1
|
Mishra A, Dou Y, Fletcher HM. Characterization of thioredoxin-thioredoxin reductase system in Filifactor alocis. Mol Oral Microbiol 2025; 40:50-63. [PMID: 39428740 DOI: 10.1111/omi.12486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Filifactor alocis is a newly appreciated member of the periodontal community with a strong periodontal disease correlation. Little is known about the survival mechanisms by which F. alocis copes with oxidative stress and establishes the infection within the local inflammatory microenvironment of the periodontal pocket. The aim of this study is to investigate if F. alocis putative peroxiredoxin/AhpC protein FA768 may constitute an alkyl hydroperoxide reductase system utilizing putative thioredoxin reductase protein FA608, and putative thioredoxin/glutaredoxin homolog FA1411/FA455. METHODS FA768, FA608, FA1411 and FA455 proteins from F. alocis were expressed and purified from Escherichia coli. Insulin and 5,5-dithio-bis-2-nitrobenzoic acid (DTNB) reduction assays were performed to determine if purified FA1411 and FA455 proteins could be a substrate for FA608. The peroxidase activity of FA768 was examined by measuring its ability to reduce hydrogen peroxide (H2O2) with FA608 and FA1411/FA455 provided as the reducing systems. Further, the hydroperoxide substrate specificity of FA768 was analyzed by monitoring the NADPH oxidation in the presence of different peroxides, including H2O2, cumyl hydroperoxide (CHP), and tert-butyl hydroperoxide (t-BHP). RESULTS In this study, we have demonstrated the existence of a functioning thioredoxin-dependent alkyl hydroperoxide system in F. alocis. This system is comprised of a thioredoxin reductase (FA608), a thioredoxin/glutaredoxin homolog (FA1411/FA455), and a typical 2-cysteine peroxiredoxin/AhpC (FA768). FA608, together with FA1411/FA455, can function as a thioredoxin reductase system to reduce insulin, DTNB, and FA768. FA455 is a glutaredoxin-like protein with thioredoxin functions in F. alocis. Both the FA768/FA608/FA1411 and FA768/FA608/FA455 reductase systems were NADPH-dependent and exhibited specificity for broad hydroperoxide substrates H2O2, CHP, and t-BHP. CONCLUSIONS This is the first study of a thioredoxin dependent alkyl hydroperoxide system from a periodontal pathogen. This system is proposed to protect F. alocis against oxidative stress due to the likely absence of a catalase or an additional peroxiredoxin homolog.
Collapse
Affiliation(s)
- Arunima Mishra
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yuetan Dou
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Hansel M Fletcher
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
2
|
Gutierrez LS, Zandim-Barcelos DL, Eick S, Lopes MES, Cirelli JA, Nogueira AVB, Deschner J. Possible immunomodulatory role of Filifactor alocis through beta-defensin 2 in gingival keratinocytes. Clin Oral Investig 2024; 28:658. [PMID: 39592494 DOI: 10.1007/s00784-024-06043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES The present study aimed to investigate a possible immunomodulatory role of the periodontopathogen Filifactor alocis through the antimicrobial peptide hBD-2 on the expression of chemokines in human gingival keratinocytes. MATERIALS AND METHODS Cells were cultured in the presence or absence of periodontopathogenic bacteria, such as F. alocis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola, to evaluate the regulation of hBD-2, CXCL8 and CCL20. Furthermore, the cells were exposed or not to hBD-2 and the expression of CXCL8 and CCL20 and their receptors was evaluated. RESULTS All bacteria induced a significant upregulation of hBD-2, CXCL8, and CCL20 gene expressions. In addition, F. alocis significantly increased their protein levels, as detected by ELISA. Pre-incubation of the cells with the TLR2 inhibitor resulted in a significant downregulation of hBD-2 expression in F. alocis-treated cells. Gingival keratinocytes exposed to hBD-2 resulted in a significant and dose-dependent increase of all chemokines and their receptors. CONCLUSIONS F. alocis increased the production of chemotactic cytokines, suggesting an increase in the recruitment of immunoinflammatory cells in periodontal diseases. The chemotaxis-promoting effect is partly direct, but is also mediated via hBD-2. F. alocis stimulates the synthesis of hBD-2, which in turn could promote the expression and synthesis of these chemokines and their receptors. In addition, hBD-2 has an autostimulatory effect and stimulates the synthesis of these chemokines, so that the chemotaxis triggered by F. alocis is further fueled. CLINICAL RELEVANCE F. alocis and hBD-2 have a significant role in periodontitis, showing their importance for diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Lorena S Gutierrez
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Daniela L Zandim-Barcelos
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil.
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, 3010, Switzerland
| | - Maria Eduarda S Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
| | - Andressa V B Nogueira
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| |
Collapse
|
3
|
Leiva-Sabadini C, Saavedra P, Inostroza C, Aguayo S. Extracellular vesicle production by oral bacteria related to dental caries and periodontal disease: role in microbe-host and interspecies interactions. Crit Rev Microbiol 2024:1-18. [PMID: 39563638 DOI: 10.1080/1040841x.2024.2427656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Extracellular vesicles (EVs) are cell membrane-derived structures between 20-400 nm in size. In bacteria, EVs play a crucial role in molecule secretion, cell wall biogenesis, cell-cell communication, biofilm development, and host-pathogen interactions. Despite these increasing reports of bacterial-derived vesicles, there remains a limited number of studies that summarize oral bacterial EVs, their cargo, and their main biological functions. Therefore, the aim of this review is to present the latest research on oral bacteria-derived EVs and how they can modulate various physiological and pathological processes in the oral cavity, including the pathogenesis of highly relevant diseases such as dental caries and periodontitis and their systemic complications. Overall, caries-associated bacteria (such as Streptococcus mutans) as well as periodontal pathogens (including the red complex pathogens Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) have all been shown to produce EVs that carry an array of virulent factors and molecules involved in biofilm and immune modulation, bacterial adhesion, and extracellular matrix degradation. As bacterial EV production is strongly impacted by genotypic and environmental variations, the inhibition of EV genesis and secretion remains a key potential future approach against oral diseases.
Collapse
Affiliation(s)
- Camila Leiva-Sabadini
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Saavedra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carla Inostroza
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Aguayo
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Barbarisi A, Visconti V, Lauritano D, Cremonini F, Caccianiga G, Ceraulo S. Correlation between Periodontitis and Onset of Alzheimer's Disease: A Literature Review. Dent J (Basel) 2024; 12:331. [PMID: 39452459 PMCID: PMC11505964 DOI: 10.3390/dj12100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a slowly progressing neurodegenerative illness and the most common form of dementia. This pathology leads to an increase in cognitive decline and is responsible, in patients, for several difficulties in performing various activities of daily living, such as oral hygiene. Several experimental studies have shown that oral health in patients with Alzheimer's disease worsens in direct proportion to the progression of the disease due to the appearance of gingivitis and periodontitis. METHODS This clinical literature review aims to evaluate a possible correlation between periodontal disease and Alzheimer's disease, trying to understand if the periopathogens can contribute to the onset or the progression of Alzheimer's disease (AD). The study was conducted on the database PubMed (MEDLINE) of full-text systematic reviews in English on humans and animals that were published in the last five years, from 2018 to 2023. This returned 50 publications, which, once the eligibility criteria were applied, resulted in the 10 publications examined in this review. The selected articles were organized through the construction of tables, analyzed, and compared through Judith Garrard's Matrix method to arrive at the review results. RESULTS Infection by periopathogens can increase the risk of developing Alzheimer's disease, but also the onset of the latter can make it more difficult to maintain proper oral hygiene, favoring the onset of periodontal disease: it is possible to affirm the existence of a correlation between periodontitis and AD. It was found that patients exposed to chronic periodontitis have a greater risk of developing a cognitive decline or AD and that oral pathogens can be responsible for neuropathologies and increasing systemic inflammation. CONCLUSIONS Periodontitis and periodontal pathogens represent a real risk factor for the onset or worsening of AD; however, the pathogenetic mechanism is still not completely clear.
Collapse
Affiliation(s)
- Antonio Barbarisi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20100 Monza, Italy
| | | | - Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Cremonini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Postgraduate School of Orthodontics, University of Ferrara, 44121 Ferrara, Italy
| | - Gianluigi Caccianiga
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Saverio Ceraulo
- Department of Medicine and Surgery, University of Milano-Bicocca, 20100 Monza, Italy
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
5
|
Pinto GR, Carvalho Filho PC, Carvalho RDO, Conceição RR, Fortuna V, Gomes-Filho IS, Trindade SC, Sarmento VA. Subgingival biofilm microbiome in individuals with asthma and periodontitis: Metagenomic analysis. Oral Dis 2024; 30:4721-4730. [PMID: 38438326 DOI: 10.1111/odi.14913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/22/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024]
Abstract
OBJECTIVE This observational study aimed to explore the metagenomics of subgingival biofilms in individuals with varying degrees of asthma, from severe to none, to elucidate the association between the subgingival microbiome and asthma. MATERIALS AND METHODS Subgingival biofilm samples were collected from thirty participants at the Asthma Control Program Outpatient Clinic in Bahia (ProAR). These samples were categorized into six groups based on the severity of asthma and the presence or absence of periodontitis. We employed next-generation sequencing (Illumina MiSeq), targeting the 16S rRNA gene, to characterize the microbial communities present. Our analysis included descriptive statistics and sequencing data, evaluated using multivariate statistical methods such as the Shannon index, principal coordinate analysis, and the Bray-Curtis dissimilarity. RESULTS Our findings indicate a higher prevalence of periodontally detrimental bacterial genera in individuals with severe asthma and periodontitis. Additionally, individuals with asthma, but without periodontitis, exhibited a tendency toward dysbiosis, particularly in cases of severe asthma. CONCLUSION This research provides new insights into the composition of the subgingival microbiome in individuals with varying severities of asthma and periodontitis. The genera identified in this study underscore the need for further investigations to build upon these findings.
Collapse
Affiliation(s)
- Giselle R Pinto
- Department of Dentistry, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Paulo C Carvalho Filho
- Department of Dentistry, Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil
| | - Rodrigo D O Carvalho
- Department of Biochemistry and Biophysics, Institute of Health Science, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Rogério R Conceição
- Department of Biointeraction, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Vitor Fortuna
- Department of Biochemistry and Biophysics, Institute of Health Science, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Isaac S Gomes-Filho
- Department of Health, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Soraya C Trindade
- Department of Biointeraction, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
- Department of Health, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Viviane A Sarmento
- Department of Dentistry, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| |
Collapse
|
6
|
Mann AE, Aumend C, Crull S, O'Connell LM, Osagie E, Akhigbe P, Obuekwe O, Omoigberale A, Rowe M, Blouin T, Soule A, Kelly C, Burne RA, Coker MO, Richards VP. HIV Infection and Exposure Increases Cariogenic Taxa, Reduces Taxonomic Turnover, and Homogenizes Spatial Differentiation for the Supragingival Microbiome. RESEARCH SQUARE 2024:rs.3.rs-4720457. [PMID: 39149457 PMCID: PMC11326420 DOI: 10.21203/rs.3.rs-4720457/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background The oral microbiome comprises distinct microbial communities that colonize diverse ecological niches across the oral cavity, the composition of which are influenced by nutrient and substrate availability, host genetics, diet, behavior, age, and other diverse host and environmental factors. Unlike other densely populated human-associated microbial ecosystems (e.g., gut, urogenital), the oral microbiome is regularly and directly exposed to the external environment and is therefore likely less stable over time. Cross sectional studies of the oral microbiome capture a glimpse of this temporal dynamism, yet a full appreciation of the relative stability, robusticity, and spatial structure of the oral environment is necessary to understand the role of microbial communities in promoting health or disease. Results Here we investigate the spatial and temporal stability of the oral microbiome over three sampling time points in the context of HIV infection and exposure. Individual teeth were sampled from a cohort of 565 Nigerian children with varying levels of tooth decay severity (i.e., caries disease). We collected 1,960 supragingival plaque samples and characterized the oral microbiome using a metataxonomic approach targeting an approximately 478 bp region of the bacterial rpoC gene. We found that both infection and exposure to HIV have significant effects on the stability of the supragingival plaque microbiome at both the spatial and temporal scale. Specifically, we detect (1) significantly lower taxonomic turnover of the oral community among exposed and infected children compared to unexposed children, (2) we find that HIV infection homogenizes the oral community across the anterior and posterior dentition, and (3) that impaired immunity (i.e., low CD4 count) and low taxonomic turnover over time in children living with HIV is associated with higher frequency of cariogenic taxa including Streptococcus mutans. Conclusions Our results document substantial community fluctuations over time in children unexposed to HIV independent of oral health status. This suggests that the oral community, under typical conditions, rapidly adapts to environmental perturbations to maintain homeostasis and that long-term taxonomic rigidity is a signal of community dysfunction, potentially leading to a higher incidence of oral disease including caries.
Collapse
|
7
|
Dubois M, Ortis M, Doglio A, Bougault V. Microbiote oral et santé bucco-dentaire des sportifs : revue narrative. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2024; 59:233-242. [DOI: 10.1016/j.cnd.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Ding R, Liu X, Zhao X, Sun Q, Cheng Y, Li A, Pei D, He G. Membrane-anchoring selenophene viologens for antibacterial photodynamic therapy against periodontitis via restoring subgingival flora and alleviating inflammation. Biomaterials 2024; 307:122536. [PMID: 38522327 DOI: 10.1016/j.biomaterials.2024.122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Antibacterial photodynamic therapy (aPDT) has emerged as a promising strategy for treating periodontitis. However, the weak binding of most photosensitizers to bacteria and the hypoxic environment of periodontal pockets severely hamper the therapeutic efficacy. Herein, two novel oxygen-independent photosensitizers are developed by introducing selenophene into viologens and modifying with hexane chains (HASeV) or quaternary ammonium chains (QASeV), which improve the adsorption to bacteria through anchoring to the negatively charged cell membrane. Notably, QASeV binds only to the bacterial surface of Porphyromonas gingivalis and Fusobacterium nucleatum due to electrostatic binding, but HASeV can insert into their membrane by strong hydrophobic interactions. Therefore, HASeV exhibits superior antimicrobial activity and more pronounced plaque biofilm disruption than QASeV when combined with light irradiation (MVL-210 photoreactor, 350-600 nm, 50 mW/cm2), and a better effect on reducing the diversity and restoring the structure of subgingival flora in periodontitis rat model was found through 16S rRNA gene sequencing analysis. The histological and Micro-CT analyses reveal that HASeV-based aPDT has a better therapeutic effect in reducing periodontal tissue inflammation and alveolar bone resorption. This work provides a new strategy for the development of viologen-based photosensitizers, which may be a favorable candidate for the aPDT against periodontitis.
Collapse
Affiliation(s)
- Rui Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xu Liu
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xiaodan Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Qi Sun
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
9
|
Macedo TT, Malavazi LM, Vargas GQ, Gonçalves FJDS, Gomes APDAP, Bueno MR, Aguiar da Silva LD, Figueiredo LC, Bueno-Silva B. Combination of Neovestitol and Vestitol Modifies the Profile of Periodontitis-Related Subgingival Multispecies Biofilm. Biomedicines 2024; 12:1189. [PMID: 38927396 PMCID: PMC11200960 DOI: 10.3390/biomedicines12061189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to evaluate the effect of the combination of neovestitol-vestitol (CNV) compounds obtained from Brazilian red propolis on the microbiological profile of a mature multispecies subgingival biofilm. The biofilm with 32 bacterial species associated with periodontitis was formed for seven days using a Calgary device. Treatment with CNV (1600, 800, 400, and 200 μg/mL), amoxicillin (54 μg/mL), and vehicle control was performed for 24 h on the last day of biofilm formation. Biofilm metabolic activity and DNA-DNA hybridization (checkerboard) assays were performed. The groups treated with CNV 1600 and amoxicillin reduced 25 and 13 species, respectively, compared to the control vehicle treatment (p ≤ 0.05); both reduced P. gingivalis, while only CNV reduced T. forsythia. When the data from the two treatments (CNV and AMOXI) were compared, a statistically significant difference was observed in 13 species, particularly members of Socransky's orange complex. Our results showed that CNV at 1600 μg/mL showed the best results regarding the metabolic activity of mature biofilms and obtained a reduction in species associated with the disease, such as T. forsythia, showing a better reduction than amoxicillin. Therefore, CNV seems to be a promising alternative to eradicate biofilms and reduce their pathogenicity.
Collapse
Affiliation(s)
- Tatiane Tiemi Macedo
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | - Larissa Matias Malavazi
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (L.M.M.); (G.Q.V.)
| | - Gustavo Quilles Vargas
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (L.M.M.); (G.Q.V.)
| | | | - Aline Paim de Abreu Paulo Gomes
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | | | - Lucas Daylor Aguiar da Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | - Luciene Cristina Figueiredo
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (T.T.M.); (F.J.d.S.G.); (L.D.A.d.S.); (L.C.F.)
- Departamento de Biociências, Faculdade de Odontologia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil; (L.M.M.); (G.Q.V.)
| |
Collapse
|
10
|
Bromfield JI, Zaugg J, Straw RC, Cathie J, Krueger A, Sinha D, Chandra J, Hugenholtz P, Frazer IH. Characterization of the skin microbiome in normal and cutaneous squamous cell carcinoma affected cats and dogs. mSphere 2024; 9:e0055523. [PMID: 38530017 PMCID: PMC11036808 DOI: 10.1128/msphere.00555-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/03/2024] [Indexed: 03/27/2024] Open
Abstract
Human cutaneous squamous cell carcinomas (SCCs) and actinic keratoses (AK) display microbial dysbiosis with an enrichment of staphylococcal species, which have been implicated in AK and SCC progression. SCCs are common in both felines and canines and are often diagnosed at late stages leading to high disease morbidity and mortality rates. Although recent studies support the involvement of the skin microbiome in AK and SCC progression in humans, there is no knowledge of this in companion animals. Here, we provide microbiome data for SCC in cats and dogs using culture-independent molecular profiling and show a significant decrease in microbial alpha diversity on SCC lesions compared to normal skin (P ≤ 0.05). Similar to human skin cancer, SCC samples had an elevated abundance of staphylococci relative to normal skin-50% (6/12) had >50% staphylococci, as did 16% (4/25) of perilesional samples. Analysis of Staphylococcus at the species level revealed an enrichment of the pathogenic species Staphylococcus felis in cat SCC samples, a higher prevalence of Staphylococcus pseudintermedius in dogs, and a higher abundance of Staphylococcus aureus compared to normal skin in both companion animals. Additionally, a comparison of previously published human SCC and perilesional samples against the present pet samples revealed that Staphylococcus was the most prevalent genera across human and companion animals for both sample types. Similarities between the microbial profile of human and cat/dog SCC lesions should facilitate future skin cancer research. IMPORTANCE The progression of precancerous actinic keratosis lesions (AK) to cutaneous squamous cell carcinoma (SCC) is poorly understood in humans and companion animals, despite causing a significant burden of disease. Recent studies have revealed that the microbiota may play a significant role in disease progression. Staphylococcus aureus has been found in high abundance on AK and SCC lesions, where it secretes DNA-damaging toxins, which could potentiate tumorigenesis. Currently, a suitable animal model to investigate this relationship is lacking. Thus, we examined the microbiome of cutaneous SCC in pets, revealing similarities to humans, with increased staphylococci and reduced commensals on SCC lesions and peri-lesional skin compared to normal skin. Two genera that were in abundance in SCC samples have also been found in human oral SCC lesions. These findings suggest the potential suitability of pets as a model for studying microbiome-related skin cancer progression.
Collapse
Affiliation(s)
- Jacoba I. Bromfield
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Queensland, Australia
| | - Rodney C. Straw
- Brisbane Veterinary Specialist Centre and the Australian Animal Cancer Foundation, Albany Creek, Queensland, Australia
| | - Julia Cathie
- Brisbane Veterinary Specialist Centre and the Australian Animal Cancer Foundation, Albany Creek, Queensland, Australia
| | - Annika Krueger
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Debottam Sinha
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Janin Chandra
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Queensland, Australia
| | - Ian H. Frazer
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
11
|
Tan KT, Boan P, Heath CH. Pleural empyema caused by Filifactor alocis in a man with periodontitis. Intern Med J 2024; 54:516-517. [PMID: 38475978 DOI: 10.1111/imj.16353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/07/2023] [Indexed: 03/14/2024]
Affiliation(s)
- Kok T Tan
- Department of Infectious Diseases, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Peter Boan
- Department of Infectious Diseases, Fiona Stanley Hospital, Perth, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Christopher H Heath
- Department of Infectious Diseases, Fiona Stanley Hospital, Perth, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. Microbiol Spectr 2024; 12:e0348223. [PMID: 38230927 PMCID: PMC10846039 DOI: 10.1128/spectrum.03482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Periodontitis has recently been defined as a dysbiotic disease caused by an imbalanced oral microbiota. The transition from commensal microbial communities to periodontitis-associated ones requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis. To determine the role of S. cristatus in altering the interactions of P. gingivalis with other oral bacteria in a complex context, we collected dental plaque samples from patients with periodontitis and assigned them to two groups based on the ratios of S. cristatus and P. gingivalis. We then characterized the microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and compared the oral microbial composition and functional capabilities of the group with high S. cristatus-P. gingivalis ratios with the low ratio group. Taxonomic annotation revealed significant differences in the microbial composition at both the genus and species levels between the low and high S. cristatus-P. gingivalis ratio groups. Notably, a higher microbial diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. Furthermore, the antibiotic resistance gene profiles of the two groups were also distinct, with a significantly increased abundance of the genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios. It, therefore, indicates that the S. cristatus-P. gingivalis ratios influenced the virulence potential of the oral microbiome. Our work shows that enhancing the S. cristatus-P. gingivalis ratio in oral microbial communities can be an attractive approach for revising the dysbiotic oral microbiome.IMPORTANCEPeriodontitis, one of the most common chronic diseases, is linked to several systemic diseases, such as cardiovascular disease and diabetes. Although Porphyromonas gingivalis is a keystone pathogen that causes periodontitis, its levels, interactions with accessory bacteria and pathobionts in the oral microbiome, and its association with the pathogenic potential of the microbial communities are still not well understood. In this study, we revealed the role of Streptococcus cristatus and the ratios of S. cristatus and P. gingivalis in modulating the oral microbiome to facilitate a deeper understanding of periodontitis and its progression. The study has important clinical implications as it laid a foundation for developing novel non-antibiotic therapies against P. gingivalis and improving the efficiency of periodontal treatments.
Collapse
Affiliation(s)
- Qingguo Wang
- School of Applied Computational Sciences, Meharry Medical College, Nashville, Tennessee, USA
| | - Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Siddharth Pratap
- School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Mishra A, Dou Y, Wang C, Fletcher HM. Filifactor alocis enhances survival of Porphyromonas gingivalis W83 in response to H 2 O 2 -induced stress. Mol Oral Microbiol 2024; 39:12-26. [PMID: 38041478 PMCID: PMC10842171 DOI: 10.1111/omi.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
A dysbiotic microbial community whose members have specific/synergistic functions that are modulated by environmental conditions, can disturb homeostasis in the subgingival space leading to destructive inflammation, plays a role in the progression of periodontitis. Filifactor alocis, a gram-positive, anaerobic bacterium, is a newly recognized microbe that shows a strong correlation with periodontal disease. Our previous observations suggested F. alocis to be more resistant to oxidative stress compared to Porphyromonas gingivalis. The objective of this study is to further determine if F. alocis, because of its increased resistance to oxidative stress, can affect the survival of other 'established' periodontal pathogens under environmental stress conditions typical of the periodontal pocket. Here, we have shown that via their interaction, F. alocis protects P. gingivalis W83 under H2 O2 -induced oxidative stress conditions. Transcriptional profiling of the interaction of F. alocis and P. gingivalis in the presence of H2 O2 -induced stress revealed the modulation of several genes, including those with ABC transporter and other cellular functions. The ABC transporter operon (PG0682-PG0685) of P. gingivalis was not significant to its enhanced survival when cocultured with F. alocis under H2 O2 -induced oxidative stress. In F. alocis, one of the most highly up-regulated operons (FA0894-FA0897) is predicted to encode a putative manganese ABC transporter, which in other bacteria can play an essential role in oxidative stress protection. Collectively, the results may indicate that F. alocis could likely stabilize the microbial community in the inflammatory microenvironment of the periodontal pocket by reducing the oxidative environment. This strategy could be vital to the survival of other pathogens, such as P. gingivalis, and its ability to adapt and persist in the periodontal pocket.
Collapse
Affiliation(s)
- Arunima Mishra
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yuetan Dou
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Charles Wang
- Department of Basic Sciences, School of Medicine, Center for Genomics, Loma Linda University, Loma Linda, California, USA
| | - Hansel M Fletcher
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
14
|
Xie J, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. Bacterial extracellular vesicles: an emerging avenue to tackle diseases. Trends Microbiol 2023; 31:1206-1224. [PMID: 37330381 DOI: 10.1016/j.tim.2023.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
A growing body of research, especially in recent years, has shown that bacterial extracellular vesicles (bEVs) are one of the key underlying mechanisms behind the pathogenesis of various diseases like pulmonary fibrosis, sepsis, systemic bone loss, and Alzheimer's disease. Given these new insights, bEVs are proposed as an emerging vehicle that can be used as a diagnostic tool or to tackle diseases when used as a therapeutic target. To further boost the understanding of bEVs in health and disease we thoroughly discuss the contribution of bEVs in disease pathogenesis and the underlying mechanisms. In addition, we speculate on their potential as novel diagnostic biomarkers and how bEV-related mechanisms can be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Junhua Xie
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Department of Pathobiology, Pharmacology, and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology, and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
15
|
Basbas C, Garzon A, Schlesener C, van Heule M, Profeta R, Weimer BC, Silva-Del-Rio N, Byrne BA, Karle B, Aly SS, Lima FS, Pereira RV. Unveiling the microbiome during post-partum uterine infection: a deep shotgun sequencing approach to characterize the dairy cow uterine microbiome. Anim Microbiome 2023; 5:59. [PMID: 37986012 PMCID: PMC10662892 DOI: 10.1186/s42523-023-00281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND The goal of this study was to assess the microbial ecology and diversity present in the uterus of post-partum dairy cows with and without metritis from 24 commercial California dairy farms using shotgun metagenomics. A set subset of 95 intrauterine swab samples, taken from a larger selection of 307 individual cow samples previously collected, were examined for α and β diversity and differential abundance associated with metritis. Cows within 21 days post-partum were categorized into one of three clinical groups during sample collection: control (CT, n = 32), defined as cows with either no vaginal discharge or a clear, non-purulent mucus vaginal discharge; metritis (MET, n = 33), defined as a cow with watery, red or brown colored, and fetid vaginal discharge; and purulent discharge cows (PUS, n = 31), defined as a non-fetid purulent or mucopurulent vaginal discharge. RESULTS All three clinical groups (CT, MET, and PUS) were highly diverse, with the top 12 most abundant genera accounting for 10.3%, 8.8%, and 10.1% of mean relative abundance, respectively. The α diversity indices revealed a lower diversity from samples collected from MET and PUS when compared to CT cows. PERMANOVA statistical testing revealed a significant difference (P adjusted < 0.01) in the diversity of genera between CT and MET samples (R2 = 0.112, P = 0.003) and a non-significant difference between MET and PUS samples (R2 = 0.036, P = 0.046). ANCOM-BC analysis revealed that from the top 12 most abundant genera, seven genera were increased in the natural log fold change (LFC) of abundance in MET when compared to CT samples: Bacteroides, Clostridium, Fusobacterium, Phocaeicola, Porphyromonas, Prevotella, and Streptococcus. Two genera, Dietzia and Microbacterium, were decreased in natural LFC of abundance when comparing MET (regardless of treatment) and CT, while no changes in natural LFC of abundance were observed for Escherichia, Histophilus, and Trueperella. CONCLUSIONS The results presented here, are the current deepest shotgun metagenomic analyses conducted on the bovine uterine microbiome to date (mean of 256,425 genus-level reads per sample). Our findings support that uterine samples from cows without metritis (CT) had increased α-diversity but decreased β-diversity when compared to metritis or PUS cows, characteristic of dysbiosis. In summary, our findings highlight that MET cows have an increased abundance of Bacteroides, Porphyromonas, and Fusobacterium when compared to CT and PUS, and support the need for further studies to better understand their potential causal role in metritis pathogenesis.
Collapse
Affiliation(s)
- Carl Basbas
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Adriana Garzon
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Cory Schlesener
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- 100K Pathogen Genome Project, University of California, Davis, CA, USA
| | - Machteld van Heule
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Rodrigo Profeta
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Bart C Weimer
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- 100K Pathogen Genome Project, University of California, Davis, CA, USA
| | - Noelia Silva-Del-Rio
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Barbara A Byrne
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, USA
| | - Betsy Karle
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Orland, CA, USA
| | - Sharif S Aly
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA
| | - Fabio S Lima
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Richard V Pereira
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
16
|
Balan P, Belibasakis G, Ivanovski S, Bostanci N, Seneviratne CJ. Community dynamics of subgingival microbiome in periodontitis and targets for microbiome modulation therapy. Crit Rev Microbiol 2023; 49:726-738. [PMID: 36260510 DOI: 10.1080/1040841x.2022.2133594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022]
Abstract
The microbial aetiology for periodontitis has been widely studied and deciphered for more than a century. The evolving and changing concepts about periodontal microbiology can be attributed to continuously developing laboratory techniques. The current sequencing platforms have not only expanded the catalog of periodontal pathogens but have also facilitated the understanding of functional interactions of the ecological framework. However, the translation of this new knowledge to advance periodontal therapeutics is minimal. We contend that novel clinical interventions directed beyond conventional therapies need to be emphasized. A clear understanding of the structural and functional dynamics of subgingival microbiota is a pre-requisite for developing any microbiome-based interventions for applications in periodontal health care. In this review, we discuss the 16 s-rRNA gene sequencing-based knowledge of the subgingival microbial community structure, its interactions and functions, and our perspective on the potential to engineer it for periodontal therapeutics. Harnessing this next-generation sequencing-based knowledge, microbiome modulation therapies are poised to change microbiome therapeutics' face.
Collapse
Affiliation(s)
- Preethi Balan
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center, Singapore, Singapore
- Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore, Singapore
| | | | - Saso Ivanovski
- School of Dentistry, University of Queensland, Queensland, Australia
| | - Nagihan Bostanci
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center, Singapore, Singapore
- Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore, Singapore
- School of Dentistry, University of Queensland, Queensland, Australia
| |
Collapse
|
17
|
Kim SH, Kang IC. Induction of TNF-α by Filifactor alocis in THP-1 macrophagic cells. Arch Oral Biol 2023; 155:105806. [PMID: 37729700 DOI: 10.1016/j.archoralbio.2023.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Filifactor alocis is an emerging periodontal pathogen, and macrophage-produced tumor necrosis factor-α (TNF-α) plays important roles in periodontal pathogenesis. In this study, we investigated F. alocis-stimulated TNF-α production in THP-1 macrophagic cells. DESIGN Phorbol 12-myristate 13-acetate-differentiated THP-1 macrophagic cells were challenged with F. alocis ATCC 35896 for various durations. TNF-α mRNA expression and protein secretion were determined using RT-PCR and ELISA, respectively. Activation of protein kinases and transcription factor proteins was evaluated by Western blot analysis. RESULTS Live F. alocis stimulated THP-1 cells to produce TNF-α in a dose-dependent manner. However, glutaraldehyde-killed or heat-killed F. alocis showed no effectiveness for TNF-α induction. In contrast, both live and killed Porphyromonas gingivalis robustly increased TNF-α expression. Furthermore, F. alocis was unable to stimulate TNF-α expression in Toll-like receptor 2 (TLR2) knockout THP-1 cells. F. alocis activated all three mitogen-activated protein kinases: extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). Pharmacological inhibition of ERK and JNK, but not p38, significantly reduced F. alocis-induced TNF-α production. Finally, increased levels of phospho-c-Jun were detected in F. alocis-stimulated THP-1 cells. CONCLUSIONS These results suggest that F. alocis induces TNF-α production in THP-1 macrophagic cells primarily by activating the TLR2, JNK, and c-Jun pathways.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju, the Republic of Korea
| | - In-Chol Kang
- Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju, the Republic of Korea.
| |
Collapse
|
18
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. RESEARCH SQUARE 2023:rs.3.rs-3266326. [PMID: 37674718 PMCID: PMC10479432 DOI: 10.21203/rs.3.rs-3266326/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Periodontitis has been recently defined as a dysbiotic disease resulting from imbalanced oral microbiota. The transition of microbial communities from commensal to periodontitis-associated ones likely requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis and the role of S. cristatus in inhibition of the biofilm formation, invasion, and gingipain enzymatic activity of P. gingivalis. Given the importance of P. gingivalis as a keystone pathogen of polymicrobial communities, the determinants of P. gingivalis levels, its interaction with the core microbiota, and association with the pathogenic potential of the microbial communities need to be addressed. Results This present study intends to determine the role of S. cristatus in altering interactions of P. gingivalis with other oral bacteria in a complex context. We collected dental plaque samples from periodontitis patients and assigned them into two groups based on their ratios of S. cristatus and P. gingivalis. We then characterized microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and subsequently compared oral microbial composition and functional capabilities between groups with high or low S. cristatus-P. gingivalis ratios. Taxonomic annotation showed significant differences in microbial compositions at both genus and species levels between the two groups. Notably, a higher microbial composition diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. The antibiotic resistance gene profiles of the two groups are also distinct, with significantly increased diversity and abundance of antibiotic resistance genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios, which likely lead to elevated virulence potential. Conclusions Overall, our work highlights the importance of S. cristatus-P. gingivalis ratios in influencing the virulence of the oral microbiome. Approaches to enhance S. cristatus-P. gingivalis ratios in oral microbial communities will be attractive for revising the dysbiotic oral microbiome.
Collapse
Affiliation(s)
| | - Bing-Yan Wang
- University of Texas Health Science Center at Houston
| | | | | |
Collapse
|
19
|
Romero-Martínez R, Maher A, Àlvarez G, Figueiredo R, León R, Arredondo A. Whole Genome Sequencing and Phenotypic Analysis of Antibiotic Resistance in Filifactor alocis Isolates. Antibiotics (Basel) 2023; 12:1059. [PMID: 37370380 DOI: 10.3390/antibiotics12061059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
There is scarce knowledge regarding the antimicrobial resistance profile of F. alocis. Therefore, the objective of this research was to assess antimicrobial resistance in recently obtained F. alocis clinical isolates and to identify the presence of antimicrobial resistance genes. Isolates were obtained from patients with periodontal or peri-implant diseases and confirmed by sequencing their 16S rRNA gene. Confirmed isolates had their genome sequenced by whole genome sequencing and their phenotypical resistance to nine antibiotics (amoxicillin clavulanate, amoxicillin, azithromycin, clindamycin, ciprofloxacin, doxycycline, minocycline, metronidazole, and tetracycline) tested by E-test strips. Antimicrobial resistance genes were detected in six of the eight isolates analyzed, of which five carried tet(32) and one erm(B). Overall, susceptibility to the nine antibiotics tested was high except for azithromycin in the isolate that carried erm(B). Moreover, susceptibility to tetracycline, doxycycline, and minocycline was lower in those isolates that carried tet(32). The genetic surroundings of the detected genes suggested their inclusion in mobile genetic elements that might be transferrable to other bacteria. These findings suggest that, despite showing high susceptibility to several antibiotics, F. alocis might obtain new antimicrobial resistance traits due to its acceptance of mobile genetic elements with antibiotic resistance genes in their genome.
Collapse
Affiliation(s)
| | - Anushiravan Maher
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Gerard Àlvarez
- Department of Microbiology, DENTAID Research Center, 08290 Barcelona, Spain
| | - Rui Figueiredo
- Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Rubén León
- Department of Microbiology, DENTAID Research Center, 08290 Barcelona, Spain
| | | |
Collapse
|
20
|
Lafaurie GI, Castillo DM, Iniesta M, Sanz M, Gómez LA, Castillo Y, Pianeta R, Delgadillo NA, Neuta Y, Diaz-Báez D, Herrera D. Differential analysis of culturable and unculturable subgingival target microorganisms according to the stages of periodontitis. Clin Oral Investig 2023; 27:3029-3043. [PMID: 36806930 PMCID: PMC10264511 DOI: 10.1007/s00784-023-04907-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES Culturable and unculturable microorganisms have been associated with periodontitis. Their differential proportions and composition have not been evaluated by their severity and complexity defined by stages in the 2018 AAP-EEP classification. METHODS One hundred eighty subgingival biofilm samples were collected in Spain and Colombia from subjects categorized as health/gingivitis: periodontitis stages I/II periodontitis stages III/IV. Target culturable microorganisms (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Treponema denticola, and Eubacterium nodatum) and target unculturable microorganisms (Filifactor alocis, Eubacterium saphenum, Eubacterium brachy, Desulfobulbus oralis) were evaluated by quantitative PCR analysis. In addition, their differences and association with periodontal status were analyzed by ANCOVA and logistic regression models once adjusted to age, current smoking, and country. RESULTS P. gingivalis was significantly associated with periodontitis stages I/II, OR 2.44 (CI 95% 1.08-5.47) and stages III/V, OR 6.43 (CI 95% 2.43-16.9). T forsythia, OR 7.53 (CI 95% 2.07-27.4); D. oralis, OR 5.99 (CI 95% 2.71-13.23); F. alocis, OR 10.9 (CI 95% 4.56-23.2); E. brachy, 3.57 (CI 95% 1.40-9.11); and E. saphenum, 4.85 (CI 95% 1.99-11.7) were significantly associated only with stages III/IV periodontitis. P. gingivalis evidenced significant differences with the increase in the severity of the periodontal lesion: 2.97 colony forming unit (CFU)/μL (CI 95% 2.32-3.54) health/gingivitis, and 4.66 CFU/μL (CI 95% 4.03-5.30) and 5.90 CFU/μL (CI 95% 5.20-6.48) in stages I/II and III/IV respectively (p < 0.0001). Unculturable microorganisms only evidenced differences in concentration in stages III/IV compared with health-gingivitis (p ≤ 0.001). CONCLUSION Culturable and unculturable are strongly associated with stages III/IV periodontitis. Classic culturable microorganisms are more sensitive to differentiate between stages of periodontitis in the quantitative analysis. CLINICAL RELEVANCE Future interventional studies of periodontal disease should include Filifactor alocis, Eubacterium saphenum, Eubacterium brachy, and Desulfobulbus oralis as possible markers of therapy response and as indicators of progressive disease.
Collapse
Affiliation(s)
- Gloria Inés Lafaurie
- Unit of Basic Oral Investigation (UIBO), School of Dentistry, Universidad El Bosque, Ak. 9 #13, 1a-20 Bogotá, Colombia
| | - Diana Marcela Castillo
- Unit of Basic Oral Investigation (UIBO), School of Dentistry, Universidad El Bosque, Ak. 9 #13, 1a-20 Bogotá, Colombia
| | - Margarita Iniesta
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain
| | - Luz Amparo Gómez
- Unit of Basic Oral Investigation (UIBO), School of Dentistry, Universidad El Bosque, Ak. 9 #13, 1a-20 Bogotá, Colombia
| | - Yormaris Castillo
- Unit of Basic Oral Investigation (UIBO), School of Dentistry, Universidad El Bosque, Ak. 9 #13, 1a-20 Bogotá, Colombia
| | - Roquelina Pianeta
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain
- School of Dentistry, Corporación Universitaria Rafael Núñez, Cartagena, Colombia
| | - Nathaly Andrea Delgadillo
- Unit of Basic Oral Investigation (UIBO), School of Dentistry, Universidad El Bosque, Ak. 9 #13, 1a-20 Bogotá, Colombia
| | - Yineth Neuta
- Unit of Basic Oral Investigation (UIBO), School of Dentistry, Universidad El Bosque, Ak. 9 #13, 1a-20 Bogotá, Colombia
| | - David Diaz-Báez
- Unit of Basic Oral Investigation (UIBO), School of Dentistry, Universidad El Bosque, Ak. 9 #13, 1a-20 Bogotá, Colombia
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain
| |
Collapse
|
21
|
Furuya K, Ito K, Sugiyama K, Hattori N, Shimada T. The first case of deep neck abscess due to Filifactor alocis co-infected with Eggerthia catenaformis, Parvimonas micra, and Streptococcus constellatus. J Infect Chemother 2023; 29:707-709. [PMID: 37003537 DOI: 10.1016/j.jiac.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/08/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Filifactor alocis, an anaerobic Gram-positive rod, has garnered interest from its association with periodontal disease. Extraoral infections by F. alocis are rare; only seven cases have been reported. We report the first case in which we identified F. alocis as one of the causative organisms of a deep neck abscess. A 71-year-old male on hemodialysis came to our hospital with a fever and left buccal pain. The patient's left neck was swollen, and contrast-enhanced computed tomography showed an abscess with gas extending from the left cheek to the deep neck. We diagnosed the patient with a deep neck abscess and performed an urgent neck drainage. We isolated F. alocis, Eggerthia catenaformis, Parvimonas micra, and Streptococcus constellatus in the abscess and identified them using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Blood cultures were negative. We initiated treatment with piperacillin-tazobactam and vancomycin. The patient improved but developed a hemorrhagic duodenal ulcer on the third day of admission. We attempted endoscopic hemostasis, but the patient's bleeding continued. Ultimately, he died of the duodenal ulcer hemorrhage on the sixth day of admission. This is the first case of F. alocis detected in a deep neck abscess.
Collapse
|
22
|
Herba Origani alleviated DSS-induced ulcerative colitis in mice through remolding gut microbiota to regulate bile acid and short-chain fatty acid metabolisms. Biomed Pharmacother 2023; 161:114409. [PMID: 36822021 DOI: 10.1016/j.biopha.2023.114409] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
This study aimed to investigate the protective effect of Herba Origani, the dried whole herb of Origanum vulgare L., on dextran sodium sulfate (DSS)-induced ulcerative colitis in mice and explore its mechanisms of action through analyzing the intestinal microbiota in cecum contents and metabolites in colonic tissues. HOEP alleviated colitis symptoms, colonic inflammation and pathological injury as well as repaired intestinal barrier function in DSS-induced UC mice. The intestinal microbiota analysis showed that HOEP restored the gut microbiota dysbiosis in DSS-treated mice by increasing the alpha diversity of the intestinal microbiota, increasing the abundance of the Bacteroidota community and adjusting short-chain fatty acids (SCFAs), which maintain mucosal immunity and intestinal barrier. Metabolomic analysis revealed that HOEP promoted bile acids absorption and regulated bile acids metabolism in the intestine, thereby maintaining intestinal mucosal immune homeostasis. In addition, HOEP might also regulate the intestinal immune system through the phosphatidylinositol signaling system. These findings suggested that HOEP exerted promising protection against DSS-induced ulcerative mice through remolding gut microbiota to regulate bile acid and SCFA metabolism, and that HOEP have a potential to be utilized for the treatment of inflammatory intestinal diseases.
Collapse
|
23
|
Mangar M, Mishra A, Yang Z, Deivanayagam C, Fletcher HM. Characterization of FA1654: A putative DPS protein in Filifactor alocis. Mol Oral Microbiol 2023; 38:23-33. [PMID: 36412172 PMCID: PMC9905271 DOI: 10.1111/omi.12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
Abstract
The survival/adaptation of Filifactor alocis, a fastidious Gram-positive asaccharolytic anaerobe, to the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. Moreover, its pathogenic characteristics are highlighted by its capacity to survive in the oxidative-stress microenvironment of the periodontal pocket and a likely ability to modulate the microbial community dynamics. There is still a significant gap in our understanding of its mechanism of oxidative stress resistance and its impact on the virulence and pathogenicity of the microbial biofilm. Coinfection of epithelial cells with F. alocis and Porphyromonas gingivalis resulted in the upregulation of several genes, including HMPREF0389_01654 (FA1654). Bioinformatics analysis indicates that FA1654 has a "di-iron binding domain" and could function as a DNA starvation and stationary phase protection (DPS) protein. We have further characterized the FA1654 protein to determine its role in oxidative stress resistance in F. alocis. In the presence of hydrogen peroxide-induced oxidative stress, there was an ∼1.3 fold upregulation of the FA1654 gene in F. alocis. Incubation of the purified FA1654 protein with DNA in the presence of hydrogen peroxide and iron resulted in the protection of the DNA from Fenton-mediated degradation. Circular dichroism and differential scanning fluorimetry studies have documented the intrinsic ability of rFA1654 protein to bind iron; however, the rFA1654 protein is missing the intrinsic ability to reduce hydrogen peroxide. Collectively, the data may suggest that FA1654 in F. alocis is involved in oxidative stress resistance via an ability to protect against Fenton-mediated oxidative stress-induced damage.
Collapse
Affiliation(s)
- Malissa Mangar
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Arunima Mishra
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Zhengrong Yang
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, AL USA
| | - Hansel M. Fletcher
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, USA,Corresponding author: Phone: (909) 558-8497, FAX: (909) 558-4035,
| |
Collapse
|
24
|
ARAÚJO LL, LOURENÇO TGB, COLOMBO APV. Periodontal disease severity is associated to pathogenic consortia comprising putative and candidate periodontal pathogens. J Appl Oral Sci 2023; 31:e20220359. [PMID: 36629716 PMCID: PMC9828885 DOI: 10.1590/1678-7757-2022-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Based on a holistic concept of polymicrobial etiology, we have hypothesized that putative and candidate periodontal pathogens are more frequently detected in consortia than alone in advanced forms of periodontal diseases (PD). OBJECTIVE To correlate specific consortia of periodontal pathogens with clinical periodontal status and severity of periodontitis. METHODOLOGY Subgingival biofilm was obtained from individuals with periodontal health (113, PH), gingivitis (91, G), and periodontitis (209, P). Genomic DNA was purified and the species Aggregatibacter actinomycetemcomitans (Aa), Aa JP2-like strain, Porphyromonas gingivalis (Pg), Dialister pneumosintes (Dp), and Filifactor alocis (Fa) were detected by PCR. Configural frequency and logistic regression analyses were performed to correlate microbial consortia and PD. RESULTS Aa + Pg in the presence of Dp (phi=0.240; χ2=11.9, p<0.01), as well as Aa JP2 + Dp + Fa (phi=0.186, χ2=4.6, p<0.05) were significantly more associated in advanced stages of P. The consortium Aa + Fa + Dp was strongly associated with deep pocketing and inflammation (p<0.001). The best predictors of disease severity (80% accuracy) included older age (OR 1.11 [95% CI 1.07 - 1.15], p<0.001), Black/African-American ancestry (OR 1.89 [95% CI 1.19 - 2.99], p=0.007), and high frequency of Aa + Pg + Dp (OR 3.04 [95% CI 1.49 - 6.22], p=0.002). CONCLUSION Specific microbial consortia of putative and novel periodontal pathogens, associated with demographic parameters, correlate with severe periodontitis, supporting the multifactorial nature of PD.
Collapse
Affiliation(s)
- Lélia Lima ARAÚJO
- Universidade Federal do Rio de JaneiroFaculdade de OdontologiaPrograma de Pós-Graduação em OdontologiaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Faculdade de Odontologia, Programa de Pós-Graduação em Odontologia (Periodontia), Rio de Janeiro, Brasil.,Universidade Federal do Rio de JaneiroInstituto de MicrobiologiaDepartamento de Microbiologia MédicaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Instituto de Microbiologia, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil.
| | - Talita Gomes Baêta LOURENÇO
- Universidade Federal do Rio de JaneiroInstituto de MicrobiologiaDepartamento de Microbiologia MédicaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Instituto de Microbiologia, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil.
| | - Ana Paula Vieira COLOMBO
- Universidade Federal do Rio de JaneiroFaculdade de OdontologiaPrograma de Pós-Graduação em OdontologiaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Faculdade de Odontologia, Programa de Pós-Graduação em Odontologia (Periodontia), Rio de Janeiro, Brasil.,Universidade Federal do Rio de JaneiroInstituto de MicrobiologiaDepartamento de Microbiologia MédicaRio de JaneiroBrasilUniversidade Federal do Rio de Janeiro, Instituto de Microbiologia, Departamento de Microbiologia Médica, Rio de Janeiro, Brasil.
| |
Collapse
|
25
|
Iskander MMZ, Lamont GJ, Tan J, Pisano M, Uriarte SM, Scott DA. Tobacco smoke exacerbates Filifactor alocis pathogenicity. J Clin Periodontol 2023; 50:121-130. [PMID: 36122937 PMCID: PMC9976951 DOI: 10.1111/jcpe.13729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
AIM Filifactor alocis has recently emerged as a periodontal pathobiont that appears to thrive in the oral cavity of smokers. We hypothesized that identification of smoke-responsive F. alocis genes would provide insight into adaptive strategies and that cigarette smoke would enhance F. alocis pathogenesis in vivo. MATERIALS AND METHODS F. alocis was grown in vitro and cigarette smoke extract-responsive genes determined by RNAseq. Mice were exposed, or not, to mainstream 1R6F research cigarette smoke and infected with F. alocis, or not, in an acute ligature model of periodontitis. Key clinical, infectious, and immune data were collected. RESULTS In culture, F. alocis growth was unaffected by smoke conditioning and only a small number of genes were specifically regulated by smoke exposure. Reduced murine mass, differences in F. alocis-cognizant antibody production, and altered immune profiles as well as altered alveolar bone loss were all attributable to smoke exposure and/or F. alocis infection in vivo. CONCLUSIONS F. alocis is well-adapted to tobacco-rich conditions and its pathogenesis is enhanced by tobacco smoke exposure. A smoke-exposed ligature model of periodontitis shows promise as a tool with which to further unravel mechanisms underlying tobacco-enhanced, bacteria-induced disease.
Collapse
Affiliation(s)
- Mina M Z Iskander
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Gwyneth J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jinlian Tan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Michele Pisano
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
26
|
Bertolini M, Costa RC, Barão VAR, Cunha Villar C, Retamal-Valdes B, Feres M, Silva Souza JG. Oral Microorganisms and Biofilms: New Insights to Defeat the Main Etiologic Factor of Oral Diseases. Microorganisms 2022; 10:microorganisms10122413. [PMID: 36557666 PMCID: PMC9781395 DOI: 10.3390/microorganisms10122413] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
The oral cavity presents a highly diverse community of microorganisms due to the unique environmental conditions for microbial adhesion and growth [...].
Collapse
Affiliation(s)
- Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
- Correspondence:
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Valentim Adelino Ricardo Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13083-970, SP, Brazil
| | - Cristina Cunha Villar
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-010, SP, Brazil
| | | | - Magda Feres
- Dental Research Division, Guarulhos University, Guarulhos 05508-010, SP, Brazil
- Center for Clinical and Translational Research, Forsyth Institute, Boston, MA 02142, USA
| | - João Gabriel Silva Souza
- Dental Research Division, Guarulhos University, Guarulhos 05508-010, SP, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas—FCO), Montes Claros 39401-303, MG, Brazil
- Oncovida Cancer Research Center, Montes Claros 39400-111, MG, Brazil
| |
Collapse
|
27
|
Karaca B, Haliscelik O, Gursoy M, Kiran F, Loimaranta V, Söderling E, Gursoy UK. Analysis of Chemical Structure and Antibiofilm Properties of Exopolysaccharides from Lactiplantibacillus plantarum EIR/IF-1 Postbiotics. Microorganisms 2022; 10:2200. [PMID: 36363792 PMCID: PMC9693231 DOI: 10.3390/microorganisms10112200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 09/10/2024] Open
Abstract
Previous studies have indicated that the exopolysaccharides of lactic acid bacteria exhibit antibiofilm activity against non-oral bacteria by preventing their initial adhesion to surfaces and by downregulating the expression of genes responsible for their biofilm formation. The aims of this study were to (1) characterize the exopolysaccharides (EPSs) of Lactobacillus plantarum EIR/IF-1 postbiotics, (2) test their antibiofilm effect on dual biofilms, and (3) evaluate their bacterial auto-aggregation, co-aggregation, and hydrocarbon-binding inhibitory activity. The EPSs were characterized by FTIR, HPLC, and thermogravimetric analysis. Bacterial auto- and co-aggregation were tested by Kolenbrander's method and hydrocarbon binding was tested by Rosenberg's method. Dual biofilms were formed by culturing Fusobacterium nucleatum ATCC 25586 with one of the following bacteria: Prevotella denticola ATCC 33185, P. denticola AHN 33266, Porphyromonas gingivalis ATCC 33277, P. gingivalis AHN 24155, and Filifactor alocis ATCC 35896. The EPSs contained fractions with different molecular weights (51 and 841 kDa) and monosaccharides of glucose, galactose, and fructose. The EPSs showed antibiofilm activity in all the biofilm models tested. The EPSs may have inhibited bacterial aggregation and binding to hydrocarbons by reducing bacterial hydrophobicity. In conclusion, the EPSs of L. plantarum EIR/IF-1, which consists of two major fractions, exhibited antibiofilm activity against oral bacteria, which can be explained by the inhibitory effect of EPSs on the auto-aggregation and co-aggregation of bacteria and their binding to hydrocarbons.
Collapse
Affiliation(s)
- Basar Karaca
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Ozan Haliscelik
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Mervi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
- Oral Health Care, Welfare Division, City of Turku, 20521 Turku, Finland
| | - Fadime Kiran
- Pharmabiotic Technologies Research Laboratory, Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Vuokko Loimaranta
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Eva Söderling
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| | - Ulvi Kahraman Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
28
|
Bao K, Claesson R, Belibasakis GN, Oscarsson J. Extracellular Vesicle Subproteome Differences among Filifactor alocis Clinical Isolates. Microorganisms 2022; 10:microorganisms10091826. [PMID: 36144428 PMCID: PMC9503520 DOI: 10.3390/microorganisms10091826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Filifactor alocis is a Gram-positive asaccharolytic, obligate anaerobic rod of the Firmicutes phylum, which has recently been implicated in oral infections. Extracellular vesicles (EVs) are crucial conveyors of microbial virulence in bacteria and archaea. Previously, in highly purified EVs from the F. alocis reference strain ATCC 35896 (CCUG 47790), 28 proteins were identified. The present study aimed to use label-free quantification proteomics in order to chart these EV proteins, in the reference strain, and in nine less-well-characterized clinical F. alocis isolates. In total, 25 of the EV proteins were identified and 24 were quantified. Sixteen of those were differentially expressed between the ten strains and the novel FtxA RTX toxin and one lipoprotein were among them. Consistent expression was observed among ribosomal proteins and proteins involved in L-arginine biosynthesis and type IV pilin, demonstrating a degree of EV protein expression preservation among strains. In terms of protein–protein interaction analysis, 21 functional associations were revealed between 19 EV proteins. Interestingly, FtxA did not display predicted interactions with any other EV protein. In conclusion, the present study charted 25 EV proteins in ten F. alocis strains. While most EV proteins were consistently identified among the strains, several of them were also differentially expressed, which justifies that there may be potential variations in the virulence potential among EVs of different F. alocis strains.
Collapse
Affiliation(s)
- Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden
| | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden
| | - Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 90187 Umeå, Sweden
- Correspondence:
| |
Collapse
|
29
|
Angerami Almeida K, de Queiroz Andrade E, Burns G, Hoedt EC, Mattes J, Keely S, Collison A. The microbiota in eosinophilic esophagitis: A systematic review. J Gastroenterol Hepatol 2022; 37:1673-1684. [PMID: 35730344 PMCID: PMC9544137 DOI: 10.1111/jgh.15921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Eosinophilic esophagitis (EoE) is an atopic disease of the esophagus that has shown a significant increase in incidence and prevalence in the last 20 years. The etiology of EoE is unclear, and few studies explore the esophageal microbiota in EoE. The local microbiome has been implicated in the pathogenesis of several allergic and inflammatory diseases, such as asthma and eczema. In this study, we performed a systematic review to evaluate differences in the microbiota profile of patients with EoE compared with controls. MEDLINE, Embase, Cochrane Library, Scopus, and CINAHL (Cumulative Index to Nursing and Allied Health Literature) databases were searched to identify studies investigating the microbiota composition in EoE. Three reviewers screened the articles for eligibility and quality. Seven articles underwent full-text review, and a narrative synthesis was undertaken. The microbiota of the mouth and esophagus are correlated. Patients with active EoE present increased esophageal microbial load and increased abundance in particular species, such as Haemophilus and Aggregatibacter. On the other hand, EoE patients present a decrease in Firmicutes. High microbial load and abundance of Haemophilus are observed in EoE patients, but little evidence exists to demonstrate their influence on inflammation and disease. Understanding microbial signatures in EoE might contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kaylani Angerami Almeida
- School of Medicine and Public HealthUniversity of NewcastleNewcastleNew South WalesAustralia,Priority Research Centre GrowUpWell, Hunter Medical Research InstituteUniversity of NewcastleNewcastleNew South WalesAustralia,Viruses, Infection, Immunity, Vaccine and Asthma (VIVA) ProgramHunter Medical Research Institute (HMRI)New Lambton HeightsNew South WalesAustralia,NHMRC Centre of Research Excellence (CRE) in Digestive HealthThe University of NewcastleCallaghanNew South WalesAustralia
| | - Ediane de Queiroz Andrade
- School of Medicine and Public HealthUniversity of NewcastleNewcastleNew South WalesAustralia,Priority Research Centre GrowUpWell, Hunter Medical Research InstituteUniversity of NewcastleNewcastleNew South WalesAustralia,Viruses, Infection, Immunity, Vaccine and Asthma (VIVA) ProgramHunter Medical Research Institute (HMRI)New Lambton HeightsNew South WalesAustralia
| | - Grace Burns
- NHMRC Centre of Research Excellence (CRE) in Digestive HealthThe University of NewcastleCallaghanNew South WalesAustralia,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingThe University of NewcastleCallaghanNew South WalesAustralia
| | - Emily C Hoedt
- NHMRC Centre of Research Excellence (CRE) in Digestive HealthThe University of NewcastleCallaghanNew South WalesAustralia,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingThe University of NewcastleCallaghanNew South WalesAustralia
| | - Joerg Mattes
- School of Medicine and Public HealthUniversity of NewcastleNewcastleNew South WalesAustralia,Priority Research Centre GrowUpWell, Hunter Medical Research InstituteUniversity of NewcastleNewcastleNew South WalesAustralia,Viruses, Infection, Immunity, Vaccine and Asthma (VIVA) ProgramHunter Medical Research Institute (HMRI)New Lambton HeightsNew South WalesAustralia
| | - Simon Keely
- NHMRC Centre of Research Excellence (CRE) in Digestive HealthThe University of NewcastleCallaghanNew South WalesAustralia,School of Biomedical Sciences and Pharmacy, College of Health, Medicine and WellbeingThe University of NewcastleCallaghanNew South WalesAustralia
| | - Adam Collison
- School of Medicine and Public HealthUniversity of NewcastleNewcastleNew South WalesAustralia,Priority Research Centre GrowUpWell, Hunter Medical Research InstituteUniversity of NewcastleNewcastleNew South WalesAustralia,Viruses, Infection, Immunity, Vaccine and Asthma (VIVA) ProgramHunter Medical Research Institute (HMRI)New Lambton HeightsNew South WalesAustralia
| |
Collapse
|
30
|
Differences in the subgingival microbiome according to stage of periodontitis: A comparison of two geographic regions. PLoS One 2022; 17:e0273523. [PMID: 35998186 PMCID: PMC9398029 DOI: 10.1371/journal.pone.0273523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
No microbiological criteria were included in the 2018 EFP-AAP classification of periodontal diseases that could be used to differentiate between stages and grades. Furthermore, differences in the subgingival microbiome depending on stage and grade have not been established. Sixty subgingival biofilm samples were collected in Spain (n = 30) and Colombia (n = 30) from three distinct patient categories: those with periodontal health/gingivitis (n = 20), those with stage I-II periodontitis (n = 20), and those with stage III-IV periodontitis (n = 20). Patients were evaluated by 16S rRNA gene amplification sequencing. Amplicon sequence variants were used to assign taxonomic categories compared to the Human Oral Microbiome Database (threshold ≥97% identity). Alpha diversity was established by Shannon and Simpson indices, and principal coordinate analysis, ANOSIM, and PERMANOVA of the UNIFRAC distances were performed using QIIME2. Although differences in the alpha diversity were observed between samples according to country, Filifactor alocis, Peptostreptococcaceae [XI][G-4] bacterium HMT 369, Fretibacterium fastidiosum, Lachnospiraceae [G-8] bacterium HMT 500, Peptostreptococcaceae [XI][G-5] [Eubacterium] saphenum, Peptostreptococcus stomatis, and Tannerella forsythia were associated with periodontitis sites in all stages. However, only F. alocis, Peptostreptococcaceae [XI][G-4] bacterium HMT 369, Peptostreptococcaceae [XI][G-9] [Eubacterium] brachy, Peptostreptococcaceae [XI][G-5] [Eubacterium] saphenum, and Desulfobulbus sp. HMT 041 were consistent in stage III-IV periodontitis in both countries. Porphyromonas gingivalis and Tannerella forsythia were differentially expressed in severe lesions in the countries studied. Although some non-cultivable microorganisms showed differential patterns between the different stages of periodontitis, they were not the same in the two countries evaluated. Further studies using larger samples with advanced next-generation techniques for high-throughput sequencing of phyla and non-cultivable bacteria within the subgingival microbiome could provide more insight into the differences between stages of periodontitis.
Collapse
|
31
|
Ozuna H, Snider I, Belibasakis GN, Oscarsson J, Johansson A, Uriarte SM. Aggregatibacter actinomycetemcomitans and Filifactor alocis: Two exotoxin-producing oral pathogens. FRONTIERS IN ORAL HEALTH 2022; 3:981343. [PMID: 36046121 PMCID: PMC9420871 DOI: 10.3389/froh.2022.981343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is a dysbiotic disease caused by the interplay between the microbial ecosystem present in the disease with the dysregulated host immune response. The disease-associated microbial community is formed by the presence of established oral pathogens like Aggregatibacter actinomycetemcomitans as well as by newly dominant species like Filifactor alocis. These two oral pathogens prevail and grow within the periodontal pocket which highlights their ability to evade the host immune response. This review focuses on the virulence factors and potential pathogenicity of both oral pathogens in periodontitis, accentuating the recent description of F. alocis virulence factors, including the presence of an exotoxin, and comparing them with the defined factors associated with A. actinomycetemcomitans. In the disease setting, possible synergistic and/or mutualistic interactions among both oral pathogens might contribute to disease progression.
Collapse
Affiliation(s)
- Hazel Ozuna
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Ian Snider
- Department of Biology, School of Arts and Sciences, University of Louisville, Louisville, KY, United States
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Silvia M. Uriarte
| |
Collapse
|
32
|
Briceño O, Gónzalez-Navarro M, Montufar N, Chávez-Torres M, Abato I, Espinosa-Sosa A, Ablanedo-Terrazas Y, Luna-Villalobos Y, Ávila-Ríos S, Reyes-Terán G, Pinto-Cardoso S. Mucosal immune cell populations and the bacteriome of adenoids and tonsils from people living with HIV on suppressive antiretroviral therapy. Front Microbiol 2022; 13:958739. [PMID: 36033845 PMCID: PMC9404693 DOI: 10.3389/fmicb.2022.958739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ear, nose, and throat (ENT) conditions are prevalent in people living with HIV (PLWH) and occur at all strata of CD4 counts and despite antiretroviral therapy (ART). ENT conditions are underreported in PLWH. Also, little is known about the adenotonsillar microbiota and its relation to resident adaptive and innate immune cells. To bridge this gap, we characterized immune cell populations and the bacterial microbiota of two anatomical sites (adenoids, tonsils) and the oral cavity. Adenoids and tonsils were obtained from PLWH (n = 23) and HIV-seronegative individuals (SN, n = 16) after nasal surgery and tonsillectomy and processed for flow cytometry. Nasopharyngeal, oropharyngeal swabs, and oral rinses were collected prior to surgery for 16S sequencing. Wilcoxon rank sum test, principal coordinate analysis, permutational multivariate analysis of variance, and linear discriminant analysis (LEfSe) were used to assess differences between PLWH and SN. Spearman’s correlations were performed to explore interactions between the bacteriome and mucosal immune cells. Of the 39 individuals included, 30 (77%) were men; the median age was 32 years. All PLWH were on ART, with a median CD4 of 723 cells. ENT conditions were classified as inflammatory or obstructive, with no differences observed between PLWH and SN. PLWH had higher frequencies of activated CD4+ and CD8+ T cells, increased T helper (Th)1 and decreased Th2 cells; no differences were observed for B cells and innate immune cells. Alpha diversity was comparable between PLWH and SN at all 3 anatomical sites (adenoids, tonsils, and oral cavity). The impact of HIV infection on the bacterial community structure at each site, as determined by Permutational multivariate analysis of variance, was minor and not significant. Two discriminant genera were identified in adenoids using LEfSe: Staphylococcus for PLWH and Corynebacterium for SN. No discriminant genera were identified in the oropharynx and oral cavity. Niche-specific differences in microbial diversity and communities were observed. PLWH shared less of a core microbiota than SN. In the oropharynx, correlation analysis revealed that Th17 cells were inversely correlated with bacterial richness and diversity, Filifactor, Actinomyces and Treponema; and positively correlated with Streptococcus. Our study contributes toward understanding the role of the adenotonsillar microbiota in the pathophysiology of ENT conditions.
Collapse
Affiliation(s)
- Olivia Briceño
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Mauricio Gónzalez-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Nadia Montufar
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Monserrat Chávez-Torres
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Indira Abato
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Ariana Espinosa-Sosa
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Yuria Ablanedo-Terrazas
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Yara Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
| | - Gustavo Reyes-Terán
- Comisión Coordinadora de Institutos Nacional de Salud y Hospitales de Alta Especialidad, Secretaría de Salud, Ciudad de México, Mexico
| | - Sandra Pinto-Cardoso
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México, Mexico
- *Correspondence: Sandra Pinto-Cardoso,
| |
Collapse
|
33
|
Proteomic Characterization of the Oral Pathogen Filifactor alocis Reveals Key Inter-Protein Interactions of Its RTX Toxin: FtxA. Pathogens 2022; 11:pathogens11050590. [PMID: 35631111 PMCID: PMC9145396 DOI: 10.3390/pathogens11050590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022] Open
Abstract
Filifactor alocis is a Gram-positive asaccharolytic, obligate anaerobic rod that has been isolated from a variety of oral infections including periodontitis, peri-implantitis, and odontogenic abscesses. As a newly emerging pathogen, its type strain has been investigated for pathogenic properties, yet little is known about its virulence variations among strains. We previously screened the whole genome of nine clinical oral isolates and a reference strain of F. alocis, and they expressed a novel RTX toxin, FtxA. In the present study, we aimed to use label-free quantification proteomics to characterize the full proteome of those ten F. alocis strains. A total of 872 proteins were quantified, and 97 among them were differentially expressed in FtxA-positive strains compared with the negative strains. In addition, 44 of these differentially expressed proteins formed 66 pairs of associations based on their predicted functions, which included clusters of proteins with DNA repair/mediated transformation and catalytic activity-related function, indicating different biosynthetic activities among strains. FtxA displayed specific interactions with another six intracellular proteins, forming a functional cluster that could discriminate between FtxA-producing and non-producing strains. Among them were FtxB and FtxD, predicted to be encoded by the same operon as FtxA. While revealing the broader qualitative and quantitative proteomic landscape of F. alocis, this study also sheds light on the deeper functional inter-relationships of FtxA, thus placing this RTX family member into context as a major virulence factor of this species.
Collapse
|
34
|
Wirth R, Pap B, Maróti G, Vályi P, Komlósi L, Barta N, Strang O, Minárovits J, Kovács KL. Toward Personalized Oral Diagnosis: Distinct Microbiome Clusters in Periodontitis Biofilms. Front Cell Infect Microbiol 2022; 11:747814. [PMID: 35004342 PMCID: PMC8727345 DOI: 10.3389/fcimb.2021.747814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Periodontitis is caused by pathogenic subgingival microbial biofilm development and dysbiotic interactions between host and hosted microbes. A thorough characterization of the subgingival biofilms by deep amplicon sequencing of 121 individual periodontitis pockets of nine patients and whole metagenomic analysis of the saliva microbial community of the same subjects were carried out. Two biofilm sampling methods yielded similar microbial compositions. Taxonomic mapping of all biofilms revealed three distinct microbial clusters. Two clinical diagnostic parameters, probing pocket depth (PPD) and clinical attachment level (CAL), correlated with the cluster mapping. The dysbiotic microbiomes were less diverse than the apparently healthy ones of the same subjects. The most abundant periodontal pathogens were also present in the saliva, although in different representations. The single abundant species Tannerella forsythia was found in the diseased pockets in about 16–17-fold in excess relative to the clinically healthy sulcus, making it suitable as an indicator of periodontitis biofilms. The discrete microbial communities indicate strong selection by the host immune system and allow the design of targeted antibiotic treatment selective against the main periodontal pathogen(s) in the individual patients.
Collapse
Affiliation(s)
- Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Bernadett Pap
- Biological Research Center, Institute of Plant Biology, Szeged, Hungary
| | - Gergely Maróti
- Biological Research Center, Institute of Plant Biology, Szeged, Hungary
| | - Péter Vályi
- Department of Periodontology, University of Szeged, Szeged, Hungary
| | - Laura Komlósi
- Department of Oral Surgery, University of Szeged, Szeged, Hungary
| | - Nikolett Barta
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Orsolya Strang
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - János Minárovits
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
35
|
Xu F, Pushalkar S, Lin Z, Thomas SC, Persaud JK, Sierra MA, Vardhan M, Vasconcelos R, Akapo A, Guo Y, Gordon T, Corby PM, Kamer AR, Li X, Saxena D. Electronic cigarette use enriches periodontal pathogens. Mol Oral Microbiol 2022; 37:63-76. [PMID: 34997976 DOI: 10.1111/omi.12361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
The effect of electronic cigarette (e-cigarette) smoking, especially its long-term impact on oral health, is poorly understood. Here, we conducted a longitudinal clinical study with two study visits, 6 months apart, to investigate the effect of e-cigarette use on the bacterial community structure in the saliva of 101 periodontitis patients. Our data demonstrated that e-cigarette use altered the oral microbiome in periodontitis patients, enriching members of the Filifactor, Treponema, and Fusobacterium taxa. For patients at the same periodontal disease stage, cigarette smokers and e-cigarette smokers shared more similarities in their oral bacterial composition. E-cigarette smoking may have a similar potential as cigarette smoking at altering the bacterial composition of saliva over time, leading to an increase in the relative abundance of periodontal disease-associated pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum. The correlation analysis showed that certain genera, such as Dialister, Selenomonas, and Leptotrichia in the e-cigarette smoking group, were positively correlated with the levels of proinflammatory cytokines, including IFN-γ, IL-1β, and TNF-α. E-cigarette use was also associated with elevated levels of proinflammatory cytokines such as IFN-γ and TNF-α, which contribute to oral microbiome dysbiosis and advanced disease state. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fangxi Xu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Smruti Pushalkar
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Ziyan Lin
- Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Scott C Thomas
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Julia Kishanie Persaud
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Maria A Sierra
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Mridula Vardhan
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Rebeca Vasconcelos
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Adenike Akapo
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Yuqi Guo
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Terry Gordon
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Patricia M Corby
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Angela R Kamer
- Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York, NY, United States
| | - Xin Li
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| | - Deepak Saxena
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, United States
| |
Collapse
|
36
|
Aja E, Mishra A, Dou Y, Fletcher HM. Role of the Filifactor alocis Hypothetical Protein FA519 in Oxidative Stress Resistance. Microbiol Spectr 2021; 9:e0121221. [PMID: 34756068 PMCID: PMC8579941 DOI: 10.1128/spectrum.01212-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
In the periodontal pocket, there is a direct correlation between environmental conditions, the dynamic oral microbial flora, and disease. The relative abundance of several newly recognized microbial species in the oral microenvironment has raised questions on their impact on disease development. One such organism, Filifactor alocis, is significant to the pathogenic biofilm structure. Moreover, its pathogenic characteristics are highlighted by its ability to survive in the oxidative-stress microenvironment of the periodontal pocket and alter the microbial community dynamics. There is a gap in our understanding of its mechanism(s) of oxidative stress resistance and impact on pathogenicity. Several proteins, including HMPRFF0389-00519 (FA519), were observed in high abundance in F. alocis during coinfection of epithelial cells with Porphyromonas gingivalis W83. Bioinformatics analysis shows that FA519 contains a "Cys-X-X-Cys zinc ribbon domain" which could be involved in DNA binding and oxidative stress resistance. We have characterized FA519 to elucidate its roles in the oxidative stress resistance and virulence of F. alocis. Compared to the wild-type strain, the F. alocis isogenic gene deletion mutant, FLL1013 (ΔFA519::ermF), showed significantly reduced sensitivity to hydrogen peroxide and nitric oxide-induced stress. The ability to form biofilm and adhere to and invade gingival epithelial cells was also reduced in the isogenic mutant. The recombinant FA519 protein was shown to protect DNA from Fenton-mediated damage with an intrinsic ability to reduce hydrogen peroxide and disulfide bonds. Collectively, these results suggest that FA519 is involved in oxidative stress resistance and can modulate important virulence attributes in F. alocis. IMPORTANCE Filifactor alocis is an emerging member of the periodontal community and is now proposed to be a diagnostic indicator of periodontal disease. However, due to the lack of genetic tools available to study this organism, not much is known about its virulence attributes. The mechanism(s) of oxidative stress resistance in F. alocis is unknown. Therefore, identifying the adaptive mechanisms utilized by F. alocis to survive in the oxidative stress environment of the periodontal pocket would lead to understanding its virulence regulation, which could help develop novel therapeutic treatments to combat the effects of periodontal disease. This study is focused on the characterization of FA519, a hypothetical protein in F. alocis, as a multifunctional protein that plays an important role in the reactive oxygen species-detoxification pathway. Collectively, our results suggest that FA519 is involved in oxidative stress resistance and can modulate important virulence attributes in F. alocis.
Collapse
Affiliation(s)
- Ezinne Aja
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Arunima Mishra
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|