1
|
J. Bradley A, Mashburn-Warren L, Blalock LC, Scarpetti F, Lauber CL. Porphyromonas gingivalis outer membrane vesicles alter cortical neurons and Tau phosphorylation in the embryonic mouse brain. PLoS One 2025; 20:e0310482. [PMID: 40067832 PMCID: PMC11896034 DOI: 10.1371/journal.pone.0310482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Porphyromonas gingivalis (Pg) is an oral bacterial pathogen that has been associated with systemic inflammation and adverse pregnancy outcomes such as low birth weight and pre-term birth. Pg drives these sequelae through virulence factors decorating the outer membrane that are present on non-replicative outer membrane vesicles (OMV) that are suspected to be transmitted systemically. Given that Pg abundance can increase during pregnancy, it is not well known whether Pg-OMV can have deleterious effects on the brain of the developing fetus. We tested this possibility by treating pregnant C57/Bl6 mice with PBS (control) and OMV from ATCC 33277 by tail vein injection every other day from gestational age 3 to 17. At gestational age 18.5, we measured dam and pup weights and collected pup brains to quantify changes in inflammation, cortical neuron density, and Tau phosphorylated at Thr231. Dam and pup weights were not altered by Pg-OMV exposure, but pup brain weight was significantly decreased in the Pg-OMV treatment group. We found a significant increase of Iba-1, indicative of microglia activation, although the overall levels of IL-1β, IL-6, TNFα, IL-4, IL-10, and TGFβ mRNA transcripts were not different between the treatment groups. Differences in IL-1β, IL-6, and TNFα concentrations by ELISA showed IL-6 was significantly lower in Pg-OMV brains. Cortical neuron density was modified by treatment with Pg-OMV as immunofluorescence showed significant decreases in Cux1 and SatB2. Overall p-Tau Thr231 was increased in the brains of pups whose mothers were exposed to Pg-OMV. Together these results demonstrate that Pg-OMV can significantly modify the embryonic brain and suggests that Pg may impact offspring development via multiple mechanisms.
Collapse
Affiliation(s)
- Adrienne J. Bradley
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Lauren Mashburn-Warren
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Lexie C. Blalock
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Francesca Scarpetti
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Christian L. Lauber
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
2
|
Marcickiewicz J, Jamka M, Walkowiak J. A Potential Link Between Oral Microbiota and Female Reproductive Health. Microorganisms 2025; 13:619. [PMID: 40142512 PMCID: PMC11944636 DOI: 10.3390/microorganisms13030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Oral cavity dysbiosis is associated with numerous inflammatory diseases, including diabetes, inflammatory bowel diseases, and periodontal disease. Changes in the oral microenvironment lead to bidirectional interactions between pathogens and individual host systems, which may induce systemic inflammation. There is increasing evidence linking the condition of the oral cavity with the most common causes of female infertility, such as polycystic ovary syndrome and endometriosis, as well as gestational complications, e.g., low birth weight, preterm delivery, and miscarriages. This review highlights the composition of the female oral microbiome in relation to infertility-related disorders, such as endometriosis and polycystic ovary syndrome, and provides a comprehensive overview of the current state of knowledge on the relationship between a dysbiotic oral microbiome, pregnancy, and its impact on the female reproductive tract.
Collapse
Affiliation(s)
| | - Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland; (J.M.); (J.W.)
| | | |
Collapse
|
3
|
Kumasawa K, Taguchi C, Suzuki I, Arikawa K. Current Status of Dental Examinations During Pregnancy Term in Matsudo City, Japan. Cureus 2025; 17:e80533. [PMID: 40225493 PMCID: PMC11993353 DOI: 10.7759/cureus.80533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
AIM Poor oral hygiene during pregnancy is associated with pre-term birth, low birth weight, and pregnancy-induced hypertension, suggesting its significant effects on both maternal and fetal health. However, global guidelines indicate that oral care during pregnancy remains an underdeveloped field, and no large-scale reports on dental studies conducted during pregnancy exist in Japan. Therefore, we assessed the key factors that contribute to maintaining oral health during pregnancy in a cohort of Japanese women. METHODS We conducted dental examinations on 907 pregnant women in Matsudo City, Japan, and investigated the key factors for maintaining 379 women (41.7%) had untreated cavities. An increase in the frequency of toothbrushing was associated with a higher number of treated teeth (r=0.315, p < 0.001). However, periodontal disease-related factors such as gingival bleeding (71.2%) and the condition of periodontal pockets showed little correlation with brushing frequency(r=-0.139, p > 0.05 for untreated teeth and brushing frequency). CONCLUSIONS While brushing teeth three times a day, including during pregnancy, is ideal, attention should also be directed to other aspects, such as brushing technique and thoroughness, which may require further consideration. This report serves as a foundation for obstetricians and dentists to recognize the importance of oral hygiene management during pregnancy and advocate for dental checkups during pregnancy, providing valuable opportunities to increase awareness regarding this issue.
Collapse
Affiliation(s)
| | - Chieko Taguchi
- Hygiene, Nihon University School of Dentistry at Matsudo, Matsudo, JPN
| | - Itaru Suzuki
- Hygiene, Nihon University School of Dentistry at Matsudo, Matsudo, JPN
| | - Kazumune Arikawa
- Hygiene, Nihon University School of Dentistry at Matsudo, Matsudo, JPN
| |
Collapse
|
4
|
Qiu Y, Zhao Y, He G, Yang D. Porphyromonas gingivalis and Its Outer Membrane Vesicles Induce Neuroinflammation in Mice Through Distinct Mechanisms. Immun Inflamm Dis 2025; 13:e70135. [PMID: 39932228 PMCID: PMC11811961 DOI: 10.1002/iid3.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common chronic neurodegenerative disorder, with neuroinflammation playing an important role in its progression to become a major research focus. The role of Porphyromonas gingivalis (Pg) and its outer membrane vesicles (Pg OMVs) in AD development is uncertain, particularly regarding their effects on neuroinflammation. METHODS The cognition of mice injected with Pg, Pg OMVs, or PBS via the tail vein was assessed by the Morris water maze test. Pathological changes in the mouse brain were analyzed via immunohistochemistry, immunofluorescence and hematoxylin‒eosin (H&E) staining, and the ultrastructure of the hippocampus was observed via transmission electron microscopy (TEM). Plasma levels of inflammatory factors were assessed by enzyme-linked immunosorbent assay (ELISA). Protein levels of brain inflammatory factor, occludin, and NLRP3 inflammasome-related proteins were assessed by western blotting. RESULTS Memory impairment; notable neuroinflammation, including astrocyte and microglial activation; and elevated protein levels of IL-1β, TNF-α, and IL-6 in the hippocampus were detected in the Pg and Pg OMV groups. However, Pg induced weight loss and systemic inflammation, such as splenomegaly and increased IL-1β and TNF-α levels in plasma, whereas Pg OMVs had minimal impact. In addition, Pg induced more pronounced activation of the NLRP3 inflammasome compared to Pg OMVs. In contrast, only the Pg OMV group exhibited blood-brain barrier (BBB) disruption characterized by reduced integrity of tight junctions and lower levels of occludin protein. CONCLUSIONS Pg is associated with a significant immune response and systemic inflammation, which in turn exacerbates neuroinflammation via activating NLRP3 inflammasome. However, Pg OMVs might elude the systemic immune response and disrupt tight junctions, thereby entering the brain and directly triggering neuroinflammation.
Collapse
Affiliation(s)
- Yu Qiu
- Chongqing Key Laboratory of Oral DiseasesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Department of Conservative Dentistry and EndodonticsShanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghaiChina
- Center for Neuroscience ResearchChongqing Medical UniversityChongqingChina
| | - Yueyang Zhao
- Center for Neuroscience ResearchChongqing Medical UniversityChongqingChina
- Advanced Innovation Center for Human Brain Protection, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Guiqiong He
- Center for Neuroscience ResearchChongqing Medical UniversityChongqingChina
| | - Deqin Yang
- Chongqing Key Laboratory of Oral DiseasesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical UniversityChongqingChina
- Department of Conservative Dentistry and EndodonticsShanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Broad J, Robertson RC, Evans C, Perussolo J, Lum G, Piper JD, Loucaides E, Ziruma A, Chasekwa B, Ntozini R, Bourke CD, Prendergast AJ. Maternal inflammatory and microbial drivers of low birthweight in low- and middle-income countries. Paediatr Int Child Health 2024; 44:79-93. [PMID: 39066726 DOI: 10.1080/20469047.2024.2380974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Low birthweight (LBW) is when an infant is born too soon or too small, and it affects one in seven infants in low- and middle-income countries. LBW has a significant impact on short-term morbidity and mortality, and it impairs long-term health and human capital. Antenatal microbial and inflammatory exposure may contribute to LBW. METHODS Ovid-Medline, Embase and Cochrane databases were searched for English-language articles evaluating inflammatory, microbial or infective causes of LBW, small-for-gestational age, intra-uterine growth restriction or prematurity. Inclusion criteria were human studies including published data; conference abstracts and grey literature were excluded. A narrative synthesis of the literature was conducted. RESULTS Local infections may drive the underlying causes of LBW: for example, vaginitis and placental infection are associated with a greater risk of prematurity. Distal infection and inflammatory pathways are also associated with LBW, with an association between periodontitis and preterm delivery and environmental enteric dysfunction and reduced intra-uterine growth. Systemic maternal infections such as malaria and HIV are associated with LBW, even when infants are exposed to HIV but not infected. This latter association may be driven by chronic inflammation, co-infections and socio-economic confounders. Antimicrobial prophylaxis against other bacteria in pregnancy has shown minimal impact in most trials, though positive effects on birthweight have been found in some settings with a high infectious disease burden. CONCLUSION Maternal inflammatory and infective processes underlie LBW, and provide treatable pathways for interventions. However, an improved understanding of the mechanisms and pathways underlying LBW is needed, given the impact of LBW on life-course.
Collapse
Affiliation(s)
- Jonathan Broad
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
- Paediatrics Department, Croydon University Hospital, London, UK
| | - Ruairi C Robertson
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Ceri Evans
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
- Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | - Jeniffer Perussolo
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Gina Lum
- Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, London, UK
| | - Joe D Piper
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Eva Loucaides
- Paediatrics Department, Croydon University Hospital, London, UK
| | - Asaph Ziruma
- Blizard Institute, Queen Mary University of London, London, UK
| | - Bernard Chasekwa
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Robert Ntozini
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Claire D Bourke
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| | - Andrew J Prendergast
- Maternal and Child Health Research Department, Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Hernández-Cabanyero C, Vonaesch P. Ectopic colonization by oral bacteria as an emerging theme in health and disease. FEMS Microbiol Rev 2024; 48:fuae012. [PMID: 38650052 PMCID: PMC11065354 DOI: 10.1093/femsre/fuae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
The number of research papers published on the involvement of the oral microbiota in systemic diseases has grown exponentially over the last 4 years clearly demonstrating the growing interest in this field. Indeed, accumulating evidence highlights the central role of ectopic colonization by oral bacteria in numerous noncommunicable diseases including inflammatory bowel diseases (IBDs), undernutrition, preterm birth, neurological diseases, liver diseases, lung diseases, heart diseases, or colonic cancer. There is thus much interest in understanding the molecular mechanisms that lead to the colonization and maintenance of ectopic oral bacteria. The aim of this review is to summarize and conceptualize the current knowledge about ectopic colonization by oral bacteria, highlight wherever possible the underlying molecular mechanisms and describe its implication in health and disease. The focus lies on the newly discovered molecular mechanisms, showcasing shared pathophysiological mechanisms across different body sites and syndromes and highlighting open questions in the field regarding the pathway from oral microbiota dysbiosis to noncommunicable diseases.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, UNIL-Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Jin B, Wang P, Liu P, Wang Y, Guo Y, Wang C, Jia Y, Zou R, Dong S, Niu L. Association between periodontitis and endometriosis: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1271351. [PMID: 38487346 PMCID: PMC10937447 DOI: 10.3389/fendo.2024.1271351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction A potential association between periodontitis and endometriosis has been indicated in previous observational studies. Nevertheless, the causal link between these two disorders has not been clarified. Methods Based on publicly available genome-wide association study (GWAS) summary datasets, we conducted a bidirectional Mendelian randomization (MR) study to investigate the relationship between periodontitis and endometriosis and its subtypes. Single nucleotide polymorphisms (SNPs) strongly associated with candidate exposures at the genome-wide significance level (P < 5 × 10-8) were selected as instrumental variables (IVs). The inverse variance-weighted regression (IVW) was performed to estimate the causal effect of periodontitis on endometriosis. We further conducted two sensitivity analyses, MR-Egger and weighted median, to test the validity of our findings. The main results were replicated via data from the UK Biobank. Finally, a reverse MR analysis was performed to evaluate the possibility of reverse causality. Results The IVW method suggested that periodontitis was positively associated with endometriosis of the pelvic peritoneum (OR = 1.079, 95% CI = 1.016 to 1.146, P = 0.014). No causal association was indicated between periodontitis and other subtypes of endometriosis. In reversed analyses, no causal association between endometriosis or its subtypes and periodontitis was found. Conclusions Our study provided genetic evidence on the causal relationship between periodontitis and endometriosis of the pelvic peritoneum. More studies are necessary to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Bilun Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Pengfei Wang
- Centre of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Peiqi Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Chenxu Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yue Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Hong YM, Lee J, Cho DH, Jeon JH, Kang J, Kim MG, Lee S, Kim JK. Predicting preterm birth using machine learning techniques in oral microbiome. Sci Rep 2023; 13:21105. [PMID: 38036587 PMCID: PMC10689490 DOI: 10.1038/s41598-023-48466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023] Open
Abstract
Preterm birth prediction is essential for improving neonatal outcomes. While many machine learning techniques have been applied to predict preterm birth using health records, inflammatory markers, and vaginal microbiome data, the role of prenatal oral microbiome remains unclear. This study aimed to compare oral microbiome compositions between a preterm and a full-term birth group, identify oral microbiome associated with preterm birth, and develop a preterm birth prediction model using machine learning of oral microbiome compositions. Participants included singleton pregnant women admitted to Jeonbuk National University Hospital between 2019 and 2021. Subjects were divided into a preterm and a full-term birth group based on pregnancy outcomes. Oral microbiome samples were collected using mouthwash within 24 h before delivery and 16S ribosomal RNA sequencing was performed to analyze taxonomy. Differentially abundant taxa were identified using DESeq2. A random forest classifier was applied to predict preterm birth based on the oral microbiome. A total of 59 women participated in this study, with 30 in the preterm birth group and 29 in the full-term birth group. There was no significant difference in maternal clinical characteristics between the preterm and the full-birth group. Twenty-five differentially abundant taxa were identified, including 22 full-term birth-enriched taxa and 3 preterm birth-enriched taxa. The random forest classifier achieved high balanced accuracies (0.765 ± 0.071) using the 9 most important taxa. Our study identified 25 differentially abundant taxa that could differentiate preterm and full-term birth groups. A preterm birth prediction model was developed using machine learning of oral microbiome compositions in mouthwash samples. Findings of this study suggest the potential of using oral microbiome for predicting preterm birth. Further multi-center and larger studies are required to validate our results before clinical applications.
Collapse
Affiliation(s)
- You Mi Hong
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jaewoong Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jung Hun Jeon
- Helixco Inc., 50, Unist-gil, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea
| | - Jihoon Kang
- Helixco Inc., 50, Unist-gil, Eonyang-eup, Ulju-gun, Ulsan, Republic of Korea.
| | - Min-Gul Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
- Department of Pharmacology, Jeonbuk National University Medical School, 20, Geonji-ro, Deokjin-gu, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
| | - Jin Kyu Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
- Department of Pediatrics, Jeonbuk National University Medical School, 20, Geonji-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
9
|
Ishida E, Furusho H, Renn TY, Shiba F, Chang HM, Oue H, Terayama R, Ago Y, Tsuga K, Miyauchi M. Mouse maternal odontogenic infection with Porphyromonas gingivalis induces cognitive decline in offspring. Front Pediatr 2023; 11:1203894. [PMID: 37635786 PMCID: PMC10450928 DOI: 10.3389/fped.2023.1203894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Porphyromonas gingivalis (P. gingivalis), a major periodontal pathogen, causes intrauterine infection/inflammation. Offspring exposed to intrauterine infection/inflammation have an increased risk of neurological disorders, regardless of gestational age. However, the relationship between maternal periodontitis and offspring functional/histological changes in the brain has not yet been elucidated. Methods In this study, we used a gestational mouse model to investigate the effects of maternal odontogenic infection of P. gingivalis on offspring behavior and brain tissue. Results The step-through passive avoidance test showed that the latency of the acquisition trial was significantly shorter in the P. gingivalis group (p < 0.05), but no difference in spontaneous motor/exploratory parameters by open-field test. P. gingivalis was diffusely distributed throughout the brain, especially in the hippocampus. In the hippocampus and amygdala, the numbers of neuron cells and cyclic adenosine monophosphate response element binding protein-positive cells were significantly reduced (p < 0.05), whereas the number of ionized calcium binding adapter protein 1-positive microglia was significantly increased (p < 0.05). In the hippocampus, the number of glial fibrillary acidic protein-positive astrocytes was also significantly increased (p < 0.05). Discussion The offspring of P. gingivalis-infected mothers have reduced cognitive function. Neurodegeneration/neuroinflammation in the hippocampus and amygdala may be caused by P. gingivalis infection, which is maternally transmitted. The importance of eliminating maternal P. gingivalis-odontogenic infection before or during gestation in maintenance healthy brain function in offspring should be addressed in near future.
Collapse
Affiliation(s)
- Eri Ishida
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ting-Yi Renn
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fumie Shiba
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hiroshi Oue
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryuji Terayama
- Department of Maxillofacial Anatomy and Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Isola G, Santonocito S, Lupi SM, Polizzi A, Sclafani R, Patini R, Marchetti E. Periodontal Health and Disease in the Context of Systemic Diseases. Mediators Inflamm 2023; 2023:9720947. [PMID: 37214190 PMCID: PMC10199803 DOI: 10.1155/2023/9720947] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 09/04/2022] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
During recent years, considerable progress has been made in understanding the etiopathogenesis of periodontitis in its various forms and their interactions with the host. Furthermore, a number of reports have highlighted the importance of oral health and disease in systemic conditions, especially cardiovascular diseases and diabetes. In this regard, research has attempted to explain the role of periodontitis in promoting alteration in distant sites and organs. Recently, DNA sequencing studies have revealed how oral infections can occur in distant sites such as the colon, reproductive tissues, metabolic diseases, and atheromas. The objective of this review is to describe and update the emerging evidence and knowledge regarding the association between periodontitis and systemic disease and to analyse the evidence that has reported periodontitis as a risk factor for the development of various forms of systemic diseases in order to provide a better understanding of the possible shared etiopathogenetic pathways between periodontitis and the different forms of systemic diseases.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Rossana Sclafani
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Romeo Patini
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Marchetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
11
|
Butera A, Maiorani C, Morandini A, Trombini J, Simonini M, Ogliari C, Scribante A. Periodontitis in Pregnant Women: A Possible Link to Adverse Pregnancy Outcomes. Healthcare (Basel) 2023; 11:1372. [PMID: 37239657 PMCID: PMC10218064 DOI: 10.3390/healthcare11101372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Periodontitis develops in 11% of pregnant women, and it is independently linked to severe complications during pregnancy such as preterm birth, low birth weight, and gestational diabetes. METHODS A literature search (Pubmed/MEDLINE, and Scopus) from 2003 to 2023 was conducted to analyze studies focused on periodontitis and adverse pregnancy outcomes. RESULTS 16 articles have been included. Most of the studies showed adverse outcomes, like preterm birth and the low weight of the unborn child, are among the most frequent consequences (respectively 62.5% and 68.7% of articles); pre-eclampsia is also linked to this condition (12.5% of articles); and perinatal mortality (12.5% of articles). CONCLUSIONS Periodontal disease appears to be associated with adverse events in pregnancy due to the transport of biofilm bacteria into the bloodstream and into placental tissue; what would cause adverse events is the body's immune response to infection.
Collapse
Affiliation(s)
- Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Carolina Maiorani
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Julia Trombini
- Member Association: “Mamme & Igieniste”, 24125 Bergamo, Italy
| | | | | | - Andrea Scribante
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
Prajjwal P, Asharaf S, Makhanasa D, Yamparala A, Tariq H, Aleti S, Gadam S, Vora N. Association of Alzheimer's dementia with oral bacteria, vitamin B12, folate, homocysteine levels, and insulin resistance along with its pathophysiology, genetics, imaging, and biomarkers. Dis Mon 2023; 69:101546. [PMID: 36931946 DOI: 10.1016/j.disamonth.2023.101546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Alzheimer's disease is a prevalent form of dementia, particularly among the elderly population. It is characterized by progressive cognitive decline and neurodegeneration. Despite numerous studies, the exact cause of Alzheimer's disease remains uncertain, and various theories have been proposed, including Aβ amyloid deposition in the brain and tau protein hyper-phosphorylation. This review article explores the potential pathogenesis of Alzheimer's disease, focusing on the effects of derangements in the levels of vitamin B12, folate, and homocysteine, as well as the impact of oral bacteria causing periodontitis and insulin resistance, and their relationship to Alzheimer's. Studies have shown that high levels of homocysteine and low levels of vitamin B12 and folate, are associated with an increased risk of developing Alzheimer's disease. The article also explores the link between Alzheimer's disease and oral bacteria, specifically dental infections and periodontitis, which contribute to the inflammatory processes in the nervous system of Alzheimer's patients. There could be derangement in the insulin signaling further causing disruption in glucose metabolism within the brain, suggesting that Alzheimer's disease may represent a form of type 2 diabetes mellitus associated with the brain, commonly known as type 3 diabetes. Neuroimaging techniques, including MRI, PET, and tau PET, can identify the predictive characteristics of Alzheimer's disease, with amyloid PET being the most useful in ruling out the disease. The article concludes by stressing the importance of understanding genetic and neuroimaging factors in the diagnosing and treating Alzheimer's disease.
Collapse
Affiliation(s)
| | - Shahnaz Asharaf
- Internal Medicine, Travancore Medical College, Kollam, Kerala, India
| | | | | | - Halla Tariq
- Internal Medicine, Multan Medical and Dental College, Multan, Pakistan
| | - Soumya Aleti
- Internal Medicine, Berkshire Medical Center, Pittsfield, MA, USA
| | - Srikanth Gadam
- Internal Medicine, Postdoctoral Research Fellow, Mayo Clinic, USA
| | - Neel Vora
- Internal Medicine, B. J. Medical College, Ahmedabad, India
| |
Collapse
|
13
|
Movilla S, Martí S, Roca M, Moliner V. Computational Study of the Inhibition of RgpB Gingipain, a Promising Target for the Treatment of Alzheimer's Disease. J Chem Inf Model 2023; 63:950-958. [PMID: 36648276 PMCID: PMC10882967 DOI: 10.1021/acs.jcim.2c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease represents one of the most ambitious challenges for biomedical sciences due to the growing number of cases worldwide in the elderly population and the lack of efficient treatments. One of the recent attempts to develop a treatment points to the cysteine protease RgpB as a promising drug target. In this attempt, several small-molecule covalent inhibitors of this enzyme have been proposed. Here, we report a computational study at the atomic level of the inhibition mechanism of the most promising reported compounds. Molecular dynamics simulations were performed on six of them, and their binding energies in the active site of the protein were computed. Contact maps and interaction energies were decomposed by residues to disclose those key interactions with the enzyme. Finally, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations were performed to evaluate the reaction mechanism by which these drug candidates lead to covalently bound complexes, inhibiting the RgpB protease. The results provide a guide for future re-design of prospective and efficient inhibitors for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Santiago Movilla
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Sergio Martí
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Maite Roca
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain
| |
Collapse
|
14
|
Manikandan P, Veeraraghavan VP, Sekaran S, Rengasamy G, Eswaramoorthy R. Molecular docking analysis of oxazole compounds with the heme-binding protein from Porphyromonas gingivalis. Bioinformation 2023; 19:105-110. [PMID: 37720292 PMCID: PMC10504525 DOI: 10.6026/97320630019105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 09/19/2023] Open
Abstract
Porphyromonas gingivalis, a peripathogen, has several methods to impede or modify the protective mechanisms of the teeth. Targeting the inhibition of the heme protein will prevent the organism from multiplying and inhibit the virulence mechanism. The literature derived oxazole compounds (1-5) were docked against the protein's active site, and the results show that the selected oxazole derivatives exhibit better interaction compared to clinically proven drugs.
Collapse
Affiliation(s)
- Pranaw Manikandan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, India
| | - Surya Sekaran
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077, India
| | - Gayathri Rengasamy
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077, India
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077, India
| |
Collapse
|
15
|
Takada K, Melnikov VG, Kobayashi R, Komine-Aizawa S, Tsuji NM, Hayakawa S. Female reproductive tract-organ axes. Front Immunol 2023; 14:1110001. [PMID: 36798125 PMCID: PMC9927230 DOI: 10.3389/fimmu.2023.1110001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
The female reproductive tract (FRT) and remote/versatile organs in the body share bidirectional communication. In this review, we discuss the framework of the "FRT-organ axes." Each axis, namely, the vagina-gut axis, uterus-gut axis, ovary-gut axis, vagina-bladder axis, vagina-oral axis, uterus-oral axis, vagina-brain axis, uterus-brain axis, and vagina-joint axis, is comprehensively discussed separately. Each axis could be involved in the pathogenesis of not only gynecological diseases but also diseases occurring apart from the FRT. Although the microbiota is clearly a key player in the FRT-organ axes, more quantitative insight into the homeostasis of the microbiota could be provided by host function measurements rather than current microbe-centric approaches. Therefore, investigation of the FRT-organ axes would provide us with a multicentric approach, including immune, neural, endocrine, and metabolic aspects, for understanding the homeostatic mechanism of women's bodies. The framework of the FRT-organ axes could also provide insights into finding new therapeutic approaches to maintain women's health.
Collapse
Affiliation(s)
- Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| | | | - Ryoki Kobayashi
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Microbiology and Immunology, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Noriko M. Tsuji
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Department of Food Science, Jumonji University, Saitama, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| |
Collapse
|
16
|
Messman RD, Lemley CO. Bovine neonatal microbiome origins: a review of proposed microbial community presence from conception to colostrum. Transl Anim Sci 2023; 7:txad057. [PMID: 37334245 PMCID: PMC10276551 DOI: 10.1093/tas/txad057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
In recent years, there has been an influx of research evaluating the roles of the reproductive tract microbiota in modulating reproductive performance. These efforts have resulted in a breadth of research exploring the bovine reproductive tract microbiota. The female reproductive tract microbiota has been characterized during the estrus cycle, at timed artificial insemination, during gestation, and postpartum. Additionally, there are recently published studies investigating in-utero inoculation of the bovine fetus. However, critical review of the literature to understand how the microbial shifts during a dam's lifecycle could impact neonatal outcomes is limited. This review demonstrates a consistency at the phyla level throughout both the maternal, paternal, and neonatal microbiomes. Moreover, this review challenges the current gestational inoculation hypothesis and suggests instead a maturation of the resident uterine microbiota throughout gestation to parturition. Recent literature is indicative of microbial composition influencing metabolomic parameters that have developmental programming effects in feed utilization and metabolic performance later in life. Thus, this review enumerates the potential origins of neonatal microbial inoculation from conception, through gestation, parturition, and colostrum consumption while introducing clear paucities where future research is needed to better understand the ramifications of the reproductive microbiome on neonates.
Collapse
Affiliation(s)
- Riley D Messman
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | |
Collapse
|
17
|
Satish S, Rengasamy G, Sekaran S, Sankaran K, Veeraraghavan VP, Eswaramoorthy R. Molecular docking analysis of protein filamin-A with thioazo compounds. Bioinformation 2023; 19:99-104. [PMID: 37720273 PMCID: PMC10504497 DOI: 10.6026/97320630019099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 09/19/2023] Open
Abstract
It is of interest to document the molecular docking analysis of protein Filamin-A with thioazo compounds. The compounds 1, 3, 5, and 6 showed best molecular docking interaction as compared to the drug doxorubicin. Among the selected ligands (1-6), compound 3 shows better interaction score than doxorubicin and follows Lipinski's rule of five. Hence, it could be considered as a potential lead molecule for inhibiting protein filamin A in the treatment of oral cancer.
Collapse
Affiliation(s)
- Sudarshan Satish
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Gayathri Rengasamy
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Surya Sekaran
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077
| | - Kavitha Sankaran
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077
| |
Collapse
|
18
|
Huo Y, Jiang Q, Zhao W. Meta-analysis of metagenomics reveals the signatures of vaginal microbiome in preterm birth. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Exploring the Mechanisms and Association between Oral Microflora and Systemic Diseases. Diagnostics (Basel) 2022; 12:diagnostics12112800. [PMID: 36428859 PMCID: PMC9689323 DOI: 10.3390/diagnostics12112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/18/2022] Open
Abstract
The scope of dentistry is ever-changing and dynamic in all fields of dentistry including periodontal health and disease. Recent studies show that oral health and systemic health are interdependent, particularly in the way that poor oral hygiene and periodontal health affect the systemic health of an individual and vice versa. Periodontal diseases are multifactorial in nature in which the role of bacterial infections is inevitable. Furthermore, high-throughput sequencing technologies have shed light on the dysregulation of the growth of oral microbial flora and their environment, including those that are associated with periodontitis and other oral and non-oral diseases. Under such circumstances, it becomes important to explore oral microbiota and understand the effects of periodontal pathogens in the pathogenesis of systemic diseases. In addition, it may strengthen our view that a better understanding of oral microbial flora and proper examination of the oral cavity may aid in the early diagnosis and possible treatment of systemic diseases and conditions. This will eventually lead to providing better care to our patients. Therefore, in this research, we attempt to outline the periodontal pathophysiology along with the role of periodontal pathogens in some commonly encountered systemic conditions.
Collapse
|
20
|
Bhuyan R, Bhuyan SK, Mohanty JN, Das S, Juliana N, Abu IF. Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A Review of Its Underlying Mechanisms. Biomedicines 2022; 10:biomedicines10102659. [PMID: 36289921 PMCID: PMC9599402 DOI: 10.3390/biomedicines10102659] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease of the gums. The incidence of periodontitis is increasing all over the world. In patients with periodontitis, there is gradual destruction of the periodontal ligament and the alveolar bone, and later, in advanced stages, there is tooth loss. Different microorganisms, the host’s immune response, and various environmental factors interact in the progression of this chronic inflammatory disease. In the present review, we discuss the epidemiology, clinical features, diagnosis, and complications of periodontitis. We also discuss the association of chronic inflammation found in periodontitis with various other systemic diseases, which include cardiovascular, respiratory, diabetes, Alzheimer’s, cancer, adverse pregnancy, and multiple myeloma, and also highlight microbial carcinogenesis and the microRNAs involved. The latest updates on the molecular mechanism, possible biomarkers, and treatment procedures may be beneficial for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Ruchi Bhuyan
- Department of Oral Pathology & Microbiology, IMS and SUM Hospital, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
- Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
| | - Sanat Kumar Bhuyan
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
| | - Jatindra Nath Mohanty
- Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan University (Deemed to be), Bhubaneswar 751003, India
| | - Srijit Das
- School of Applied Sciences, Centurion University of Technology and Management, Jatni, Bhubaneswar 752050, India
- Correspondence:
| | - Norsham Juliana
- Department of Human and Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Izuddin Fahmy Abu
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| |
Collapse
|
21
|
Porphyromonas gingivalis-mediated disruption in spiral artery remodeling is associated with altered uterine NK cell populations and dysregulated IL-18 and Htra1. Sci Rep 2022; 12:14799. [PMID: 36042379 PMCID: PMC9427787 DOI: 10.1038/s41598-022-19239-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Impaired spiral artery remodeling (IRSA) underpins the great obstetrical syndromes. We previously demonstrated that intrauterine infection with the periodontal pathogen, Porphyromonas gingivalis, induces IRSA in rats. Since our previous studies only examined the end stage of arterial remodeling, the aim of this study was to identify the impact of P. gingivalis infection on the earlier stages of remodeling. Gestation day (GD) 11 specimens, a transition point between trophoblast-independent remodeling and the start of extravillous trophoblast invasion, were compared to late stage GD18 tissues. P. gingivalis was found in decidual stroma of GD11 specimens that already had reduced spiral artery remodeling defined as smaller arterial lumen size, increased retention of vascular smooth muscle, and decreased invasion by extravillous trophoblasts. At GD11, P. gingivalis-induced IRSA coincided with altered uterine natural killer (uNK) cell populations, decreased placental bed expression of interleukin-18 (IL-18) with increased production of temperature requirement A1 (Htra1), a marker of oxidative stress. By GD18, placental bed IL-18 and Htra1 levels, and uNK cell numbers were equivalent in control and infected groups. However, infected GD18 placental bed specimens had decreased TNF + T cells. These results suggest disturbances in placental bed decidual stroma and uNK cells are involved in P. gingivalis-mediated IRSA.
Collapse
|
22
|
Hummel GL, Austin K, Cunningham-Hollinger HC. Comparing the maternal-fetal microbiome of humans and cattle: a translational assessment of the reproductive, placental, and fetal gut microbiomes. Biol Reprod 2022; 107:371-381. [PMID: 35412586 DOI: 10.1093/biolre/ioac067] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
An analysis of sites within the maternal reproductive microbiome that potentially contribute to fetal gut microbial colonization, with a special focus on the comparison between humans and cattle.
Collapse
Affiliation(s)
- Gwendolynn L Hummel
- Department of Animal and Veterinary Science, University of Wyoming, Laramie, WY, 82071
| | - Kathleen Austin
- Department of Animal and Veterinary Science, University of Wyoming, Laramie, WY, 82071
| | | |
Collapse
|
23
|
Hajishengallis G, Li X, Divaris K, Chavakis T. Maladaptive trained immunity and clonal hematopoiesis as potential mechanistic links between periodontitis and inflammatory comorbidities. Periodontol 2000 2022; 89:215-230. [PMID: 35244943 DOI: 10.1111/prd.12421] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontitis is bidirectionally associated with systemic inflammatory disorders. The prevalence and severity of this oral disease and linked comorbidities increases with aging. Here, we review two newly emerged concepts, trained innate immunity (TII) and clonal hematopoiesis of indeterminate potential (CHIP), which together support a potential hypothesis on how periodontitis affects and is affected by comorbidities and why the susceptibility to periodontitis and comorbidities increases with aging. Given that chronic diseases are largely triggered by the action of inflammatory immune cells, modulation of their bone marrow precursors, the hematopoietic stem and progenitor cells (HSPCs), may affect multiple disorders that emerge as comorbidities. Such alterations in HSPCs can be mediated by TII and/or CHIP, two non-mutually exclusive processes sharing a bias for enhanced myelopoiesis and production of innate immune cells with heightened proinflammatory potential. TII is a state of elevated immune responsiveness based on innate immune (epigenetic) memory. Systemic inflammation can initiate TII in the bone marrow via sustained rewiring of HSPCs, which thereby display a skewing toward the myeloid lineage, resulting in generation of hyper-reactive or "trained" myeloid cells. CHIP arises from aging-related somatic mutations in HSPCs, which confer a survival and proliferation advantage to the mutant HSPCs and give rise to an outsized fraction of hyper-inflammatory mutant myeloid cells in the circulation and tissues. This review discusses emerging evidence that supports the notion that TII and CHIP may underlie a causal and age-related association between periodontitis and comorbidities. A holistic mechanistic understanding of the periodontitis-systemic disease connection may offer novel diagnostic and therapeutic targets for treating inflammatory comorbidities.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimon Divaris
- Division of Pediatrics and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Hu S, Yu F, Jiang H, Shang W, Miao H, Li S, Zhao J, Xiao H. Periodontal Inflamed Surface Area Is Associated With Increased Gestational Blood Pressure and Uric Acid Levels Among Pregnant Women From Rural North China. Front Cardiovasc Med 2022; 9:830732. [PMID: 35299983 PMCID: PMC8921456 DOI: 10.3389/fcvm.2022.830732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background Periodontal disease has been associated with gestational complications and both conditions have a high prevalence in rural populations from developing regions. A cross-sectional study was carried out to explore the relationship between periodontal inflamed surface area (PISA), blood pressure (BP), and, serum uric acid levels (UA) in a group of rural North Chinese pregnant women in the third trimester of pregnancy. Methods Three hundred and thirty-five rural women aged 20–34 years, with normal body mass index (BMI) were examined in a cross-sectional study during their third trimester of gestation. Exclusion criteria were history of pregnancy complications, multiple pregnancy, smoking habits, diabetes, hypertension or any known infectious disease. Socio-demographic variables, including age and socioeconomic status (SES), systolic blood pressure (SBP) and diastolic blood pressure (DBP) readings, serum UA levels, and PISA values were recorded. A structural equation model was implemented with two constructed latent variables including “Dem” (comprising of age and SES category to represent unobserved demographic variables) and, “BP” (comprising of SBP and DBP to account for measurement error and lack of multiple BP readings). The model accounted for co-variance of BP and UA, and implemented simultaneous regressions for BP and UA as outcomes, upon Dem and PISA values as exogenous variables. Results The median PISA score was 1,081.7 (IQR = 835.01), reflecting high levels of periodontal inflammation in the sample. SEM showed a significant association of PISA with BP (estimate = 0.011, 95% CI = 0.009–0.012 p < 0.001) and UA (estimate = 0.001, 95% CI = 0.001–0.001, p < 0.001). Conclusion Higher PISA values were significantly associated with higher blood pressure and uric acid levels among rural pregnant women in a cross-sectional sample from a center in North China after accounting for a latent demographic construct derived from age and SES.
Collapse
Affiliation(s)
- Shaonan Hu
- Innovation Center Computer Assisted Surgery, Leipzig University, Leipzig, Germany
| | - Feifan Yu
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Hong Jiang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu, China
| | - Wei Shang
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Hui Miao
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Simin Li
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
- Jianjiang Zhao
| | - Hui Xiao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- Hui Xiao
| |
Collapse
|
25
|
Ohshima H, Mishima K, Amizuka N. Oral biosciences: The annual review 2021. J Oral Biosci 2022; 64:1-7. [PMID: 35143953 DOI: 10.1016/j.job.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND The Journal of Oral Biosciences is devoted to advancing and disseminating fundamental knowledge concerning every aspect of oral biosciences. HIGHLIGHT This review features review articles in the fields of "Extracellular Vesicles," "Propolis," "Odontogenic Tumors," "Periodontitis," "Periodontium," "Flavonoids," "Lactoferrin," "Dental Plaque," "Anatomy," "Induced Pluripotent Stem Cells," "Bone Cell Biology," "Dysgeusia," "Dental Caries," and "Dental Pulp Cavity," in addition to the review article by the winners of the "Lion Award" ("Sox9 function in salivary gland development") presented by the Japanese Association for Oral Biology. CONCLUSION These reviews in the Journal of Oral Biosciences have inspired its readers to broaden their knowledge regarding various aspects of oral biosciences. The current editorial review introduces these exciting review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental Medicine, Hokkaido University, Kita 13 Nishi 7 Kita-ku, Sapporo, 060-8586, Japan
| |
Collapse
|
26
|
Lithgow KV, Buchholz VCH, Ku E, Konschuh S, D'Aubeterre A, Sycuro LK. Protease activities of vaginal Porphyromonas species disrupt coagulation and extracellular matrix in the cervicovaginal niche. NPJ Biofilms Microbiomes 2022; 8:8. [PMID: 35190575 PMCID: PMC8861167 DOI: 10.1038/s41522-022-00270-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas asaccharolytica and Porphyromonas uenonis are common inhabitants of the vaginal microbiome, but their presence has been linked to adverse health outcomes for women, including bacterial vaginosis and preterm birth. However, little is known about the pathogenesis mechanisms of these bacteria. The related oral opportunistic pathogen, Porphyromonas gingivalis, is comparatively well-studied and known to secrete numerous extracellular matrix-targeting proteases. Among these are the gingipain family of cysteine proteases that drive periodontal disease progression and hematogenic transmission to the placenta. In this study, we demonstrate that vaginal Porphyromonas species secrete broad-acting proteases capable of freely diffusing within the cervicovaginal niche. These proteases degrade collagens that are enriched within the cervix (type I) and chorioamniotic membranes (type IV), as well as fibrinogen, which inhibits clot formation. Bioinformatic queries confirmed the absence of gingipain orthologs and identified five serine, cysteine, and metalloprotease candidates in each species. Inhibition assays revealed that each species' proteolytic activity can be partially attributed to a secreted metalloprotease with broad substrate specificity that is distantly related to the P. gingivalis endopeptidase PepO. This characterization of virulence activities in vaginal Porphyromonas species highlights their potential to alter the homeostasis of reproductive tissues and harm human pregnancy through clotting disruption, fetal membrane weakening, and premature cervical remodeling.
Collapse
Affiliation(s)
- Karen V Lithgow
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Vienna C H Buchholz
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Emily Ku
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Shaelen Konschuh
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Ana D'Aubeterre
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Laura K Sycuro
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
- International Microbiome Centre, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
27
|
Zakis DR, Paulissen E, Kornete L, Kaan AMM, Nicu EA, Zaura E. The evidence for placental microbiome and its composition in healthy pregnancies: A systematic review. J Reprod Immunol 2021; 149:103455. [PMID: 34883392 DOI: 10.1016/j.jri.2021.103455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/11/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To assess the available scientific evidence regarding the placental microbial composition of a healthy pregnancy, the quality of this evidence, and the potential relation between placental and oral microbiome. MATERIALS AND METHODS Data sources: MEDLINE and EMBASE up to August 1, 2019. STUDY ELIGIBILITY CRITERIA Human subjects; healthy women; term deliveries; healthy normal birth weight; assessment of microorganisms (bacteria) in placental tissue; full research papers in English. The quality of the included studies was assessed by a modified Joanna Briggs Institute checklist for analytical cross-sectional studies. RESULTS 57 studies passed the inclusion criteria. Of these, 33 had a high risk of quality bias (e.g., insufficient infection control, lack of negative controls, poor description of the healthy cases). The remaining 24 studies had a low (N = 12) to moderate (N = 12) risk of bias and were selected for in-depth analysis. Of these 24 studies, 22 reported microorganisms in placental tissues, where Lactobacillus (11 studies), Ureaplasma (7), Fusobacterium (7), Staphylococcus (7), Prevotella (6) and Streptococcus (6) were among the most frequently identified genera. Methylobacterium (4), Propionibacterium (3), Pseudomonas (3) and Escherichia (2), among others, although frequently reported in placental samples, were often reported as contaminants in studies that used negative controls. CONCLUSIONS The results support the existence of a low biomass placental microbiota in healthy pregnancies. Some of the microbial taxa found in the placenta might have an oral origin. The high risk of quality bias for the majority of the included studies indicates that the results of individual papers should be interpreted with caution.
Collapse
Affiliation(s)
- Davis R Zakis
- Department of Conservative Dentistry and Oral Health, Faculty of Dentistry, Rīga Stradiņš University, Latvia; Department of Cariology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Eva Paulissen
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Liga Kornete
- Faculty of Medicine, Rīga Stradiņš University, Latvia
| | - A M Marije Kaan
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Movilla S, Martí S, Roca M, Moliner V. Unrevealing the Proteolytic Activity of RgpB Gingipain from Computational Simulations. J Chem Inf Model 2021; 61:4582-4593. [PMID: 34472342 DOI: 10.1021/acs.jcim.1c00666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease represents one of the greatest medical concerns for today's population and health services. Its multifactorial inherent nature represents a challenge for its treatment and requires the development of a broad spectrum of drugs. Recently, the cysteine protease gingipain RgpB has been related to neurodegenerative diseases, including Alzheimer's disease, and its inhibition appears to be a promising neuroprotective strategy. Given these features, a computational study that integrates molecular dynamics (MD) simulations with classical and hybrid quantum mechanics/molecular mechanics (QM/MM) potentials was carried out to unravel the atomistic details of RgpB activity. First, a preliminary study based on principal component analysis (PCA), determined the protonation state of the Cys/His catalytic dyad, as well as the crucial role of a flexible loop that favors reactive interactions of the catalytic residues and the peptide in the precatalytic state in its closed conformation. Then, different mechanisms were explored by means of QM/MM MD simulations. The most favorable mechanism consists of two stages. First is an acylation stage that takes place in two steps where, initially, the sulfur atom of the C244 residue attacks the carbonylic carbon of the peptide and the proton of the C244 residue is transferred to the amino group of the peptide in a concerted manner. Subsequently, the peptide bond is broken, and a fragment of the peptide is released. After that, the deacylation stage takes place in a single step where a water molecule attacks the carbonylic carbon of the peptide and a proton of the water is transferred to the C244 residue. The free energy barrier of the rate limiting step is in very good agreement with available experimental data. The mechanism exhibits an unusual role of H211 residue compared with other cysteine proteases but a crucial role of the peptide in triggering the catalysis. Notably, the atomic and energetic particularities found represent a significant contribution to the comprehension of the reaction mechanism and a great opportunity for the design of efficient inhibitors of gingipain RgpB.
Collapse
Affiliation(s)
- Santiago Movilla
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| | - Sergio Martí
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| | - Maite Roca
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universidad Jaume I, 12071, Castellón, Spain
| |
Collapse
|
29
|
Ye C, Kapila Y. Oral microbiome shifts during pregnancy and adverse pregnancy outcomes: Hormonal and Immunologic changes at play. Periodontol 2000 2021; 87:276-281. [PMID: 34463984 PMCID: PMC8457099 DOI: 10.1111/prd.12386] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Because of hormonal and immunologic changes, there are significant changes in the oral microbiome that emerge during pregnancy. Recent evidence further suggests that there is an association between the presence of periodontal disease and a pregnancy‐associated oral dysbiosis. Although this oral dysbiosis and pathogenic periodontal bacteria are considered to be associated with adverse pregnancy outcomes, it is still not clear how an oral dysbiosis during pregnancy can modulate oral diseases and birth outcomes. To develop preventive or therapeutic interventions, it is critical to understand the oral microbiome changes that emerge during pregnancy and their association with adverse pregnancy outcomes. In the present review, we summarize the current literature on normal changes in the oral microbiome that occur during pregnancy; the pathogenic changes in the oral microbiome believed to occur in association with adverse pregnancy outcomes; and the association between the placental microbiome and the oral microbiome.
Collapse
Affiliation(s)
- Changchang Ye
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California.,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yvonne Kapila
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California
| |
Collapse
|
30
|
Progress in Oral Microbiome Related to Oral and Systemic Diseases: An Update. Diagnostics (Basel) 2021; 11:diagnostics11071283. [PMID: 34359364 PMCID: PMC8306157 DOI: 10.3390/diagnostics11071283] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The human oral microbiome refers to an ecological community of symbiotic and pathogenic microorganisms found in the oral cavity. The oral cavity is an environment that provides various biological niches, such as the teeth, tongue, and oral mucosa. The oral cavity is the gateway between the external environment and the human body, maintaining oral homeostasis, protecting the mouth, and preventing disease. On the flip side, the oral microbiome also plays an important role in the triggering, development, and progression of oral and systemic diseases. In recent years, disease diagnosis through the analysis of the human oral microbiome has been realized with the recent development of innovative detection technology and is overwhelmingly promising compared to the previous era. It has been found that patients with oral and systemic diseases have variations in their oral microbiome compared to normal subjects. This narrative review provides insight into the pathophysiological role that the oral microbiome plays in influencing oral and systemic diseases and furthers the knowledge related to the oral microbiome produced over the past 30 years. A wide range of updates were provided with the latest knowledge of the oral microbiome to help researchers and clinicians in both academic and clinical aspects. The microbial community information can be utilized in non-invasive diagnosis and can help to develop a new paradigm in precision medicine, which will benefit human health in the era of post-metagenomics.
Collapse
|
31
|
Protective Action of L. salivarius SGL03 and Lactoferrin against COVID-19 Infections in Human Nasopharynx. MATERIALS 2021; 14:ma14113086. [PMID: 34200055 PMCID: PMC8200234 DOI: 10.3390/ma14113086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/09/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022]
Abstract
In this study, we used live viral particles from oral secretions from 17 people infected with SARS-CoV-2 and from 17 healthy volunteers, which were plated on a suitable medium complete for all microorganisms and minimal for L.salivarius growth. Both types of media also contained an appropriately prepared vector system pGEM-5Zf (+) based on the lactose operon (beta-galactosidase system). Incubation was carried out on both types of media for 24 h with the addition of 200 μL of Salistat SGL03 solution in order to test its inhibitory effect on the coronavirus contained in the oral mucosa and nasopharynx, visible as light blue virus particles on the test plates, which gradually disappeared in the material collected from infected persons over time. Regardless of the conducted experiments, swabs were additionally taken from the nasopharynx of infected and healthy people after rinsing the throat and oral mucosa with Salistat SGL03. In both types of experiments, after 24 h of incubation on appropriate media with biological material, we did not find any virus particles. Results were also confirmed by MIC and MBC tests. Results prove that lactoferrin, as one of the ingredients of the preparation, is probably a factor that blocks the attachment of virus particles to the host cells, determining its anti-viral properties. The conducted preliminary experiments constitute a very promising model for further research on the anti-viral properties of the ingredients contained in the Salistat SGL03 dietary supplement.
Collapse
|
32
|
Antimicrobials from Medicinal Plants: An Emergent Strategy to Control Oral Biofilms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oral microbial biofilms, directly related to oral diseases, particularly caries and periodontitis, exhibit virulence factors that include acidification of the oral microenvironment and the formation of biofilm enriched with exopolysaccharides, characteristics and common mechanisms that, ultimately, justify the increase in antibiotics resistance. In this line, the search for natural products, mainly obtained through plants, and derived compounds with bioactive potential, endorse unique biological properties in the prevention of colonization, adhesion, and growth of oral bacteria. The present review aims to provide a critical and comprehensive view of the in vitro antibiofilm activity of various medicinal plants, revealing numerous species with antimicrobial properties, among which, twenty-four with biofilm inhibition/reduction percentages greater than 95%. In particular, the essential oils of Cymbopogon citratus (DC.) Stapf and Lippia alba (Mill.) seem to be the most promising in fighting microbial biofilm in Streptococcus mutans, given their high capacity to reduce biofilm at low concentrations.
Collapse
|
33
|
Qiao W, Huang P, Wang X, Meng L. Susceptibility to DNA damage caused by abrogation of Rad54 homolog B: A putative mechanism for chemically induced cleft palate. Toxicology 2021; 456:152772. [PMID: 33823233 DOI: 10.1016/j.tox.2021.152772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022]
Abstract
Exposure to environmental toxicants such as all-trans retinoic acid (atRA) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) may cause cleft palate (CP), which process is related to DNA damage. Rad54B, an important DNA damage repaired protein, has been proved to be associated with non-syndromic cleft lip with palate (NSCLP). In the present study, we sought to clarify the role of Rad54B in palatal development and environment-induced CP. atRA (100 mg/kg) and TCDD (40 μg/kg) were used to induce CP in mice (C57BL/6 J mice). In this study, mouse embryonic heads were collected on embryonic day (E) 13.5∼16.5. The expression level of DNA repair protein Rad54 homolog B (Rad54B) was significantly decreased while those of the DNA double-strand breaks (DSBs) marker γ-H2A.X, apoptosis marker caspase-3 and p53 were significantly increased in the palatal shelves upon exposure to atRA and TCDD relative to the control. Primary mouse embryonic palatal mesenchymal cells (MEPMs) were cultured and transfected with siRNA or adenovirus in vitro to knock down or increase the level of Rad54B. Rad54B knockdown resulted in increased cellular S-phase arrest and apoptosis as well as decreased cell proliferation. Rad54B overexpression also increased apoptosis and reduced cell proliferation. Western blotting was used to detect the level of γ-H2A.X in transfected cells stimulated with etoposide (ETO, a DSBs inducer), and after 5 μM ETO stimulation of transfected MEPMs, the expression of γ-H2A.X was increased in Rad54B-knockdown cells. The expression of Mdm2, Mdmx and p53 with changes in Rad54B was also detected and coimmunoprecipitation was performed to analyze the combination of Mdm2 and p53 when Rad54B was changed in MEPMs. Knockdown of Rad54B inhibited the expression of Mdm2 and Mdmx, while the level of p53 increased. The coimmunoprecipitation results showed a decreased combination of Mdm2 and p53 when Rad54B was knocked down. Therefore, Rad54B can regulate the cell cycle, proliferation, and apoptosis of MEPMs. The loss of Rad54B increased the sensitivity of MEPMs to DSBs inducers, promoted apoptosis, and suppressed the proliferation of MEPMs by inhibiting the degradation of p53. Taken together, these findings suggest that Rad54B may play a key regulatory role in environment-induced CP.
Collapse
Affiliation(s)
- Weiwei Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Pei Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Xinhuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China
| | - Liuyan Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
34
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
35
|
Rowińska I, Szyperska-Ślaska A, Zariczny P, Pasławski R, Kramkowski K, Kowalczyk P. The Influence of Diet on Oxidative Stress and Inflammation Induced by Bacterial Biofilms in the Human Oral Cavity. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1444. [PMID: 33809616 PMCID: PMC8001659 DOI: 10.3390/ma14061444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
The article is a concise compendium of knowledge on the etiology of pathogenic microorganisms of all complexes causing oral diseases. The influence of particular components of the diet and the role of oxidative stress in periodontal diseases were described. The study investigated the bacteriostatic effect of the diet of adults in in vivo and in vitro tests on the formation of bacterial biofilms living in the subgingival plaque, causing diseases called periodontitis. If left untreated, periodontitis can damage the gums and alveolar bones. Anaerobic bacteria, called periopathogens or periodontopathogens, play a key role in the etiopathogenesis of periodontitis. The most important periopathogens of the oral microbiota are bacteria of all complexes, including the red complex. The obtained results suggest the possibility of using a specific diet in the prevention and treatment of periodontal diseases-already treated as a disease of civilization. The quoted article is an innovative compilation of knowledge on this subject and it can be a valuable source of knowledge for professional hygienists, dentists, peridontologists, dentistry students and anyone who cares about proper oral hygiene. The obtained results suggest the possibility of using this type of diet in the prophylaxis of the oral cavity in order to avoid periodontitis.
Collapse
Affiliation(s)
- Ilona Rowińska
- The Medical and Social Center for Vocational and Continuing Education in Toruń, St. Jana 1/3, 87-100 Toruń, Poland; (I.R.); (A.S.-Ś.)
| | - Adrianna Szyperska-Ślaska
- The Medical and Social Center for Vocational and Continuing Education in Toruń, St. Jana 1/3, 87-100 Toruń, Poland; (I.R.); (A.S.-Ś.)
| | - Piotr Zariczny
- Toruń City Hall, Business Support Center in Toruń, ul. Marii Konopnickiej 13, 87-100 Toruń, Poland;
| | - Robert Pasławski
- Veterinary Insitute, Nicolaus Copernicus University in Toruń, str. Gagarina 7, 87-100 Toruń, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1str, 15-089 Bialystok, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
36
|
Impact of the Diet on the Formation of Oxidative Stress and Inflammation Induced by Bacterial Biofilm in the Oral Cavity. MATERIALS 2021; 14:ma14061372. [PMID: 33809050 PMCID: PMC7998603 DOI: 10.3390/ma14061372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
The diet is related to the diversity of bacteria in the oral cavity, and the less diverse microbiota of the oral cavity may favor the growth of pathogenic bacteria of all bacterial complexes. Literature data indicate that disturbances in the balance of the bacterial flora of the oral cavity seem to contribute to both oral diseases, including periodontitis, and systemic diseases. If left untreated, periodontitis can damage the gums and alveolar bones. Improper modern eating habits have an impact on the oral microbiome and the gut microbiome, which increase the risk of several chronic diseases, including inflammatory bowel disease, obesity, type 2 diabetes, cardiovascular disease and cancer. The subject of our consideration is the influence of the traditional diet on the formation of oxidative stress and inflammation caused by bacterial biofilm in the oral cavity. Through dental, biomedical and laboratory studies, we wanted to investigate the effect of individual nutrients contained in specific diets on the induction of oxidative stress inducing inflammation of the soft tissues in the oral cavity in the presence of residual supra- and subgingival biofilm. In our research we used different types of diets marked as W, T, B, F and noninvasively collected biological material in the form of bacterial inoculum from volunteers. The analyzed material was grown on complete and selective media against specific strains of all bacterial complexes. Additionally, the zones of growth inhibition were analyzed based on the disc diffusion method. The research was supplemented with dental and periodontological indicators. The research was supplemented by the application of molecular biology methods related to bacterial DNA isolation, PCR reactions and sequencing. Such selected methods constitute an ideal screening test for the analysis of oral bacterial microbiota. The obtained results suggest that certain types of diet can be an effective prophylaxis in the treatment of civilization diseases such as inflammation of the oral cavity along with periodontal tissues and gingival pockets.
Collapse
|
37
|
Saadaoui M, Singh P, Al Khodor S. Oral microbiome and pregnancy: A bidirectional relationship. J Reprod Immunol 2021; 145:103293. [PMID: 33676065 DOI: 10.1016/j.jri.2021.103293] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
The oral cavity contains the second most complex microbial population within the human body, with more than 700 bacterial organisms. Recent advances in Next Generation Sequencing technology have unraveled the complexities of the oral microbiome and provided valuable insights into its role in health and disease. The human oral microbiome varies dramatically during the different stages of life, including pregnancy. The total viable microbial counts in pregnant women are known to be higher compared to non-pregnant women, especially in the first trimester of pregnancy. A balanced oral microbiome is vital for a healthy pregnancy, as perturbations in the oral microbiome composition can contribute to pregnancy complications. On the other hand, physiological changes and differences in hormonal levels during pregnancy, increase susceptibility to various oral diseases such as gingivitis and periodontitis. A growing body of evidence supports the link between the composition of the oral microbiome and adverse pregnancy outcomes such as preterm birth, preeclampsia, low birth weight among others. This review aims to summarize the dynamics of oral microbiome during pregnancy and to discuss the relationship between a dysbiotic oral microbiome and pregnancy complications.
Collapse
Affiliation(s)
| | - Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
38
|
The role of extracellular vesicles throughout normal pregnancy and in relation to oral bacteria. J Oral Biosci 2021; 63:14-22. [PMID: 33497844 DOI: 10.1016/j.job.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Recently, the relationship between the maternal oral environment and complicated pregnancies has been discussed in depth. The depletion of all bacterial flora, including oral bacteria, significantly decreased the size of the maternal placenta and suppressed fetal bone reabsorption. Furthermore, bacterial flora DNA of the host placenta has been reported to be remarkably similar to that of oral flora DNA. These findings indicate that maternal oral flora has a considerable effect on the formation of the placenta and fetus. HIGHLIGHT Placenta is a sophisticated tissue, in which the fetus and mother exchange substance. Placental homeostasis affects the maternal and fetal health; therefore, any disorder in this context is directly linked to serious health issues for the mother and developmental inhibition of the fetus. Extracellular vesicles (EVs) possess and deliver various factors (i.e., nucleic acids, proteins, and lipids) to distant organs through intercellular crosstalk. EVs are released during natural physiological events as well as under stress conditions. EVs derived from reproductive tissues, such as the placenta, are deeply involved in all stages of pregnancy, including the maturation and survival of sperm and egg, various events during fertilization, implantation, spiral artery remodeling, and immunomodulation. CONCLUSION To date, the precise role of EVs in oral diseases, including periodontal disease, is not well understood. Nonetheless, placental EVs are likely to attract attention, in the future, to objectively evaluate the effects of periodontal disease on maternal and fetal health. Therefore, the role of EVs throughout normal pregnancy will be discussed in this review.
Collapse
|
39
|
Nara PL, Sindelar D, Penn MS, Potempa J, Griffin WST. Porphyromonas gingivalis Outer Membrane Vesicles as the Major Driver of and Explanation for Neuropathogenesis, the Cholinergic Hypothesis, Iron Dyshomeostasis, and Salivary Lactoferrin in Alzheimer's Disease. J Alzheimers Dis 2021; 82:1417-1450. [PMID: 34275903 PMCID: PMC8461682 DOI: 10.3233/jad-210448] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Porphyromonas gingivalis (Pg) is a primary oral pathogen in the widespread biofilm-induced "chronic" multi-systems inflammatory disease(s) including Alzheimer's disease (AD). It is possibly the only second identified unique example of a biological extremophile in the human body. Having a better understanding of the key microbiological and genetic mechanisms of its pathogenesis and disease induction are central to its future diagnosis, treatment, and possible prevention. The published literature around the role of Pg in AD highlights the bacteria's direct role within the brain to cause disease. The available evidence, although somewhat adopted, does not fully support this as the major process. There are alternative pathogenic/virulence features associated with Pg that have been overlooked and may better explain the pathogenic processes found in the "infection hypothesis" of AD. A better explanation is offered here for the discrepancy in the relatively low amounts of "Pg bacteria" residing in the brain compared to the rather florid amounts and broad distribution of one or more of its major bacterial protein toxins. Related to this, the "Gingipains Hypothesis", AD-related iron dyshomeostasis, and the early reduced salivary lactoferrin, along with the resurrection of the Cholinergic Hypothesis may now be integrated into one working model. The current paper suggests the highly evolved and developed Type IX secretory cargo system of Pg producing outer membrane vesicles may better explain the observed diseases. Thus it is hoped this paper can provide a unifying model for the sporadic form of AD and guide the direction of research, treatment, and possible prevention.
Collapse
Affiliation(s)
| | | | - Marc S. Penn
- Summa Heart Health and Vascular Institute, Akron, OH, USA
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases in the School of Dentistry, University of Louisville, Louisville, KY, USA
| | - W. Sue T. Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
40
|
Gómez LA, De Avila J, Castillo DM, Montenegro DA, Trujillo TG, Suárez LJ, Lafaurie GI. Porphyromonas gingivalis Placental Atopobiosis and Inflammatory Responses in Women With Adverse Pregnancy Outcomes. Front Microbiol 2020; 11:591626. [PMID: 33343532 PMCID: PMC7738622 DOI: 10.3389/fmicb.2020.591626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
The microbiome modulates inflammation at the fetal maternal interface on both term and preterm labor. Inflammophilic oral bacteria, such as Porphyromonas gingivalis, as well as urogenital microorganisms (UGM) could translocate to the placenta and activate immune mechanisms in decidual tissue that is associated with adverse pregnancy outcomes (APO). This study establishes the associations between the presence of microbes in the placenta and placental cytokine patterns in women who presented APO, e.g., low birth weight (LBW), preterm premature rupture of membranes (PPROM), preterm birth (PTB) and other clinical signs related to Chorioamnionitis (CA). A total of 40 pregnant women were included in the study and divided into five groups according to placental infection (PI) and APO, as follows: (1) women without PI and without APO (n = 17), (2) women with P. gingivalis-related PI and APO (n = 5), (3) women with P. gingivalis-related PI and without APO (n = 4), (4) women with PI related to UGM and APO (n = 5) and (5) women without PI with APO (n = 9). Obstetric, clinical periodontal status evaluation, and subgingival plaque sampling were performed at the time of delivery. Placental levels of interleukin IL-1β, IL-6, IL-10, IL-15, IL-17A, IL-17F, IL-21, IL-12p70, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 α (MCP-1α), granzyme B, and interferon-γ (IFN-γ) were determined using a multiplex flow cytometry assay. All patients showed a predominant Th-1 cytokine profile related to labor, characterized by IFN-γ overexpression. The analysis by groups suggests that Th-1 profile was trending to maintain cytotoxic cell activity by the expression of IL-15 and granzyme B, except for the group with P. gingivalis-related PI and APO, which exhibited a reduction of IL-10 and IL-17F cytokines (p < 0.05) and a Th-1 profile favoring macrophage activation by MCP-1 production (p < 0.05). This study confirms a pro-inflammatory pattern associated with labor, characterized by a Th-1 profile and the activity of cytotoxic cells, which is enhanced by PI with UGM. However, PI associated with P. gingivalis suggests a switch where the Th-1 profile favors an inflammatory response mediated by MCP-1 and macrophage activity as a mechanistic explanation of its possible relationship with adverse outcomes in pregnancy.
Collapse
Affiliation(s)
- Luz Amparo Gómez
- Unit of Basic Oral Investigations-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Juliette De Avila
- Cellular and Molecular Immunology Group, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Diana Marcela Castillo
- Unit of Basic Oral Investigations-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | | | - Tammy Gorety Trujillo
- Unit of Basic Oral Investigations-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Lina J Suárez
- Basic Science and Oral Medicine Department, School of Dentistry, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gloria Inés Lafaurie
- Unit of Basic Oral Investigations-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
41
|
Lim G, Janu U, Chiou LL, Gandhi KK, Palomo L, John V. Periodontal Health and Systemic Conditions. Dent J (Basel) 2020; 8:E130. [PMID: 33227918 PMCID: PMC7711538 DOI: 10.3390/dj8040130] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/05/2022] Open
Abstract
According to the new classification proposed by the recent 2017 World Workshop on Periodontal and Peri-implant Diseases and Conditions, periodontitis, necrotizing periodontal diseases, periodontitis as a manifestation of systemic diseases, and systemic diseases or conditions affecting the periodontal supporting tissues, are considered as separate entities. Scientific evidence has demonstrated that periodontal diseases are not just simple bacterial infections but rather complex diseases of multifactorial complexity that interplay with the subgingival microbes, the host immune, and inflammatory responses. Despite dental plaque biofilm being considered the primary risk factor for periodontitis in the vast majority of patients that dentists encounter on a daily basis, there are other factors that can also contribute and/or accelerate pathologic progressive attachment loss. In this article, the authors aim to briefly review and discuss the present evidence regarding the association between periodontal diseases and systemic diseases and conditions.
Collapse
Affiliation(s)
- Glendale Lim
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (G.L.); (U.J.); (L.-L.C.); (K.K.G.)
| | - Upasna Janu
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (G.L.); (U.J.); (L.-L.C.); (K.K.G.)
| | - Lan-Lin Chiou
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (G.L.); (U.J.); (L.-L.C.); (K.K.G.)
| | - Kaveri Kranti Gandhi
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (G.L.); (U.J.); (L.-L.C.); (K.K.G.)
| | - Leena Palomo
- Department of Periodontology, Case Western University, School of Dentistry, Indianapolis, IN 46202, USA;
| | - Vanchit John
- Department of Periodontology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (G.L.); (U.J.); (L.-L.C.); (K.K.G.)
| |
Collapse
|
42
|
Moncunill-Mira J, Brunet-Llobet L, Cuadras D, Lorente-Colomé N, Pascal R, Rovira C, Nadal A, Miranda-Rius J. Do the clinical criteria used to diagnose periodontitis affect the association with prematurity? Odontology 2020; 109:455-463. [PMID: 33128123 DOI: 10.1007/s10266-020-00562-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/18/2020] [Indexed: 01/09/2023]
Abstract
In recent years, several studies have examined the possible relationship between periodontal disease in pregnant women and preterm birth. One of the difficulties facing these studies is the heterogeneity of the clinical criteria used to define periodontitis. The aim of this cross-sectional study was to determine the degree of association between maternal periodontitis and preterm birth according to different consensus definitions of periodontal disease. In a study of 146 mothers (60 with preterm births and 86 with term deliveries) at the Sant Joan de Déu Maternal and Children's Hospital in Barcelona, a periodontal examination was carried out within 2 days of birth and the presence of periodontal disease was evaluated using the main clinical classifications published in the literature. The prevalence of periodontitis ranged from 25.4 to 52.1%, depending on the criteria used for its definition. Using the most restrictive criteria, pregnant women with periodontitis had a higher risk of preterm birth (OR: 7.49; p < 0.001) and premature rupture of membranes (OR: 2.49; p = 0.017). Premature infants born to mothers with periodontitis presented a tendency toward low weight, adjusted for gestational age (OR: 3.32; p = 0.065). Our findings suggest that the association between periodontitis and preterm birth is influenced by the definitions of periodontitis used.
Collapse
Affiliation(s)
- Jordi Moncunill-Mira
- Department of Dentistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Hospital Dentistry, Clinical Orthodontics and Periodontal Medicine Research Group (HDCORPEMrg), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Lluís Brunet-Llobet
- Department of Dentistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Hospital Dentistry, Clinical Orthodontics and Periodontal Medicine Research Group (HDCORPEMrg), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Daniel Cuadras
- Statistics Unit, Fundació Sant Joan de Déu (FSJD), Barcelona, Spain
| | - Núria Lorente-Colomé
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu - University of Barcelona, Barcelona, Spain
| | - Rosalia Pascal
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu - University of Barcelona, Barcelona, Spain
| | - Carlota Rovira
- Department of Pathology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Alfons Nadal
- Department of Pathology, Hospital Clínic, Agust Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jaume Miranda-Rius
- Department of Dentistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain. .,Hospital Dentistry, Clinical Orthodontics and Periodontal Medicine Research Group (HDCORPEMrg), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain. .,Department of Odontostomatology, Faculty of Medicine and Health Sciences, University of Barcelona, Feixa Llarga, s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
43
|
Jain L, Juneja R, Kansal R, Kumar V. Prevalence of myths regarding oral health among pregnant women in North India. Int J Dent Hyg 2020; 19:127-134. [PMID: 32985118 DOI: 10.1111/idh.12471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To study the prevalence of myths regarding oral health care in pregnant women in North Indian population. METHODS This cross-sectional study used a self-administered closed-ended questionnaire to assess oral healthcare related beliefs and practices in 400 pregnant women who reported for prenatal checkup in a tertiary healthcare centre in North India. The questionnaire included questions to elicit information on socio-demographic factors, beliefs and practices of oral hygiene during pregnancy, attitude towards dental problems occurring during pregnancy and the reasons associated with a specific belief. Prevalence of various myths was observed, and its associations with various socio-demographic factors, adverse pregnancy outcomes and dental symptoms were analysed. RESULTS 84.2% of the respondents harboured at least one oral healthcare related myth. 63.4% of respondents deferred brushing for many days after delivery. 36.6% of respondents avoided consumption of hot/cold food and drinks during pregnancy due to fear of tooth loss. 24.5% of respondents believed local anaesthesia could affect baby's developing organs, and 21.8% of the studied population believed tooth extraction might cause miscarriage. Females possessing more myths were more likely to experience severe oral health problems during pregnancy. Education was depicted as a significant negative predictor of the prevalence of myths. No significant correlation between myths prevalence and history of adverse pregnancy outcomes was found. CONCLUSION Neglect of oral health due to myths about oral hygiene practices and dental treatment during pregnancy is a serious concern. A very high prevalence of these myths is an obstacle to goal of optimal maternal and child health.
Collapse
Affiliation(s)
- Lokesh Jain
- Kalpana Chawla Government Medical College, Karnal, India
| | - Ruchi Juneja
- Department of Dentistry, Kalpana Chawla Government Medical College, Karnal, India
| | - Richa Kansal
- Department of Obstetrics and Gynecology, Kalpana Chawla Government Medical College, Karnal, India
| | - Varun Kumar
- Department of Dentistry, Kalpana Chawla Government Medical College, Karnal, India
| |
Collapse
|
44
|
Kucia M, Wietrak E, Szymczak M, Kowalczyk P. Effect of Ligilactobacillus salivarius and Other Natural Components against Anaerobic Periodontal Bacteria. Molecules 2020; 25:molecules25194519. [PMID: 33023121 PMCID: PMC7582733 DOI: 10.3390/molecules25194519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
In this present study, the bacteriostatic effect of Salistat SGL03 and the Lactobacillus salivarius strain contained in it was investigated in adults in in vivo and in vitro tests on selected red complex bacteria living in the subgingival plaque, inducing a disease called periodontitis, i.e., chronic periodontitis. Untreated periodontitis can lead to the destruction of the gums, root cementum, periodontium, and alveolar bone. Anaerobic bacteria, called periopathogens or periodontopathogens, play a key role in the etiopathogenesis of periodontitis. The most important periopathogens of the oral microbiota are: Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and others. Our hypothesis was verified by taking swabs of scrapings from the surface of the teeth of female hygienists (volunteers) on full and selective growth media for L. salivarius. The sizes of the zones of growth inhibition of periopathogens on the media were measured before (in vitro) and after consumption (in vivo) of Salistat SGL03, based on the disk diffusion method, which is one of the methods of testing antibiotic resistance and drug susceptibility of pathogenic microorganisms. Additionally, each of the periopathogens analyzed by the reduction inoculation method, was treated with L. salivarius contained in the SGL03 preparation and incubated together in Petri dishes. The bacteriostatic activity of SGL03 preparation in selected periopathogens was also analyzed using the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests. The obtained results suggest the possibility of using the Salistat SGL03 dietary supplement in the prophylaxis and support of the treatment of periodontitis-already treated as a civilization disease.
Collapse
Affiliation(s)
- Marzena Kucia
- R&D Depatrment Nutropharma LTD, Jedności 10A, 05-506 Lesznowola, Poland; (M.K.); (E.W.)
| | - Ewa Wietrak
- R&D Depatrment Nutropharma LTD, Jedności 10A, 05-506 Lesznowola, Poland; (M.K.); (E.W.)
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Correspondence: ; Tel.: +48-22-765-3301
| |
Collapse
|
45
|
Tavarna T, Phillips PL, Wu XJ, Reyes L. Fetal growth restriction is a host specific response to infection with an impaired spiral artery remodeling-inducing strain of Porphyromonas gingivalis. Sci Rep 2020; 10:14606. [PMID: 32884071 PMCID: PMC7471333 DOI: 10.1038/s41598-020-71762-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/13/2020] [Indexed: 01/03/2023] Open
Abstract
Porphyromonas gingivalis is a periodontal pathogen implicated in a range of pregnancy disorders that involve impaired spiral artery remodeling (ISAR) with or without fetal growth restriction (FGR). Using a rodent periodontitis model, we assessed the ability of P. gingivalis to produce ISAR and FGR in Sprague Dawley (SD) and Wistar (WIS) rats. Both infected SD and WIS rats developed ISAR, but only WIS rats developed FGR despite both rat strains having equivalent microbial loads within the placenta. Neither maternal systemic inflammation nor placental (fetal) inflammation was a feature of FGR in WIS rats. Unique to infected WIS rats, was loss of trophoblast cell density within the junctional zone of the placenta that was not present in SD tissues. In addition, infected WIS rats had a higher proportion of junctional zone trophoblast cells positive for cytoplasmic high temperature requirement A1 (Htra1), a marker of cellular oxidative stress. Our results show a novel phenomenon present in P. gingivalis-induced FGR, with relevance to human disease since dysregulation of placental Htra1 and placental oxidative stress are features of preeclamptic placentas and preeclampsia with FGR.
Collapse
Affiliation(s)
- Tanvi Tavarna
- Department of Pathobiological Sciences, University of Wisconsin - Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Priscilla L Phillips
- Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Xiao-Jun Wu
- Department of Pathobiological Sciences, University of Wisconsin - Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin - Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
46
|
Rasheed ZBM, Lee YS, Kim SH, Rai RK, Ruano CSM, Anucha E, Sullivan MHF, MacIntyre DA, Bennett PR, Sykes L. Differential Response of Gestational Tissues to TLR3 Viral Priming Prior to Exposure to Bacterial TLR2 and TLR2/6 Agonists. Front Immunol 2020; 11:1899. [PMID: 32983111 PMCID: PMC7477080 DOI: 10.3389/fimmu.2020.01899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Infection/inflammation is an important causal factor in spontaneous preterm birth (sPTB). Most mechanistic studies have concentrated on the role of bacteria, with limited focus on the role of viruses in sPTB. Murine studies support a potential multi-pathogen aetiology in which a double or sequential hit of both viral and bacterial pathogens leads to a higher risk preterm labour. This study aimed to determine the effect of viral priming on bacterial induced inflammation in human in vitro models of ascending and haematogenous infection. Methods: Vaginal epithelial cells, and primary amnion epithelial cells and myocytes were used to represent cell targets of ascending infection while interactions between peripheral blood mononuclear cells (PBMCs) and placental explants were used to model systemic infection. To model the effect of viral priming upon the subsequent response to bacterial stimuli, each cell type was stimulated first with a TLR3 viral agonist, and then with either a TLR2 or TLR2/6 agonist, and responses compared to those of each agonist alone. Immunoblotting was used to detect cellular NF-κB, AP-1, and IRF-3 activation. Cellular TLR3, TLR2, and TLR6 mRNA was quantified by RT-qPCR. Immunoassays were used to measure supernatant cytokine, chemokine and PGE2 concentrations. Results: TLR3 (“viral”) priming prior to TLR2/6 agonist (“bacterial”) exposure augmented the pro-inflammatory, pro-labour response in VECs, AECs, myocytes and PBMCs when compared to the effects of agonists alone. In contrast, enhanced anti-inflammatory cytokine production (IL-10) was observed in placental explants. Culturing placental explants in conditioned media derived from PBMCs primed with a TLR3 agonist enhanced TLR2/6 agonist stimulated production of IL-6 and IL-8, suggesting a differential response by the placenta to systemic inflammation compared to direct infection as a result of haematogenous spread. TLR3 agonism generally caused increased mRNA expression of TLR3 and TLR2 but not TLR6. Conclusion: This study provides human in vitro evidence that viral infection may increase the susceptibility of women to bacterial-induced sPTB. Improved understanding of interactions between viral and bacterial components of the maternal microbiome and host immune response may offer new therapeutic options, such as antivirals for the prevention of PTB.
Collapse
Affiliation(s)
- Zahirrah B M Rasheed
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun S Lee
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Sung H Kim
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Ranjit K Rai
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Camino S M Ruano
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,INSERM U1016 Institut Cochin, Paris, France
| | - Eberechi Anucha
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Mark H F Sullivan
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - David A MacIntyre
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Lynne Sykes
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
47
|
Gnanasekaran J, Binder Gallimidi A, Saba E, Pandi K, Eli Berchoer L, Hermano E, Angabo S, Makkawi H, Khashan A, Daoud A, Elkin M, Nussbaum G. Intracellular Porphyromonas gingivalis Promotes the Tumorigenic Behavior of Pancreatic Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12082331. [PMID: 32824786 PMCID: PMC7465784 DOI: 10.3390/cancers12082331] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gingivalis is a member of the dysbiotic oral microbiome associated with oral inflammation and periodontal disease. Intriguingly, epidemiological studies link P. gingivalis to an increased risk of pancreatic cancer. Given that oral bacteria are detected in human pancreatic cancer, and both mouse and human pancreata harbor microbiota, we explored the involvement of P. gingivalis in pancreatic tumorigenesis using cell lines and a xenograft model. Live P. gingivalis induced proliferation of pancreatic cancer cells; however, surprisingly, this effect was independent of Toll-like receptor 2, the innate immune receptor that is engaged in response to P. gingivalis on other cancer and immune cells, and is required for P. gingivalis to induce alveolar bone resorption. Instead, we found that P. gingivalis survives inside pancreatic cancer cells, a trait that can be enhanced in vitro and is increased by hypoxia, a central characteristic of pancreatic cancer. Increased tumor cell proliferation was related to the degree of intracellular persistence, and infection of tumor cells with P. gingivalis led to enhanced growth in vivo. To the best of our knowledge, this study is the first to demonstrate the direct effect of exposure to P. gingivalis on the tumorigenic behavior of pancreatic cancer cell lines. Our findings shed light on potential mechanisms underlying the pancreatic cancer–periodontitis link.
Collapse
Affiliation(s)
- JebaMercy Gnanasekaran
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Adi Binder Gallimidi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
| | - Elias Saba
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Karthikeyan Pandi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Luba Eli Berchoer
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Esther Hermano
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
| | - Sarah Angabo
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Hasna′a Makkawi
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Arin Khashan
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Alaa Daoud
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem 9112102, Israel;
- Correspondence: (M.E.); (G.N.); Tel.: +972-2-6776782 (M.E.); +972-2-6758581 (G.N.)
| | - Gabriel Nussbaum
- The Institute of Dental Sciences, Hebrew University, Hadassah Faculty of Dental Medicine, Jerusalem 9112102, Israel; (J.G.); (A.B.G.); (E.S.); (K.P.); (L.E.B.); (S.A.); (H.M.); (A.K.); (A.D.)
- Correspondence: (M.E.); (G.N.); Tel.: +972-2-6776782 (M.E.); +972-2-6758581 (G.N.)
| |
Collapse
|
48
|
Ryder MI. Porphyromonas gingivalis and Alzheimer disease: Recent findings and potential therapies. J Periodontol 2020; 91 Suppl 1:S45-S49. [PMID: 32533852 PMCID: PMC7689719 DOI: 10.1002/jper.20-0104] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have identified an association between periodontitis and Alzheimer disease (AD); however, the nature of this association has been unclear. Recent work suggests that brain colonization by the periodontal pathogen Porphyromonas gingivalis may link these two inflammatory and degenerative conditions. Evidence of P. gingivalis infiltration has been detected in autopsy specimens from the brains of people with AD and in cerebrospinal fluid of individuals diagnosed with AD. Gingipains, a class of P. gingivalis proteases, are found in association with neurons, tau tangles, and beta-amyloid in specimens from the brains of individuals with AD. The brains of mice orally infected with P. gingivalis show evidence of P. gingivalis infiltration, along with various neuropathological hallmarks of AD. Oral administration of gingipain inhibitors to mice with established brain infections decreases the abundance of P. gingivalis DNA in brain and mitigates the neurotoxic effects of P. gingivalis infection. Thus, gingipain inhibition could provide a potential approach to the treatment of both periodontitis and AD.
Collapse
Affiliation(s)
- Mark I Ryder
- Division of Periodontology, Department of Orofacial Sciences School of Dentistry, University of California, San Francisco, CA
| |
Collapse
|
49
|
Zhang M, Liu X, Xie Y, Zhang Q, Zhang W, Jiang X, Lin J. Biological Safe Gold Nanoparticle-Modified Dental Aligner Prevents the Porphyromonas gingivalis Biofilm Formation. ACS OMEGA 2020; 5:18685-18692. [PMID: 32775870 PMCID: PMC7407536 DOI: 10.1021/acsomega.0c01532] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/29/2020] [Indexed: 05/13/2023]
Abstract
Oral microbiology could directly influence overall health. Porphyromonas gingivalis (P. gingivalis) is a highly pathogenic bacterium that causes periodontitis and other related systematic diseases, including Alzheimer's disease. Orthodontic devices (e.g., invisalign aligner) is commonly used in populations with periodontitis who are also at a high risk of systematic diseases. In this study, newly explored antibacterial 4,6-diamino-2-pyrimidinethiol-modified gold nanoparticles (AuDAPT) were coated onto aligners. The coated aligners showed favorable antibacterial activity against P. gingivalis. In the presence of the coated aligner, the number of planktonic cells was decreased, and biofilm formation was prevented. This material also showed favorable biocompatibility in vivo and in vitro. This study reveals a new method for treating oral P. gingivalis by coating aligners with AuDAPT, which has typical advantages compared to other treatments for both periodontitis and related systematic diseases.
Collapse
Affiliation(s)
- Mengqi Zhang
- Department
of Orthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| | - Xiaomo Liu
- Department
of Orthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| | - Yangzhouyun Xie
- Department
of Biomedical Engineering, Southern University
of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qian Zhang
- Central
Laboratory, Peking University School and
Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R.
China
| | - Wei Zhang
- Beijing
Engineering Research Center for BioNanotechnology and CAS Key Laboratory
for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center
for Excellence in Nanoscience, National
Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R.
China
| | - Xingyu Jiang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jiuxiang Lin
- Department
of Orthodontics, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| |
Collapse
|
50
|
Konishi H, Urabe S, Teraoka Y, Morishita Y, Koh I, Sugimoto J, Sakamoto S, Miyoshi H, Miyauchi M, Takata T, Kajioka S, Kudo Y. Porphyromonas gingivalis, a cause of preterm birth in mice, induces an inflammatory response in human amnion mesenchymal cells but not epithelial cells. Placenta 2020; 99:21-26. [PMID: 32738645 DOI: 10.1016/j.placenta.2020.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Inflammation and infection, including dental infectious diseases, are factors that can induce preterm birth. We previously reported that mice with dental Porphyromonas gingivalis infection could be used as a model of preterm birth. In this model, cyclooxygenase (COX)-2 and interleukin (IL)-1β levels are increased, and P. gingivalis colonies are observed in the fetal membrane. However, the mechanism underlying fetal membrane inflammation remains unknown. Therefore, we investigated the immune responses of human amnion to P. gingivalis in vitro. METHODS Epithelial and mesenchymal cells were isolated from human amnion using trypsin and collagenase, and primary cell cultures were obtained. Confluent cells were stimulated with P. gingivalis lipopolysaccharide (P.g-LPS) or P. gingivalis. mRNA expressions of IL-1β, IL-8, IL-6 and COX-2, protein expressions of nuclear factor (NF)-κB pathway components and culture medium levels of prostaglandin E2 were evaluated. RESULTS Following stimulation with 1 μg/mL P.g-LPS, the mRNA expression levels of IL-1β, IL-8, IL-6 and COX-2 in mesenchymal cells were increased 5.9-, 3.3-, 4.2- and 3.1-fold, respectively. Similarly, the expression levels of IL-1β, IL-8, IL-6 and COX-2 in mesenchymal cells were increased by 7.6-, 8.2-, 13.4- and 9.3-fold, respectively, after coculture with P. gingivalis. Additionally, stimulation with P.g-LPS or P. gingivalis resulted in the activation of NF-κB signaling and increased production of IL-1β and prostaglandin E2. In contrast, no significant changes were observed in epithelial cells. DISCUSSION Our findings suggest that mesenchymal cells might mediate the inflammatory responses to P. gingivalis and P.g-LPS, thereby producing inflammation that contributes to the induction of preterm birth.
Collapse
Affiliation(s)
- Haruhisa Konishi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Satoshi Urabe
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yuko Teraoka
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Yoshito Morishita
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Iemasa Koh
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Jun Sugimoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Shinnichi Sakamoto
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Hiroshi Miyoshi
- Department of Obstetrics and Gynecology, Hiroshima Prefectural Hospital, Hiroshima, Japan.
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Tokuyama University, Yamaguchi, Japan.
| | - Shunichi Kajioka
- Department of Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshiki Kudo
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|