1
|
Zhong Y, Liu F, Zhang X, Guo Q, Wang Z, Wang R. Research progress on reproductive system damage caused by high altitude hypoxia. Endocrine 2024; 83:559-570. [PMID: 38170433 DOI: 10.1007/s12020-023-03643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE The high altitude area is characterized by low pressure and hypoxia, and rapidly entering the high altitude area will cause a series of damage to the body. Some studies have shown that hypoxia can cause damage to the reproductive system. In recent years, researchers have been paying attention to the effects of hypoxia on hormone level, ovarian reserve, embryonic development, testicular development, sperm motility level, and have begun to explore its injury mechanism, but its mechanism is not clear. In this paper, the mechanism of hypoxia on the reproductive system is reviewed, which is expected to provide a new idea for solving the problem of the low fertility rate of humans and animals at high altitudes. METHODS A comprehensive PubMed search was conducted, selecting all relevant peer-reviewed English papers published before January 2022. Other relevant papers were selected from the list of references. RESULTS Studies have shown that the complete fertility rate of people living at low altitudes is 7.7, and the complete fertility rate of people living at high altitudes is 4.77, and the hypoxic environment at high altitudes reduces fertility. At the same time, high-altitude, low-oxygen environments are associated with increased infant mortality and post-neonatal mortality. To date, most studies seem to point to a correlation between anoxic exposure at high altitudes and low fertility in humans and animals. CONCLUSION Although the molecular mechanisms are not fully understood, the effects of hypoxia at high altitude on hormonal level, ovarian reserve, embryonic development, testicular development, and sperm motility and levels require further research to investigate this complex topic.
Collapse
Affiliation(s)
- Yan Zhong
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China.
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| | - Feifei Liu
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Xiaojing Zhang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| | - Qianwen Guo
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Zihan Wang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Rong Wang
- Pharmacy of the 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China.
| |
Collapse
|
2
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
3
|
Vesce F, Battisti C, Crudo M. The Inflammatory Cytokine Imbalance for Miscarriage, Pregnancy Loss and COVID-19 Pneumonia. Front Immunol 2022; 13:861245. [PMID: 35359975 PMCID: PMC8961687 DOI: 10.3389/fimmu.2022.861245] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022] Open
Abstract
Pregnancy can be defined a vascular event upon endocrine control. In the human hemo-chorial placentation the chorionic villi penetrate the wall of the uterine spiral arteries, to provide increasing amounts of nutrients and oxygen for optimal fetal growth. In any physiological pregnancy the natural maternal response is of a Th1 inflammatory type, aimed at avoiding blood loss through the arteriolar wall openings. The control of the vascular function, during gestation as in any other condition, is achieved through the action of two main types of prostanoids: prostaglandin E2 and thromboxane on the one hand (for vasoconstriction and coagulation), prostacyclin on the other (for vasodilation and blood fluidification). The control of the maternal immune response is upon the responsibility of the fetus itself. Indeed, the chorionic villi are able to counteract the natural maternal response, thus changing the inflammatory Th1 type into the anti-inflammatory Th2. Clinical and experimental research in the past half century address to inflammation as the leading cause of abortion, pregnancy loss, premature delivery and related pulmonary, cerebral, intestinal fetal syndromes. Increased level of Interleukin 6, Interleukin 1-beta, Tumor Necrosis Factor-alfa, Interferon-gamma, are some among the well-known markers of gestational inflammation. On the other side, COVID-19 pneumonia is a result of extensive inflammation induced by viral replication within the cells of the respiratory tract. As it may happen in the uterine arteries in the absence of an effective fetal control, viral pneumonia triggers pulmonary vascular coagulation. The cytokines involved in the process are the same as those in gestational inflammation. As the fetus breathes throughout the placenta, fetal death from placental thrombosis is similar to adult death from pulmonary thrombosis. Preventing and counteracting inflammation is mandatory in both conditions. The most relevant literature dealing with the above-mentioned concepts is reviewed in the present article.
Collapse
Affiliation(s)
- Fortunato Vesce
- OB & Gyn Complex Unit, Arcispedale Sant’Anna – Ferrara University, Ferrara, Italy
| | | | | |
Collapse
|
4
|
Liu Y, Hao H, Lan T, Jia R, Cao M, Zhou L, Zhao Z, Pan W. Physiological and pathological roles of Ang II and Ang- (1-7) in the female reproductive system. Front Endocrinol (Lausanne) 2022; 13:1080285. [PMID: 36619582 PMCID: PMC9817105 DOI: 10.3389/fendo.2022.1080285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
The local Renin-Angiotensin System (RAS) has been demonstrated to exist in a wide range of tissues and organs, In the female reproductive system, it is mainly found in the ovary, uterus and placenta. The RAS system is made up of a series of active substances and enzymes, in addition to the circulating endocrine renin-angiotensin system. The active peptides Angiotensin II (Ang II) and Angiotensin (1-7) (Ang-(1-7)), in particular, appear to have distinct activities in the local RAS system, which also controls blood pressure and electrolytes. Therefore, in addition to these features, angiotensin and its receptors in the reproductive system seemingly get involved in reproductive processes, such as follicle growth and development, as well as physiological functions of the placenta and uterus. In addition, changes in local RAS components may induce reproductive diseases as well as pathological states such as cancer. In most tissues, Ang II and Ang- (1-7) seem to maintain antagonistic effects, but this conclusion is not always true in the reproductive system, where they play similar functions in some physiological and pathological roles. This review investigated how Ang II, Ang- (1-7) and their receptors were expressed, localized, and active in the female reproductive system. This review also summarized their effects on follicle development, uterine and placental physiological functions. The changes of local RAS components in a series of reproductive system diseases including infertility related diseases and cancer and their influence on the occurrence and development of diseases were elucidated. This article reviews the physiological and pathological roles of Ang II and Ang- (1-7) in female reproductive system,a very intricate system of tissue factors that operate as agonists and antagonists was found. Besides, the development of novel therapeutic strategies targeting components of this system may be a research direction in future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haomeng Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Lan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Jia
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Mingya Cao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Zhou
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| | - Wensen Pan
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| |
Collapse
|
5
|
Abstract
Coronavirus disease 2019 (COVID-19) is a serious respiratory disease mediated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The worldwide spread of COVID-19 has caused millions of confirmed cases and morbidity, and the crisis has greatly affected global economy and daily life and changed our attitudes towards life. The reproductive system, as a potential target, is at a high risk of SARS-CoV-2 infection, and females are more vulnerable to viral infection compared with males. Therefore, female fertility and associated reproductive health care in the COVID-19 era need more attention. This review summarises the mechanism of SARS-CoV-2 infection in the female reproductive system and discusses the impact of the COVID-19 crisis on female fertility. Studies have proven that COVID-19 might affect female fertility and interfere with assisted reproductive technology procedures. The side effects of vaccines against the virus on ovarian reserve and pregnancy have not yet been well investigated. In the future, the female fertility after SARS-CoV-2 infection and vaccination needs more attention because of the uncertainty of COVID-19.
Collapse
|
6
|
Hashem NM, Abdelnour SA, Alhimaidi AR, Swelum AA. Potential impacts of COVID-19 on reproductive health: Scientific findings and social dimension. Saudi J Biol Sci 2021; 28:1702-1712. [PMID: 33519273 PMCID: PMC7831751 DOI: 10.1016/j.sjbs.2020.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 01/15/2023] Open
Abstract
COVID-19 virus is classified as a respiratory disease that can be mainly transmitted via respiratory droplets, however, there are recently published reports suggested its ability to transmit via sexual intercourse, assisted reproductive technology (ART) treatments, pregnancy, and nursing. Although SARS-CoV-2 mainly attacks respiratory systems, manifestations of multiple organs have been detected. A significant concern was raised about whether COVID-19 may affect female and male reproductive functions. These findings imposed more restrictions on social relationships between individuals even if inside the family, adding more physiologic load. In this context, there is a crucial need to identify the biological and behavioral reproductive risk factors associated with COVID-19 disease. Questions regarding the potential risks of sexual transmission during intercourse and/or application of ART, vertical transmission (throughout pregnancy, delivery, and breastfeeding), the health of pregnant and postpartum women, and fetal or postnatal health problems of neonates/children remain largely unanswered. The contribution of individuals to different social and economic activities depends on the maintenance of good quality life and health. The ongoing COVID-19 pandemic raised on the end of December 2019 has drastically affected different aspects of human wellbeing. The pandemic not only affected the health of individuals, but also negatively affected mental health and social interaction. This review illustrates: a) scientific findings related to the impact of the COVID-19 pandemic on the reproductive process, considering gender, hormonal balance, gonad functions, pregnancy, and ART, b) the sociosexual dimension of COVID-19 disease and precautions that should be taken to avoid infection via sexual transmission or vertical transmission, which may alleviate the fear associated with continuing normal social relationships and economic activities.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Animal and Fish Production Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmad R. Alhimaidi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
7
|
Functional Complexes of Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Receptors: Expression in Adult but Not Fetal Lung Tissue. Int J Mol Sci 2020; 21:ijms21249602. [PMID: 33339432 PMCID: PMC7766085 DOI: 10.3390/ijms21249602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a membrane peptidase and a component of the renin-angiotensin system (RAS) that has been found in cells of all organs, including the lungs. While ACE2 has been identified as the receptor for severe acute respiratory syndrome (SARS) coronaviruses, the mechanism underlying cell entry remains unknown. Human immunodeficiency virus infects target cells via CXC chemokine receptor 4 (CXCR4)-mediated endocytosis. Furthermore, CXCR4 interacts with dipeptidyl peptidase-4 (CD26/DPPIV), an enzyme that cleaves CXCL12/SDF-1, which is the chemokine that activates this receptor. By analogy, we hypothesized that ACE2 might also be capable of interactions with RAS-associated G-protein coupled receptors. Using resonance energy transfer and cAMP and mitogen-activated protein kinase signaling assays, we found that human ACE2 interacts with RAS-related receptors, namely the angiotensin II type 1 receptor (AT1R), the angiotensin II type 2 receptor (AT2R), and the MAS1 oncogene receptor (MasR). Although these interactions lead to minor alterations of signal transduction, ligand binding to AT1R and AT2R, but not to MasR, resulted in the upregulation of ACE2 cell surface expression. Proximity ligation assays performed in situ revealed macromolecular complexes containing ACE2 and AT1R, AT2R or MasR in adult but not fetal mouse lung tissue. These findings highlight the relevance of RAS in SARS-CoV-2 infection and the role of ACE2-containing complexes as potential therapeutic targets.
Collapse
|
8
|
Jing Y, Run-Qian L, Hao-Ran W, Hao-Ran C, Ya-Bin L, Yang G, Fei C. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod 2020; 26:367-373. [PMID: 32365180 PMCID: PMC7239105 DOI: 10.1093/molehr/gaaa030] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/26/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022] Open
Abstract
The 2019 novel coronavirus (2019-nCoV) appeared in December 2019 and then spread throughout the world rapidly. The virus invades the target cell by binding to angiotensin-converting enzyme (ACE) 2 and modulates the expression of ACE2 in host cells. ACE2, a pivotal component of the renin-angiotensin system, exerts its physiological functions by modulating the levels of angiotensin II (Ang II) and Ang-(1-7). We reviewed the literature that reported the distribution and function of ACE2 in the female reproductive system, hoping to clarify the potential harm of 2019-nCoV to female fertility. The available evidence suggests that ACE2 is widely expressed in the ovary, uterus, vagina and placenta. Therefore, we believe that apart from droplets and contact transmission, the possibility of mother-to-child and sexual transmission also exists. Ang II, ACE2 and Ang-(1-7) regulate follicle development and ovulation, modulate luteal angiogenesis and degeneration, and also influence the regular changes in endometrial tissue and embryo development. Taking these functions into account, 2019-nCoV may disturb the female reproductive functions through regulating ACE2.
Collapse
Affiliation(s)
- Yan Jing
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Li Run-Qian
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Wang Hao-Ran
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Chen Hao-Ran
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Liu Ya-Bin
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Gao Yang
- Department of Physiology, Jining Medical University, 272067 Jining, China
| | - Chen Fei
- Department of Physiology, Jining Medical University, 272067 Jining, China
| |
Collapse
|
9
|
Rodriguez-Perez AI, Garrido-Gil P, Pedrosa MA, Garcia-Garrote M, Valenzuela R, Navarro G, Franco R, Labandeira-Garcia JL. Angiotensin type 2 receptors: Role in aging and neuroinflammation in the substantia nigra. Brain Behav Immun 2020; 87:256-271. [PMID: 31863823 DOI: 10.1016/j.bbi.2019.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Overactivity of the angiotensin-type-1 receptor (AT1)/NADPH-oxidase axis enhances aging processes, neuroinflammation and neurodegeneration. The role of AT2 receptors in the above-mentioned AT1-related effects in the aged brain, particularly substantia nigra, was investigated in this study. In the nigra, we observed a progressive decrease in AT2 mRNA expression with aging, and AT2 deletion led to changes in spontaneous motor behavior, dopamine receptors, renin-angiotensin system, and pro-oxidative and pro-inflammatory markers similar to those observed in aged wild type (WT) mice. Both aged WT mice and young AT2 KO mice showed an increased AT1, decreased MAS receptor and increased angiotensinogen mRNA and/or protein expression, as well as upregulation of pro-oxidative and pro-inflammatory markers. In cultures of microglial cells, activation of AT2 receptors inhibited the LPS-induced increase in AT1 mRNA and protein expression and neuroinflammatory markers. Both in AT2 KO microglial cultures and microglia obtained from adult AT2 KO mice, an increase in AT1 mRNA expression was observed. In cultured dopaminergic neurons, AT2 activation down-regulated AT1 mRNA and protein, and dopaminergic neurons from adult AT2 KO mice showed upregulation of AT1 mRNA expression. Both in microglia and dopaminergic neurons the pathway AT2/nitric oxide/cyclic guanosine monophosphate mediates the regulation of the AT1 mRNA and protein expression through downregulation of the Sp1 transcription factor. MAS receptors are also involved in the regulation of AT1 mRNA and protein expression by AT2. The results suggest that an aging-related decrease in AT2 expression plays a major role in the aging-related AT1 overexpression and AT1-related pro-inflammatory pro-oxidative effects.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria A Pedrosa
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria Garcia-Garrote
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Gemma Navarro
- Laboratory of Molecular Neurobiology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rafael Franco
- Laboratory of Molecular Neurobiology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Dept. of Morphological Sciences, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
10
|
Garcia-Garrote M, Perez-Villalba A, Garrido-Gil P, Belenguer G, Parga JA, Perez-Sanchez F, Labandeira-Garcia JL, Fariñas I, Rodriguez-Pallares J. Interaction between Angiotensin Type 1, Type 2, and Mas Receptors to Regulate Adult Neurogenesis in the Brain Ventricular-Subventricular Zone. Cells 2019; 8:E1551. [PMID: 31801296 PMCID: PMC6952803 DOI: 10.3390/cells8121551] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 12/30/2022] Open
Abstract
The renin-angiotensin system (RAS), and particularly its angiotensin type-2 receptors (AT2), have been classically involved in processes of cell proliferation and maturation during development. However, the potential role of RAS in adult neurogenesis in the ventricular-subventricular zone (V-SVZ) and its aging-related alterations have not been investigated. In the present study, we analyzed the role of major RAS receptors on neurogenesis in the V-SVZ of adult mice and rats. In mice, we showed that the increase in proliferation of cells in this neurogenic niche was induced by activation of AT2 receptors but depended partially on the AT2-dependent antagonism of AT1 receptor expression, which restricted proliferation. Furthermore, we observed a functional dependence of AT2 receptor actions on Mas receptors. In rats, where the levels of the AT1 relative to those of AT2 receptor are much lower, pharmacological inhibition of the AT1 receptor alone was sufficient in increasing AT2 receptor levels and proliferation in the V-SVZ. Our data revealed that interactions between RAS receptors play a major role in the regulation of V-SVZ neurogenesis, particularly in proliferation, generation of neuroblasts, and migration to the olfactory bulb, both in young and aged brains, and suggest potential beneficial effects of RAS modulators on neurogenesis.
Collapse
MESH Headings
- Age Factors
- Angiotensin II/metabolism
- Animals
- Immunohistochemistry
- Lateral Ventricles/metabolism
- Male
- Mice
- Mice, Knockout
- Models, Biological
- Neural Stem Cells/metabolism
- Neurogenesis/genetics
- Protein Binding
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
Collapse
Affiliation(s)
- Maria Garcia-Garrote
- Laboratorio de Neurobiología Celular y Molecular de la Enfermedad de Parkinson, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Dpto. Ciencias Morfolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Ana Perez-Villalba
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Faculty of Psychology, Universidad Católica de Valencia, Valencia, 46100 Burjassot, Spain
| | - Pablo Garrido-Gil
- Laboratorio de Neurobiología Celular y Molecular de la Enfermedad de Parkinson, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Dpto. Ciencias Morfolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - German Belenguer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Juan A Parga
- Laboratorio de Neurobiología Celular y Molecular de la Enfermedad de Parkinson, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Dpto. Ciencias Morfolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Francisco Perez-Sanchez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Jose Luis Labandeira-Garcia
- Laboratorio de Neurobiología Celular y Molecular de la Enfermedad de Parkinson, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Dpto. Ciencias Morfolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Isabel Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Jannette Rodriguez-Pallares
- Laboratorio de Neurobiología Celular y Molecular de la Enfermedad de Parkinson, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Dpto. Ciencias Morfolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.G.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
11
|
Effect of Continuous Administration of Enalapril Maleate on the Oocyte Quality and In Vitro Production of Parthenote Embryos in Nulliparous and Multiparous Goats Undergoing Serial Laparoscopic Ovum Pick-Up. Animals (Basel) 2019; 9:ani9110868. [PMID: 31717727 PMCID: PMC6912557 DOI: 10.3390/ani9110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to determine the effect of enalapril maleate administration, during oocyte recovery by serial laparoscopic ovum pick-up (LOPU), on the ovarian response and in vitro embryo production (IVP). Twenty cross-bred goats were allocated equally into two groups: Nulliparous and Multiparous. In each group, five animals were selected to receive daily doses of enalapril maleate during the hormonal protocol. Estrus was synchronized by a PGF2α analog, followed 48 h later by insertion of an intravaginal device with progesterone. Forty-eight hours after, a single dose of FSH/eCG was administered. The FSH/eCG doses were repeated three times, on every four day. Oocytes were recovered by LOPU 24 h after each FSH/eCG dose. Viable oocytes were matured in vitro, to be parthenogenetically activated and cultured for 72 h to the cleavage stage. The drug treatment increased the proportion of total follicles observed at LOPU (p < 0.01) in multiparous goats. In both parity groups, enalapril administration had no effect on the proportion or quality of oocytes recovered. Furthermore, the number of embryos cleaved was similar between the groups. Thus, enalapril maleate affected the ovarian response in multiparous animals only and had no effect on the oocyte quality or IVP.
Collapse
|
12
|
Rodriguez-Perez AI, Borrajo A, Diaz-Ruiz C, Garrido-Gil P, Labandeira-Garcia JL. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging. Oncotarget 2017; 7:30049-67. [PMID: 27167199 PMCID: PMC5058663 DOI: 10.18632/oncotarget.9174] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023] Open
Abstract
The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen Diaz-Ruiz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
13
|
The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system. Cell Death Dis 2017; 8:e3044. [PMID: 28880266 PMCID: PMC5636983 DOI: 10.1038/cddis.2017.439] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022]
Abstract
The 'classical' renin-angiotensin system (RAS) is a circulating system that controls blood pressure. Local/paracrine RAS, identified in a variety of tissues, including the brain, is involved in different functions and diseases, and RAS blockers are commonly used in clinical practice. A third type of RAS (intracellular/intracrine RAS) has been observed in some types of cells, including neurons. However, its role is still unknown. The present results indicate that in brain cells the intracellular RAS counteracts the intracellular superoxide/H2O2 and oxidative stress induced by the extracellular/paracrine angiotensin II acting on plasma membrane receptors. Activation of nuclear receptors by intracellular or internalized angiotensin triggers a number of mechanisms that protect the cell, such as an increase in the levels of protective angiotensin type 2 receptors, intracellular angiotensin, PGC-1α and IGF-1/SIRT1. Interestingly, this protective mechanism is altered in isolated nuclei from brains of aged animals. The present results indicate that at least in the brain, AT1 receptor blockers acting only on the extracellular or paracrine RAS may offer better protection of cells.
Collapse
|
14
|
Dominguez-Meijide A, Rodriguez-Perez AI, Diaz-Ruiz C, Guerra MJ, Labandeira-Garcia JL. Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav Immun 2017; 62:277-290. [PMID: 28232171 DOI: 10.1016/j.bbi.2017.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 01/11/2023] Open
Abstract
Dopamine is an immunomodulatory molecule that acts on immune effector cells both in the CNS and peripheral tissues. However, the role of changes in dopamine levels in the neuroinflammatory response is controversial. The local/paracrine renin-angiotensin system (RAS) plays a major role in inflammatory processes in peripheral tissues and brain. In the present study, we investigated the possible role of the brain RAS in the effects of dopamine on the glial inflammatory responses. Astrocytes are the major source of the precursor protein angiotensinogen and angiotensin II (AII) in the brain. Neurotoxins such as MPP+ (1-methyl-4-phenylpyridinium) can act directly on astrocytes to increase levels of angiotensinogen and AII. Conversely, dopamine, via type-2 (D2) receptors, inhibited production of angiotensinogen, decreased expression of angiotensin type-1 (AT1) receptors and increased expression of AT2 receptors. In microglia, dopamine and dopamine agonists also regulated RAS activity. First, indirectly, via downregulation of the astrocyte-derived AII. Second, via dopamine-induced regulation of microglial angiotensin receptors. Dopamine decreased the microglial AT1/AT2 ratio leading to inhibition of the pro-inflammatory AT1/NADPH-oxidase/superoxide axis. D2 receptors were particularly responsible for microglial RAS inhibition in basal culture conditions. However, both D1 and D2 agonists inhibited the AT1/NADPH-oxidase axis in lipopolysaccharide-treated (LPS; i.e. activated) microglia. The results indicate that the decrease in dopamine levels observed in early stages of Parkinson's disease and aging may promote neuroinflammation and disease progression via glial RAS exacerbation.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Carmen Diaz-Ruiz
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Maria J Guerra
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
15
|
Garrido-Gil P, Rodriguez-Perez AI, Fernandez-Rodriguez P, Lanciego JL, Labandeira-Garcia JL. Expression of angiotensinogen and receptors for angiotensin and prorenin in the rat and monkey striatal neurons and glial cells. Brain Struct Funct 2017; 222:2559-2571. [PMID: 28161727 DOI: 10.1007/s00429-016-1357-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
The renin-angiotensin system (RAS) was initially considered as a circulating humoral system, which function is the regulation of blood pressure. However, it is now known that there exists local RAS in many tissues, including brain. In recent studies, we have demonstrated the presence of a local RAS in the substantia nigra of rodents and primates that modulates dopamine release and dopamine receptor expression. However, overactivation of local RAS exacerbates neuroinflammation, oxidative stress and dopaminergic cell death. In the striatum, it is not clear whether angiotensin receptors are located in dopaminergic terminals, glial cells and/or the projection neurons. The present study shows the location of major components of the RAS in striatal projection neurons of rats and monkeys (both in neurons of the direct and the indirect pathways). Striatal astrocytes and microglial cells also express major RAS components, which increase after induction of neuroinflammation by intrastriatal injection of lipopolysaccharide. Angiotensin receptors were located at the cell surface and also at cytoplasmic and nuclear levels. The results obtained by immunolabeling and confocal microscopy were confirmed with laser microdissection of striatal neurons and glial cells and detection of mRNA expression by PCR. The sequence of the resulting PCR products was verified by DNA sequencing. In addition to the interaction between angiotensin and dopamine receptors in dopaminergic neurons to regulate dopamine release, interaction between angiotensin and dopamine receptors in projection striatal neurons may further modulate the effects of dopamine on the direct and indirect pathways by fine-tuning striatal dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Patricia Fernandez-Rodriguez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Lanciego
- Neurosciences Division, CIMA, University of Navarra, Pamplona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
16
|
Valenzuela R, Costa-Besada MA, Iglesias-Gonzalez J, Perez-Costas E, Villar-Cheda B, Garrido-Gil P, Melendez-Ferro M, Soto-Otero R, Lanciego JL, Henrion D, Franco R, Labandeira-Garcia JL. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis 2016; 7:e2427. [PMID: 27763643 PMCID: PMC5133991 DOI: 10.1038/cddis.2016.327] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
The renin–angiotensin system (RAS) was initially considered as a circulating humoral system controlling blood pressure, being kidney the key control organ. In addition to the ‘classical' humoral RAS, a second level in RAS, local or tissular RAS, has been identified in a variety of tissues, in which local RAS play a key role in degenerative and aging-related diseases. The local brain RAS plays a major role in brain function and neurodegeneration. It is normally assumed that the effects are mediated by the cell-surface-specific G-protein-coupled angiotensin type 1 and 2 receptors (AT1 and AT2). A combination of in vivo (rats, wild-type mice and knockout mice) and in vitro (primary mesencephalic cultures, dopaminergic neuron cell line cultures) experimental approaches (confocal microscopy, electron microscopy, laser capture microdissection, transfection of fluorescent-tagged receptors, treatments with fluorescent angiotensin, western blot, polymerase chain reaction, HPLC, mitochondrial respirometry and other functional assays) were used in the present study. We report the discovery of AT1 and AT2 receptors in brain mitochondria, particularly mitochondria of dopaminergic neurons. Activation of AT1 receptors in mitochondria regulates superoxide production, via Nox4, and increases respiration. Mitochondrial AT2 receptors are much more abundant and increase after treatment of cells with oxidative stress inducers, and produce, via nitric oxide, a decrease in mitochondrial respiration. Mitochondria from the nigral region of aged rats displayed altered expression of AT1 and AT2 receptors. AT2-mediated regulation of mitochondrial respiration represents an unrecognized primary line of defence against oxidative stress, which may be particularly important in neurons with increased levels of oxidative stress such as dopaminergic neurons. Altered expression of AT1 and AT2 receptors with aging may induce mitochondrial dysfunction, the main risk factor for neurodegeneration.
Collapse
Affiliation(s)
- Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | - Emma Perez-Costas
- Department of Pediatrics-Pediatric Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel Melendez-Ferro
- Department of Surgery-Pediatric, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ramon Soto-Otero
- Laboratory of Neurochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Lanciego
- Neuroscience Department, Center for Applied Medical Research (CIMA, IdiSNA), University of Navarra, Pamplona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Henrion
- MITOVASC Institute, INSERM U1083, CNRS UMR6214, University of Angers, Angers, France
| | - Rafael Franco
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
17
|
Diaz-Ruiz C, Rodriguez-Perez AI, Beiroa D, Rodriguez-Pallares J, Labandeira-Garcia JL. Reciprocal regulation between sirtuin-1 and angiotensin-II in the substantia nigra: implications for aging and neurodegeneration. Oncotarget 2015; 6:26675-89. [PMID: 26384348 PMCID: PMC4694944 DOI: 10.18632/oncotarget.5596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/22/2015] [Indexed: 12/21/2022] Open
Abstract
Local angiotensin II (AII) and sirtuin 1 (SIRT1) play a major role in the modulation of neuroinflammation, oxidative stress and aging-related dopaminergic vulnerability to damage. However, it is not known whether the modulation is related to reciprocal regulation between SIRT1 and AII. In the present study, a single intraventricular injection of AII increased nigral SIRT1 levels in young adult rats. Although AII activity is known to be increased in aged rats, levels of SIRT1 were significantly lower than in young controls. Treatment with the SIRT1-activating compound resveratrol increased nigral SIRT1 levels in aged rats. Levels of SIRT1 were significantly higher in aged wild type mice than in AII type-1 receptor (AT1) deficient mice. In cell culture studies, treatment with AII also induced a transitory increase in levels of SIRT1 in the MES 23.5 dopaminergic neuron and the N9 microglial cell lines. In aged rats, treatment with resveratrol induced a significant decrease in the expression of AT1 receptors and markers of NADPH-oxidase activation (p47phox). In aged transgenic mice over-expressing SIRT1, levels of AT1 and p47 phox were lower than in aged wild type controls. In vitro, the inhibitory effects of resveratrol on AII/AT1/NADPH-oxidase activity were confirmed in primary mesencephalic cultures, the N9 microglial cell line, and the dopaminergic neuron cell line MES 23.5, and they were blocked by the SIRT1 specific inhibitor EX527. The present findings show that SIRT1 and the axis AII/AT1/NADPH-oxidase regulate each other. This is impaired in aged animals and may be mitigated with sirtuin-activating compounds.
Collapse
Affiliation(s)
- Carmen Diaz-Ruiz
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I. Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Beiroa
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Jannette Rodriguez-Pallares
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L. Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
18
|
Rodriguez-Perez AI, Borrajo A, Valenzuela R, Lanciego JL, Labandeira-Garcia JL. Critical period for dopaminergic neuroprotection by hormonal replacement in menopausal rats. Neurobiol Aging 2014; 36:1194-208. [PMID: 25432430 DOI: 10.1016/j.neurobiolaging.2014.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
The neuroprotective effects of menopausal hormonal therapy in Parkinson's disease have not yet been clarified, and it is not known whether there is a critical period. Estrogen induced significant protection against 6-hydroxydopamine-induced dopaminergic degeneration when administered immediately or 6 weeks, but not 20 weeks after ovariectomy. In the substantia nigra, ovariectomy induced a decrease in levels of estrogen receptor-α and increased angiotensin activity, NADPH-oxidase activity, and expression of neuroinflammatory markers, which were regulated by estrogen administered immediately or 6 weeks but not 20 weeks after ovariectomy. Interestingly, treatment with angiotensin receptor antagonists after the critical period induced a significant level of neuroprotection. In cultures, treatment with 1-methyl-4-phenylpyridinium induced an increase in astrocyte-derived angiotensinogen and dopaminergic neuron death, which were inhibited by estrogen receptor α agonists. In microglial cells, estrogen receptor β agonists inhibited the angiotensin-induced increase in inflammatory markers. The results suggest that there is a critical period for the neuroprotective effect of estrogen against dopaminergic cell death, and local estrogen receptor α and renin-angiotensin system play a major role.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Lanciego
- Neurosciences Division, CIMA, University of Navarra, Pamplona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
19
|
Herr D, Bekes I, Wulff C. Local Renin-Angiotensin system in the reproductive system. Front Endocrinol (Lausanne) 2013; 4:150. [PMID: 24151488 PMCID: PMC3798827 DOI: 10.3389/fendo.2013.00150] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/04/2013] [Indexed: 01/11/2023] Open
Abstract
The renin-angiotensin system (RAS) is well known as regulator of electrolytes and blood pressure. Besides this function, there are numerous studies supporting the idea of a local tissue RAS. This system controls the local activity of the different RAS family members, especially of the functional proteins Angiotensin II and Angiotensin (1-7). Those antagonistically acting proteins have been described to be expressed in different organ systems including the human reproductive tract. Therefore, this local RAS has been suspected to be involved in the control and regulation of physiological and pathological conditions in the female reproduction tract. This review of the available literature summarizes the physiological influence of the RAS on the follicular development, ovarian angiogenesis, and placental- and uterine function. In addition, in the second part the role of the RAS concerning ovarian- and endometrial cancer becomes elucidated. This section includes possible novel therapeutic strategies via inhibition of RAS-mediated tumor growth and angiogenesis. Looking at a very complex system of agonistic and antagonistic tissue factors, it may be supposed that the RAS in the female reproduction tract will be of rising scientific interest in the upcoming years.
Collapse
Affiliation(s)
- Daniel Herr
- Department of Obstetrics and Gynaecology, University of Saarland, Homburg, Germany
- *Correspondence: Daniel Herr, Department of Obstetrics and Gynecology, University of Homburg, Kirrbergerstraße 100, 66421 Homburg/Saar Germany e-mail:
| | - Inga Bekes
- Department of Obstetrics and Gynaecology, Ulm University Medical Centre, Ulm, Germany
| | - Christine Wulff
- Department of Obstetrics and Gynaecology, Ulm University Medical Centre, Ulm, Germany
| |
Collapse
|
20
|
Schwentner L, Wöckel A, Herr D, Wulff C. Is there a role of the local tissue RAS in the regulation of physiologic and pathophysiologic conditions in the reproductive tract? J Renin Angiotensin Aldosterone Syst 2011; 12:385-93. [PMID: 21824991 DOI: 10.1177/1470320311418140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The renin-angiotensin system is well known as a systemic endocrine pathway that regulates blood pressure and salt-water metabolism. In addition to the systemic renin-angiotensin system there is evidence in different species for the presence of a local tissue renin-angiotensin system, which allows local production of the bioactive peptides angiotensin II and angiotensin (1-7). The local renin-angiotensin system has been found in a variety of tissues including tissue of the human reproductive tract. Thus, it was suspected that it may have important functions in the local hormonal microenvironment. Here, a systematic literature search was undertaken to review whether there is evidence for regulatory functions of the local tissue renin-angiotensin system in the human reproductive tract under physiological and pathological conditions.
Collapse
Affiliation(s)
- Lukas Schwentner
- Department of Gynecology and Obstetrics, University Hospital Ulm, Germany
| | | | | | | |
Collapse
|
21
|
Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Lanciego JL, Labandeira-Garcia JL. Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson's disease. Exp Neurol 2010; 224:517-26. [PMID: 20580712 DOI: 10.1016/j.expneurol.2010.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have reported that the incidence of Parkinson's disease (PD) is higher in postmenopausal than in premenopausal women of similar age. Several laboratory observations have revealed that estrogen has protective effects against dopaminergic toxins. The mechanism by which estrogen protects dopaminergic neurons has not been clarified, although estrogen-induced attenuation of the neuroinflammatory response plays a major role. We have recently shown that activation of the nigral renin-angiotensin system (RAS), via type 1 (AT1) receptors, leads to NADPH complex and microglial activation and induces dopaminergic neuron death. In the present study we investigated the effect of ovariectomy and estrogen replacement on the nigral RAS and on dopaminergic degeneration induced by intrastriatal injection of 6-OHDA. We observed a marked loss of dopaminergic neurons in ovariectomized rats treated with 6-OHDA, which was significantly reduced by estrogen replacement or treatment with the AT1 receptor antagonist candesartan. We also observed that estrogen replacement induces significant downregulation of the activity of the angiotensin converting enzyme as well as downregulation of AT1 receptors, upregulation of AT2 receptors and downregulation of the NADPH complex activity in the substantia nigra in comparison with ovariectomized rats. The present results suggest that estrogen-induced down-regulation of RAS and NADPH activity may be associated with the reduced risk of PD in premenopausal women, and increased risk in conditions causing early reduction in endogenous estrogen, and that manipulation of brain RAS system may be an efficient approach for the prevention or coadjutant treatment of PD in estrogen-deficient women.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Peña Ó, Palumbo A, González-Fernández R, Hernández J, Naftolin F, Ávila J. Expression of angiotensin II type 1 (AT1) and angiotensin II type 2 (AT2) receptors in human granulosa-lutein (GL) cells: correlation with infertility diagnoses. Fertil Steril 2010; 93:1601-8. [DOI: 10.1016/j.fertnstert.2009.03.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
|
23
|
Santos CF, Akashi AE, Dionísio TJ, Sipert CR, Didier DN, Greene AS, Oliveira SHP, Pereira HJV, Becari C, Oliveira EB, Salgado MCO. Characterization of a local renin-angiotensin system in rat gingival tissue. J Periodontol 2009; 80:130-9. [PMID: 19228099 DOI: 10.1902/jop.2009.080264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The systemic renin-angiotensin system (RAS) promotes the plasmatic production of angiotensin (Ang) II, which acts through interaction with specific receptors. There is growing evidence that local systems in various tissues and organs are capable of generating angiotensins independently of circulating RAS. The aims of this study were to investigate the expression and localization of RAS components in rat gingival tissue and evaluate the in vitro production of Ang II and other peptides catalyzed by rat gingival tissue homogenates incubated with different Ang II precursors. METHODS Reverse transcription-polymerase chain reaction assessed mRNA expression. Immunohistochemical analysis aimed to detect and localize renin. A standardized fluorimetric method with tripeptide hippuryl-histidyl-leucine was used to measure tissue angiotensin-converting enzyme (ACE) activity, whereas high performance liquid chromatography showed products formed after the incubation of tissue homogenates with Ang I or tetradecapeptide renin substrate (TDP). RESULTS mRNA for renin, angiotensinogen, ACE, and Ang II receptors (AT(1a), AT(1b), and AT(2)) was detected in gingival tissue; cultured gingival fibroblasts expressed renin, angiotensinogen, and AT(1a) receptor. Renin was present in the vascular endothelium and was intensely expressed in the epithelial basal layer of periodontally affected gingival tissue. ACE activity was detected (4.95 +/- 0.89 nmol histidyl-leucine/g/minute). When Ang I was used as substrate, Ang 1-9 (0.576 +/- 0.128 nmol/mg/minute), Ang II (0.066 +/- 0.008 nmol/mg/minute), and Ang 1-7 (0.111 +/- 0.017 nmol/mg/minute) were formed, whereas these same peptides (0.139 +/- 0.031, 0.206 +/- 0.046, and 0.039 +/- 0.007 nmol/mg/minute, respectively) and Ang I (0.973 +/- 0.139 nmol/mg/minute) were formed when TDP was the substrate. CONCLUSION Local RAS exists in rat gingival tissue and is capable of generating Ang II and other vasoactive peptides in vitro.
Collapse
Affiliation(s)
- C F Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Acosta E, Peña Ó, Naftolin F, Ávila J, Palumbo A. Angiotensin II induces apoptosis in human mural granulosa-lutein cells, but not in cumulus cells. Fertil Steril 2009; 91:1984-9. [DOI: 10.1016/j.fertnstert.2008.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 04/14/2008] [Accepted: 04/14/2008] [Indexed: 11/26/2022]
|
25
|
Liu HW, Cheng B, Fu XB, Sun TZ, Li JF. Characterization of AT1 and AT2 receptor expression profiles in human skin during fetal life. J Dermatol Sci 2007; 46:221-5. [PMID: 17433630 DOI: 10.1016/j.jdermsci.2007.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
MESH Headings
- Fetus/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Humans
- Microscopy, Fluorescence
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Skin/cytology
- Skin/embryology
- Skin/metabolism
Collapse
|