinical Neurophysiology, Skåne University Hospital, Lund, Sweden
| | - Märta Wallinius
- Centre for Ethics, Law and Mental Health, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Regional Forensic Psychiatric Clinic, Växjö, Sweden
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Child and Adolescent Psychiatry, Lund, Sweden
| | - Björn Hofvander
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Child and Adolescent Psychiatry, Lund, Sweden
- Division of Forensic Psychiatry, Region Skåne, Trelleborg, Sweden
| |
Collapse
|
37
|
Davies C, Rutigliano G, De Micheli A, Stone JM, Ramella-Cravaro V, Provenzani U, Cappucciati M, Scutt E, Paloyelis Y, Oliver D, Murguia S, Zelaya F, Allen P, Shergill S, Morrison P, Williams S, Taylor D, Lythgoe DJ, McGuire P, Fusar-Poli P. Neurochemical effects of oxytocin in people at clinical high risk for psychosis. Eur Neuropsychopharmacol 2019; 29:601-615. [PMID: 30928180 DOI: 10.1016/j.euroneuro.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/10/2019] [Accepted: 03/07/2019] [Indexed: 01/12/2023]
Abstract
Alterations in neurochemical metabolites are thought to play a role in the pathophysiology of psychosis onset. Oxytocin, a neuropeptide with prosocial and anxiolytic properties, modulates glutamate neurotransmission in preclinical models but its neurochemical effects in people at high risk for psychosis are unknown. We used proton magnetic resonance spectroscopy (1H-MRS) to examine the effects of intranasal oxytocin on glutamate and other metabolites in people at Clinical High Risk for Psychosis (CHR-P) in a double-blind, placebo-controlled, crossover design. 30 CHR-P males were studied on two occasions, once after 40IU intranasal oxytocin and once after placebo. The effects of oxytocin on the concentration of glutamate, glutamate+glutamine and other metabolites (choline, N-acetylaspartate, myo-inositol) scaled to creatine were examined in the left thalamus, anterior cingulate cortex (ACC) and left hippocampus, starting approximately 75, 84 and 93 min post-dosing, respectively. Relative to placebo, administration of oxytocin was associated with an increase in choline levels in the ACC (p=.008, Cohen's d = 0.54). There were no other significant effects on metabolite concentrations (all p>.05). Our findings suggest that, at ∼75-99 min post-dosing, a single dose of intranasal oxytocin does not alter levels of neurochemical metabolites in the thalamus, ACC, or hippocampus in those at CHR-P, aside from potential effects on choline in the ACC.
Collapse
Affiliation(s)
- Cathy Davies
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Grazia Rutigliano
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Andrea De Micheli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK; National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - James M Stone
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Valentina Ramella-Cravaro
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Umberto Provenzani
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Marco Cappucciati
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Eleanor Scutt
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Dominic Oliver
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Silvia Murguia
- Tower Hamlets Early Detection Service (THEDS), East London NHS Foundation Trust, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychology, University of Roehampton, London, UK
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paul Morrison
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David Taylor
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Outreach and Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions & Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK; National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Outreach and Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
38
|
Konishi J, Del Re EC, Bouix S, Blokland GAM, Mesholam-Gately R, Woodberry K, Niznikiewicz M, Goldstein J, Hirayasu Y, Petryshen TL, Seidman LJ, Shenton ME, McCarley RW. Abnormal relationships between local and global brain measures in subjects at clinical high risk for psychosis: a pilot study. Brain Imaging Behav 2019; 12:974-988. [PMID: 28815390 DOI: 10.1007/s11682-017-9758-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined whether abnormal volumes of several brain regions as well as their mutual associations that have been observed in patients with schizophrenia, are also present in individuals at clinical high-risk (CHR) for developing psychosis. 3T magnetic resonance imaging was acquired in 19 CHR and 20 age- and handedness-matched controls. Volumes were measured for the body and temporal horns of the lateral ventricles, hippocampus and amygdala as well as total brain, cortical gray matter, white matter, and subcortical gray matter volumes. Relationships between volumes as well as correlations between volumes and cognitive and clinical measures were explored. Ratios of lateral ventricular volume to total brain volume and temporal horn volume to total brain volume were calculated. Volumetric abnormalities were lateralized to the left hemisphere. Volumes of the left temporal horn, and marginally, of the body of the left lateral ventricle were larger, while left amygdala but not hippocampal volume was significantly smaller in CHR participants compared to controls. Total brain volume was also significantly smaller and the ratio of the temporal horn/total brain volume was significantly higher in CHR than in controls. White matter volume correlated positively with higher verbal fluency score while temporal horn volume correlated positively with a greater number of perseverative errors. Together with the finding of larger temporal horns and smaller amygdala volumes in the left hemisphere, these results indicate that the ratio of temporal horns volume to brain volume is abnormal in CHR compared to controls. These abnormalities present in CHR individuals may constitute the biological basis for at least some of the CHR syndrome.
Collapse
Affiliation(s)
- Jun Konishi
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA.,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Elisabetta C Del Re
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA. .,Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Gabriëlla A M Blokland
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raquelle Mesholam-Gately
- Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Kristen Woodberry
- Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Margaret Niznikiewicz
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA
| | - Jill Goldstein
- Brigham and Women's Hospital, Connors Center for Women's Health and Gender Biology, Boston, MA, USA.,Health and Gender Biology, Boston, MA, USA.,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - Yoshio Hirayasu
- Department of Psychiatry, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Larry J Seidman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.,Research and Development, VA Boston Healthcare System, Boston, MA, USA
| | - Robert W McCarley
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Brockton Division, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Griffa A, Baumann PS, Klauser P, Mullier E, Cleusix M, Jenni R, van den Heuvel MP, Do KQ, Conus P, Hagmann P. Brain connectivity alterations in early psychosis: from clinical to neuroimaging staging. Transl Psychiatry 2019; 9:62. [PMID: 30718455 PMCID: PMC6362225 DOI: 10.1038/s41398-019-0392-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Early in the course of psychosis, alterations in brain connectivity accompany the emergence of psychiatric symptoms and cognitive impairments, including processing speed. The clinical-staging model is a refined form of diagnosis that places the patient along a continuum of illness conditions, which allows stage-specific interventions with the potential of improving patient care and outcome. This cross-sectional study investigates brain connectivity features that characterize the clinical stages following a first psychotic episode. Structural brain networks were derived from diffusion-weighted MRI for 71 early-psychosis patients and 76 healthy controls. Patients were classified into stage II (first-episode), IIIa (incomplete remission), IIIb (one relapse), and IIIc (two or more relapses), according to the course of the illness until the time of scanning. Brain connectivity measures and diffusion parameters (fractional anisotropy, apparent diffusion coefficient) were investigated using general linear models and sparse linear discriminant analysis (sLDA), studying distinct subgroups of patients who were at specific stages of early psychosis. We found that brain connectivity impairments were more severe in clinical stages following the first-psychosis episode (stages IIIa, IIIb, IIIc) than in first-episode psychosis (stage II) patients. These alterations were spatially diffuse but converged on a set of vulnerable regions, whose inter-connectivity selectively correlated with processing speed in patients and controls. The sLDA suggested that relapsing-remitting (stages IIIb, IIIc) and non-remitting (stage IIIa) patients are characterized by distinct dysconnectivity profiles. Our results indicate that neuroimaging markers of brain dysconnectivity in early psychosis may reflect the heterogeneity of the illness and provide a connectomics signature of the clinical-staging model.
Collapse
Affiliation(s)
- Alessandra Griffa
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland. .,Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands.
| | - Philipp S. Baumann
- 0000 0001 0423 4662grid.8515.9Service of General Psychiatry and Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- 0000 0001 0423 4662grid.8515.9Service of General Psychiatry and Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Emeline Mullier
- 0000 0001 0423 4662grid.8515.9Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- 0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raoul Jenni
- 0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martijn P. van den Heuvel
- grid.484519.5Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Kim Q. Do
- 0000 0001 0423 4662grid.8515.9Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- 0000 0001 0423 4662grid.8515.9Service of General Psychiatry and Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Patric Hagmann
- 0000 0001 0423 4662grid.8515.9Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
40
|
Armstrong K, Avery S, Blackford JU, Woodward N, Heckers S. Impaired associative inference in the early stage of psychosis. Schizophr Res 2018; 202:86-90. [PMID: 29954698 PMCID: PMC6767612 DOI: 10.1016/j.schres.2018.06.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/10/2018] [Accepted: 06/19/2018] [Indexed: 11/19/2022]
Abstract
Relational memory is impaired in chronic schizophrenia. It is unclear if similar deficits are already present in the early stage of psychosis. We used the Associative Inference Paradigm to test relational memory ability in the early stage of a non-affective psychotic disorder. Eighty-two early stage psychosis patients and 67 healthy control subjects were trained on 3 sets of 30 paired associates: H-F1 (house paired with face), H-F2 (same house paired with new face), F3-F4 (two new faces). Subjects who reached 80% recall accuracy of the paired associates during training were then tested for their ability to recall the previously seen pairs and solve a novel, inferential pairing F1-F2 (faces linked through association to same house). Sixty early psychosis patients (73%) and 67 healthy control subjects (100%) successfully reached the accuracy threshold (80%) during training and were included in the analysis of relational memory. The early stage psychosis patients showed less of an associative inference effect than the healthy controls (pair type by group interaction: F (1,125) = 5.04, p < 0.05). However, the majority of early psychosis patients (52%) displayed intact inferential memory, compared to our prior study which revealed just 16% of chronic schizophrenia patients had intact inferential memory. Patients in the early stage of psychosis show a relational memory deficit, although less pronounced than in chronic schizophrenia. Longitudinal studies are needed to examine the progression of relational memory deficits in schizophrenia and its associations with clinical, functional, and biological measures.
Collapse
Affiliation(s)
- Kristan Armstrong
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA.
| | - Suzanne Avery
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Jenni U Blackford
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Neil Woodward
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| | - Stephan Heckers
- Vanderbilt University Medical Center, Department of Psychiatry and Behavioral Sciences, Nashville, TN, USA
| |
Collapse
|
41
|
Niendam TA, Ray KL, Iosif AM, Lesh TA, Ashby SR, Patel PK, Smucny J, Ferrer E, Solomon M, Ragland JD, Carter CS. Association of Age at Onset and Longitudinal Course of Prefrontal Function in Youth With Schizophrenia. JAMA Psychiatry 2018; 75:1252-1260. [PMID: 30285056 PMCID: PMC6583034 DOI: 10.1001/jamapsychiatry.2018.2538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/08/2018] [Indexed: 01/19/2023]
Abstract
Importance The extent of cognitive deterioration after schizophrenia (SZ) onset is poorly understood because prior longitudinal studies used small samples of older individuals with established illness. Objective To examine the association of age at onset and subsequent longitudinal course of prefrontal activity during the first 2 years of illness in youths with SZ and healthy control participants (HCs). Design, Setting, and Participants This naturalistic, longitudinal, functional magnetic resonance imaging (fMRI) study included patients with recent-onset SZ and HCs aged 12 to 25 years enrolled in an ongoing study of cognition in recent-onset psychosis in the Sacramento, California, area from October 13, 2004, through June 25, 2013. Participants completed clinical assessments and an established measure of cognitive control, the AX Continuous Performance Task (AX-CPT), during fMRI at baseline and at 6-, 12-, and 24-month follow-up. Whole-brain, voxelwise, and an a priori dorsolateral prefrontal cortex (DLPFC) region of interest analyses were performed. Group differences in developmental trajectories were examined by focusing on behavioral performance (d'-context) and cognitive control-associated brain activity. The association of antipsychotic medication and clinical factors were also examined. Data were analyzed from April 15, 2015, through August 29, 2017. Main Outcomes and Measures Primary outcomes included group differences (HC vs SZ) in behavioral performance (d'-context from AX-CPT) and brain activity for cue B-A trials of the AX-CPT in an a priori DLPFC region of interest at baseline and across the age span. Secondary analysis examined the influence of antipsychotics on behavioral performance and DLPFC activity. Results Among the sample of 180 participants (66.1% male; mean [SD] age at baseline, 19.2 [3.2] years), 87 patients with SZ (mean [SD] age, 19.6 [3.0] years) showed impaired performance compared with 93 HCs (mean [SD] age, 18.8 [3.4] years) across the age span (estimated difference [SE], -0.571 [0.12], d'-context; P < .001). Patients with SZ showed reduced activation in the DLPFC and parietal cortex (false discovery rate cluster corrected to P < .05) compared with HCs under conditions of high cognitive control at baseline. Region-of-interest analysis showed reduced activation in the DLPFC bilaterally for patients with SZ, with a trajectory that paralleled that of HCs across the age span (left DLPFC β [SE] estimates, 0.409 [0.165] for the HC group and -0.285 [0.130] for the SZ group [main effect of group, P = .03]; right DLPFC β [SE] estimates, 0.350 [0.103] for the HC group and -0.469 [0.157] for the SZ group [P = .003]). Antipsychotic medication, clinical symptoms, and global functioning were associated with SZ performance. Conclusions and Relevance During the initial 1 to 2 years after illness onset, young individuals with SZ showed deficits in DLPFC activation and cognitive control, with developmental trajectories comparable to those of HCs. Younger age at onset was not associated with reduced cognition or activation. For individuals contributing to longitudinal analysis, results suggest that young patients do not show deterioration or disruption of ongoing brain development in the initial years after illness onset.
Collapse
Affiliation(s)
- Tara A. Niendam
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento
| | - Kimberly L. Ray
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento
- Department of Psychology, The University of Texas at Austin
| | - Ana-Maria Iosif
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Sacramento
| | - Tyler A. Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento
| | - Stefania R. Ashby
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento
- Department of Psychology, University of Oregon, Eugene
| | - Pooja K. Patel
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento
- Department of Psychology, UCLA (University of California, Los Angeles), Westwood
| | - Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento
| | - Emilio Ferrer
- Department of Psychology, University of California, Davis, Sacramento
| | - Marjorie Solomon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento
- MIND Institute, University of California, Davis, Sacramento
| | - J. Daniel Ragland
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento
| | - Cameron S. Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento
- Center for Neuroscience, University of California, Davis, Sacramento
| |
Collapse
|
42
|
Bartholomeusz CF, Ganella EP, Whittle S, Allott K, Thompson A, Abu-Akel A, Walter H, McGorry P, Killackey E, Pantelis C, Wood SJ. An fMRI study of theory of mind in individuals with first episode psychosis. Psychiatry Res Neuroimaging 2018; 281:1-11. [PMID: 30212786 DOI: 10.1016/j.pscychresns.2018.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022]
Abstract
Theory of mind (ToM), the ability to infer one's own and others' mental states, is the social cognitive process shown to have the greatest impact on functional outcome in schizophrenia. It is not yet known if neural abnormalities underlying ToM present early, during the first episode of psychosis (FEP). Fourteen FEP participants and twenty-two healthy control participants, aged 15-25, were included in analyses. All participants had a 3T magnetic resonance imaging scan and completed a block-design picture-story attribution-of-intentions ToM fMRI task, and completed a battery of behavioral social cognitive measures including a ToM task. General linear model analyses were carried out. Post-hoc regression analyses were conducted to explore whether aberrant ToM-related activation in FEP participants was associated with symptomatology and global social and occupational functioning. FEP participants, when compared to healthy controls, had significantly less activity in the right temporoparietal junction, right orbitofrontal cortex and left middle prefrontal/inferior frontal cortex, when making social attributions. Aberrant ToM-related activation in the right temporoparietal junction was associated with severity of overall psychopathology, but not functional outcome. Specific regions of the social brain network, associated with ToM, are dysfunctional in young people with FEP. Future research should determine whether alteration of normal brain functioning in relation to ToM occurs before or during illness onset.
Collapse
Affiliation(s)
- Cali F Bartholomeusz
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville 3053, Victoria, Australia; The Centre for Youth Mental Health, The University of Melbourne, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| | - Eleni P Ganella
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville 3053, Victoria, Australia; The Centre for Youth Mental Health, The University of Melbourne, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Kelly Allott
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville 3053, Victoria, Australia; The Centre for Youth Mental Health, The University of Melbourne, Victoria, Australia
| | - Andrew Thompson
- Division of Mental Health and Wellbeing, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Ahmad Abu-Akel
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Berlin University of Medicine, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Patrick McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville 3053, Victoria, Australia; The Centre for Youth Mental Health, The University of Melbourne, Victoria, Australia
| | - Eóin Killackey
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville 3053, Victoria, Australia; The Centre for Youth Mental Health, The University of Melbourne, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia; Centre for Neural Engineering (CfNE), Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, Victoria, Australia; Florey Institute for Neuroscience & Mental Health, Parkville, Victoria, Australia
| | - Stephen J Wood
- Orygen, The National Centre of Excellence in Youth Mental Health, 35 Poplar Road, Parkville 3053, Victoria, Australia; The Centre for Youth Mental Health, The University of Melbourne, Victoria, Australia; School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
43
|
Koutsouleris N, Kambeitz-Ilankovic L, Ruhrmann S, Rosen M, Ruef A, Dwyer DB, Paolini M, Chisholm K, Kambeitz J, Haidl T, Schmidt A, Gillam J, Schultze-Lutter F, Falkai P, Reiser M, Riecher-Rössler A, Upthegrove R, Hietala J, Salokangas RKR, Pantelis C, Meisenzahl E, Wood SJ, Beque D, Brambilla P, Borgwardt S. Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression: A Multimodal, Multisite Machine Learning Analysis. JAMA Psychiatry 2018; 75:1156-1172. [PMID: 30267047 PMCID: PMC6248111 DOI: 10.1001/jamapsychiatry.2018.2165] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE Social and occupational impairments contribute to the burden of psychosis and depression. There is a need for risk stratification tools to inform personalized functional-disability preventive strategies for individuals in at-risk and early phases of these illnesses. OBJECTIVE To determine whether predictors associated with social and role functioning can be identified in patients in clinical high-risk (CHR) states for psychosis or with recent-onset depression (ROD) using clinical, imaging-based, and combined machine learning; assess the geographic, transdiagnostic, and prognostic generalizability of machine learning and compare it with human prognostication; and explore sequential prognosis encompassing clinical and combined machine learning. DESIGN, SETTING, AND PARTICIPANTS This multisite naturalistic study followed up patients in CHR states, with ROD, and with recent-onset psychosis, and healthy control participants for 18 months in 7 academic early-recognition services in 5 European countries. Participants were recruited between February 2014 and May 2016, and data were analyzed from April 2017 to January 2018. AIN OUTCOMES AND MEASURES Performance and generalizability of prognostic models. RESULTS A total of 116 individuals in CHR states (mean [SD] age, 24.0 [5.1] years; 58 [50.0%] female) and 120 patients with ROD (mean [SD] age, 26.1 [6.1] years; 65 [54.2%] female) were followed up for a mean (SD) of 329 (142) days. Machine learning predicted the 1-year social-functioning outcomes with a balanced accuracy of 76.9% of patients in CHR states and 66.2% of patients with ROD using clinical baseline data. Balanced accuracy in models using structural neuroimaging was 76.2% in patients in CHR states and 65.0% in patients with ROD, and in combined models, it was 82.7% for CHR states and 70.3% for ROD. Lower functioning before study entry was a transdiagnostic predictor. Medial prefrontal and temporo-parieto-occipital gray matter volume (GMV) reductions and cerebellar and dorsolateral prefrontal GMV increments had predictive value in the CHR group; reduced mediotemporal and increased prefrontal-perisylvian GMV had predictive value in patients with ROD. Poor prognoses were associated with increased risk of psychotic, depressive, and anxiety disorders at follow-up in patients in the CHR state but not ones with ROD. Machine learning outperformed expert prognostication. Adding neuroimaging machine learning to clinical machine learning provided a 1.9-fold increase of prognostic certainty in uncertain cases of patients in CHR states, and a 10.5-fold increase of prognostic certainty for patients with ROD. CONCLUSIONS AND RELEVANCE Precision medicine tools could augment effective therapeutic strategies aiming at the prevention of social functioning impairments in patients with CHR states or with ROD.
Collapse
Affiliation(s)
- Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | | | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Marlene Rosen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Dominic B. Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Marco Paolini
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | | | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Theresa Haidl
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - André Schmidt
- Department of Psychiatry, University Psychiatric Clinic, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - John Gillam
- Orygen, the National Centre of Excellence for Youth Mental Health, Melbourne, Australia,Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich, Germany
| | - Maximilian Reiser
- Department of Radiology, Ludwig-Maximilian-University, Munich, Germany
| | - Anita Riecher-Rössler
- Department of Psychiatry, University Psychiatric Clinic, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Rachel Upthegrove
- Institute of Mental Health, University of Birmingham, Birmingham, United Kingdom,School of Psychology, University of Birmingham, United Kingdom
| | - Jarmo Hietala
- Department of Psychiatry, University of Turku, Turku, Finland
| | | | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia ,Melbourne Health, Melbourne, Australia
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Stephen J. Wood
- School of Psychology, University of Birmingham, United Kingdom,Orygen, the National Centre of Excellence for Youth Mental Health, Melbourne, Australia,Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Dirk Beque
- Corporate Global Research, GE Corporation, Munich, Germany
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefan Borgwardt
- Department of Psychiatry, University Psychiatric Clinic, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | | |
Collapse
|
44
|
Ganella EP, Seguin C, Pantelis C, Whittle S, Baune BT, Olver J, Amminger GP, McGorry PD, Cropley V, Zalesky A, Bartholomeusz CF. Resting-state functional brain networks in first-episode psychosis: A 12-month follow-up study. Aust N Z J Psychiatry 2018; 52:864-875. [PMID: 29806483 DOI: 10.1177/0004867418775833] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Schizophrenia is increasingly conceived as a disorder of brain network connectivity and organization. However, reports of network abnormalities during the early illness stage of psychosis are mixed. This study adopted a data-driven whole-brain approach to investigate functional connectivity and network architecture in a first-episode psychosis cohort relative to healthy controls and whether functional network properties changed abnormally over a 12-month period in first-episode psychosis. METHODS Resting-state functional connectivity was performed at two time points. At baseline, 29 first-episode psychosis individuals and 30 healthy controls were assessed, and at 12 months, 14 first-episode psychosis individuals and 20 healthy controls completed follow-up. Whole-brain resting-state functional connectivity networks were mapped for each individual and analyzed using graph theory to investigate whether network abnormalities associated with first-episode psychosis were evident and whether functional network properties changed abnormally over 12 months relative to controls. RESULTS This study found no evidence of abnormal resting-state functional connectivity or topology in first-episode psychosis individuals relative to healthy controls at baseline or at 12-months follow-up. Furthermore, longitudinal changes in network properties over a 12-month period did not significantly differ between first-episode psychosis individuals and healthy control. Network measures did not significantly correlate with symptomatology, duration of illness or antipsychotic medication. CONCLUSIONS This is the first study to show unaffected resting-state functional connectivity and topology in the early psychosis stage of illness. In light of previous literature, this suggests that a subgroup of first-episode psychosis individuals who have a neurotypical resting-state functional connectivity and topology may exist. Our preliminary longitudinal analyses indicate that there also does not appear to be deterioration in these network properties over a 12-month period. Future research in a larger sample is necessary to confirm our longitudinal findings.
Collapse
Affiliation(s)
- Eleni P Ganella
- 1 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC, Australia.,2 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,3 The Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,4 The Cooperative Research Centre (CRC) for Mental Health, Carlton South, VIC, Australia.,5 NorthWestern Mental Health, Melbourne Health, Parkville, VIC, Australia
| | - Caio Seguin
- 1 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC, Australia
| | - Christos Pantelis
- 1 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC, Australia.,4 The Cooperative Research Centre (CRC) for Mental Health, Carlton South, VIC, Australia.,5 NorthWestern Mental Health, Melbourne Health, Parkville, VIC, Australia.,6 The Florey Institute of Neurosciences & Mental Health, Parkville, VIC, Australia.,7 Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia.,8 Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Whittle
- 1 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC, Australia.,9 Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Bernhard T Baune
- 10 Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - James Olver
- 11 Department of Psychiatry, The University of Melbourne, Heidelberg, VIC, Australia
| | - G Paul Amminger
- 2 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,3 The Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Patrick D McGorry
- 2 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,3 The Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Vanessa Cropley
- 1 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC, Australia
| | - Andrew Zalesky
- 1 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC, Australia.,8 Melbourne School of Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Cali F Bartholomeusz
- 1 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC, Australia.,2 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,3 The Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Takahashi T, Suzuki M. Brain morphologic changes in early stages of psychosis: Implications for clinical application and early intervention. Psychiatry Clin Neurosci 2018; 72:556-571. [PMID: 29717522 DOI: 10.1111/pcn.12670] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
To date, a large number of magnetic resonance imaging (MRI) studies have been conducted in schizophrenia, which generally demonstrate gray matter reduction, predominantly in the frontal and temporo-limbic regions, as well as gross brain abnormalities (e.g., a deviated sulcogyral pattern). Although the causes as well as timing and course of these findings remain elusive, these morphologic changes (especially gross brain abnormalities and medial temporal lobe atrophy) are likely present at illness onset, possibly reflecting early neurodevelopmental abnormalities. In addition, longitudinal MRI studies suggest that patients with schizophrenia and related psychoses also have progressive gray matter reduction during the transition period from prodrome to overt psychosis, as well as initial periods after psychosis onset, while such changes may become almost stable in the chronic stage. These active brain changes during the early phases seem to be relevant to the development of clinical symptoms in a region-specific manner (e.g., superior temporal gyrus atrophy and positive psychotic symptoms), but may be at least partly ameliorated by antipsychotic medication. Recently, increasing evidence from MRI findings in individuals at risk for developing psychosis has suggested that those who subsequently develop psychosis have baseline brain changes, which could be at least partly predictive of later transition into psychosis. In this article, we selectively review previous MRI findings during the course of psychosis and also refer to the possible clinical applicability of these neuroimaging research findings, especially in the diagnosis of schizophrenia and early intervention for psychosis.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
46
|
Attenuated Notch signaling in schizophrenia and bipolar disorder. Sci Rep 2018; 8:5349. [PMID: 29593239 PMCID: PMC5871764 DOI: 10.1038/s41598-018-23703-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
The Notch signaling pathway plays a crucial role in neurodevelopment and in adult brain homeostasis. We aimed to further investigate Notch pathway activity in bipolar disorder (BD) and schizophrenia (SCZ) by conducting a pathway analysis. We measured plasma levels of Notch ligands (DLL1 and DLK1) using enzyme immunoassays in a large sample of patients (SCZ n = 551, BD n = 246) and healthy controls (HC n = 639). We also determined Notch pathway related gene expression levels by microarray analyses from whole blood in a subsample (SCZ n = 338, BD n = 241 and HC n = 263). We found significantly elevated Notch ligand levels in plasma in both SCZ and BD compared to HC. Significant gene expression findings included increased levels of RFNG and KAT2B (p < 0.001), and decreased levels of PSEN1 and CREBBP in both patient groups (p < 0.001). RBPJ was significantly lower in SCZ vs HC (p < 0.001), and patients using lithium had higher levels of RBPJ (p < 0.001). We provide evidence of altered Notch signaling in both SCZ and BD compared to HC, and suggest that Notch signaling pathway may be disturbed in these disorders. Lithium may ameliorate aberrant Notch signaling. We propose that drugs targeting Notch pathway could be relevant in the treatment of psychotic disorders.
Collapse
|
47
|
Predictors of functional recovery in first-episode psychosis: A systematic review and meta-analysis of longitudinal studies. Clin Psychol Rev 2017; 58:59-75. [DOI: 10.1016/j.cpr.2017.09.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/16/2017] [Accepted: 09/21/2017] [Indexed: 11/23/2022]
|
48
|
Berger GE, Bartholomeusz CF, Wood SJ, Ang A, Phillips LJ, Proffitt T, Brewer WJ, Smith DJ, Nelson B, Lin A, Borgwardt S, Velakoulis D, Yung AR, McGorry PD, Pantelis C. Ventricular volumes across stages of schizophrenia and other psychoses. Aust N Z J Psychiatry 2017; 51:1041-1051. [PMID: 28670977 DOI: 10.1177/0004867417715914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Ventricular enlargement is common in established schizophrenia; however, data from ultra high-risk for psychosis and first-episode psychosis studies are inconclusive. This study aims to investigate ventricular volumes at different stages of psychosis. METHODS Ventricular volumes were measured using a semi-automated and highly reliable method, for 89 established schizophrenia, 162 first-episode psychosis, 135 ultra high-risk for psychosis and 87 healthy controls using 1.5T magnetic resonance images. Clinical outcome diagnoses for ultra high-risk for psychosis were evaluated at long-term follow-up (mean: 7.5 years). RESULTS Compared to controls, we identified significant ventricular enlargement of 36.2% in established schizophrenia ( p < 0.001). Ventricular enlargement was not significant in first-episode psychosis (6%) or ultra high-risk for psychosis (-3%). Examination across stages of schizophrenia-spectrum diagnoses subgroups revealed a significant linear trend ( p = 0.006; established schizophrenia = 36.2%, first-episode psychosis schizophrenia = 18.5%, first-episode psychosis schizophreniform = -4.2% and ultra high-risk for psychosis-schizophrenia converters = -18.5%). CONCLUSION Ventricular enlargement is apparent in patients with established schizophrenia but is not a feature at the earliest stages of illness (ultra high-risk for psychosis and first-episode psychosis). Further research is needed to fully characterize the nature and timing of ventricular volume changes early in the course of illness and how these changes impact outcomes.
Collapse
Affiliation(s)
- Gregor E Berger
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.,3 Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Joint first authors, these authors contributed equally to the writing of this manuscript
| | - Cali F Bartholomeusz
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.,4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia.,Joint first authors, these authors contributed equally to the writing of this manuscript
| | - Stephen J Wood
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.,4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia.,5 School of Psychology, University of Birmingham, Birmingham, UK
| | - Anthony Ang
- 4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Lisa J Phillips
- 6 Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Tina Proffitt
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Warrick J Brewer
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Deidre J Smith
- 7 The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Richmond, VIC, Australia
| | - Barnaby Nelson
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ashleigh Lin
- 8 Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Stefan Borgwardt
- 9 Department of Psychiatry, University of Basel, Basel, Switzerland
| | - Dennis Velakoulis
- 4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| | - Alison R Yung
- 10 Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,11 Greater Manchester West NHS Mental Health Foundation Trust, Manchester, UK
| | - Patrick D McGorry
- 1 Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,2 Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christos Pantelis
- 4 Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, VIC, Australia
| |
Collapse
|
49
|
Di Biase MA, Zalesky A, O'keefe G, Laskaris L, Baune BT, Weickert CS, Olver J, McGorry PD, Amminger GP, Nelson B, Scott AM, Hickie I, Banati R, Turkheimer F, Yaqub M, Everall IP, Pantelis C, Cropley V. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiatry 2017; 7:e1225. [PMID: 28850113 PMCID: PMC5611755 DOI: 10.1038/tp.2017.193] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/23/2017] [Indexed: 01/22/2023] Open
Abstract
We examined putative microglial activation as a function of illness course in schizophrenia. Microglial activity was quantified using [11C](R)-(1-[2-chrorophynyl]-N-methyl-N-[1-methylpropyl]-3 isoquinoline carboxamide (11C-(R)-PK11195) positron emission tomography (PET) in: (i) 10 individuals at ultra-high risk (UHR) of psychosis; (ii) 18 patients recently diagnosed with schizophrenia; (iii) 15 patients chronically ill with schizophrenia; and, (iv) 27 age-matched healthy controls. Regional-binding potential (BPND) was calculated using the simplified reference-tissue model with four alternative reference inputs. The UHR, recent-onset and chronic patient groups were compared to age-matched healthy control groups to examine between-group BPND differences in 6 regions: dorsal frontal, orbital frontal, anterior cingulate, medial temporal, thalamus and insula. Correlation analysis tested for BPND associations with gray matter volume, peripheral cytokines and clinical variables. The null hypothesis of equality in BPND between patients (UHR, recent-onset and chronic) and respective healthy control groups (younger and older) was not rejected for any group comparison or region. Across all subjects, BPND was positively correlated to age in the thalamus (r=0.43, P=0.008, false discovery rate). No correlations with regional gray matter, peripheral cytokine levels or clinical symptoms were detected. We therefore found no evidence of microglial activation in groups of individuals at high risk, recently diagnosed or chronically ill with schizophrenia. While the possibility of 11C-(R)-PK11195-binding differences in certain patient subgroups remains, the patient cohorts in our study, who also displayed normal peripheral cytokine profiles, do not substantiate the assumption of microglial activation in schizophrenia as a regular and defining feature, as measured by 11C-(R)-PK11195 BPND.
Collapse
Affiliation(s)
- M A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| | - A Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- Melbourne School of Engineering, The University of Melbourne, Parkville, VIC Australia
| | - G O'keefe
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - L Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| | - B T Baune
- Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - C S Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- Schizophrenia Research Institute, Randwick, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - J Olver
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - P D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - G P Amminger
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - B Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - A M Scott
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - I Hickie
- Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - R Banati
- Medical Radiation Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - F Turkheimer
- Department of Neuroimaging, King’s College London, London, UK
| | - M Yaqub
- VU University Medical Center, Amsterdam, The Netherlands
| | - I P Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - V Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
50
|
Grassi S, Orsenigo G, Serati M, Caletti E, Altamura AC, Buoli M. Cognitive correlates of neuroimaging abnormalities in the onset of schizophrenia: A case report. World J Psychiatry 2017; 7:128-132. [PMID: 28713691 PMCID: PMC5491478 DOI: 10.5498/wjp.v7.i2.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/23/2017] [Accepted: 05/15/2017] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence shows that cognitive impairment and brain abnormalities can appear early in the first episodes of schizophrenia, but it is currently debated how brain changes can correlate with clinical presentation of schizophrenic patients. Of note, this report describes the case of a young schizophrenic male presenting parietal magnetic resonance/positron emission tomography abnormalities and cognitive impairment, documented by specific neuropsychological tests. In our knowledge only few studies have investigated if neuropsychological abnormalities could be concomitant with both structural and functional neuroimaging. This case shows that impairment in specific cognitive domains is associated with structural/functional brain abnormalities in the corresponding brain areas (frontal and parietal lobes), supporting the hypothesis of disconnectivity, involving a failure to integrate anatomical and functional pathways. Future research would define the role of cognitive impairment and neurodegeneration in psychiatric nosography and, in particular, their role in the early phases of illness and long-term outcome of schizophrenic patients.
Collapse
|