1
|
Yaba A, Thalheim T, Schneider MR. The role of cell-cell and cell-matrix junctional complexes in sebaceous gland homeostasis and differentiation. Cell Commun Signal 2024; 22:445. [PMID: 39313816 PMCID: PMC11421122 DOI: 10.1186/s12964-024-01835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Sebaceous glands (SG) are essential for maintaining skin integrity, as their lipid-rich secretion (sebum) lubricates and protects the epidermis and hairs. In addition, these glands have an emerging role in immunomodulation and may affect whole-body energy metabolism, besides being an appealing model for research in topics as lipogenesis, stem cell biology and tumorigenesis. In spite of the increasing interest in studying SGs pathophysiology, sebocyte cell-cell and cell-matrix adhesion processes have been only superficially examined, and never in a systematic way. This is regrettable considering the key role of cellular adhesion in general, the specific expression pattern of indivdual junctional complexes, and the reports of structural changes in SGs after altered expression of adhesion-relevant proteins. Here, we review the available information on structural and functional aspects of cell-cell and cell-matrix junctions in sebocytes, and how these processes change under pathological conditions. This information will contribute for better understanding sebocyte differentiation and sebum secretion, and may provide hints for novel therapeutic strategies for skin diseases.
Collapse
Affiliation(s)
- Aylin Yaba
- Department of Histology and Embryology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Torsten Thalheim
- Present Address: Deutsches Biomasseforschungszentrum gGmbH, Torgauer Str. 116, 04347, Leipzig, Germany
- Interdisciplinary Centre for Bioinformatics, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Marlon R Schneider
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany.
| |
Collapse
|
2
|
Ling X, Dong S, Zhang L. Low dose TGF-β1 can improve vohwinkel syndrome by promoting the proliferation of keratinocytes. Acta Histochem 2023; 125:152010. [PMID: 36738515 DOI: 10.1016/j.acthis.2023.152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Vohwinkel syndrome (VS) is a very rare autosomal dominant disorder that can cause disability and deformity in severe cases. Mutations of the LOR (loricrin) and GJB2 (Cx26) genes have been found in VS so far. Many studies have indicated that the differentiation and growth of epidermal keratinocytes are regulated by mutant Cx26, and it may explain the pathogenesis of VS. It has been found that transforming growth factor β1 (TGF-β1) expression was lower in G130V (OE1) and D66H (OE2) mutant keratinocytes in the VS model with GJB2 mutation as compared to normal keratinocytes (NC). TGF-β is a cytokine involved in the regulation of processes like cell proliferation and differentiation in different types of cells. At present, many in vitro studies focus on TGF- β 1 inhibition of keratinocyte growth.However, the relationship between TGF-β1 and VS remains unknown. This study aimed at elucidating the role and potential pathogenic mechanism of TGF-β in VS. The results indicated that the down-regulation expression of TGF-β1 in VS was linked to cell proliferation inhibition through p-Smad3/c-myc. In contrast, low-dose TGF-β1 treatment of VS keratinocytes can improve their proliferation inhibition and up-regulate the expression Cyclin D1. This suggests that low doses of TGF-β1 can improve the proliferation of VS and provide new insights into its treatment.
Collapse
Affiliation(s)
- Xia Ling
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Shandong First Medical University, Jinan 250117, Shandong, China
| | - Shujing Dong
- Department of Dermatology, Affiliated Hospital of Shandong University of traditional Chinese Medicine, Jinan 250012, Shandong, China
| | - Li Zhang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China.
| |
Collapse
|
3
|
López-Sundh AE, Escribano-Palomino E, Feito-Rodríguez M, Tenorio J, Brizzi ME, Krasnovska Zayets K, Servera-Negra G, de Lucas-Laguna R. Keratitis-ichthyosis-deafness syndrome with lethal p.Ala88Val variant and severe hypercalcemia. Am J Med Genet A 2023; 191:253-258. [PMID: 36286624 DOI: 10.1002/ajmg.a.63005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/03/2022] [Accepted: 08/27/2022] [Indexed: 12/14/2022]
Abstract
Keratitis-ichthyosis-deafness (KID) syndrome is a rare genetic disease caused by pathogenic variants in connexin 26 (gene GJB2), which is part of the transmembrane channels of the epithelia. Connexin 26 is expressed mainly in the cornea, the sensory epithelium of the inner ear, and in the skin keratinocytes, which are the three main target organs in KID syndrome. Approximately a dozen pathogenic variants have been described to date, including some lethal forms. Patients with lethal pathogenic variants present with severe symptoms from birth and die from sepsis during the first year of life. We present a premature female patient with KID syndrome carrying the lethal p.Ala88Val pathogenic variant in GJB2. In addition to the respiratory distress associated with this variant, our patient presented severe hypercalcemia of unexplained origin refractory to treatment. This abnormality has not been reported earlier in other patients with KID syndrome with the same variant.
Collapse
Affiliation(s)
| | | | | | - Jair Tenorio
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.,Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAMs, Madrid, Spain.,ITHACA, European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Paris, France
| | | | | | | | | |
Collapse
|
4
|
Illuminating the Role of Vitamin A in Skin Innate Immunity and the Skin Microbiome: A Narrative Review. Nutrients 2021; 13:nu13020302. [PMID: 33494277 PMCID: PMC7909803 DOI: 10.3390/nu13020302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Vitamin A is a fat-soluble vitamin that plays an important role in skin immunity. Deficiencies in Vitamin A have been linked to impaired immune response and increased susceptibility to skin infections and inflammatory skin disease. This narrative review summarizes recent primary evidence that elucidates the role of vitamin A and its derivatives on innate immune regulators through mechanisms that promote skin immunity and sustain the skin microbiome.
Collapse
|
5
|
Liang J, Chen P, Li C, Li D, Wang J, Xue R, Zhang S, Ruan J, Zhang X. IL-22 Down-Regulates Cx43 Expression and Decreases Gap Junctional Intercellular Communication by Activating the JNK Pathway in Psoriasis. J Invest Dermatol 2019; 139:400-411. [PMID: 30171832 DOI: 10.1016/j.jid.2018.07.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022]
Abstract
The roles of IL-22 in the pathomechanisms of psoriasis have been well demonstrated. Gap junctional intercellular communication (GJIC) is widely known for its involvement in multiple biological and pathological processes such as growth-related events, cell differentiation, and inflammation. Here, we show that IL-22 significantly decreased GJIC and down-regulated Cx43 expression in HaCaT cells. Cx43 overexpression markedly inhibited the proliferation of and increased GJIC in HaCaT cells, but the silencing of Cx43 exerted the opposite effects. Additionally, Cx43 overexpression effectively rescued the IL-22-induced decrease in GJIC in HaCaT cells. The IL-22-induced down-regulation of Cx43 expression and decrease in GJIC can be significantly blocked by the JNK inhibitor SP600125 and by the overexpression of IL-22RA2 (which specifically binds to IL-22 and inhibits its activity), but not by the NF-κB inhibitor BAY11-7082, in HaCaT cells. Furthermore, the IL-22-induced down-regulation of Cx43 expression mediated by the JNK signaling pathway was confirmed in a mouse model of IL-22-induced psoriasis-like dermatitis. Similarly, Cx43 expression was significantly lower in the lesional skin than in the nonlesional skin of patients with psoriasis. These results suggest that IL-22 decreases GJIC by activating the JNK signaling pathway, which down-regulates Cx43 expression; this process is a possible pathomechanism of keratinocyte hyperproliferation in psoriasis.
Collapse
Affiliation(s)
- Jingyao Liang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Jianqin Wang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Rujun Xue
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Sanquan Zhang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China
| | - Jianbo Ruan
- Department of Dermatology, Jinan University Medical School Affiliated Hospital of Dongguan, Dongguan, People's Republic of China.
| | - Xibao Zhang
- Institute of Dermatology, Guangzhou Medical University, Guangzhou, People's Republic of China; Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Lilly E, Bunick CG, Maley AM, Zhang S, Spraker MK, Theos AJ, Vivar KL, Seminario-Vidal L, Bennett AE, Sidbury R, Ogawa Y, Akiyama M, Binder B, Hadj-Rabia S, Morotti RA, Glusac EJ, Choate KA, Richard G, Milstone LM. More than keratitis, ichthyosis, and deafness: Multisystem effects of lethal GJB2 mutations. J Am Acad Dermatol 2018; 80:617-625. [PMID: 30287322 DOI: 10.1016/j.jaad.2018.09.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Infant death in keratitis-ichthyosis-deafness (KID) syndrome is recognized; its association with specific genotypes and pathophysiology is inadequately understood. OBJECTIVE We sought to discover characteristics that account for poor outcomes in lethal KID syndrome. METHODS We collected 4 new cases and 9 previously reported, genotyped cases of lethal KID syndrome. We performed new molecular modeling of the lethal mutants GJB2 p.A88V and GJB2 p.G45E. RESULTS Infant death occurred in all patients with GJB2 p.G45E and p.A88V; it is unusual with other GJB2 mutations. Early death with those 2 "lethal" mutations is likely multifactorial: during life all had ≥1 serious infection; most had poor weight gain and severe respiratory difficulties; many had additional anatomic abnormalities. Structural modeling of GJB2 p.G45E identified no impact on the salt bridge previously predicted to account for abnormal central carbon dioxide sensing of GJB2 p.A88V. LIMITATIONS This clinical review was retrospective. CONCLUSION GJB2 p.G45E and p.A88V are the only KID syndrome mutations associated with uniform early lethality. Those electrophysiologically severe mutations in GJB2 reveal abnormalities in many organs in lethal KID syndrome. All patients with KID syndrome may have subtle abnormalities beyond the eyes, ears, and skin. Early genotyping of KID syndrome births will inform prognostic discussion.
Collapse
Affiliation(s)
- Evelyn Lilly
- Department of Dermatology at Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | | | - Alexander M Maley
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Shali Zhang
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Mary K Spraker
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Amy J Theos
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karina L Vivar
- Department of Dermatology and Cutaneous Surgery, University of South Florida, Tampa, Florida
| | - Lucia Seminario-Vidal
- Department of Dermatology and Cutaneous Surgery, University of South Florida, Tampa, Florida
| | - Adam E Bennett
- Department of Dermatology and Cutaneous Surgery, University of South Florida, Tampa, Florida
| | - Robert Sidbury
- Division of Dermatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Yasushi Ogawa
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Barbara Binder
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases, INSERM U1163, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Universitary Hospital, Paris, France
| | | | - Earl J Glusac
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut; Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Keith A Choate
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut; Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | - Leonard M Milstone
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Flores AF, Varela-Vazquez A, Mayan MD, Fonseca E. Expression of connexin 43 in the human hair follicle: emphasis on the connexin 43 protein levels in the bulge and through the keratinization process. J Cutan Pathol 2017; 45:8-15. [DOI: 10.1111/cup.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/13/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Angel Fernandez Flores
- Department of Cellular Pathology; Hospital El Bierzo; Ponferrada Spain
- Department of Cellular Pathology; Hospital de la Reina; Ponferrada Spain
- CellCOM-SB Group, Institute for Biomedical Research of A Coruña (INIBIC); University of A Coruña (UDC); A Coruña Spain
| | - Adrian Varela-Vazquez
- CellCOM-SB Group, Institute for Biomedical Research of A Coruña (INIBIC); University of A Coruña (UDC); A Coruña Spain
| | - Maria D. Mayan
- CellCOM-SB Group, Institute for Biomedical Research of A Coruña (INIBIC); University of A Coruña (UDC); A Coruña Spain
| | - Eduardo Fonseca
- CellCOM-SB Group, Institute for Biomedical Research of A Coruña (INIBIC); University of A Coruña (UDC); A Coruña Spain
- Department of Dermatology; University Hospital of A Coruña; A Coruña Spain
| |
Collapse
|
8
|
Effects of Retinoid Treatment on Cochlear Development, Connexin Expression and Hearing Thresholds in Mice. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2017. [DOI: 10.3390/ohbm1010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
9
|
Wong P, Laxton V, Srivastava S, Chan YWF, Tse G. The role of gap junctions in inflammatory and neoplastic disorders (Review). Int J Mol Med 2017; 39:498-506. [PMID: 28098880 PMCID: PMC5360388 DOI: 10.3892/ijmm.2017.2859] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/23/2016] [Indexed: 12/29/2022] Open
Abstract
Gap junctions are intercellular channels made of connexin proteins, mediating both electrical and biochemical signals between cells. The ability of gap junction proteins to regulate immune responses, cell proliferation, migration, apoptosis and carcinogenesis makes them attractive therapeutic targets for treating inflammatory and neoplastic disorders in different organ systems. Alterations in gap junction profile and expression levels are observed in hyperproliferative skin disorders, lymphatic vessel diseases, inflammatory lung diseases, liver injury and neoplastic disorders. It is now recognized that the therapeutic effects mediated by traditional pharmacological agents are dependent upon gap junction communication and may even act by influencing gap junction expression or function. Novel strategies for modulating the function or expression of connexins, such as the use of synthetic mimetic peptides and siRNA technology are considered.
Collapse
Affiliation(s)
- Pui Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Victoria Laxton
- Intensive Care Department, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP
| | | | - Yin Wah Fiona Chan
- School of Biological Sciences, University of Cambridge, Cambridge CB2 1AG, UK
| | - Gary Tse
- Department of Medicine and Therapeutics
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
10
|
Connexin channels in congenital skin disorders. Semin Cell Dev Biol 2016; 50:4-12. [PMID: 26775130 DOI: 10.1016/j.semcdb.2015.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022]
Abstract
Gap junctions and hemichannels comprised of connexins influence epidermal proliferation and differentiation. Significant advances in our understanding of the functional role of connexins in the skin have been made by studying the diseases caused by connexin mutations. Eleven clinically defined cutaneous disorders with an overlapping spectrum of phenotypes are caused by mutations in five different connexin genes, highlighting that disease presentation must be deciphered with an understanding of how connexin functions are affected. Increasing evidence suggests that the skin diseases produced by connexin mutations result from dominant gains of function. In palmoplantar keratoderma with deafness, the connexin 26 mutations transdominantly alter the function of wild-type connexin 43 and create leaky heteromeric hemichannels. In keratitis-ichthyosis-deafness syndrome, different connexin 26 mutations can either form dominant hemichannels with altered calcium regulation or increased calcium permeability, leading to clinical subtypes of this syndrome. It is only with detailed understanding of these subtle functional differences that we can hope to create successful pathophysiology driven therapies for the connexin skin disorders.
Collapse
|
11
|
Abstract
Connexin mutations underlie numerous human genetic diseases. Several connexin genes have been linked to skin diseases, and mechanistic studies have indicated that a gain of abnormal channel function may be responsible for pathology. The topical accessibility of the epidermal connexins, the existence of several mouse models of human skin disease, and the ongoing identification of pharmacological inhibitors targeting connexins provide an opportunity to test new therapeutic approaches.
Collapse
Affiliation(s)
- Noah A Levit
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, United States
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
12
|
Mancuso M, Leonardi S, Giardullo P, Pasquali E, Tanori M, De Stefano I, Casciati A, Naus CC, Pazzaglia S, Saran A. Oncogenic radiation abscopal effects in vivo: interrogating mouse skin. Int J Radiat Oncol Biol Phys 2013; 86:993-9. [PMID: 23755921 DOI: 10.1016/j.ijrobp.2013.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. METHODS AND MATERIALS Patched1 heterozygous (Ptch1(+/-)) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1(+/-) and Cx43(+/-) mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. RESULTS We report abscopal tumor induction in the shielded skin of Ptch1(+/-) mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. CONCLUSIONS Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.
Collapse
Affiliation(s)
- Mariateresa Mancuso
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Firestone GL, Kapadia BJ. Minireview: regulation of gap junction dynamics by nuclear hormone receptors and their ligands. Mol Endocrinol 2012; 26:1798-807. [PMID: 22935924 DOI: 10.1210/me.2012-1065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gap junctions are plasma membrane channels comprising connexin proteins that mediate intercellular permeability and communication. The presence, composition, and function of gap junctions can be regulated by diverse sets of physiological signals. Evidence from many hormone-responsive tissues has shown that connexin expression, modification, stability, and localization can be targeted by nuclear hormone receptors and their ligands through both transcriptional and nontranscriptional mechanisms. The focus of this review is to discuss molecular, cellular, and physiological studies that directly link receptor- and ligand-triggered signaling pathways to the regulation of gap junction dynamics.
Collapse
Affiliation(s)
- Gary L Firestone
- Department of Molecular and Cell Biology, 591 LSA, The University of California at Berkeley, Berkeley, California 94720-3200, USA.
| | | |
Collapse
|
14
|
Xu J, Nicholson BJ. The role of connexins in ear and skin physiology - functional insights from disease-associated mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:167-78. [PMID: 22796187 DOI: 10.1016/j.bbamem.2012.06.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/23/2012] [Accepted: 06/29/2012] [Indexed: 12/20/2022]
Abstract
Defects in several different connexins have been associated with several different diseases. The most common of these is deafness, where a few mutations in connexin (Cx) 26 have been found to contribute to over 50% of the incidence of non-syndromic deafness in different human populations. Other mutations in Cx26 or Cx30 have also been associated with various skin phenotypes linked to deafness (palmoplanta keratoderma, Bart-Pumphrey syndrome, Vohwinkel syndrome, keratitis-ichthyosis-deafness syndrome, etc.). The large array of disease mutants offers unique opportunities to gain insights into the underlying function of gap junction proteins and their channels in the normal and pathogenic physiologies of the cochlea and epidermis. This review focuses on those mutants where the impact on channel function has been assessed, and correlated with the disease phenotype, or organ function in knock-out mouse models. These approaches have provided evidence supporting a role of gap junctions and hemichannels in K(+) removal and recycling in the ear, as well as possible roles for nutrient passage, in the cochlea. In contrast, increases in hemichannel opening leading to increased cell death, were associated with several keratitis-ichthyosis-deafness syndrome skin disease/hearing mutants. In addition to providing clues for therapeutic strategies, these findings allow us to better understand the specific functions of connexin channels that are important for normal tissue function. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Ji Xu
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
15
|
Hatakeyama S, Mikami T, Habano W, Takeda Y. Expression of connexins and the effect of retinoic acid in oral keratinocytes. J Oral Sci 2012; 53:327-32. [PMID: 21959660 DOI: 10.2334/josnusd.53.327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Differential expression of members of the connexin (Cx) gap junction multigene family permits formation of gap junctions with the varied physiological properties required by different tissues. The aim of this study was to characterize connexin expression and the influence of all-trans-retinoic acid (RA) in mouse gingival epithelial cells (GE1). The cells were treated with RA, and expression of Cxs was analyzed by immunofluorescence, reverse transcriptase-polymerase chain reaction (RT-PCR), and real-time PCR. RT-PCR revealed that GE1 cells expressed mRNA for Cx26, Cx30.3, Cx31.1, Cx32, and Cx43. In addition, real-time PCR revealed that RA significantly decreased expression of Cx31.1 as compared with control. These results indicate that GE1 cells are useful in analyzing the expression of connexin molecules in oral keratinocytes from oral mucosal lesions.
Collapse
Affiliation(s)
- Setsuko Hatakeyama
- Department of Pathogenesis and Control of Oral Diseases, Division of Oral Pathology, School of Dentistry, Iwate Medical University, Iwate, Japan.
| | | | | | | |
Collapse
|
16
|
Mese G, Sellitto C, Li L, Wang HZ, Valiunas V, Richard G, Brink PR, White TW. The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome. Mol Biol Cell 2011; 22:4776-86. [PMID: 22031297 PMCID: PMC3237621 DOI: 10.1091/mbc.e11-09-0778] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mutations in the GJB2 gene (Cx26) cause deafness in humans. Most are loss-of-function mutations and cause nonsyndromic deafness. Some mutations produce a gain of function and cause syndromic deafness associated with skin disorders, such as keratitis-ichthyosis-deafness syndrome (KIDS). Cx26-G45E is a lethal mutation linked to KIDS that forms constitutively active connexin hemichannels. The pathomechanism(s) by which mutant Cx26 hemichannels perturb normal epidermal cornification are poorly understood. We created an animal model for KIDS by generating an inducible transgenic mouse expressing Cx26-G45E in keratinocytes. Cx26-G45E mice displayed reduced viability, hyperkeratosis, scaling, skin folds, and hair loss. Histopathology included hyperplasia, acanthosis, papillomatosis, increased cell size, and osteal plugging. These abnormalities correlated with human KIDS pathology and were associated with increased hemichannel currents in transgenic keratinocytes. These results confirm the pathogenic nature of the G45E mutation and provide a new model for studying the role of aberrant connexin hemichannels in epidermal differentiation and inherited connexin disorders.
Collapse
Affiliation(s)
- Gulistan Mese
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
The potency of the fs260 connexin43 mutant to impair keratinocyte differentiation is distinct from other disease-linked connexin43 mutants. Biochem J 2010; 429:473-83. [PMID: 20515445 PMCID: PMC2907710 DOI: 10.1042/bj20100155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although there are currently 62 mutants of Cx43 (connexin43) that can cause ODDD (oculodentodigital dysplasia), only two mutants have also been reported to cause palmar plantar hyperkeratosis. To determine how mutants of Cx43 can lead to this skin disease, REKs (rat epidermal keratinocytes) were engineered to express an ODDD-associated Cx43 mutant always linked to skin disease (fs260), an ODDD-linked Cx43 mutant which has been reported to sometimes cause skin disease (fs230), Cx43 mutants which cause ODDD only (G21R, G138R), a mouse Cx43 mutant linked to ODDD (G60S), a non-disease-linked truncated Cx43 mutant that is trapped in the endoplasmic reticulum (Δ244*) or full-length Cx43. When grown in organotypic cultures, of all the mutants investigated, only the fs260-expressing REKs consistently developed a thinner stratum corneum and expressed lower levels of Cx43, Cx26 and loricrin in comparison with REKs overexpressing wild-type Cx43. REKs expressing the fs260 mutant also developed a larger organotypic vital layer after acetone-induced injury and exhibited characteristics of parakeratosis. Collectively, our results suggest that the increased skin disease burden exhibited in ODDD patients harbouring the fs260 mutant is probably due to multiple additive effects cause by the mutant during epidermal differentiation.
Collapse
|
18
|
Abstract
Gap junctions allow the exchange of ions and small molecules between adjacent cells through intercellular channels formed by connexin proteins, which can also form functional hemichannels in nonjunctional membranes. Mutations in connexin genes cause a variety of human diseases. For example, mutations in GJB2, the gene encoding connexin-26 (Cx26), are not only a major cause of nonsyndromic deafness, but also cause syndromic deafness associated with skin disorders such as palmoplantar keratoderma, keratitis-ichthyosis deafness syndrome, Vohwinkel syndrome, hystrix-ichthyosis deafness syndrome and Bart-Pumphrey syndrome. The most common mutation in the Cx26 gene linked to nonsyndromic deafness is 35DeltaG, a frameshift mutation leading to an early stop codon. The large number of deaf individuals homozygous for 35DeltaG do not develop skin disease. Similarly, there is abundant experimental evidence to suggest that other Cx26 loss-of-function mutations cause deafness, but not skin disease. By contrast, Cx26 mutations that cause both skin diseases and deafness are all single amino acid changes. Since nonsyndromic deafness is predominantly a loss-of-function disorder, it follows that the syndromic mutants must show an alteration, or gain, of function to cause skin disease. Here, we summarise the functional consequences and clinical phenotypes resulting from Cx26 mutations that cause deafness and skin disease.
Collapse
|
19
|
Riau AK, Barathi VA, Beuerman RW. Mucocutaneous junction of eyelid and lip: a study of the transition zone using epithelial cell markers. Curr Eye Res 2009; 33:912-22. [PMID: 19085373 DOI: 10.1080/02713680802485147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The expression of epithelial cell markers in the mouse eyelid and lip was investigated in order to understand the nature of the interactions of mucosal and skin epithelium as to how they form the mucocutaneous junction (MCJ). METHODS Cryosections of eyelid and lip tissue from normal mice were examined immunohistochemically with cytokeratins (CKs): CK1, CK4, CK5, CK6, CK10, CK13, CK14, and CK19; filaggrin; involucrin; and connexin 43. RESULTS The expression pattern varied across the MCJ, with the absence of CK1, CK10, and filaggrin in the mucosal epithelium; and CK4, CK6, and CK13 in the skin epidermis. CK5 and CK14 were consistently expressed in full-thickness skin, MCJ, and mucosa. CK19 was expressed basally, while involucrin-positive cells were found superficially in skin, MCJ, and mucosa. Connexin 43 was present in the MCJ, skin, and labial mucosa; however, little to no expression was seen in the palpebral conjunctiva. CONCLUSION The MCJ may be a focal point of mucosal epithelial cell differentiation activities. The similarity of staining patterns in the eyelid and lip suggests that the formation of these sites of shared interaction between the internal and external environment employs similar cellular mechanisms.
Collapse
|
20
|
Langlois S, Cowan KN, Shao Q, Cowan BJ, Laird DW. Caveolin-1 and -2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol Biol Cell 2007; 19:912-28. [PMID: 18162583 DOI: 10.1091/mbc.e07-06-0596] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Connexin43 (Cx43) has been reported to interact with caveolin (Cav)-1, but the role of this association and whether other members of the caveolin family bind Cx43 had yet to be established. In this study, we show that Cx43 coimmunoprecipitates and colocalizes with Cav-1 and Cav-2 in rat epidermal keratinocytes. The colocalization of Cx43 with Cav-1 was confirmed in keratinocytes from human epidermis in vivo. Our mutation and Far Western analyses revealed that the C-terminal tail of Cx43 is required for its association with Cavs and that the Cx43/Cav-1 interaction is direct. Our results indicate that newly synthesized Cx43 interacts with Cavs in the Golgi apparatus and that the Cx43/Cavs complex also exists at the plasma membrane in lipid rafts. Using overexpression and small interfering RNA approaches, we demonstrated that caveolins regulate gap junctional intercellular communication (GJIC) and that the presence of Cx43 in lipid raft domains may contribute to the mechanism modulating GJIC. Our results suggest that the Cx43/Cavs association occurs during exocytic transport, and they clearly indicate that caveolin regulates GJIC.
Collapse
Affiliation(s)
- Stéphanie Langlois
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
21
|
Zimmerli SC, Masson F, Cancela J, Meda P, Hauser C. Cutting edge: Lack of evidence for connexin-43 expression in human epidermal Langerhans cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:4318-21. [PMID: 17878326 DOI: 10.4049/jimmunol.179.7.4318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A provocative study has shown that viral peptides may be transferred in vitro from epithelial cells to APC through connexin-43 gap junction channels. In support of this cross-presentation pathway, the study also reported that human dendritic cells, including Langerhans cells of skin, express connexin-43. In this report we show that if this was the case, the levels of connexin-43 are below those detectable by immunofluorescence, flow cytometry, quantitative PCR of purified CD1a+ cells, and electron microscopy, raising questions about the relevance of the connexin-43-dependent mechanism for Langerhans cells of noninflamed human skin.
Collapse
Affiliation(s)
- Simone C Zimmerli
- Division of Immunology and Allergy, Department of Internal Medicine, Geneva University Hospitals and Medical School, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Thomas T, Shao Q, Laird DW. Differentiation of Organotypic Epidermis in the Presence of Skin Disease-Linked Dominant-Negative Cx26 Mutants and Knockdown Cx26. J Membr Biol 2007; 217:93-104. [PMID: 17638039 DOI: 10.1007/s00232-007-9036-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
In this study, we chose a differentiation-competent rat epidermal keratinocyte (REK) cell line to examine the role of Cx26 and disease-linked Cx26 mutants in organotypic epidermal differentiation. First, we generated stable REK cell lines expressing three skin disease-linked mutants (G59A, D66H and R75W). Second, we used an RNAi approach to knock down the expression of Cx26 in REKs. Interestingly, the three-dimensional (3D) architecture of the organotypic epidermis altered the intracellular spatial distribution of the mutants in comparison to 2D cultured REKs, highlighting the importance of using organotypic cultures. Unexpectedly, the presence of disease-linked mutants or the overexpression of wild-type Cx26 had little effect on the differentiation of the organotypic epidermis as determined by the architecture of the epidermis, expression of molecular markers indicative of epidermis differentiation (keratin 10, keratin 14, involucrin, loricrin) and stratification/cornification of the epidermis. Likewise, organotypic epidermis continued to differentiate normally upon Cx26 knockdown. While Cx26 has been reported to be upregulated during wound healing, no reduction in wound closure was observed in 2D REK cultures that expressed loss-of-function, dominant Cx26 mutants. In conclusion, we demonstrate that gain or loss of Cx26 function does not disrupt organotypic epidermal differentiation and offer insights into why patients harboring Cx26 mutations do not frequently present with more severe disease that encompasses thin skin.
Collapse
Affiliation(s)
- Tamsin Thomas
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
23
|
Yoo S, Simzar S, Han K, Takahashi S, Cotliar R. Erythrokeratoderma variabilis successfully treated with topical tazarotene. Pediatr Dermatol 2006; 23:382-5. [PMID: 16918639 DOI: 10.1111/j.1525-1470.2006.00252.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Erythrokeratoderma variabilis, also known as Mendes da Costa syndrome, is a genodermatosis belonging to the group of diseases known as the erythrokeratodermias. Erythrokeratoderma variabilis is characterized by two distinctive manifestations: well-demarcated, variable, transient, figurate patches of erythema, and localized or generalized hyperkeratotic plaques. Treatments include topical retinoic acid, salicylic acid, and alpha-hydroxy acid in petrolatum, but all have been reported to have limited, variable success rates. We report a child with erythrokeratoderma variabilis with no family history of this entity, successfully treated with topical tazarotene.
Collapse
Affiliation(s)
- Stephen Yoo
- Department of Dermatology, University of Texas Southwestern, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
24
|
King TJ, Bertram JS. Connexins as targets for cancer chemoprevention and chemotherapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:146-60. [PMID: 16263076 DOI: 10.1016/j.bbamem.2005.08.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/25/2005] [Accepted: 08/31/2005] [Indexed: 02/02/2023]
Abstract
Cells within a tissue continuously interact to coordinate normal tissue functions and maintain homeostasis. Gap junctional communication (GJC), mediated by the connexin protein family, allows this type of intercellular crosstalk resulting in synchronized and cooperative tissue behavior such as cardiac contraction. In cancer, loss of these types of cell:cell interactions has been shown to facilitate tumorigenesis and enable the autonomous cell behavior associated with transformed cells. Indeed, many human tumor lines demonstrate deficient or aberrant GJC and/or loss of connexin expression. Restoration of exogenous connexin expression/GJC function is correlated with increased cell growth control both in vitro and in vivo. In support of this growth regulatory hypothesis, decreased connexin expression has been observed in situ in early human neoplasia of various organs. Additionally, genetically engineered mice lacking particular connexins (Connexins 32 or 43) exhibit increased susceptibility to radiation and chemically-induced liver and/or lung tumorigenesis. These studies strongly suggest that connexins and GJC serve a tumor suppressor role. Consistent with this proposed role, in a model cell culture system, retinoids and carotenoids up-regulate Connexin43 (Cx43) expression in direct proportion to their ability to suppress carcinogen-induced neoplastic transformation. Here, we discuss the important role of connexins and GJC in tumorigenesis and suggest the possibility of connexins as potential anti-oncogenic targets for chemoprevention and/or chemotherapy.
Collapse
|
25
|
Haass NK, Wladykowski E, Kief S, Moll I, Brandner JM. Differential induction of connexins 26 and 30 in skin tumors and their adjacent epidermis. J Histochem Cytochem 2005; 54:171-82. [PMID: 16046668 DOI: 10.1369/jhc.5a6719.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gap junctions (GJs) have been shown to play a role in tumor progression including a variety of keratinocyte-derived and non-keratinocyte-derived skin tumors. Here we show that the synthesis of the GJ proteins connexin 26 and connexin 30 (Cx26 and Cx30) is induced in keratinocyte-derived epithelial skin tumors whereas there is either no change or a downregulation of Cx43. Cx26, Cx30, and Cx43 are absent in non-epithelial skin tumors. Further, Cx26 and Cx30 are induced in the epidermis adjacent to malignant melanoma but absent in the epidermis adjacent to benign non-epithelial skin lesions (melanocytic nevi and angioma). The keratinocyte-derived skin tumors are very heterogeneous regarding the Cx26/Cx30 pattern in the epidermis at the periphery of the tumors. We did not observe any difference in the localization of the very similar proteins Cx26 and Cx30 but a variation in intensity of immunoreactivity. As the staining patterns of Cx26 and Cx30 antibodies are not identical to those of CK6, a marker for hyperproliferation, and CK17, a marker for trauma, we discuss that the induction of these gap junctional proteins exceeds a reflection of reactive hyperproliferative or traumatized epidermis. We further discuss the putative roles of these gap junctional proteins in tumor progression.
Collapse
Affiliation(s)
- Nikolas K Haass
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
26
|
Richard G, Brown N, Ishida-Yamamoto A, Krol A. Expanding The Phenotypic Spectrum of Cx26 Disorders: Bart–Pumphrey Syndrome is Caused by a Novel Missense Mutation in GJB2. J Invest Dermatol 2004; 123:856-63. [PMID: 15482471 DOI: 10.1111/j.0022-202x.2004.23470.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bart-Pumphrey syndrome (BPS) is an autosomal dominant disorder characterized by sensorineural hearing loss, palmoplantar keratoderma, knuckle pads, and leukonychia, which show considerable phenotypic variability. The clinical features partially overlap with Vohwinkel syndrome and Keratitis-Ichthyosis-Deafness syndrome, both disorders caused by dominant mutations in the GJB2 gene encoding the gap junction protein connexin-26, suggesting an etiological relationship. We report here a novel GJB2 mutation N54K segregating in a family with BPS, which was not detected in 110 control individuals of Northern European ancestry. This non-conservative missense mutation lies within a cluster of pathogenic GJB2 mutations affecting the evolutionary conserved first extracellular loop of Cx26 important for docking of connexin hemichannels and voltage gating. Immunostaining of Cx26 in lesional palmar and knuckle skin was weak or absent, although its adnexal expression appeared normal and the punctate membrane staining of Cx26 and other epidermal connexins was not altered. Nevertheless, the widespread immunostaining of Cx30 throughout the spinous cell layers suggested a compensatory overexpression. Our results emphasize that pleiotropic GJB2 mutations are responsible for at least 5 overlapping dermatological disorders associated with syndromic hearing loss and cover a wide range of severity and organ involvement.
Collapse
Affiliation(s)
- Gabriele Richard
- Department of Dermatology and Cutaneous Biology, and Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | |
Collapse
|
27
|
Gerido DA, White TW. Connexin disorders of the ear, skin, and lens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1662:159-70. [PMID: 15033586 DOI: 10.1016/j.bbamem.2003.10.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 10/08/2003] [Accepted: 10/08/2003] [Indexed: 12/31/2022]
Abstract
Gap junctions provide coupled cells with a direct pathway for sharing ions, nutrients, and small metabolites, thus helping to maintain homeostasis in various tissues. Abnormal function and/or expression of specific connexin genes has been linked to several diseases, including genetic deafness, skin disease, peripheral neuropathies, and cataracts. Research has provided significant insight into the function of gap junction proteins in both in vitro and in vivo models; however, questions regarding the exact mechanisms by which connexin related diseases occur in mammalian systems remain. Here, we discuss the disease states that are related to three human connexin genes, Cx26 (GJB2), Cx46 (GJA3) and Cx50 (GJA8), and recent scientific evidence characterizing those diseases in various experimental models.
Collapse
Affiliation(s)
- Dwan A Gerido
- Department of Physiology and Biophysics, State University of New York, T5-147, Basic Science Tower, Stony Brook, NY 11794-8661, USA
| | | |
Collapse
|
28
|
Brandner JM, Houdek P, Hüsing B, Kaiser C, Moll I. Connexins 26, 30, and 43: Differences Among Spontaneous, Chronic, and Accelerated Human Wound Healing. J Invest Dermatol 2004; 122:1310-20. [PMID: 15140236 DOI: 10.1111/j.0022-202x.2004.22529.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gap junctions (GJ) are known to be involved in spontaneous wound healing in rodent skin. We analyzed the staining patterns of the GJ proteins Cx26, Cx30, and Cx43 in human cutaneous wound healing and compared ex vivo spontaneous wound healing to non-healing wounds (chronic leg ulcers) and to ex vivo accelerated wound healing after transplantation of cultured keratinocytes. We demonstrate a loss of Cx43 staining at the wound margins during initial wound healing and after transplantation of keratinocytes. In contrast, Cx43 remains present at the margins of most non-healing wounds. We show a subsequent induction of Cx26 and Cx30 near the wound margins in spontaneous wound healing and-even earlier-after the transplantation of keratinocytes. The cells at the wound margins remain negative until the commencement of epidermal regeneration. Cx26/30 are present at the wound margins of most non-healing wounds. Cx stainings are absent in the transplanted keratinocytes during early wound healing, but there is a subsequent induction. Our results suggest that the downregulation of Cx43 is an important event in human wound healing. We discuss the assumption that direct cell-cell communication via GJ contribute to the acceleration of wound healing after the transplantation of keratinocytes.
Collapse
Affiliation(s)
- Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
29
|
Thomas T, Telford D, Laird DW. Functional Domain Mapping and Selective Trans-dominant Effects Exhibited by Cx26 Disease-causing Mutations. J Biol Chem 2004; 279:19157-68. [PMID: 14978038 DOI: 10.1074/jbc.m314117200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in Cx26 are a major cause of autosomal dominant and recessive forms of sensorineural deafness. Some mutations in Cx26 are associated not only with deafness but also with skin disease. We examined the subcellular localization and function of two green fluorescent protein (GFP)-tagged Cx26 point mutants that exhibit both phenotypes, G59A-GFP and D66H-GFP. D66H-GFP was retained within the brefeldin A-insensitive trans-Golgi network, whereas a population of G59A-GFP was transported to the cell surface. Neither G59A nor D66H formed gap junctions that were permeable to small fluorescent dyes, suggesting they are loss-of-function mutations. When co-expressed with wild-type Cx26, both G59A and D66H exerted dominant-negative effects on Cx26 function. G59A also exerted a trans-dominant negative effect on co-expressed wild type Cx32 and Cx43, whereas D66H exerted a trans-dominant negative effect on Cx43 but not Cx32. We propose that the severity of the skin disease is dependent on the specific nature of the Cx26 mutation and the trans-dominant selectivity of the Cx26 mutants on co-expressed connexins. Additional systematic mutations at residue D66, in which the overall charge of this motif was altered, suggested that the first extracellular loop is critical for Cx26 transport to the cell surface as well as function of the resulting gap junction channels.
Collapse
Affiliation(s)
- Tamsin Thomas
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
30
|
Matic M, Simon M. Label-retaining cells (presumptive stem cells) of mice vibrissae do not express gap junction protein connexin 43. J Investig Dermatol Symp Proc 2003; 8:91-5. [PMID: 12895002 DOI: 10.1046/j.1523-1747.2003.12179.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated whether connexin 43, a gap junction protein present in human epidermis and mouse hair follicle, can serve as a negative marker for keratinocyte stem cells. Experiments carried out in mouse pelage and vibrissae hair follicles demonstrated that most of the slowly cycling cells, detected as label-retaining cells, do not express connexin 43. In humans, cells with immunohistochemically undetectable levels of connexin 43 are found in the epidermal basal layer of neonatal foreskin, and in the follicular bulge region. About 10% of the basal keratinocytes are connexin 43 negative, as determined by flow cytometry. These cells are uniformly small and low in granularity suggesting that presumptive keratinocyte stem cells can be identified and separated based on connexin 43 expression.
Collapse
Affiliation(s)
- Maja Matic
- Department of Oral Biology and Pathology, Health Science Center, SUNY at Stony Brook, NY 11794, USA.
| | | |
Collapse
|
31
|
Wiszniewski L, Salomon D, Meda P. Cx26 affects the in vitro reconstruction of human epidermis. CELL COMMUNICATION & ADHESION 2003; 8:409-13. [PMID: 12064627 DOI: 10.3109/15419060109080762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To study the function of connexins in human keratinocytes, we have used a three-dimensional culture system, in which a tissue is reconstructed using cells from the outer root sheet of hair follicles. This tissue reproduces in vitro the histological organisation of human epidermis in situ and the normal distribution of several keratinocyte markers. Furthermore, it shows characteristics of a differentiating epidermis, including the expression of connexin26. Connexin26 protein expression is increased under physiological and pathological conditions resulting in increased keratinocyte turnover. Loss of this protein in keratinocytes, obtained from patients carrying a stop mutation, resulted in a reduced stratification of the in vitro reconstructed tissue, probably due to a lower proliferation and migration capacity of the keratinocytes, although dye coupling and persistence of other gap junctions is maintained. No changes were seen in tissues reconstructed with keratinocytes from patients carrying a non stop mutation of connexin30. The data indicate that, at least in vitro, connexin26 affects the function of human keratinocytes, independently of obvious changes in coupling.
Collapse
Affiliation(s)
- L Wiszniewski
- Department of Morphology, University of Geneva, Genève, Switzerland
| | | | | |
Collapse
|
32
|
Kimyai-Asadi A, Kotcher LB, Jih MH. The molecular basis of hereditary palmoplantar keratodermas. J Am Acad Dermatol 2002; 47:327-43; quiz 344-6. [PMID: 12196741 DOI: 10.1067/mjd.2002.124814] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, the gene defects causing many types of hereditary palmoplantar keratoderma have been discovered. These genes encode a variety of proteins involved in the terminal differentiation of keratinocytes and the formation of the cornified cell envelope. In this article, we review the molecular defects underlying various palmoplantar keratodermas with particular attention to the role of these molecules in the terminal differentiation of palmoplantar epidermis. Of the proteins involved in keratodermas, loricrin, keratins, and desmosomal proteins provide the protein structure of the cornified cell envelope. Connexins form intercellular gap junctions, which regulate ionic calcium signals necessary for the expression of the proteins that form the cornified cell envelope. Cathepsins likely mediate enzymatic processes necessary for the formation and dissolution of the cornified cell envelope. The clinical phenotypes produced by various mutations affecting these proteins are discussed vis-à-vis data from genetic, cellular, and molecular experiments.
Collapse
Affiliation(s)
- Arash Kimyai-Asadi
- Ronald O. Perelman Department of Dermatology, The New York University School of Medicine, New York, USA
| | | | | |
Collapse
|
33
|
Diestel S, Richard G, Döring B, Traub O. Expression of a connexin31 mutation causing erythrokeratodermia variabilis is lethal for HeLa cells. Biochem Biophys Res Commun 2002; 296:721-8. [PMID: 12176042 DOI: 10.1016/s0006-291x(02)00929-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The autosomal dominant skin disorder erythrokeratodermia variabilis (EKV) has been linked to mutations in the human connexin31 (hCx31) gene, which is expressed in the epidermis. We characterized and compared a pathogenic mutation resulting in replacement of amino acid glycine 12 with arginine (G12R) with wild-type hCx31 protein. HeLa cells were transfected with wild-type and mutant hCx31 cDNA, respectively, using different-constitutive and inducible-vector systems. Independent of the expression vector, wild-type and mutant hCx31 were expressed at comparative levels and localized at the plasma membranes. Mutated channels (hCx31G12R) showed higher conductance in dye coupling studies than wild type channels. Furthermore, HeLa cells died within 5 days after constitutive expression of the mutant protein. Using an inducible expression system, we demonstrated a direct correlation between survival/life span of transfected HeLa cells and expression level of the mutant protein, indicating a gain-of-function mechanism due to a defective channel closure mechanism.
Collapse
Affiliation(s)
- Simone Diestel
- Department of Biochemistry, Institute of Animal Anatomy and Physiology, University of Bonn, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
34
|
García-Fernández RA, Pérez-Martínez C, Escudero-Diez A, García-Iglesias MJ. Effects of in utero retinoic acid exposure on mouse pelage hair follicle development. Vet Dermatol 2002; 13:157-63. [PMID: 12074705 DOI: 10.1046/j.1365-3164.2002.00289.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated in vivo the histological and immunohistochemical responses of mouse hair pelage follicle morphogenesis to prenatal exposure to a potentially nonteratogenic dose of all-trans-retinoic acid (RA), as a basis studying the preventive effect of RA on adult mouse skin carcinogenesis. In pregnant mice, a single oral dose of RA at 30 mg kg-1 body weight given on day 11.5 of gestation caused no RA-induced changes in the morphology or temporal expression patterns of keratins during pelage hair follicle morphogenesis. The only differential effect of RA was a statistically significant increase in the number of BrdU-positive nuclei in hair bulbs from RA exposed fetuses compared with nonexposed mice. The absence of adverse RA effects suggests that this experimental design may represent a valuable protocol for use in studies on the in vivo effects of this retinoid on different skin diseases.
Collapse
Affiliation(s)
- Rosa A García-Fernández
- Histology and Pathological Anatomy Section, Department of Animal Pathology, Animal Medicine, Faculty of Veterinary Science, University of León, Spain
| | | | | | | |
Collapse
|
35
|
Abstract
Although enrichment of putative epidermal stem cells has been achieved, a need for additional markers that can enable isolation of live keratinocytes is crucial for characterization of these cells. Earlier work has shown that connexin proteins are absent from basal cells in the limbal epithelium, a region of the corneal epithelium enriched in corneal stem cells. Accordingly, we investigated whether connexin 43, a gap junction protein present in the basal layer of normal human epidermis, can serve as a negative marker for keratinocyte stem cells. In humans, cells with immunohistochemically undetectable levels of connexin 43 are found in the epidermal basal layer of neonatal foreskin and in the follicular bulge region. About 10% of the basal keratinocytes are connexin 43 negative, as determined by flow cytometry. These cells are uniformly small and low in granularity. Restricted gap junction communication was confirmed by the failure of low molecular weight dyes to transfer between cells. Experiments carried out in mouse epidermis demonstrated that most of the slowly cycling cells, detected as label-retaining cells, do not express connexin 43. Thus, presumptive keratinocyte stem cells can be identified and separated based on connexin 43 expression.
Collapse
Affiliation(s)
- Maja Matic
- Department of Oral Biology and Pathology, SUNY at Stony Brook, New York 11794, USA.
| | | | | | | |
Collapse
|
36
|
Di WL, Rugg EL, Leigh IM, Kelsell DP. Multiple epidermal connexins are expressed in different keratinocyte subpopulations including connexin 31. J Invest Dermatol 2001; 117:958-64. [PMID: 11676838 DOI: 10.1046/j.0022-202x.2001.01468.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent genetic studies have demonstrated the importance of epidermal gap junctions with mutations in four beta-connexins associated with autosomal dominant epidermal disease. One of these disorders, erythrokeratoderma variabilis, is associated with germline mutations in the genes encoding connexins (Cx) Cx31 and Cx30.3. Towards understanding the functional mechanism of Cx31 mutations in epidermal disease, we have developed and characterized a polyclonal antibody raised against human Cx31. Using this antibody to immunostain normal epidermis, Cx31 protein was found to be expressed predominately in the stratum granulosum with a punctate pattern of staining at the plasma membrane. In addition, we used reverse transcriptase polymerase chain reaction and, where reagents were available, immunocytochemistry to investigate which other connexins are expressed in the epidermis. Surprisingly, this analysis revealed that there are at least 10 connexins expressed with an overlapping distribution and localization to distinct keratinocyte subpopulations. These data provide additional evidence for multiple gap junction channel types in the human epidermis. Elucidation of this complexity of channel types with respect to specific permeabilities and function of each wildtype and mutant channel type in epidermal biology will require further investigations.
Collapse
Affiliation(s)
- W L Di
- Center for Cutaneous Research, Barts and London School of Medicine and Dentistry, Queen Mary, University of London, Whitechapel, London, UK
| | | | | | | |
Collapse
|
37
|
Tu ZJ, Pan W, Gong Z, Kiang DT. Involving AP-2 transcription factor in connexin 26 up-regulation during pregnancy and lactation. Mol Reprod Dev 2001; 59:17-24. [PMID: 11335942 DOI: 10.1002/mrd.1002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gap junction connexin 26 (Cx26) is up-regulated in mammary epithelial cells during pregnancy and lactation. To understand the transcriptional regulation of Cx26, we identified a protected DNase I footprint region (-140 to -113) in the rat Cx26 promoter. This rCx26 Promoter Footprinting Region, or CPFR, contains an Sp binding site (CCGCCC) overlapping with an AP-2 binding site (GCCCGCGGC), and is evolutionarily conserved. Nuclear extracts from rat mammary glands and human MCF-10 mammary epithelial cells formed protein-DNA complexes with the labeled CPFR probe in the electrophoretic mobility shift assay (EMSA), and these complexes were markedly enhanced during pregnancy and lactation. Antibody supershift analysis further identified the presence of Sp1, Sp3, and AP-2 in these binding complexes. Human mammary epithelial MCF-10A and MCF-12A cells were transiently transfected with chimeric mutant rCx26 promoter/luciferase reporter constructs, and luciferase activities measured. Mutations along the CPFR fragment drastically reduced the promoter activity, specially at the Sp/AP-2 overlapping site. Cotransfection of AP-2 with rCx26 promoter/reporter constructs into MCF-10 cells markedly induced the reporter activity. These data infer that AP-2, along with previously reported Sp transcription factors, is involved in the up-regulation of Cx26 gene during pregnancy and lactation.
Collapse
Affiliation(s)
- Z J Tu
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
38
|
Wiszniewski L, Limat A, Saurat JH, Meda P, Salomon D. Differential expression of connexins during stratification of human keratinocytes. J Invest Dermatol 2000; 115:278-85. [PMID: 10951247 DOI: 10.1046/j.1523-1747.2000.00043.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To assess whether gap junctions and connexins change during keratinocyte differentiation, we have studied epidermal equivalents obtained in organotypic cultures of keratinocytes from the outer root sheath of human hair follicles. These reconstituted tissues exhibit a number of differentiation and proliferation markers of human epidermis, including gap junctions, connexins, and K6 and Ki67 proteins. Immunostaining and northern blots showed that gap junctions of the epidermal equivalents were made of Cx26 and Cx43. Cx26 was expressed in all keratinocyte layers, throughout the development of the epidermal equivalents. In contrast, Cx43 was initially observed only in the basal layer of keratinocytes and became detectable in the stratum spinosum and granulosum only after the epidermal equivalents had thickened. The levels of Cx26 and its transcript markedly increased as a function of stratification of the epidermal equivalents, whereas those of Cx43 remained almost constant. Microinjection of Lucifer Yellow into individual keratinocytes showed that gap junctions were similarly permeable at all stages of development of the epidermal equivalents. The data show that epidermal equivalents (i) feature a pattern of connexins typical of an actively renewing human interfollicular epidermis, and (ii) provide a model that reproduces the tridimensional organization of intact epidermis and that is amenable for experimentally testing the function of junctional communication between human keratinocytes.
Collapse
Affiliation(s)
- L Wiszniewski
- Departments of Dermatology (DHURDV) and Morphology, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Charollais A, Serre V, Mock C, Cogne F, Bosco D, Meda P. Loss of alpha 1 connexin does not alter the prenatal differentiation of pancreatic beta cells and leads to the identification of another islet cell connexin. DEVELOPMENTAL GENETICS 2000; 24:13-26. [PMID: 10079507 DOI: 10.1002/(sici)1520-6408(1999)24:1/2<13::aid-dvg3>3.0.co;2-n] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Connexin alpha 1, also referred to as Cx43, has thus far been the only gap junction protein identified between the hormone-producing cells of pancreatic islets. To investigate whether loss of this connexin affects the development of endocrine pancreas and the differentiation of insulin-producing beta cells, we have taken advantage of a transgenic line in which the gene coding for connexin alpha 1 had been functionally deleted by homologous recombination. Analysis of pancreas at embryonal day 19.5 (E 19.5) after immunostaining for the four main types of islet hormones, showed that islet cell development was similar in homozygous transgenic mice that completely lacked alpha 1 connexin, in mice that were heterozygous for the transgene, and in age-matched controls with a genetic background similar to that of the transgenic animals. In particular, the three animal groups featured beta cells that had a similar insulin content and ultrastructural organization, including the presence of typical gap junction plaques on the membrane. However, quantitative analysis of freeze-fractured membranes showed that these plaques were less frequent in the transgenic mice lacking alpha 1 connexin. This finding prompted us to revisit the connexin pattern of normal pancreatic beta cells. Using RT-PCR amplification and primers specific for nine of the mammalian connexins, we have found that normal rat and mouse pancreas contain six connexin transcripts, including one that codes for alpha 6 connexin, a protein also referred to as Cx45. This transcript was also identified in isolated pancreatic islets, in FACS-purified suspensions of primary beta cells and in the insulin-producing cells of an experimental tumor. Using antibodies, we found that connexin alpha 6 is expressed by the latter cells, as well as by pancreatic fibroblasts and epithelial duct cells. The data show that pancreatic islets have a normal prenatal development in mice that no longer express alpha 1 connexin. They further provide evidence that normal and tumoral insulin-producing cells natively coexpress connexins alpha 1 and alpha 6.
Collapse
Affiliation(s)
- A Charollais
- Department of Morphology, University of Geneva, Medical School, Centre Medical Universitaire, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Meda P, Spray DC. Gap junction function. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
41
|
Haftek M, Kowalewski C, Mesnil M, Blaszczyk M, Schmitt D. Internalization of gap junctions in benign familial pemphigus (Hailey-Hailey disease) and keratosis follicularis (Darier's disease). Br J Dermatol 1999; 141:224-30. [PMID: 10468792 DOI: 10.1046/j.1365-2133.1999.02969.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hereditary skin disorders involving acantholysis, such as Hailey-Hailey disease and Darier's disease, have been genetically linked to distinct chromosomal parts which do not code for known structural proteins. Such evidence suggests that the genomic abnormalities underlying these dermatoses may concern functional/regulatory mechanisms of keratinocyte cohesion. Epidermal communication junctions (gap junctions) are responsible for direct coupling of cells and, thus, co-ordinate the behaviour of keratinocytes within the tissue. Consequently, they remain one of the potential, and poorly studied, elements in the pathogenesis of hereditary acantholytic diseases. We have investigated the distribution and fate of gap junctions during non-immune acantholysis, using fine immunolocalization methods at the light and electron microscopic levels. Our results demonstrate normal expression of epidermal gap junction proteins, connexins 26 and 43, in non-lesional skin of Hailey-Hailey and Darier's diseases. The gap junctions were not primarily dismantled during acantholysis, typical of both of the studied dermatoses, but underwent internalization and subsequent cytoplasmic dispersion in the portions of cells which were no longer attached to the rest of the tissue. In Darier's disease, perifollicular acantholysis did not specifically concern epithelium of appendages coexpressing connexin 26 in addition to connexin 43, further indicating that the observed changes in gap junction localization were secondary to the loss of cell-cell contact. We demonstrated that the sequence of changes was identical in both diseases and that the previously described putative differences were apparently related to the degree of acantholysis present in the studied biopsies. The fate of the junctional structures and proteins, documented in the present study, is most probably a form of recycling process also used by normal keratinocytes during organogenesis and tissue differentiation.
Collapse
Affiliation(s)
- M Haftek
- INSERM U.346/CNRS 'Human Skin and Immunity', Hôpital E.Herriot, 69437 Lyon cedex 03, France.
| | | | | | | | | |
Collapse
|
42
|
Lucke T, Choudhry R, Thom R, Selmer IS, Burden AD, Hodgins MB. Upregulation of connexin 26 is a feature of keratinocyte differentiation in hyperproliferative epidermis, vaginal epithelium, and buccal epithelium. J Invest Dermatol 1999; 112:354-61. [PMID: 10084314 DOI: 10.1046/j.1523-1747.1999.00512.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In epidermis, it has been suggested, intercellular communication through gap junctions is important in coordinating cell behavior. The connexins, may facilitate selective assembly or permeability of gap junctions, influencing the distribution of metabolites between cells. Using immunohistochemistry, we have compared the distribution of connexins 26 and 43 with that of proliferating cells (Ki67 labeling) in normal epidermis, hyperplastic epidermis (tape-stripped epidermis, psoriatic lesions, and viral warts), and vaginal and buccal epithelia. Connexin 43 was abundant in spinous layers of all epidermal specimens and in vaginal and buccal epithelia. Connexin 26 was absent from the interfollicular and interductal epidermis of normal hair-bearing skin, and nonlesional psoriatic epidermis but present at very low levels in plantar epidermis. Connexin 26 was prominent in lesional psoriatic epidermis and viral warts and in vaginal and buccal epithelia. In three independent experiments connexin 26 appeared in a patchy intercellular distribution in the basal epidermis within 24 h of tape stripping, proceeding to more extensive distribution in basal and suprabasal layers by 48 h. The increase in connexin 26 preceded that in cell proliferation. In vaginal epithelium, buccal epithelium, and viral warts connexin 26 was restricted mainly to suprabasal, nonproliferating cells. In psoriatic lesional epidermis connexin 26 was also located mainly in suprabasal, nonproliferating cells. Connexin 26 was present in a patchy distribution in the basal layer of psoriatic lesional epidermis, but double labeling for connexin 26 and Ki67 showed that many connexin 26 positive basal cells were nonproliferative, suggesting that connexin 26 may be related to differentiation rather than to proliferation. These observations would be consistent with a role for connexin 26 containing gap junctions during both early and later stages of keratinocyte differentiation in hyperplastic epidermis and in vaginal and buccal epithelia.
Collapse
Affiliation(s)
- T Lucke
- Department of Dermatology, University of Glasgow, Scotland, UK
| | | | | | | | | | | |
Collapse
|
43
|
Richard G, Smith LE, Bailey RA, Itin P, Hohl D, Epstein EH, DiGiovanna JJ, Compton JG, Bale SJ. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet 1998; 20:366-9. [PMID: 9843209 DOI: 10.1038/3840] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Erythrokeratodermia variabilis (EKV, OMIM 133200) is an autosomal dominant genodermatosis with considerable intra- and interfamilial variability. It has a disfiguring phenotype characterized by the independent occurrence of two morphologic features: transient figurate red patches and localized or generalized hyperkeratosis. Both features can be triggered by external factors such as trauma to the skin. After initial linkage to the RH locus on 1p, EKV was mapped to an interval of 2.6 cM on 1p34-p35, and a candidate gene (GJA4) encoding the gap junction protein alpha-4 (connexin 31, Cx31) was excluded by sequence analysis. Evidence in mouse suggesting that the EKV region harbours a cluster of epidermally expressed connexin genes led us to characterize the human homologues of GJB3 (encoding Cx31) and GJB5 (encoding Cx31.1). GJB3, GJB5 and GJA4 were localized to a 1.1-Mb YAC in the candidate interval. We detected heterozygous missense mutations in GJB3 in four EKV families leading to substitution of a conserved glycine by charged residues (G12R and G12D), or change of a cysteine (C86S). These mutations are predicted to interfere with normal Cx31 structure and function, possibly due to a dominant inhibitory effect. Our results implicate Cx31 in the pathogenesis of EKV, and provide evidence that intercellular communication mediated by Cx31 is crucial for epidermal differentiation and response to external factors.
Collapse
Affiliation(s)
- G Richard
- Genetic Studies Section, Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tu ZJ, Kiang DT. Mapping and characterization of the basal promoter of the human connexin26 gene. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1443:169-81. [PMID: 9838096 DOI: 10.1016/s0167-4781(98)00212-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Connexin26 (Cx26) is a major gap junction protein expressed in mammary and endometrial epithelial cells. Previously, we have cloned the genomic upstream sequence of the human connexin26 gene. In this paper, we studied the structure and function of its basal promoter. Various 5'-flanking regions of the human Cx26 gene were inserted upstream of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene and transfected into human immortalized mammary MCF-10A and MCF-12A cell lines and endometrial RL95-2 cancer cell line. Through CAT reporter gene analysis, we identified the basal promoter of human Cx26 gene in the proximal 5'-flanking region from -128 to +2 (relative to the transcription initiation site). Further deletion analyses suggested that the critical regulatory area was located within a 29 bp region (from -97 to -69), where two GC consensus boxes (CCGCCC) resided, one at -93 and the other at -81. Labeled oligonucleotides encompassing these two GC box DNA sequences could bind the nuclear extracts from MCF-12A and RL95-2 cells in the electrophoretic mobility shift assay. These binding complexes could be competitively reduced by non-labeled self or Sp1 consensus oligonucleotide, and supershifted by antibodies against either Sp1 or Sp3. Mutations in the core sequence of these two GC boxes from CCGCCC to CCGAAC caused a loss of competitive ability and also produced a drastic reduction of basal promoter activity when integrated into promoter/reporter constructs. Furthermore, co-transfection of Sp1 and/or Sp3 expressing plasmids could trans-activate the expression of human Cx26 promoter/reporter constructs in Drosophila Schneider line 2 (SL2) cells. Taken together, these data indicated that the two GC boxes in the proximal promoter region play an important role in the control of human Cx26 gene expression.
Collapse
Affiliation(s)
- Z J Tu
- Breast Cancer Research Laboratory, Department of Medicine, University of Minnesota Medical School, Box 286 UMHC, 420 Delaware St. S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
45
|
Labarthe MP, Bosco D, Saurat JH, Meda P, Salomon D. Upregulation of connexin 26 between keratinocytes of psoriatic lesions. J Invest Dermatol 1998; 111:72-6. [PMID: 9665389 DOI: 10.1046/j.1523-1747.1998.00248.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To assess whether the expression of connexins (Cx) by keratinocytes is altered under conditions of abnormal epidermal differentiation, we have compared Cx26, Cx32, Cx37, Cx40, and Cx43 in the epidermis of 11 psoriatic patients who had not been treated for at least 1 mo and of seven healthy individuals. In all samples of fully mature psoriatic plaques, we have observed a massive expression of Cx26, as judged at both the transcript level (northern blot) and the protein level (immunofluorescence). This protein became consistently detected between keratinocytes of the basal and granular layers at the periphery of psoriatic plaques and in all layers of fully developed psoriatic epidermis, except in regions of parakeratosis. None or a minimal amount of Cx26 was observed in both control and nonlesional regions of psoriatic epidermis. Psoriatic plaques also contained Cx43, the prominent gap junction protein in the interfollicular epidermis of normal human skin. The levels of this protein appeared to be slightly higher in psoriatic than in control skin, as judged at both the transcript level (northern blot) and the protein level (immunofluorescence). Three other connexins (Cx32, Cx37, and Cx40), which are not observed in control interfollicular epidermis, were not induced in either nonlesional or lesional regions of psoriatic skin. The data indicate that selective changes in the normal expression of connexins by keratinocytes are associated with the changes in the proliferation and differentiation program that these cells undergo in psoriasis.
Collapse
Affiliation(s)
- M P Labarthe
- Department of Dermatology, University of Geneva Medical School, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Risek B, Pozzi A, Gilula NB. Modulation of gap junction expression during transient hyperplasia of rat epidermis. J Cell Sci 1998; 111 ( Pt 10):1395-404. [PMID: 9570757 DOI: 10.1242/jcs.111.10.1395] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoids and phorbol esters have profound effects on proliferation and differentiation of epidermal keratinocytes when applied topically on rodent skin. Since both agents also modulate gap junction (GJ)-mediated cell-cell communication, we have examined the effects of all-trans retinoic acid (RA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on the expression of alpha1 (Cx43) and beta2 (Cx26) connexins, the two major gap junction gene products in mature rat epidermis. In fully differentiated, mature epidermis, alpha1 is expressed in the lower, less differentiated portion, while beta2 is localized in upper, more differentiated layers. Dorsal skin of 21-day old rats was treated topically with a single dose of RA, TPA or vehicle alone and used for histological and molecular analyses at different time points. Keratinocytes in interfollicular epidermis were examined for proliferation and differentiation using specific antibodies for keratins (K10, K14) and proliferating cell nuclear antigen (PCNA). An increase in epidermal thickness was noticed within 4 hours after the application of RA or TPA. This increase, however, appeared to be primarily due to hypertrophy, since no substantial changes were observed in the proliferative index of epidermal keratinocytes. PCNA immunoreactivity significantly increased after 8 hours treatment of RA or TPA, suggesting a hyperproliferative growth response. Epidermal hyperplasia was confirmed by monitoring the expression patterns of K10 and K14 in RA- or TPA-treated skin. RA-induced hyperplasia lasted longer as compared to TPA induction. Changes in keratin phenotypes were paralleled by an increase in alpha1 and beta2 connexin expression as well as their colocalization in same epidermal layers. Differences in hyperplastic growth response kinetics were also confirmed at the connexin level, with beta2 antigen sustained for longer and at higher levels in suprabasal layers of RA-treated skin. Overall, this type of connexin expression resembled that observed in the non-differentiated rat epidermis during embryonic development. An increase in alpha1 and beta2 connexin abundance was also observed at the protein and RNA levels. At 96 hours after RA or TPA treatment, expression of both connexins was similar to that of the control epidermis. Taken together, these findings suggest that a higher level of GJ-mediated cell-cell communication, is required for the maintenance of homeostasis during periods of rapid epidermal growth and differentiation.
Collapse
Affiliation(s)
- B Risek
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|