1
|
Yang F, Yang L, Kuroda Y, Lai S, Takahashi Y, Sayo T, Namiki T, Nakajima K, Sano S, Inoue S, Tsuruta D, Katayama I. Disorganisation of basement membrane zone architecture impairs melanocyte residence in vitiligo. J Pathol 2024; 264:30-41. [PMID: 38989633 DOI: 10.1002/path.6321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The basement membrane zone is the interface between the epidermis and dermis, and it is disrupted in several skin conditions. Here, we report the results of a comprehensive investigation into the structural and molecular factors of the basement membrane zone in vitiligo, a dermatological disorder characterised by depigmented patches on the skin. Using electron microscopy and immunofluorescence staining, we confirmed abnormal basement membrane zone morphology and disrupted basement membrane zone architecture in human vitiliginous skin. Furthermore, we identified elevated expression of matrix metalloproteinase 2 (MMP2) in human dermal fibroblasts as a key factor responsible for basement membrane zone matrix degradation. In our in vitro and ex vivo models, overexpression of MMP2 in fibroblasts led to basement membrane zone disruption and melanocyte disappearance. Importantly, we reveal that the loss of melanocytes in vitiligo is primarily linked to their weakened adhesion to the basement membrane, mediated by binding between integrin β1 and laminin and discoidin domain receptor 1 and collagen IV. Finally, inhibition of matrix metalloproteinase 2 expression reversed depigmentation in a mouse model of vitiligo. In conclusion, our research shows the importance of basement membrane zone integrity in melanocyte residence and offers new avenues for therapeutic interventions to address this challenging skin condition. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Fei Yang
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Lingli Yang
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yasutaka Kuroda
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Sylvia Lai
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yoshito Takahashi
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Tetsuya Sayo
- Biological Science Research Laboratories, Kao Corporation, Odawara, Japan
| | - Takeshi Namiki
- Department of Dermatology, Graduate School and Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ichiro Katayama
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Schoenenberger MS, Halfter W, Ferrand A, Halfter K, Tzankov A, Scholl HPN, Henrich PB, Monnier CA. The biophysical and compositional properties of human basement membranes. FEBS J 2024; 291:477-488. [PMID: 37984833 DOI: 10.1111/febs.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Basement membranes are among the most widespread, non-cellular functional materials in metazoan organisms. Despite this ubiquity, the links between their compositional and biophysical properties are often difficult to establish due to their thin and delicate nature. In this article, we examine these features on a molecular level by combining results from proteomics, elastic, and nanomechanical analyses across a selection of human basement membranes. Comparing results between these different membranes connects certain compositional attributes to distinct nanomechanical signatures and further demonstrates to what extent water defines these properties. In all, these data underline BMs as stiff yet highly elastic connective tissue layers and highlight how the interplay between composition, mechanics and hydration yields such exceptionally adaptable materials.
Collapse
Affiliation(s)
| | - Willi Halfter
- Department of Ophthalmology, University of Basel, Switzerland
| | - Alexia Ferrand
- Imaging Core Facility, Biozentrum of the University of Basel, Switzerland
| | - Kathrin Halfter
- Munich Cancer Registry, Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Germany
| | - Alexandar Tzankov
- Histopathology and Autopsy, Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Switzerland
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
| | - Paul Bernhard Henrich
- Department of Ophthalmology, University of Basel, Switzerland
- Università della Svizzera Italiana, Lugano, Switzerland
| | | |
Collapse
|
3
|
Mereness JA, Piraino L, Chen CY, Moyston T, Song Y, Shubin A, DeLouise LA, Ovitt CE, Benoit DSW. Slow hydrogel matrix degradation enhances salivary gland mimetic phenotype. Acta Biomater 2023; 166:187-200. [PMID: 37150277 PMCID: PMC10330445 DOI: 10.1016/j.actbio.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
We recently developed a salivary gland tissue mimetic (SGm), comprised of salivary gland cells encapsulated in matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) hydrogels within arrays of ∼320 µm diameter spherical cavities molded in PDMS. The SGm provides a functional and physiologically relevant platform well-suited to high-throughput drug screening for radioprotective compounds. However, the utility of the SGm would benefit from improved retention of acinar cell phenotype and function. We hypothesized that tuning biochemical cues presented within the PEG hydrogel matrix would improve maintenance of acinar cell phenotype and function by mimicking the natural extracellular matrix microenvironment of the intact gland. Hydrogels formed using slower-degrading MMP-sensitive peptide crosslinkers showed >2-fold increase in sphere number formed at 48 h, increased expression of acinar cell markers, and more robust response to calcium stimulation by the secretory agonist, carbachol, with reduced SGm tissue cluster disruption and outgrowth during prolonged culture. The incorporation of adhesive peptides containing RGD or IKVAV improved calcium flux response to secretory agonists at 14 days of culture. Tuning the hydrogel matrix improved cell aggregation, and promoted acinar cell phenotype, and stability of the SGm over 14 days of culture. Furthermore, combining this matrix with optimized media conditions synergistically prolonged the retention of the acinar cell phenotype in SGm. STATEMENT OF SIGNIFICANCE: Salivary gland (SG) dysfunction occurs due to off-target radiation due to head and neck cancer treatments. Progress in understanding gland dysfunction and developing therapeutic strategies for the SG are hampered by the lack of in vitro models, as salivary gland cells rapidly lose critical secretory function within 24 hours in vitro. Herein, we identify properties of poly(ethylene glycol) hydrogel matrices that enhance the secretory phenotype of SG tissue mimetics within the previously-described SG-microbubble tissue chip environment. Combining slow-degrading hydrogels with media conditions optimized for secretory marker expression further enhanced functional secretory response and secretory marker expression.
Collapse
Affiliation(s)
- Jared A Mereness
- Department of Biomedical Engineering, University of Rochester, United States
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States
| | - Chiao Yun Chen
- Department of Biomedical Engineering, University of Rochester, United States
| | - Tracey Moyston
- Department of Biomedical Engineering, University of Rochester, United States
| | - Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, United States; Knight Campus Department of Bioengineering, Syracuse University, Syracuse, NY, United States
| | - Andrew Shubin
- Department of Biomedical Engineering, University of Rochester, United States; Department of General Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States
| | - Catherine E Ovitt
- Department of Biomedical Genetics, University of Rochester, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, United States; Department of Dermatology, University of Rochester, United States; Materials Science Program, University of Rochester, Rochester, NY, United States; Department of Chemical Engineering, University of Rochester, United States; Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States; Knight Campus Bioengineering Department, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
4
|
Guss EJ, Akbergenova Y, Cunningham KL, Littleton JT. Loss of the extracellular matrix protein Perlecan disrupts axonal and synaptic stability during Drosophila development. eLife 2023; 12:RP88273. [PMID: 37368474 PMCID: PMC10328508 DOI: 10.7554/elife.88273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) form essential components of the extracellular matrix (ECM) and basement membrane (BM) and have both structural and signaling roles. Perlecan is a secreted ECM-localized HSPG that contributes to tissue integrity and cell-cell communication. Although a core component of the ECM, the role of Perlecan in neuronal structure and function is less understood. Here, we identify a role for Drosophila Perlecan in the maintenance of larval motoneuron axonal and synaptic stability. Loss of Perlecan causes alterations in the axonal cytoskeleton, followed by axonal breakage and synaptic retraction of neuromuscular junctions. These phenotypes are not prevented by blocking Wallerian degeneration and are independent of Perlecan's role in Wingless signaling. Expression of Perlecan solely in motoneurons cannot rescue synaptic retraction phenotypes. Similarly, removing Perlecan specifically from neurons, glia, or muscle does not cause synaptic retraction, indicating the protein is secreted from multiple cell types and functions non-cell autonomously. Within the peripheral nervous system, Perlecan predominantly localizes to the neural lamella, a specialized ECM surrounding nerve bundles. Indeed, the neural lamella is disrupted in the absence of Perlecan, with axons occasionally exiting their usual boundary in the nerve bundle. In addition, entire nerve bundles degenerate in a temporally coordinated manner across individual hemi-segments throughout larval development. These observations indicate disruption of neural lamella ECM function triggers axonal destabilization and synaptic retraction of motoneurons, revealing a role for Perlecan in axonal and synaptic integrity during nervous system development.
Collapse
Affiliation(s)
- Ellen J Guss
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
5
|
Hou C, Gu Y, Yuan W, Zhang W, Xiu X, Lin J, Gao Y, Liu P, Chen X, Song L. Application of microfluidic chips in the simulation of the urinary system microenvironment. Mater Today Bio 2023; 19:100553. [PMID: 36747584 PMCID: PMC9898763 DOI: 10.1016/j.mtbio.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The urinary system, comprising the kidneys, ureters, bladder, and urethra, has a unique mechanical and fluid microenvironment, which is essential to the urinary system growth and development. Microfluidic models, based on micromachining and tissue engineering technology, can integrate pathophysiological characteristics, maintain cell-cell and cell-extracellular matrix interactions, and accurately simulate the vital characteristics of human tissue microenvironments. Additionally, these models facilitate improved visualization and integration and meet the requirements of the laminar flow environment of the urinary system. However, several challenges continue to impede the development of a tissue microenvironment with controllable conditions closely resemble physiological conditions. In this review, we describe the biochemical and physical microenvironment of the urinary system and explore the feasibility of microfluidic technology in simulating the urinary microenvironment and pathophysiological characteristics in vitro. Moreover, we summarize the current research progress on adapting microfluidic chips for constructing the urinary microenvironment. Finally, we discuss the current challenges and suggest directions for future development and application of microfluidic technology in constructing the urinary microenvironment in vitro.
Collapse
Affiliation(s)
- Changhao Hou
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Yubo Gu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Wei Yuan
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Wukai Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianjie Xiu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Jiahao Lin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Yue Gao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peichuan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lujie Song
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| |
Collapse
|
6
|
Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188869. [PMID: 36842767 DOI: 10.1016/j.bbcan.2023.188869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/28/2023]
Abstract
Pancreatic cancer (PC) is very deadly and difficult to treat. The presence of hypoxia has been shown to increase the probability of cancer developing and spreading. Pancreatic ductal adenocarcinoma (PDAC/PC) has traditionally viewed a highly lethal form of cancer due to its high occurrence of early metastases. Desmoplasia/stroma is often thick and collagenous, with pancreatic stellate cells as the primary source (PSCs). Cancer cells and other stromal cells interact with PSCs, promoting disease development. The hepatocyte growth factor (HGF)/c-MET pathway have been proposed as a growth factor mechanism mediating this interaction. Human growth factor (HGF) is secreted by pancreatic stellate cells (PSCs), and its receptor, c-MET, is generated by pancreatic cancer cells and endothelial cells. Hypoxia is frequent in malignant tumors, particularly pancreatic (PC). Hypoxia results from limitless tumor development and promotes survival, progression, and invasion. Hypoxic is becoming a critical driver and therapeutic target of pancreatic cancer as its hypoxia microenvironment is defined. Recent breakthroughs in cancer biology show that hypoxia promotes tumor proliferation, aggressiveness, and therapeutic resistance. Hypoxia-inducible factors (HIFs) stabilize hypoxia signaling. Hypoxia cMet is a key component of pancreatic tumor microenvironments, which also have a fibrotic response, that hypoxia, promotes and modulates. c-Met is a tyrosine-protein kinase. As describe it simply, the MET gene in humans' codes for a protein called hepatocyte growth factor receptor (HGFR). Most cancerous tumors and pancreatic cancer in particular, suffer from a lack of oxygen (PC). Due to unrestrained tumor development, hypoxia develops, actively contributing to tumor survival, progression, and invasion. As the processes by which hypoxia signaling promotes invasion and metastasis become clear, c-MET has emerged as an important determinant of pancreatic cancer malignancy and a potential pharmacological target. This manuscript provides the most current findings on the role of hypoxia and HGF/c-MET expression in the treatment of pancreatic cancer.
Collapse
|
7
|
Vaid S, Huttner WB. Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Front Cell Dev Biol 2022; 10:892922. [PMID: 35602606 PMCID: PMC9119302 DOI: 10.3389/fcell.2022.892922] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
During development, the decision of stem and progenitor cells to switch from proliferation to differentiation is of critical importance for the overall size of an organ. Too early a switch will deplete the stem/progenitor cell pool, and too late a switch will not generate the required differentiated cell types. With a focus on the developing neocortex, a six-layered structure constituting the major part of the cerebral cortex in mammals, we discuss here the cell biological features that are crucial to ensure the appropriate proliferation vs. differentiation decision in the neural progenitor cells. In the last two decades, the neural progenitor cells giving rise to the diverse types of neurons that function in the neocortex have been intensely investigated for their role in cortical expansion and gyrification. In this review, we will first describe these different progenitor types and their diversity. We will then review the various cell biological features associated with the cell fate decisions of these progenitor cells, with emphasis on the role of the radial processes emanating from these progenitor cells. We will also discuss the species-specific differences in these cell biological features that have allowed for the evolutionary expansion of the neocortex in humans. Finally, we will discuss the emerging role of cell cycle parameters in neocortical expansion.
Collapse
Affiliation(s)
- Samir Vaid
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- *Correspondence: Samir Vaid, ; Wieland B. Huttner,
| |
Collapse
|
8
|
|
9
|
Vargas S, Zimmer T, Conci N, Lehmann M, Wörheide G. Transcriptional response of the calcification and stress response toolkits in an octocoral under heat and pH stress. Mol Ecol 2021; 31:798-810. [PMID: 34748669 DOI: 10.1111/mec.16266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Up to one-third of all described marine species inhabit coral reefs, but the future of these hyperdiverse ecosystems is insecure due to local and global threats, such as overfishing, eutrophication, ocean warming and acidification. Although these impacts are expected to have a net detrimental effect on reefs, it has been shown that some organisms such as octocorals may remain unaffected, or benefit from, anthropogenically induced environmental change, and may replace stony corals in future reefs. Despite their potential importance in future shallow-water coastal environments, the molecular mechanisms leading to the resilience to anthropogenically induced stress observed in octocorals remain unknown. Here, we use manipulative experiments, proteomics and transcriptomics to show that the molecular toolkit used by Pinnigorgia flava, a common Indo-Pacific gorgonian octocoral, to deposit its calcium carbonate skeleton is resilient to heat and seawater acidification stress. Sublethal heat stress triggered a stress response in P. flava but did not affect the expression of 27 transcripts encoding skeletal organic matrix (SOM) proteins. Exposure to seawater acidification did not cause a stress response but triggered the downregulation of many transcripts, including an osteonidogen homologue present in the SOM. The observed transcriptional decoupling of the skeletogenic and stress-response toolkits provides insights into the mechanisms of resilience to anthropogenically driven environmental change observed in octocorals.
Collapse
Affiliation(s)
- Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Thorsten Zimmer
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Lehmann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, München, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany.,SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
10
|
Impact of perlecan, a core component of basement membrane, on regeneration of cartilaginous tissues. Acta Biomater 2021; 135:13-26. [PMID: 34454085 DOI: 10.1016/j.actbio.2021.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023]
Abstract
As an indispensable component of the extracellular matrix, perlecan (Pln) plays an essential role in cartilaginous tissue function. Although there exist studies suggesting that Pln expressed by cartilaginous tissues is critical for chondrogenesis, few papers have discussed the potential impact Pln may have on cartilage regeneration. In this review, we delineate Pln structure, biomechanical properties, and interactive ligands-which together contribute to the effect Pln has on cartilaginous tissue development. We also review how the signaling pathways of Pln affect cartilage development and scrutinize the potential application of Pln to divisions of cartilage regeneration, spanning vascularization, stem cell differentiation, and biomaterial improvement. The aim of this review is to deepen our understanding of the spatial and temporal interactions that occur between Pln and cartilaginous tissue and ultimately apply Pln in scaffold design to improve cell-based cartilage engineering and regeneration. STATEMENT OF SIGNIFICANCE: As a key component of the basement membrane, Pln plays a critical role in tissue development and repair. Recent findings suggest that Pln existing in the pericellular matrix surrounding mature chondrocytes is actively involved in cartilage regeneration and functionality. We propose that Pln is essential to developing an in vitro matrix niche within biological scaffolds for cartilage tissue engineering.
Collapse
|
11
|
Ambade AS, Hassoun PM, Damico RL. Basement Membrane Extracellular Matrix Proteins in Pulmonary Vascular and Right Ventricular Remodeling in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 65:245-258. [PMID: 34129804 PMCID: PMC8485997 DOI: 10.1165/rcmb.2021-0091tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
12
|
Pompili S, Latella G, Gaudio E, Sferra R, Vetuschi A. The Charming World of the Extracellular Matrix: A Dynamic and Protective Network of the Intestinal Wall. Front Med (Lausanne) 2021; 8:610189. [PMID: 33937276 PMCID: PMC8085262 DOI: 10.3389/fmed.2021.610189] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal extracellular matrix (ECM) represents a complex network of proteins that not only forms a support structure for resident cells but also interacts closely with them by modulating their phenotypes and functions. More than 300 molecules have been identified, each of them with unique biochemical properties and exclusive biological functions. ECM components not only provide a scaffold for the tissue but also afford tensile strength and limit overstretch of the organ. The ECM holds water, ensures suitable hydration of the tissue, and participates in a selective barrier to the external environment. ECM-to-cells interaction is crucial for morphogenesis and cell differentiation, proliferation, and apoptosis. The ECM is a dynamic and multifunctional structure. The ECM is constantly renewed and remodeled by coordinated action among ECM-producing cells, degrading enzymes, and their specific inhibitors. During this process, several growth factors are released in the ECM, and they, in turn, modulate the deposition of new ECM. In this review, we describe the main components and functions of intestinal ECM and we discuss their role in maintaining the structure and function of the intestinal barrier. Achieving complete knowledge of the ECM world is an important goal to understand the mechanisms leading to the onset and the progression of several intestinal diseases related to alterations in ECM remodeling.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
13
|
Allbritton-King JD, Kimicata M, Fisher JP. Incorporating a structural extracellular matrix gradient into a porcine urinary bladder matrix-based hydrogel dermal scaffold. J Biomed Mater Res A 2021; 109:1893-1904. [PMID: 33797180 DOI: 10.1002/jbm.a.37181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
The increasing prevalence of chronic, nonhealing wounds necessitates the investigation of full-thickness skin substitutes conducive to host integration and wound closure. Extracellular matrix (ECM)-based hydrogel scaffolds mimic the physiological matrix environment of dermal cells, thereby conferring favorable cellular adhesion, infiltration, and proliferation. However, low-concentration ECM hydrogels rapidly lose mechanical strength as they degrade, leaving them susceptible to shrinkage from fibroblast-mediated contraction. Conversely, high-concentration ECM hydrogels are typically too dense to permit nutrient diffusion and cellular migration. This study investigates the design and fabrication of a graded-concentration hydrogel composed of porcine urinary bladder matrix (UBM) as a dermal scaffold for potential use in chronic wound treatment. Our method of UBM isolation and decellularization effectively removed native DNA while preserving matrix proteins. Hydrogels composed of a range of decellularized UBM (dUBM) concentrations were characterized and used to design a three-tiered gradient hydrogel that promoted cellular activity and maintained structural integrity. The gradient dUBM hydrogel showed stability of cross-sectional area during collagenase degradation, despite considerable loss of mass. The gradient dUBM hydrogel also resisted fibroblast-mediated contraction while supporting high surface cell viability, demonstrating the mechanical support provided by denser layers of dUBM. Overall, incorporation of an ECM concentration gradient into a porcine UBM-based hydrogel scaffold capitalizes on the unique advantages of both high and low-concentration ECM hydrogels, and mitigates the structural weaknesses that have limited the efficacy of hydrogel dermal scaffolds for chronic wounds. Our gradient design shows promise for future development of stable, pro-regenerative wound scaffolds with customized architectures using 3D printing.
Collapse
Affiliation(s)
- Jules D Allbritton-King
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Megan Kimicata
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA.,Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
14
|
Davis AS, Chang MY, Brune JE, Hallstrand TS, Johnson B, Lindhartsen S, Hewitt SM, Frevert CW. The Use of Quantitative Digital Pathology to Measure Proteoglycan and Glycosaminoglycan Expression and Accumulation in Healthy and Diseased Tissues. J Histochem Cytochem 2021; 69:137-155. [PMID: 32936035 PMCID: PMC7841698 DOI: 10.1369/0022155420959146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
Advances in reagents, methodologies, analytic platforms, and tools have resulted in a dramatic transformation of the research pathology laboratory. These advances have increased our ability to efficiently generate substantial volumes of data on the expression and accumulation of mRNA, proteins, carbohydrates, signaling pathways, cells, and structures in healthy and diseased tissues that are objective, quantitative, reproducible, and suitable for statistical analysis. The goal of this review is to identify and present how to acquire the critical information required to measure changes in tissues. Included is a brief overview of two morphometric techniques, image analysis and stereology, and the use of artificial intelligence to classify cells and identify hidden patterns and relationships in digital images. In addition, we explore the importance of preanalytical factors in generating high-quality data. This review focuses on techniques we have used to measure proteoglycans, glycosaminoglycans, and immune cells in tissues using immunohistochemistry and in situ hybridization to demonstrate the various morphometric techniques. When performed correctly, quantitative digital pathology is a powerful tool that provides unbiased quantitative data that are difficult to obtain with other methods.
Collapse
Affiliation(s)
- A Sally Davis
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington
| | - Jourdan E Brune
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington
| | - Teal S Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington
| | - Brian Johnson
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Sarah Lindhartsen
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington
| |
Collapse
|
15
|
Halfter W, Moes S, Halfter K, Schoenenberger MS, Monnier CA, Kalita J, Asgeirsson D, Binggeli T, Jenoe P, Scholl HPN, Henrich PB. The human Descemet's membrane and lens capsule: Protein composition and biomechanical properties. Exp Eye Res 2020; 201:108326. [PMID: 33147472 DOI: 10.1016/j.exer.2020.108326] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The Descemet's membrane (DM) and the lens capsule (LC) are two ocular basement membranes (BMs) that are essential in maintaining stability and structure of the cornea and lens. In this study, we investigated the proteomes and biomechanical properties of these two materials to uncover common and unique properties. We also screened for possible protein changes during diabetes. LC-MS/MS was used to determine the proteomes of both BMs. Biomechanical measurements were conducted by atomic force microscopy (AFM) in force spectroscopy mode, and complemented with immunofluorescence microscopy. Proteome analysis showed that all six existing collagen IV chains represent 70% of all LC-protein, and are thus the dominant components of the LC. The DM on the other hand is predominantly composed of a single protein, TGF-induced protein, which accounted for around 50% of all DM-protein. Four collagen IV-family members in DM accounted for only 10% of the DM protein. Unlike the retinal vascular BMs, the LC and DM do not undergo significant changes in their protein compositions during diabetes. Nanomechanical measurements showed that the endothelial/epithelial sides of both BMs are stiffer than their respective stromal/anterior-chamber sides, and both endothelial and stromal sides of the DM were stiffer than the epithelial and anterior-chamber sides of the LC. Long-term diabetes did not change the stiffness of the DM and LC. In summary, our analyses show that the protein composition and biomechanical properties of the DM and LC are different, i.e., the LC is softer than DM despite a significantly higher concentration of collagen IV family members. This finding is unexpected, as collagen IV members are presumed to be responsible for BM stiffness. Diabetes had no significant effect on the protein composition and the biomechanical properties of both the DM and LC.
Collapse
Affiliation(s)
- Willi Halfter
- Department of Ophthalmology, University of Basel, Switzerland.
| | - Suzette Moes
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland.
| | - Kathrin Halfter
- Munich Cancer Registry, Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Germany.
| | | | | | - Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Daphne Asgeirsson
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland.
| | | | - Paul Jenoe
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland.
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland; Wilmer Eye Institute, Johns Hopkins University, Baltimore, MA, USA.
| | - Paul Bernhard Henrich
- Department of Ophthalmology, University of Basel, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland.
| |
Collapse
|
16
|
Ji W, Hou B, Tang H, Cai M, Zheng W. Investigation of the effects of laminin present in the basal lamina of the peripheral nervous system on axon regeneration and remyelination using the nerve acellular scaffold. J Biomed Mater Res A 2020; 108:1673-1687. [PMID: 32196907 DOI: 10.1002/jbm.a.36933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the effects of laminin (LN) located in the basal lamina, which are important components of the peripheral nervous system-extracellular matrix, on axon regeneration and remyelination. Nerve acellular scaffolds (NASs) (S-untreated) were prepared using the acellular technique. The active component LN in the NASs was blocked (S-LN- ) or upregulated (S-LN+ ); S-LN+ contained seven times more LN than did the S-untreated group. The adhesion capacity of Schwann cells (SCs) to the three types of NAS (S-untreated, S-LN- , and S-LN+ ) was assessed in vitro. Our results showed that the adhesion of SCs to the NASs was significantly reduced in the S-LN- group, whereas no difference was observed between the S-LN+ and S-untreated groups. The pretreated NASs were used to repair nerves in a nerve injury mouse model with the animals divided into four groups (S-LN- group, S-untreated group, S-LN+ group, and autograft group). Two weeks after surgery, although there was no difference in the S-LN- group, S-untreated group and S-LN+ group, the newly formed basal lamina in the S-LN- group were significantly lower than those in the other two groups. Four weeks after surgery, the S-LN+ group had higher numbers of newly generated axons and their calibers, more myelinated fibers, thicker myelin sheaths, increased myelin basic protein expression, and improved recovery of neural function compared to those of the S-LN- and S-untreated groups, but all of these parameters were significantly worse than those of the autograft group. Downregulation of the LN level in the NAS leads to a reduction in all of the above parameters.
Collapse
Affiliation(s)
- Wanqing Ji
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bo Hou
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hengxin Tang
- Department of Neurosurgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Meiqin Cai
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wenhan Zheng
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Moore MC, Bonvallet PP, Damaraju SM, Modi HN, Gandhi A, McFetridge PS. Biological characterization of dehydrated amniotic membrane allograft: Mechanisms of action and implications for wound care. J Biomed Mater Res B Appl Biomater 2020; 108:3076-3083. [PMID: 32458591 DOI: 10.1002/jbm.b.34635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/31/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023]
Abstract
There is a growing clinical demand in the wound care market to treat chronic wounds such as diabetic foot ulcers. Advanced cell and tissue-based products (CTPs) are often used to address challenging chronic wounds where healing has stalled. These products contain active biologics such as growth factors and cytokines as well as structural components that support and stimulate cell growth and assist in tissue regeneration. This study addresses the in vitro biologic effects of a clinically available dehydrated amniotic membrane allograft (DAMA). The broad mechanism of action results from DAMA's biologic composition that leads to stimulation of cell migration cell proliferation, and reduction of pro-inflammatory cytokines. Results show that DAMA possesses growth factors and cytokines such as EGF, FGF, PDGFs, VEGF, TGF-β, IL-8, and TIMPs 1 and 2. Furthermore, in vitro experiments demonstrate that DAMA stimulates cell proliferation, cell migration, secretion of collagen type I, and the reduction of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. This study findings are consistent with the clinical benefits previously published for DAMA and other CTPs in chronic wounds suggesting that the introduction of DAMA to non-healing, complex wounds helps to improve the wound milieu by providing essential structural components, cytokines, and growth factors to create an appropriate environment for wound healing.
Collapse
Affiliation(s)
- Marc C Moore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| | - Paul P Bonvallet
- Product Development, Integra LifeSciences, Princeton, New Jersey, 08540, USA
| | - Sita M Damaraju
- Product Development, Integra LifeSciences, Princeton, New Jersey, 08540, USA
| | - Heli N Modi
- Product Development, Integra LifeSciences, Princeton, New Jersey, 08540, USA
| | - Ankur Gandhi
- Product Development, Integra LifeSciences, Princeton, New Jersey, 08540, USA
| | - Peter S McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Shahin-Shamsabadi A, Selvaganapathy PR. A rapid biofabrication technique for self-assembled collagen-based multicellular and heterogeneous 3D tissue constructs. Acta Biomater 2019; 92:172-183. [PMID: 31085365 DOI: 10.1016/j.actbio.2019.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023]
Abstract
Although monolayer cell culture models are considered as gold standard for in vitro modeling of pathophysiological events, they cannot reconstruct in vivo like gradient of gases and nutrients and lack proper cell-cell and cell-matrix interactions. Spherical cellular aggregates, otherwise known as multicellular spheroids, are widely used as three-dimensional in vitro models to mimic natural in vivo cellular microenvironment for applications such as drug screening. Although very useful, the previously established techniques are limited to low cell numbers, their processes are usually slow, and sometimes show limitations in terms of the cell type that can be used. Here, a versatile technique based on rapid self-assembly of cells and extracellular matrix material in different shapes using microfabricated molds is introduced to form multicellular tissue constructs. The self-assembly process takes less than 6 h and produces a mechanically robust tissue construct that could be handled easily. We demonstrate that a variety of shapes including spherical, cuboidal, dumbbell- and cross-like shapes could be fabricated using this approach. Interestingly, the structures formed with non-spherical shapes were able to retain that shape even after removal from the molds and during long term cell culture. This versatile approach is applicable to a variety of cell types (breast cancer cell lines MCF-7, MDA-MB-321, Hs-578T; osteosarcoma cell line SaOS-2; endothelial cell line HUVEC) as well as a range of cell numbers (104-106). Furthermore, we also show that the constructs could be spatially patterned to position various cell types in a precisely controlled way. Such heterogeneous constructs that are formed provide physiologically relevant cell densities, 3D structure as well as close positioning of multiple types of cells that are not possible using other fabrication approaches. This fabrication approach will find significant applications in developing 3D cell culture models for drug discovery as well as tissue grafts for implantation. STATEMENT OF SIGNIFICANCE: In this manuscript we describe a method for rapid formation of tissue constructs (6 h as opposed to several days for current state of art methods). We also identify the essential factors needed for such a rapid consolidation into a construct. We demonstrate the ability to form non-spherical constructs of various shapes that retain their shape over long term as opposed to those formed with current state of art that lose their shape during long time cell culture. We also show the ability to form precise heterogeneous constructs consisting of multiple cell types and with well-defined interfaces that are not possible with current state of art methods. This method could be used with a wide variety of cell types and are mechanically robust within 6 h to be handled with tweezers. We believe that such multicellular, heterogeneous constructs would be of significant use to biologists and drug discovery researchers investigating mechanisms involved in diseases processes or the effect of drug on them.
Collapse
Affiliation(s)
| | - P Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Canada; Department of Mechanical Engineering, McMaster University, Canada.
| |
Collapse
|
19
|
Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat Rev Neurosci 2019; 20:318-329. [DOI: 10.1038/s41583-019-0148-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Abstract
Located at the interface of the circulation system and the CNS, the basement membrane (BM) is well positioned to regulate blood-brain barrier (BBB) integrity. Given the important roles of BBB in the development and progression of various neurological disorders, the BM has been hypothesized to contribute to the pathogenesis of these diseases. After stroke, a cerebrovascular disease caused by rupture (hemorrhagic) or occlusion (ischemic) of cerebral blood vessels, the BM undergoes constant remodeling to modulate disease progression. Although an association between BM dissolution and stroke is observed, how each individual BM component changes after stroke and how these components contribute to stroke pathogenesis are mostly unclear. In this review, I first briefly introduce the composition of the BM in the brain. Next, the functions of the BM and its major components in BBB maintenance under homeostatic conditions are summarized. Furthermore, the roles of the BM and its major components in the pathogenesis of hemorrhagic and ischemic stroke are discussed. Last, unsolved questions and potential future directions are described. This review aims to provide a comprehensive reference for future studies, stimulate the formation of new ideas, and promote the generation of new genetic tools in the field of BM/stroke research.
Collapse
Affiliation(s)
- Yao Yao
- Yao Yao, Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 340 Pharmacy South Building, 250 West Green Street, Athens, GA 30602, USA.
| |
Collapse
|
21
|
Post A, Wang E, Cosgriff-Hernandez E. A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Ann Biomed Eng 2018; 47:366-380. [PMID: 30488311 DOI: 10.1007/s10439-018-02171-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Sustained biomaterial thromboresistance has long been a goal and challenge in blood-contacting device design. Endothelialization is one of the most successful strategies to achieve long-term thromboresistance of blood-contacting devices, with the endothelial cell layer providing dynamic hemostatic regulation. It is well established that endothelial cell behavior is influenced by interactions with the underlying extracellular matrix (ECM). Numerous researchers have sought to exploit these interactions to generate improved blood-contacting devices by investigating the expression of hemostatic regulators in endothelial cells on various ECM coatings. The ability to select substrates that promote endothelial cell-mediated thromboresistance is crucial to advancing material design strategies to improve cardiovascular device outcomes. This review provides an overview of endothelial cell regulation of hemostasis, the major components found within the cardiovascular basal lamina, and the interactions of endothelial cells with prominent ECM components of the basement membrane. A summary of ECM-mimetic strategies used in cardiovascular devices is provided with a focus on the effects of key adhesion modalities on endothelial cell regulators of hemostasis.
Collapse
Affiliation(s)
- Allison Post
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ellen Wang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, University of Texas, 107 W. Dean Keaton, BME 3.503D, 1 University Station, C0800, Austin, TX, 78712, USA.
| |
Collapse
|
22
|
Generation and characterisation of decellularised human corneal limbus. Graefes Arch Clin Exp Ophthalmol 2018; 256:547-557. [PMID: 29392398 DOI: 10.1007/s00417-018-3904-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Limbal epithelial stem cells (LESC) reside in a niche in the corneo-scleral transition zone. Deficiency leads to pain, corneal opacity, and eventually blindness. LESC transplantation of ex-vivo expanded human LESC on a carrier such as human amniotic membrane is a current treatment option. We evaluated decellularised human limbus (DHL) as a potential carrier matrix for the transplantation of LESC. METHODS Human corneas were obtained from the local eye bank. The limbal tissue was decellularised by sodium desoxychelate and DNase solution and sterilised by γ-irradiation. Native limbus- and DHL-surface structures were assessed by scanning electron microscopy and collagen ultrastructure using transmission electron microscopy. Presence and preservation of limbal basement membrane proteins in native limbus and DHL were analysed immunohistochemically. Absence of DNA after decellularisation was assessed by Feulgen staining and DNA quantification. Presence of immune cells was explored by CD45 staining, and potential cytotoxicity was tested using a cell viability assay. RESULTS In the DHL, the DNA content was reduced from 1.5 ± 0.3 μg/mg to 0.15 ± 0.01 μg/mg; the three-dimensional structure and the arrangement of the collagen fibrils were preserved. Main basement membrane proteins such as collagen IV, laminin, and fibronectin were still present after decellularisation and γ-irradiation. CD45-expressing cells were evident neither in the native limbus nor in the DHL. DHL did not convey cytotoxicity. CONCLUSIONS The extracellular matrix (ECM) of the limbus provides a tissue specific morphology and three-dimensionality consisting of particular ECM proteins. It therefore represents a substantial component of the stem cell niche. The DHL provides a specific limbal niche surrounding, and might serve as an easily producible carrier matrix for LESC transplantation.
Collapse
|
23
|
Halfter W, Moes S, Asgeirsson DO, Halfter K, Oertle P, Melo Herraiz E, Plodinec M, Jenoe P, Henrich PB. Diabetes-related changes in the protein composition and the biomechanical properties of human retinal vascular basement membranes. PLoS One 2017; 12:e0189857. [PMID: 29284024 PMCID: PMC5746242 DOI: 10.1371/journal.pone.0189857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022] Open
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that outline epithelial cell layers, muscle fibers, blood vessels, and peripheral nerves. A well-documented histological hallmark of progressing diabetes is a major increase in vascular BM thickness. In order to investigate whether this structural change is accompanied by a change in the protein composition, we compared the proteomes of retinal vascular BMs from diabetic and non-diabetic donors by using LC-MS/MS. Data analysis showed that seventeen extracellular matrix (ECM)-associated proteins were more abundant in diabetic than non-diabetic vascular BMs. Four ECM proteins were more abundant in non-diabetic than in diabetic BMs. Most of the over-expressed proteins implicate a complement-mediated chronic inflammatory process in the diabetic retinal vasculature. We also found an up-regulation of norrin, a protein that is known to promote vascular proliferation, possibly contributing to the vascular remodeling during diabetes. Many of the over-expressed proteins were localized to microvascular aneurisms. Further, the overall stoichiometry of proteins was changed, such that the relative abundance of collagens in BMs from diabetic patients was higher than normal. Biomechanical measurements of vascular BM flat mounts using AFM showed that their outer surface was softer than normal.
Collapse
Affiliation(s)
- Willi Halfter
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Suzette Moes
- Proteomics Core Facility, Biocenter of the University of Basel, Basel, Switzerland
| | - Daphne O. Asgeirsson
- Biocenter and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Kathrin Halfter
- Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Munich, Germany
| | - Philipp Oertle
- Biocenter and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Esther Melo Herraiz
- Biocenter and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Marija Plodinec
- Biocenter and the Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Paul Jenoe
- Proteomics Core Facility, Biocenter of the University of Basel, Basel, Switzerland
| | | |
Collapse
|
24
|
Abdallah MN, Badran Z, Ciobanu O, Hamdan N, Tamimi F. Strategies for Optimizing the Soft Tissue Seal around Osseointegrated Implants. Adv Healthc Mater 2017; 6. [PMID: 28960892 DOI: 10.1002/adhm.201700549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/12/2017] [Indexed: 12/20/2022]
Abstract
Percutaneous and permucosal devices such as catheters, infusion pumps, orthopedic, and dental implants are commonly used in medical treatments. However, these useful devices breach the soft tissue barrier that protects the body from the outer environment, and thus increase bacterial infections resulting in morbidity and mortality. Such associated infections can be prevented if these devices are effectively integrated with the surrounding soft tissue, and thus creating a strong seal from the surrounding environment. However, so far, there are no percutaneous/permucosal medical devices able to prevent infection by achieving strong integration at the soft tissue-device interface. This review gives an insight into the current status of research into soft tissue-implant interface and the challenges associated with these interfaces. Biological soft/hard tissue interfaces may provide insights toward engineering better soft tissue interfaces around percutaneous devices. In this review, focus is put on the history and current findings as well as recent progress of the strategies aiming to develop a strong soft tissue seal around osseointegrated implants, such as orthopedic and dental implants.
Collapse
Affiliation(s)
- Mohamed-Nur Abdallah
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
- Division of Orthodontics; Faculty of Dentistry; Toronto University; Toronto M5G 1G6 ON Canada
| | - Zahi Badran
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
- Department of Periodontology (CHU/Rmes Inserm U1229/UIC11); Faculty of Dental Surgery; University of Nantes; Nantes 44042 France
| | - Ovidiu Ciobanu
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
| | - Nader Hamdan
- Department of Dental Clinical Sciences; Faculty of Dentistry; Dalhousie University; Halifax B3H 4R2 NS Canada
| | - Faleh Tamimi
- Division of Biomedical Sciences; Faculty of Dentistry; McGill University; Montreal H3A 1G1 QC Canada
| |
Collapse
|
25
|
Karagül Mİ, Aktaş S, Coşkun Yılmaz B, Yılmaz M, Orekici Temel G. GDF9 and BMP15 Expressions and Fine Structure Changes During Folliculogenesis in Polycystic Ovary Syndrome. Balkan Med J 2017; 35:43-54. [PMID: 28903889 PMCID: PMC5820447 DOI: 10.4274/balkanmedj.2016.1110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Polycystic ovary syndrome is the most frequently seen endocrine disorder in women of reproductive age with a prevalence of about 10%. Aims: To investigate the efficiency of growth differentiation factor 9 and bone morphogenetic protein 15 during folliculogenesis in a dehydroepiandrosterone-induced mouse Polycystic ovary syndrome model. Study Design: Animal experimentation. Methods: Mice were divided into 3 groups: control, vehicle and Polycystic ovary syndrome. Polycystic ovary syndrome model mice were developed by the injection of dehydroepiandrosterone dissolved in 0.1 mL of sesame oil. Ovarian tissues were examined for growth differentiation factor 9 and bone morphogenetic protein 15 using immunofluorescent labelling and electron microscopic examinations. Results: The immunoreactivity of growth differentiation factor 9 and bone morphogenetic protein 15 proteins decreased (p<0.05) in the Polycystic ovary syndrome group (27.73±8.43 and 24.85±7.03, respectively) compared with the control group (33.72±11.22 and 31.12±11.05, respectively) and vehicle group (33.95±10.75 and 29.99±10.72, respectively). Apoptotic changes were observed in granulosa cells, lipid vacuoles increased in Theca cells and thickening and irregularities were noted in the basal lamina of granulosa cells. An increased electron density in the zona pellucida in some of the multilaminar primary and secondary follicles in the Polycystic ovary syndrome model was also observed at the ultrastructural level. Conclusion: These results suggest that the decrease in the growth differentiation factor 9 and bone morphogenetic protein 15 expression initiated at the primary follicle stage effect the follicle development and zona pellucida structure and may cause subfertility or infertility in Polycystic ovary syndrome.
Collapse
Affiliation(s)
- Meryem İlkay Karagül
- Department of Histology and Embryology, Mersin University School of Medicine, Mersin, Turkey
| | - Savaş Aktaş
- Department of Histology and Embryology, Mersin University School of Medicine, Mersin, Turkey
| | - Banu Coşkun Yılmaz
- Department of Histology and Embryology, Mersin University School of Medicine, Mersin, Turkey
| | - Mustafa Yılmaz
- Department of Histology and Embryology, University of Health Sciences School of Medicine, İstanbul, Turkey
| | - Gülhan Orekici Temel
- Department of Biostatistics and Medical Informatics, Mersin University School of Medicine, Mersin, Turkey
| |
Collapse
|
26
|
Wilson SE, Marino GK, Torricelli AAM, Medeiros CS. Injury and defective regeneration of the epithelial basement membrane in corneal fibrosis: A paradigm for fibrosis in other organs? Matrix Biol 2017. [PMID: 28625845 DOI: 10.1016/j.matbio.2017.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myofibroblast-mediated fibrosis is important in the pathophysiology of diseases in most organs. The cornea, the transparent anterior wall of the eye that functions to focus light on the retina, is commonly affected by fibrosis and provides an optimal model due to its simplicity and accessibility. Severe injuries to the cornea, including infection, surgery, and trauma, may trigger the development of myofibroblasts and fibrosis in the normally transparent connective tissue stroma. Ultrastructural studies have demonstrated that defective epithelial basement membrane (EBM) regeneration after injury underlies the development of myofibroblasts from both bone marrow- and keratocyte-derived precursor cells in the cornea. Defective EBM permits epithelium-derived transforming growth factor beta, platelet-derived growth factor, and likely other modulators, to penetrate the stroma at sustained levels necessary to drive the development of vimentin+ alpha-smooth muscle actin+ desmin+ (V+A+D+) mature myofibroblasts and promote their persistence. Defective versus normal EBM regeneration likely relates to the severity of the stromal injury and a resulting decrease in fibroblasts (keratocytes) and their contribution of EBM components, including laminin alpha-3 and nidogen-2. Corneal fibrosis may resolve over a period of months to years if the inciting injury is eliminated through keratocyte-facilitated regeneration of normal EBM, ensuing apoptosis of myofibroblasts, and reorganization of disordered extracellular matrix by repopulating keratocytes. We hypothesize the corneal model of fibrosis associated with defective BM regeneration and myofibroblast development after epithelial or parenchymal injury may be a paradigm for the development of fibrosis in other organs where chronic injury or defective BM underlies the pathophysiology of disease.
Collapse
Affiliation(s)
- Steven E Wilson
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, United States.
| | | | | | - Carla S Medeiros
- The Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
27
|
Whole-exome sequencing in individuals with multiple cardiovascular risk factors and normal coronary arteries. Coron Artery Dis 2017; 27:257-66. [PMID: 26905423 DOI: 10.1097/mca.0000000000000357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Most studies on the genes involved in coronary artery disease (CAD) targeted individuals with angiographically or clinically proven CAD. Focusing on high-risk individuals with normal coronary arteries (NCA) may offer novel insights into the pathogenesis of CAD. We aimed to identify genes putatively protective for development of CAD. METHODS Pooled whole-exome sequencing (WES) was performed on 17 patients with multiple cardiovascular risk factors and NCA and on 17 controls with multivessel CAD. Rare NCA-unique sequence variants were subsequently individually validated using the Fluidigm platform in 100 additional CAD controls and 100 general population controls. RESULTS In total, 555 100 variants were detected in at least one WES pool in the study group and in none of the control WES pools. For second phase validation, we focused on rare, nonsynonymous variants, resulting in a total of 144 variants in 40 genes, of which 96 were selected for subsequent genotyping. Validation phase genotyping resulted in 19 variants in 16 genes that were found in the NCA group and in none of the CAD controls. The SPTBN5, NID2, and ADAMTSL4 genes harbored sequence variants in more than one CAD-protected patient and none of the 117 CAD controls. CONCLUSION Applying WES technology and focusing on individuals seemingly protected from developing CAD successfully identified 19 variants that may offer protection from CAD by undetermined mechanisms. Studying the genetics of high-risk individuals apparently protected from CAD may provide novel insights into the pathogenesis of CAD.
Collapse
|
28
|
Fleger-Weckmann A, Üstün Y, Kloepper J, Paus R, Bloch W, Chen ZL, Wegner J, Sorokin L, Langbein L, Eckes B, Zigrino P, Krieg T, Nischt R. Deletion of the epidermis derived laminin γ1 chain leads to defects in the regulation of late hair morphogenesis. Matrix Biol 2016; 56:42-56. [DOI: 10.1016/j.matbio.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 12/16/2022]
|
29
|
Kick K, Nekolla K, Rehberg M, Vollmar AM, Zahler S. New View on Endothelial Cell Migration. Arterioscler Thromb Vasc Biol 2016; 36:2346-2357. [DOI: 10.1161/atvbaha.116.307870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 10/04/2016] [Indexed: 01/14/2023]
Abstract
Objective—
Cell–matrix interactions are crucial for regulating cellular activities, such as migration. This is of special importance for morphogenic processes, such as angiogenesis (the development of new blood vessels). Most of our understanding of cell migration relies on 2-dimensional (2D) experiments. However, the awareness that 3D settings might elicit different results has increased. Knowledge about endothelial cell (EC) behavior in 3D environments and the influence of matrix composition on EC migration, in particular, is still limited.
Approach and Results—
We characterize the migration of single ECs through 2 structurally different hydrogels: spongy Matrigel and fibrillar collagen I. Our observations reveal an elongated migration phenotype in Matrigel and a rounded phenotype with pronounced cell blebs (blebs >2 µm) in collagen I, which have not previously been described in ECs. Directed migration seems to depend on Rac1 and Cdc42 in collagen, but not in Matrigel (shown using appropriate pharmacological inhibitors). By applying anti-integrin antibodies and supplementing laminin in collagen gels, we identify laminin as the main determinant of the elongated phenotype. Laminin seems to induce a morphological switch between modes of migration. As an in situ proof of principle, we performed live imaging of EC migration during vascular growth in a murine retina in the absence and presence of anti-integrin antibodies.
Conclusions—
We show that, surprisingly, ECs can evade the pharmacological inhibition of central signaling pathways involved in migration (contractility, small GTPases, and proteolysis) by shifting gears between modes of migration. This finding indicates an unexpected contextual plasticity of EC behavior.
Collapse
Affiliation(s)
- Kerstin Kick
- From the Department of Pharmacy, Pharmaceutical Biology (K.K., A.M.V., S.Z.) and Walter Brendel Centre of Experimental Medicine (K.N., M.R.), Ludwig-Maximilians-Universität, Munich, Germany
| | - Katharina Nekolla
- From the Department of Pharmacy, Pharmaceutical Biology (K.K., A.M.V., S.Z.) and Walter Brendel Centre of Experimental Medicine (K.N., M.R.), Ludwig-Maximilians-Universität, Munich, Germany
| | - Markus Rehberg
- From the Department of Pharmacy, Pharmaceutical Biology (K.K., A.M.V., S.Z.) and Walter Brendel Centre of Experimental Medicine (K.N., M.R.), Ludwig-Maximilians-Universität, Munich, Germany
| | - Angelika M. Vollmar
- From the Department of Pharmacy, Pharmaceutical Biology (K.K., A.M.V., S.Z.) and Walter Brendel Centre of Experimental Medicine (K.N., M.R.), Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Zahler
- From the Department of Pharmacy, Pharmaceutical Biology (K.K., A.M.V., S.Z.) and Walter Brendel Centre of Experimental Medicine (K.N., M.R.), Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
30
|
LeBleu VS, Macdonald B, Kalluri R. Structure and Function of Basement Membranes. Exp Biol Med (Maywood) 2016; 232:1121-9. [PMID: 17895520 DOI: 10.3181/0703-mr-72] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Basement membranes (BMs) are present in every tissue of the human body. All epithelium and endothelium is in direct association with BMs. BMs are a composite of several large glycoproteins and form an organized scaffold to provide structural support to the tissue and also offer functional input to modulate cellular function. While collagen I is the most abundant protein in the human body, type IV collagen is the most abundant protein in BMs. Matrigel is commonly used as surrogate for BMs in many experiments, but this is a tumor-derived BM–like material and does not contain all of the components that natural BMs possess. The structure of BMs and their functional role in tissues are unique and unlike any other class of proteins in the human body. Increasing evidence suggests that BMs are unique signal input devices that likely fine tune cellular function. Additionally, the resulting endothelial and epithelial heterogeneity in human body is a direct contribution of cell-matrix interaction facilitated by the diverse compositions of BMs.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
31
|
Vigier S, Gagnon H, Bourgade K, Klarskov K, Fülöp T, Vermette P. Composition and organization of the pancreatic extracellular matrix by combined methods of immunohistochemistry, proteomics and scanning electron microscopy. Curr Res Transl Med 2016; 65:31-39. [PMID: 28340694 DOI: 10.1016/j.retram.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Abstract
The epidemic expansion of diabetes is a major concern of public health. A promising treatment is the transplantation of islets of Langerhans isolated from the whole pancreas but the yields of islets isolation and the rates of successful engraftments still have to be improved to make this therapy effective. The extracellular matrix (ECM) of the pancreatic tissue is partially lost during the isolation process and a comprehensive knowledge of the pancreatic ECM composition and organization could identify targets to improve islets isolation and transplantation or highlight new therapeutics for pancreatic diseases. The organization, composition and three-dimensional architecture of the pancreatic ECM were analysed in mouse and pig by three different techniques. Laminin α-4 and β-2 chains are localized by immunohistochemistry in the exocrine tissue and inside islets of mouse pancreas but not around islets that are surrounded by an ECM made of collagen type IV and type V. Collagen type I, III, and VI were identified by proteomics as specific constituents of the pig pancreatic ECM along with the low-abundance isoforms α3(IV) α4(IV) α5(IV) and α1(V) α2(V) α3(V) of collagen type IV and type V respectively. The three-dimensional ECM architecture is analysed on decellularized mouse pancreas by scanning electron microscopy and is organized in honeycomb structures made of thin ECM fibers assembled in thicker bundles. The combination of immunohistochemistry, proteomics and scanning electron microscopy gives complementary perspective on the pancreatic ECM composition and organization. It represents a valuable toolbox for deeper investigations of ECMs and proposes clues in tissue engineering of the pancreas.
Collapse
Affiliation(s)
- S Vigier
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500, boulevard de l'Université, J1K 2R1 Sherbrooke, Québec, Canada.
| | - H Gagnon
- PhenoSwitch Bioscience, Faculty of Medicine and Health Sciences, Université de Sherbrooke, J1H 5N4 Sherbrooke, Québec, Canada
| | - K Bourgade
- Research Center on Aging, 1036, rue Belvédère Sud, J1H 4C4 Sherbrooke, Québec, Canada
| | - K Klarskov
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, J1H 5N4 Sherbrooke, Québec, Canada
| | - T Fülöp
- Research Center on Aging, 1036, rue Belvédère Sud, J1H 4C4 Sherbrooke, Québec, Canada
| | - P Vermette
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500, boulevard de l'Université, J1K 2R1 Sherbrooke, Québec, Canada
| |
Collapse
|
32
|
Coulson-Thomas VJ. The role of heparan sulphate in development: the ectodermal story. Int J Exp Pathol 2016; 97:213-29. [PMID: 27385054 DOI: 10.1111/iep.12180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
Heparan sulphate (HS) is ubiquitously expressed and is formed of repeating glucosamine and glucuronic/iduronic acid units which are generally highly sulphated. HS is found in tissues bound to proteins forming HS proteoglycans (HSPGs) which are present on the cell membrane or in the extracellular matrix. HSPGs influence a variety of biological processes by interacting with physiologically important proteins, such as morphogens, creating storage pools, generating morphogen gradients and directly mediating signalling pathways, thereby playing vital roles during development. This review discusses the vital role HS plays in the development of tissues from the ectodermal lineage. The ectodermal layer differentiates to form the nervous system (including the spine, peripheral nerves and brain), eye, epidermis, skin appendages and tooth enamel.
Collapse
|
33
|
Amenta PS, Scivoletti NA, Newman MD, Sciancalepore JP, Li D, Myers JC. Proteoglycan-Collagen XV in Human Tissues Is Seen Linking Banded Collagen Fibers Subjacent to the Basement Membrane. J Histochem Cytochem 2016; 53:165-76. [PMID: 15684329 DOI: 10.1369/jhc.4a6376.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type XV is a large collagen-proteoglycan found in all human tissues examined. By light microscopy it was localized to most epithelial and all nerve, muscle, fat and endothelial basement membrane zones except for the glomerular capillaries or hepatic/splenic sinusoids. This widespread distribution suggested that type XV may be a discrete structural component that acts to adhere basement membrane to the underlying connective tissue. To address these issues, immunogold ultrastructural analysis of type XV collagen in human kidney, placenta, and colon was conducted. Surprisingly, type XV was found almost exclusively associated with the fibrillar collagen network in very close proximity to the basement membrane. Type XV exhibited a focal appearance directly on the surface of, or extending from, the fibers in a linear or clustered array. The most common single arrangement was a bridge of type XV gold particles linking thick-banded fibers. The function of type XV in this restricted microenvironment is expected to have an intrinsic dependence upon its modification with glycosaminoglycan chains. Present biochemical characterization showed that the type XV core protein in vivo carries chains of chondroitin/dermatan sulfate alone, or chondroitin/dermatan sulfate together with heparan sulfate in a differential ratio. Thus, type XV collagen may serve as a structural organizer to maintain a porous meshwork subjacent to the basement membrane, and in this domain may play a key role in signal transduction pathways.
Collapse
Affiliation(s)
- Peter S Amenta
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School-UMDNJ, New Burnswick, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
34
|
Määttä M, Virtanen I, Burgeson R, Autio-Harmainen H. Comparative Analysis of the Distribution of Laminin Chains in the Basement Membranes in Some Malignant Epithelial Tumors: The α1 Chain of Laminin Shows a Selected Expression Pattern in Human Carcinomas. J Histochem Cytochem 2016; 49:711-26. [PMID: 11373318 DOI: 10.1177/002215540104900605] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Laminins (Ln), together with Type IV collagen and nidogen-1, form the structural integrity of the basement membranes (BM). In this study we used immunohistochemistry to show the distribution of laminin chains α1, α3, α5, β1, β2, β3, γ1, γ2, as well as Type IV collagen, in various types of carcinomas and in normal tissues. Except for diffuse gastric carcinomas and infiltrative breast carcinomas, the malignant epithelial tumor clusters were surrounded by quite a continuous BM in most tumors. These BMs comprised most abundantly Ln α5, β1, and γ1 chains. Conversely, the Ln α1 chain, a component of laminins-1 and -3, showed the most restricted distribution in BMs of both normal tissues and malignancies, being moderately present in carcinomas of thyroid gland and ovary and in intraductal carcinomas of breast. In other types of carcinomas, immunoreactivity for Ln α1 chain was found more randomly and was practically negative in carcinomas of tongue, stomach, and colon. These findings were comparable to those observed by in situ hybridization, which showed that carcinomas of thyroid gland and intraductal carcinomas of breast constitutively expressed Ln α1 mRNA and that the epithelial tumor cells were the main producers of it. The results suggest that epithelial malignancies, except for infiltrative breast and diffuse gastric carcinomas, produce more notable amounts of BM macromolecules in their growth substratum than has previously been anticipated. Corroborating their widespread distribution in normal epithelial tissues, the chains of Lns-5 and -10 are the most abundant Ln molecules in the corresponding carcinomas.
Collapse
Affiliation(s)
- M Määttä
- Department of Pathology, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
35
|
Adult neurogenesis and reproductive functions in mammals. Theriogenology 2016; 86:313-23. [PMID: 27177964 DOI: 10.1016/j.theriogenology.2016.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/21/2022]
Abstract
During adulthood, the mammalian brain retains the capacity to generate new cells and new neurons in particular. It is now well established that the birth of these new neurons occurs in well-described sites: the hippocampus and the subventricular zone of the lateral ventricle, as well as in other brain regions including the hypothalamus. In this review, we describe the canonical neurogenic niches and illustrate the functional relevance of adult-born neurons of each neurogenic niche in the reproductive physiology. More specifically, we highlight the effect of reproductive social stimuli on the neurogenic processes and conversely, the contributions of adult-born neurons to the reproductive physiology and behavior. We next review the recent discovery of a novel neurogenic niche located in the hypothalamus and the median eminence and the compelling evidence of the link existing between the new-born hypothalamic neurons and the regulation of metabolism. In addition, new perspectives on the possible involvement of hypothalamic neurogenesis in the control of photoperiodic reproductive physiology in seasonal mammals are discussed. Altogether, the studies highlighted in this review demonstrate the potential role of neurogenesis in reproductive function and emphasize the importance of increasing our knowledge on the regulation processes and the physiological relevance of these adult-born neurons. This constitutes a necessary step toward a potential manipulation of these plasticity mechanisms.
Collapse
|
36
|
Lin R, Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Res 2015; 1628:327-342. [DOI: 10.1016/j.brainres.2015.04.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023]
|
37
|
Upregulation of EMMPRIN (OX47) in Rat Dorsal Root Ganglion Contributes to the Development of Mechanical Allodynia after Nerve Injury. Neural Plast 2015; 2015:249756. [PMID: 26697232 PMCID: PMC4677233 DOI: 10.1155/2015/249756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/24/2015] [Accepted: 06/28/2015] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR), and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG) after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL) model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury.
Collapse
|
38
|
Bannazadeh Baghi H, Nauwynck HJ. Effect of equine herpesvirus type 1 (EHV-1) infection of nasal mucosa epithelial cells on integrin alpha 6 and on different components of the basement membrane. Arch Virol 2015; 161:103-10. [PMID: 26497179 DOI: 10.1007/s00705-015-2643-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/08/2015] [Indexed: 02/03/2023]
Abstract
The respiratory mucosa is the common port of entry of equine herpesvirus type 1 (EHV-1) and several other alphaherpesviruses. An important prerequisite for successful host invasion of the virus is to cross the epithelial cell layer and the underlying basement membrane barrier. In the present study, an analysis was performed to see if an EHV-1 infection of nasal mucosa epithelial cells leads to damage of the underlying extracellular matrix proteins. Nasal mucosa explants were inoculated with EHV-1 and collected at 0, 24 and 48 hours post-inoculation (hpi). Then, double immunofluorescence staining was performed to detect viral-antigen-positive cells on the one hand and integrin alpha 6, laminin, collagen IV and collagen VII on the other hand. The area of these extracellular matrix proteins was measured in regions of interest (ROIs) at a magnification of 200X by means of the software imaging system ImageJ. ROIs were defined beneath uninfected and infected regions. In uninfected regions, 22-28 % of the ROI was stained for integrin alpha 6, 18-37 % for laminin, 14-38 % for collagen IV and 18-26 % for collagen VII. In infected regions, the percentage positive for integrin alpha 6 was significantly decreased to 0.1-9 % and 0.1-6 % after 24 and 48 hours of inoculation, respectively. Infection did not alter the percentages for laminin and collagen IV. For collagen VII, an increase in the percentage (from 18-26 % to 28-39 %) could be observed underneath EHV-1-infected plaques at 48 hours of inoculation. In conclusion, the results revealed a substantial impact of EHV-1 infection on integrin alpha 6 and collagen VII, two important components of the extracellular matrix, which are associated with the basement membrane and may facilitate virus penetration via hijacked leukocytes to underlying tissues.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Laboratory of Virology, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
39
|
Halfter W, Oertle P, Monnier CA, Camenzind L, Reyes-Lua M, Hu H, Candiello J, Labilloy A, Balasubramani M, Henrich PB, Plodinec M. New concepts in basement membrane biology. FEBS J 2015; 282:4466-79. [PMID: 26299746 DOI: 10.1111/febs.13495] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/13/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022]
Abstract
Basement membranes (BMs) are thin sheets of extracellular matrix that outline epithelia, muscle fibers, blood vessels and peripheral nerves. The current view of BM structure and functions is based mainly on transmission electron microscopy imaging, in vitro protein binding assays, and phenotype analysis of human patients, mutant mice and invertebrata. Recently, MS-based protein analysis, biomechanical testing and cell adhesion assays with in vivo derived BMs have led to new and unexpected insights. Proteomic analysis combined with ultrastructural studies showed that many BMs undergo compositional and structural changes with advancing age. Atomic force microscopy measurements in combination with phenotype analysis have revealed an altered mechanical stiffness that correlates with specific BM pathologies in mutant mice and human patients. Atomic force microscopy-based height measurements strongly suggest that BMs are more than two-fold thicker than previously estimated, providing greater freedom for modelling the large protein polymers within BMs. In addition, data gathered using BMs extracted from mutant mice showed that laminin has a crucial role in BM stability. Finally, recent evidence demonstrate that BMs are bi-functionally organized, leading to the proposition that BM-sidedness contributes to the alternating epithelial and stromal tissue arrangements that are found in all metazoan species. We propose that BMs are ancient structures with tissue-organizing functions and were essential in the evolution of metazoan species.
Collapse
Affiliation(s)
- Willi Halfter
- Department of Ophthalmology, University Hospital Basel, Switzerland
| | - Philipp Oertle
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Christophe A Monnier
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Leon Camenzind
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Magaly Reyes-Lua
- Department of Ophthalmology, University Hospital Basel, Switzerland
| | - Huaiyu Hu
- Department of Neurobiology and Physiology, Upstate University Hospital, SUNY University, Syracuse, NY, USA
| | | | | | | | | | - Marija Plodinec
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland.,Department of Pathology, University Hospital Basel, Switzerland
| |
Collapse
|
40
|
Spaniol K, Metzger M, Roth M, Greve B, Mertsch S, Geerling G, Schrader S. Engineering of a Secretory Active Three-Dimensional Lacrimal Gland Construct on the Basis of Decellularized Lacrimal Gland Tissue. Tissue Eng Part A 2015. [PMID: 26222647 DOI: 10.1089/ten.tea.2014.0694] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lacrimal gland (LG) insufficiency is a main cause for severe dry eye leading to pain, visual impairment, and eventually loss of sight. Engineering of transplantable LG tissue with secretory capacity is a desirable goal. In this study, a three-dimensional decellularized LG (DC-LG) scaffold with preserved LG morphology was generated by treatment with 1% sodium deoxycholate and DNase solution using porcine LG tissue. To address clinical applicability, the primary in vitro culture of secretory active LG cells from a small tissue biopsy of 1.5 mm diameter was introduced and compared with an established isolation method by enzymatic digestion. Cells from both isolation methods depicted an epithelial phenotype, maintained their secretory capacity for up to 30 days, and exhibited progenitor cell capacity as measured by aldehyde dehydrogenase-1 activity, side population assay, and colony-forming units. Cells from passage 0 were reseeded into the DC-LG and secretory active cells migrated into the tissue. The cells resembled an LG-like morphology and the constructs showed secretory activity. These results demonstrate the possibility of engineering a secretory competent, three-dimensional LG construct using LG cells expanded from a small tissue biopsy and DC-LG as a matrix that provides the native structure and physiological niche for these cells.
Collapse
Affiliation(s)
- Kristina Spaniol
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| | - Marco Metzger
- 2 Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg and Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoscelettal Diseases ," Würzburg, Germany
| | - Mathias Roth
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| | - Burkhard Greve
- 3 Department of Radiotherapy, University of Münster , Münster, Germany
| | - Sonja Mertsch
- 4 Institute for Experimental Ophthalmology, University of Münster , Münster, Germany
| | - Gerd Geerling
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| | - Stefan Schrader
- 1 Department of Ophthalmology, University of Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
41
|
Corallo D, Trapani V, Bonaldo P. The notochord: structure and functions. Cell Mol Life Sci 2015; 72:2989-3008. [PMID: 25833128 PMCID: PMC11114051 DOI: 10.1007/s00018-015-1897-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/08/2023]
Abstract
The notochord is an embryonic midline structure common to all members of the phylum Chordata, providing both mechanical and signaling cues to the developing embryo. In vertebrates, the notochord arises from the dorsal organizer and it is critical for proper vertebrate development. This evolutionary conserved structure located at the developing midline defines the primitive axis of embryos and represents the structural element essential for locomotion. Besides its primary structural function, the notochord is also a source of developmental signals that patterns surrounding tissues. Among the signals secreted by the notochord, Hedgehog proteins play key roles during embryogenesis. The Hedgehog signaling pathway is a central regulator of embryonic development, controlling the patterning and proliferation of a wide variety of organs. In this review, we summarize the current knowledge on notochord structure and functions, with a particular emphasis on the key developmental events that take place in vertebrates. Moreover, we discuss some genetic studies highlighting the phenotypic consequences of impaired notochord development, which enabled to understand the molecular basis of different human congenital defects and diseases.
Collapse
Affiliation(s)
- Diana Corallo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Valeria Trapani
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35131 Padua, Italy
| |
Collapse
|
42
|
Hoffmann J, Marsh LM, Pieper M, Stacher E, Ghanim B, Kovacs G, König P, Wilkens H, Haitchi HM, Hoefler G, Klepetko W, Olschewski H, Olschewski A, Kwapiszewska G. Compartment-specific expression of collagens and their processing enzymes in intrapulmonary arteries of IPAH patients. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1002-13. [PMID: 25840998 DOI: 10.1152/ajplung.00383.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/26/2015] [Indexed: 11/22/2022] Open
Abstract
Alterations in extracellular matrix (ECM) have been implicated in the pathophysiology of pulmonary hypertension. Here, we have undertaken a compartment-specific study to elucidate the expression profile of collagens and their processing enzymes in donor and idiopathic pulmonary arterial hypertension (IPAH) pulmonary arteries. Predominant intimal, but also medial and perivascular, remodeling and reduced lumen diameter were detected in IPAH pulmonary arteries. Two-photon microscopy demonstrated accumulation of collagen fibers. Quantification of collagen in pulmonary arteries revealed collagen accumulation mainly in the intima of IPAH pulmonary arteries compared with donors. Laser capture-microdissected pulmonary artery profiles (intima+media and perivascular tissue) were analyzed by real-time PCR for ECM gene expression. In the intima+media of IPAH vessels, collagens (COL4A5, COL14A1, and COL18A1), matrix metalloproteinase (MMP) 19, and a disintegrin and metalloprotease (ADAM) 33 were higher expressed, whereas MMP10, ADAM17, TIMP1, and TIMP3 were less abundant. Localization of COLXVIII, its cleavage product endostatin, and MMP10, ADAM33, and TIMP1 was confirmed in pulmonary arteries by immunohistochemistry. ELISA for collagen XVIII/endostatin demonstrated significantly elevated plasma levels in IPAH patients compared with donors, whereas circulating MMP10, ADAM33, and TIMP1 levels were similar between the two groups. Endostatin levels were correlated with pulmonary arterial wedge pressure, and established prognostic markers of IPAH, right atrial pressure, cardiac index, 6-min walking distance, NH2-terminal pro-brain natriuretic peptide, and uric acid. Expression of unstudied collagens, MMPs, ADAMs, and TIMPs were found to be significantly altered in IPAH intima+media. Elevated levels of circulating collagen XVIII/endostatin are associated with markers of a poor prognosis.
Collapse
Affiliation(s)
- Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Mario Pieper
- Institute of Anatomy, University Lübeck, Lübeck, Germany and Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Elvira Stacher
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Bahil Ghanim
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Pulmonology, Medical University of Graz, Graz, Austria
| | - Peter König
- Institute of Anatomy, University Lübeck, Lübeck, Germany and Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Heinrike Wilkens
- Department of Pulmonology, Faculty of Medicine, Saarland University, Homburg/Saar, Germany
| | - Hans Michael Haitchi
- Clinical and Experimental Sciences, Faculty of Medicine, University Southampton, UK; NIHR Southampton Respiratory BioMedical Research Unit at University Hospital Southampton, NHS Foundation Trust, UK; and
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Horst Olschewski
- Department of Pulmonology, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Experimental Anesthesiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Department of Experimental Anesthesiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
43
|
Futyma K, Miotła P, Różyńska K, Zdunek M, Semczuk A, Rechberger T, Wojcierowski J. Expression of genes encoding extracellular matrix proteins: a macroarray study. Oncol Rep 2014; 32:2349-53. [PMID: 25231141 PMCID: PMC4240474 DOI: 10.3892/or.2014.3493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 11/06/2022] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs.
Collapse
Affiliation(s)
- Konrad Futyma
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Paweł Miotła
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Krystyna Różyńska
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Zdunek
- Department of Clinical Pathology, Medical University of Lublin, Lublin, Poland
| | - Andrzej Semczuk
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Rechberger
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| | - Jacek Wojcierowski
- Department of Medical Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
44
|
Characterisation of secretory calcium-binding phosphoprotein-proline-glutamine-rich 1: a novel basal lamina component expressed at cell-tooth interfaces. Cell Tissue Res 2014; 358:843-55. [PMID: 25193156 DOI: 10.1007/s00441-014-1989-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
Functional genomic screening of the rat enamel organ (EO) has led to the identification of a number of secreted proteins expressed during the maturation stage of amelogenesis, including amelotin (AMTN) and odontogenic ameloblast-associated (ODAM). In this study, we characterise the gene, protein and pattern of expression of a related protein called secretory calcium-binding phosphoprotein-proline-glutamine-rich 1 (SCPPPQ1). The Scpppq1 gene resides within the secretory calcium-binding phosphoprotein (Scpp) cluster. SCPPPQ1 is a highly conserved, 75-residue, secreted protein rich in proline, leucine, glutamine and phenylalanine. In silico data mining has revealed no correlation to any known sequences. Northern blotting of various rat tissues suggests that the expression of Scpppq1 is restricted to tooth and associated tissues. Immunohistochemical analyses show that the protein is expressed during the late maturation stage of amelogenesis and in the junctional epithelium where it localises to an atypical basal lamina at the cell-tooth interface. This discrete localisation suggests that SCPPPQ1, together with AMTN and ODAM, participates in structuring the basal lamina and in mediating attachment of epithelia cells to mineralised tooth surfaces.
Collapse
|
45
|
Zaferani A, Talsma DT, Yazdani S, Celie JWAM, Aikio M, Heljasvaara R, Navis GJ, Pihlajaniemi T, van den Born J. Basement membrane zone collagens XV and XVIII/proteoglycans mediate leukocyte influx in renal ischemia/reperfusion. PLoS One 2014; 9:e106732. [PMID: 25188209 PMCID: PMC4154753 DOI: 10.1371/journal.pone.0106732] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/09/2014] [Indexed: 01/23/2023] Open
Abstract
Collagen type XV and XVIII are proteoglycans found in the basement membrane zones of endothelial and epithelial cells, and known for their cryptic anti-angiogenic domains named restin and endostatin, respectively. Mutations or deletions of these collagens are associated with eye, muscle and microvessel phenotypes. We now describe a novel role for these collagens, namely a supportive role in leukocyte recruitment. We subjected mice deficient in collagen XV or collagen XVIII, and their compound mutant, as well as the wild-type control mice to bilateral renal ischemia/reperfusion, and evaluated renal function, tubular injury, and neutrophil and macrophage influx at different time points after ischemia/reperfusion. Five days after ischemia/reperfusion, the collagen XV, collagen XVIII and the compound mutant mice showed diminished serum urea levels compared to wild-type mice (all p<0.05). Histology showed reduced tubular damage, and decreased inflammatory cell influx in all mutant mice, which were more pronounced in the compound mutant despite increased expression of MCP-1 and TNF-α in double mutant mice compared to wildtype mice. Both type XV and type XVIII collagen bear glycosaminoglycan side chains and an in vitro approach with recombinant collagen XVIII fragments with variable glycanation indicated a role for these side chains in leukocyte migration. Thus, basement membrane zone collagen/proteoglycan hybrids facilitate leukocyte influx and tubular damage after renal ischemia/reperfusion and might be potential intervention targets for the reduction of inflammation in this condition.
Collapse
Affiliation(s)
- Azadeh Zaferani
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Ditmer T. Talsma
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Saleh Yazdani
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johanna W. A. M. Celie
- Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Mari Aikio
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Gerjan J. Navis
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jacob van den Born
- Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
46
|
McGuire JD, Walker MP, Dusevich V, Wang Y, Gorski JP. Enamel organic matrix: potential structural role in enamel and relationship to residual basement membrane constituents at the dentin enamel junction. Connect Tissue Res 2014; 55 Suppl 1:33-7. [PMID: 25158177 PMCID: PMC4537066 DOI: 10.3109/03008207.2014.923883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although mature enamel is predominantly composed of mineral, a previously uncharacterized organic matrix layer remains in the post-eruptive tissue that begins at the dentin enamel junction and extends 200-300 μm towards the outer tooth surface. Identification of the composition of this layer has been hampered by its insolubility; however, we have developed a single step method to isolate the organic enamel matrix relatively intact. After dissociative dissolution of the matrix with SDS and urea, initial characterization by Western blotting and gel zymography indicates the presence of type IV and type VII basement membrane collagens and active matrix metalloproteinase-20. When combined with data from transgenic knockout mice and from human mutations, these data suggest that the enamel organic matrix (EOM) and dentin enamel junction may have a structural and functional relationship with basement membranes, e.g. skin. To clarify this relationship, we hypothesize a "foundation" model which proposes that components of the EOM form a support structure that stabilizes the crystalline enamel layer, and bonds it to the underlying dentin along the dentin enamel junction. Since we have also co-localized an active matrix metalloproteinase to this layer, our hypothesis suggests that, under pathologic conditions, MMP-mediated degradation of the EOM could destabilize the enamel-dentin interface.
Collapse
Affiliation(s)
- Jacob D. McGuire
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mary P. Walker
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA,The Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Yong Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA,The Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Jeff P. Gorski
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA,The Center of Excellence in Musculoskeletal and Dental Tissues, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
47
|
Halfter W, Yip J. An organizing function of basement membranes in the developing nervous system. Mech Dev 2014; 133:1-10. [DOI: 10.1016/j.mod.2014.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 06/30/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
48
|
Uechi G, Sun Z, Schreiber EM, Halfter W, Balasubramani M. Proteomic View of Basement Membranes from Human Retinal Blood Vessels, Inner Limiting Membranes, and Lens Capsules. J Proteome Res 2014; 13:3693-3705. [DOI: 10.1021/pr5002065] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guy Uechi
- Proteomics
Core, Genomics and Proteomics Core laboratories, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Zhiyuan Sun
- Proteomics
Core, Genomics and Proteomics Core laboratories, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Emanuel M. Schreiber
- Proteomics
Core, Genomics and Proteomics Core laboratories, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Willi Halfter
- Department
of Neurobiology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, United States
| | - Manimalha Balasubramani
- Proteomics
Core, Genomics and Proteomics Core laboratories, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
49
|
Abstract
Intratumoral hypoxia is a common feature of solid tumors. Recent advances in cancer biology indicate that hypoxia is not only a consequence of unrestrained tumor growth, but also plays an active role in promoting tumor progression, malignancy, and resistance to therapy. Hypoxia signaling is mediated by the hypoxia-inducible factors (HIFs), which are not only stabilized under hypoxia, but also by activated oncogenes or inactivated tumor suppressors under normoxia. Hypoxia is a prominent feature of the tumor microenvironment of pancreatic tumors, also characterized by the presence of a fibrotic reaction that promotes, and is also modulated by, hypoxia. As the mechanisms by which hypoxia signaling impacts invasion and metastasis in pancreatic cancer are being elucidated, hypoxia is emerging as a key determinant of pancreatic cancer malignancy as well as an important target for therapy. Herein we present an overview of recent advances in the understanding of the impact that hypoxia has in pancreatic cancer invasion and metastasis.
Collapse
Affiliation(s)
- Angela Yuen
- Tumor Microenvironment and Metastasis Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Begoña Díaz
- Tumor Microenvironment and Metastasis Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|
50
|
Nita M, Strzałka-Mrozik B, Grzybowski A, Mazurek U, Romaniuk W. Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 2014; 20:1003-16. [PMID: 24938626 PMCID: PMC4072585 DOI: 10.12659/msm.889887] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of permanent, irreversible, central blindness (scotoma in the central visual field that makes reading and writing impossible, stereoscopic vision, recognition of colors and details) in patients over the age of 50 years in European and North America countries, and an important role is attributed to disorders in the regulation of the extracellular matrix (ECM). The main aim of this article is to present the crucial processes that occur on the level of Bruch’s membrane, with special consideration of the metalloproteinase substrates, metalloproteinase, and tissue inhibitor of metalloproteinase (TIMP). A comprehensive review of the literature was performed through MEDLINE and PubMed searches, covering the years 2005–2012, using the following keywords: AMD, extracellular matrix, metalloproteinases, tissue inhibitors of metalloproteinases, Bruch’s membrane, collagen, elastin. In the pathogenesis of AMD, a significant role is played by collagen type I and type IV; elastin; fibulin-3, -5, and -6; matrix metalloproteinase (MMP)-2, MMP-9, MMP-14, and MMP-1; and TIMP-3. Other important mechanisms include: ARMS2 and HTR1 proteins, the complement system, the urokinase plasminogen activator system, and pro-renin receptor activation. Continuous rebuilding of the extracellular matrix occurs in both early and advanced AMD, simultaneously with the dysfunction of retinal pigment epithelium (RPE) cells and endothelial cells. The pathological degradation or accumulation of ECM structural components are caused by impairment or hyperactivity of specific MMPs/TIMPs complexes, and is also endangered by the influence of other mechanisms connected with both genetic and environmental factors.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", Katowice, Poland
| | | | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, Sosnowiec, Poland
| | - Wanda Romaniuk
- Department of Ophthalmology, Medical University of Silesia, Independent Public Clinical Hospital, Katowice, Poland
| |
Collapse
|