1
|
Moura MM, Monteiro A, Salgado AJ, Silva NA, Monteiro S. Disrupted autonomic pathways in spinal cord injury: Implications for the immune regulation. Neurobiol Dis 2024; 195:106500. [PMID: 38614275 DOI: 10.1016/j.nbd.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Spinal Cord Injury (SCI) disrupts critical autonomic pathways responsible for the regulation of the immune function. Consequently, individuals with SCI often exhibit a spectrum of immune dysfunctions ranging from the development of damaging pro-inflammatory responses to severe immunosuppression. Thus, it is imperative to gain a more comprehensive understanding of the extent and mechanisms through which SCI-induced autonomic dysfunction influences the immune response. In this review, we provide an overview of the anatomical organization and physiology of the autonomic nervous system (ANS), elucidating how SCI impacts its function, with a particular focus on lymphoid organs and immune activity. We highlight recent advances in understanding how intraspinal plasticity that follows SCI may contribute to aberrant autonomic activity in lymphoid organs. Additionally, we discuss how sympathetic mediators released by these neuron terminals affect immune cell function. Finally, we discuss emerging innovative technologies and potential clinical interventions targeting the ANS as a strategy to restore the normal regulation of the immune response in individuals with SCI.
Collapse
Affiliation(s)
- Maria M Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's Associate Lab, PT Government Associated Lab, 4710-057 Braga, Guimarães, Portugal.
| |
Collapse
|
2
|
Bandoni RL, Bricher Choque PN, Dellê H, de Moraes TL, Porter MHM, da Silva BD, Neves GA, Irigoyen MC, De Angelis K, Pavlov VA, Ulloa L, Consolim-Colombo FM. Cholinergic stimulation with pyridostigmine modulates a heart-spleen axis after acute myocardial infarction in spontaneous hypertensive rats. Sci Rep 2021; 11:9563. [PMID: 33953291 PMCID: PMC8099899 DOI: 10.1038/s41598-021-89104-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/15/2021] [Indexed: 02/02/2023] Open
Abstract
The mechanisms regulating immune cells recruitment into the heart during healing after an acute myocardial infarction (AMI) have major clinical implications. We investigated whether cholinergic stimulation with pyridostigmine, a cholinesterase inhibitor, modulates heart and spleen immune responses and cardiac remodeling after AMI in spontaneous hypertensive rats (SHRs). Male adult SHRs underwent sham surgery or ligation of the left coronary artery and were randomly allocated to remain untreated or to pyridostigmine treatment (40 mg/kg once a day by gavage). Blood pressure and heart rate variability were determined, and echocardiography was performed at day six after MI. The heart and spleen were processed for immunohistochemistry cellular analyses (CD3+ and CD4+ lymphocytes, and CD68+ and CD206+ macrophages), and TNF levels were determined at day seven after MI. Pyridostigmine treatment increased the parasympathetic tone and T CD4+ lymphocytes in the myocardium, but lowered M1/M2 macrophage ratio towards an anti-inflammatory profile that was associated with decreased TNF levels in the heart and spleen. Treatment with this cholinergic agent improved heart remodeling manifested by lower ventricular diameters and better functional parameters. In summary, cholinergic stimulation by pyridostigmine enhances the parasympathetic tone and induces anti-inflammatory responses in the heart and spleen fostering cardiac recovery after AMI in SHRs.
Collapse
Affiliation(s)
- Robson Luiz Bandoni
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Pamela Nithzi Bricher Choque
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Humberto Dellê
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Tercio Lemos de Moraes
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Maria Helena Mattos Porter
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Bruno Durante da Silva
- grid.11899.380000 0004 1937 0722Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, SP Brazil
| | - Gizele Alves Neves
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil
| | - Maria-Claudia Irigoyen
- grid.11899.380000 0004 1937 0722Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, SP Brazil
| | - Kátia De Angelis
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil ,grid.411249.b0000 0001 0514 7202Departament of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Valentin A. Pavlov
- grid.416477.70000 0001 2168 3646Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY USA
| | - Luis Ulloa
- grid.189509.c0000000100241216Department of Anesthesiology, Duke University Medical Center, Durham, NC USA
| | - Fernanda Marciano Consolim-Colombo
- grid.412295.90000 0004 0414 8221Biotechnology Laboratory, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, SP Brazil ,grid.11899.380000 0004 1937 0722Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
3
|
Cleypool CGJ, Lotgerink Bruinenberg D, Roeling T, Irwin E, Bleys RLAW. Splenic artery loops: Potential splenic plexus stimulation sites for neuroimmunomodulatory-based anti-inflammatory therapy? Clin Anat 2020; 34:371-380. [PMID: 32583891 PMCID: PMC7984037 DOI: 10.1002/ca.23643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/15/2020] [Accepted: 06/20/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The splenic plexus might represent a novel neuroimmunomodulatory therapeutic target as electrical stimulation of this tissue has been shown to have beneficial anti-inflammatory effects. Tortuous splenic artery segments (splenic artery loops), including their surrounding nerve plexus, have been evaluated as potential stimulation sites in humans. At present, however, our understanding of these loops and their surrounding nerve plexus is incomplete. This study aims to characterize the dimensions of these loops and their surrounding nerve tissue. MATERIALS AND METHODS Six formaldehyde fixed human cadavers were dissected and qualitative and quantitative macro- and microscopic data on splenic artery loops and their surrounding nerve plexus were collected. RESULTS One or multiple loops were observed in 83% of the studied specimens. These loops, including their surrounding nerve plexus could be easily dissected free circumferentially thereby providing sufficient space for further surgical intervention. The splenic plexus surrounding the loops contained a significant amount of nerves that contained predominantly sympathetic fibers. CONCLUSION The results of this study support that splenic artery loops could represent suitable electrical splenic plexus stimulation sites in humans. Dimensions with respect to loop height and width, provide sufficient space for introduction of surgical instruments and electrode implantation, and, the dissected neurovascular bundles contain a substantial amount of sympathetic nerve tissue. This knowledge may contribute to further development of surgical techniques and neuroelectrode interface design.
Collapse
Affiliation(s)
- Cindy G J Cleypool
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Dyonne Lotgerink Bruinenberg
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Tom Roeling
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Eric Irwin
- Galvani Bioelectronics, Stevenage, UK.,Department of Surgery, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Ronald L A W Bleys
- Department of Anatomy, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht University, The Netherlands
| |
Collapse
|
4
|
Rodriguez-Diaz R, Tamayo A, Hara M, Caicedo A. The Local Paracrine Actions of the Pancreatic α-Cell. Diabetes 2020; 69:550-558. [PMID: 31882565 PMCID: PMC7085245 DOI: 10.2337/dbi19-0002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022]
Abstract
Secretion of glucagon from the pancreatic α-cells is conventionally seen as the first and most important defense against hypoglycemia. Recent findings, however, show that α-cell signals stimulate insulin secretion from the neighboring β-cell. This article focuses on these seemingly counterintuitive local actions of α-cells and describes how they impact islet biology and glucose metabolism. It is mostly based on studies published in the last decade on the physiology of α-cells in human islets and incorporates results from rodents where appropriate. As this and the accompanying articles show, the emerging picture of α-cell function is one of increased complexity that needs to be considered when developing new therapies aimed at promoting islet function in the context of diabetes.
Collapse
Affiliation(s)
- Rayner Rodriguez-Diaz
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro Tamayo
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL
| | - Alejandro Caicedo
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
- Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
5
|
Distribution pattern and molecular signature of cholinergic tuft cells in human gastro-intestinal and pancreatic-biliary tract. Sci Rep 2019; 9:17466. [PMID: 31767912 PMCID: PMC6877571 DOI: 10.1038/s41598-019-53997-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
Despite considerable recent insight into the molecular phenotypes and type 2 innate immune functions of tuft cells in rodents, there is sparse knowledge about the region-specific presence and molecular phenotypes of tuft cells in the human digestive tract. Here, we traced cholinergic tuft cells throughout the human alimentary tract with immunohistochemistry and deciphered their region-specific distribution and biomolecule coexistence patterns. While absent from the human stomach, cholinergic tuft cells localized to villi and crypts in the small and large intestines. In the biliary tract, they were present in the epithelium of extra-hepatic peribiliary glands, but not observed in the epithelia of the gall bladder and the common duct of the biliary tract. In the pancreas, solitary cholinergic tuft cells were frequently observed in the epithelia of small and medium-size intra- and inter-lobular ducts, while they were absent from acinar cells and from the main pancreatic duct. Double immunofluorescence revealed co-expression of choline acetyltransferase with structural (cytokeratin 18, villin, advillin) tuft cell markers and eicosanoid signaling (cyclooxygenase 1, hematopoietic prostaglandin D synthase, 5-lipoxygenase activating protein) biomolecules. Our results indicate that region-specific cholinergic signaling of tuft cells plays a role in mucosal immunity in health and disease, especially in infection and cancer.
Collapse
|
6
|
Bellier JP, Yuan PQ, Mukaisho K, Tooyama I, Taché Y, Kimura H. A Novel Antiserum Against a Predicted Human Peripheral Choline Acetyltransferase (hpChAT) for Labeling Neuronal Structures in Human Colon. Front Neuroanat 2019; 13:37. [PMID: 31040770 PMCID: PMC6476985 DOI: 10.3389/fnana.2019.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Choline acetyltransferase (ChAT), the enzyme synthesizing acetylcholine (ACh), has an exon-skipping splice variant which is expressed preferentially in the peripheral nervous system (PNS) and thus termed peripheral ChAT (pChAT). A rabbit antiserum previously produced against rat pChAT (rpChAT) has been used for immunohistochemistry (IHC) to study peripheral cholinergic structures in various animals. The present study was undertaken to develop a specific antiserum against a predicted human pChAT (hpChAT) protein. A novel mouse antiserum has been successfully raised against a unique 14-amino acid sequence of hpChAT protein. Our Western blot using this antiserum (termed here anti-hpChAT serum) on human colon extracts revealed only a single band of 47 kDa, matching the deduced size of hpChAT protein. By IHC, the antiserum gave intense staining in many neuronal cells and fibers of human colon but not brain, and such a pattern of staining seemed identical with that reported in colon of various animals using anti-rpChAT serum. In the antibody-absorption test, hpChAT-immunoreactive staining in human colon was completely blocked by using the antiserum pre-absorbed with the antigen peptide. Double immunofluorescence in human colon moreover indicated that structures stained with anti-hpChAT were also stained with anti-rpChAT, and vice versa. hpChAT antiserum allowed the identification of cell types, as Dogiel type cells in intramural plexuses, and fiber innervation of colon muscles and mucosae. The present results demonstrate the specificity and reliability of the hpChAT antiserum as a novel tool for immunohistochemical studies in human colon, opening venues to map cholinergic innervation in other human PNS tissues.
Collapse
Affiliation(s)
- Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States.,VA Greater Los Angeles Health System, Los Angeles, CA, United States
| | - Kenichi Mukaisho
- Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, United States.,VA Greater Los Angeles Health System, Los Angeles, CA, United States
| | - Hiroshi Kimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
7
|
Merolli A, Louro P, Kohn J. Reciprocal nerve staining (RNS) for the concurrent detection of choline acetyltransferase and myelin basic protein on paraffin-embedded sections. J Neurosci Methods 2018; 311:235-238. [PMID: 30391262 DOI: 10.1016/j.jneumeth.2018.10.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Objective of our work was to develop a sequential double nonfluorescent immunostaining method which allows the selective identification of myelinated motor fibers in paraffin-embedded samples of peripheral nerves. Motor recovery after a nerve gap-lesion repaired by artificial nerve-guides ("conduits") is often less complete and slower than sensory recovery. The mechanism for this is not fully understood. NEW METHOD Incubation in sheep polyclonal choline acetyltransferase antibody (Abcam 18,736) at dilution of 1:150 was followed by incubation in mouse monoclonal anti-myelin basic protein antibody (Abcam 62,631) at a dilution of 1:5000. Counterstaining was performed with hematoxylin QS (Vector Labs H-3404). RESULTS Immunostaining of choline acetyltransferase and myelin basic protein can be combined together and results show a good contrast between the light brown of the choline acetyltransferase reaction product and the green of myelin basic protein reaction product. Cell nuclei are stained blue. This new protocol retains the advantages of paraffin embedded sections such as (i) having a relatively simple methodology, (ii) years-long storage life, and (iii) easy sharing among laboratories. Comparison with existing method. This specific combinatorial protocol has never been used before on paraffin embedded sections. It has been named "reciprocal nerve staining" (RNS). CONCLUSIONS Routine combination of choline acetyltransferase and myelin basic protein immunostaining provides a highly specific, highly contrasted paraffin-embedded sections where optical differentiation of myelinated motor fibers is easy and straightforward. This method will likely simplify and speed-up the routine histological study of nerve regeneration and will contribute a better identification of the nerve motor component.
Collapse
Affiliation(s)
- Antonio Merolli
- New Jersey Center for Biomaterials, Rutgers- The State University of New Jersey, Piscataway, New Jersey, United States
| | - Pedro Louro
- Research Pathology Services, Rutgers -The State University of New Jersey, Piscataway, New Jersey, United States
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers- The State University of New Jersey, Piscataway, New Jersey, United States
| |
Collapse
|
8
|
Gambardella C, Morgana S, Bari GD, Ramoino P, Bramini M, Diaspro A, Falugi C, Faimali M. Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development. CHEMOSPHERE 2015; 139:486-495. [PMID: 26291678 DOI: 10.1016/j.chemosphere.2015.07.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/13/2015] [Accepted: 07/24/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to investigate the potential toxicity of Silica nanoparticles (SiO2 NPs) in seawater by using the sea urchin Paracentrotus lividus as biological model. SiO2 NPs exposure effects were identified on the sperm of the sea urchin through a multidisciplinary approach, combining developmental biology, ecotoxicology, biochemistry, and microscopy analyses. The following responses were measured: (i) percentage of eggs fertilized by exposed sperm; (ii) percentage of anomalies and undeveloped embryos and larvae; (iii) enzyme activity alterations (acetylcholinesterase, AChE) in the early developmental stages, namely gastrula and pluteus. Sperms were exposed to seawater containing SiO2 NPs suspensions ranging from 0.0001mg/L to 50mg/L. Fertilization ability was not affected at any concentration, whereas a significant percentage of anomalies in the offspring were observed and quantified by means of EC50 at gastrula stage, including undeveloped and anomalous embryos (EC50=0.06mg/L), and at pluteus stage, including skeletal anomalies and delayed larvae (EC50=0.27mg/L). Moreover, morphological anomalies were observed in larvae at pluteus stage, by immunolocalizing molecules involved in larval development and neurotoxicity effects - such as acetylated tubulin and choline acetyltransferase (ChAT) - and measuring AChE activity. Exposure of sea urchins to SiO2 NPs caused neurotoxic damage and a decrease of AChE expression in a non-dose-dependent manner. In conclusion, through the multidisciplinary approach used in this study SiO2 NPs toxicity in sea urchin offspring could be assessed. Therefore, the measured responses are suitable for detecting embryo- and larval- toxicity induced by these NPs.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy.
| | - Silvia Morgana
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Gaetano Di Bari
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Paola Ramoino
- Department of Earth, Environment and Life Sciences (DISTAV), Università di Genova, Viale Benedetto XV 5, 16136 Genova, Italy
| | - Mattia Bramini
- IIT, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Alberto Diaspro
- IIT, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Carla Falugi
- Department of Life and Environmental Sciences (DISVA), Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Marco Faimali
- Institute of Marine Science (ISMAR), National Council of Researches (CNR), Via De Marini 6, 16149 Genova, Italy
| |
Collapse
|
9
|
Gautron L, Rutkowski JM, Burton MD, Wei W, Wan Y, Elmquist JK. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J Comp Neurol 2013; 521:3741-67. [PMID: 23749724 PMCID: PMC4081472 DOI: 10.1002/cne.23376] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/08/2013] [Accepted: 05/23/2013] [Indexed: 12/31/2022]
Abstract
Accumulating evidence demonstrates that acetylcholine can directly modulate immune function in peripheral tissues including the spleen and gastrointestinal tract. However, the anatomical relationships between the peripheral cholinergic system and immune cells located in these lymphoid tissues remain unclear due to inherent technical difficulties with currently available neuroanatomical methods. In this study, mice with specific expression of the tdTomato fluorescent protein in choline acetyltransferase (ChAT)-expressing cells were used to label preganglionic and postganglionic cholinergic neurons and their projections to lymphoid tissues. Notably, our anatomical observations revealed an abundant innervation in the intestinal lamina propria of the entire gastrointestinal tract principally originating from cholinergic enteric neurons. The aforementioned innervation frequently approached macrophages, plasma cells, and lymphocytes located in the lamina propria and, to a lesser extent, lymphocytes in the interfollicular areas of Peyer's patches. In addition to the above innervation, we observed labeled epithelial cells in the gallbladder and lower intestines, as well as Microfold cells and T-cells within Peyer's patches. In contrast, we found only a sparse innervation in the spleen consisting of neuronal fibers of spinal origin present around arterioles and in lymphocyte-containing areas of the white pulp. Lastly, a small population of ChAT-expressing lymphocytes was identified in the spleen including both T- and B-cells. In summary, this study describes the variety of cholinergic neuronal and nonneuronal cells in a position to modulate gastrointestinal and splenic immunity in the mouse.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
- Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Joseph M. Rutkowski
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Michael D. Burton
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
- Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Wei Wei
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Joel K. Elmquist
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
- Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75235
| |
Collapse
|
10
|
Forsgren S, Alfredson H, Bjur D, Rantapää-Dahlqvist S, Norrgård O, Dalén T, Danielson P. Novel information on the non-neuronal cholinergic system in orthopedics provides new possible treatment strategies for inflammatory and degenerative diseases. Orthop Rev (Pavia) 2011; 1:e11. [PMID: 21808665 PMCID: PMC3143960 DOI: 10.4081/or.2009.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/23/2009] [Accepted: 06/26/2009] [Indexed: 01/14/2023] Open
Abstract
Anti-cholinergic agents are used in the treatment of several pathological conditions. Therapy regimens aimed at up-regulating cholinergic functions, such as treatment with acetylcholinesterase inhibitors, are also currently prescribed. It is now known that not only is there a neuronal cholinergic system but also a non-neuronal cholinergic system in various parts of the body. Therefore, interference with the effects of acetylcholine (ACh) brought about by the local production and release of ACh should also be considered. Locally produced ACh may have proliferative, angiogenic, wound-healing, and immunomodulatory functions. Interestingly, cholinergic stimulation may lead to anti-inflammatory effects. Within this review, new findings for the locomotor system of a more widespread non-neuronal cholinergic system than previously expected will be discussed in relation to possible new treatment strategies. The conditions discussed are painful and degenerative tendon disease (tendinopathy/tendinosis), rheumatoid arthritis, and osteoarthritis.
Collapse
Affiliation(s)
- Sture Forsgren
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Forsgren S, Grimsholm O, Jönsson M, Alfredson H, Danielson P. New insight into the non-neuronal cholinergic system via studies on chronically painful tendons and inflammatory situations. Life Sci 2009; 84:865-70. [PMID: 19409915 DOI: 10.1016/j.lfs.2009.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/14/2009] [Accepted: 04/17/2009] [Indexed: 11/29/2022]
Abstract
For certain parts of the body, it is nowadays accepted that there is a cholinergic system that is not related to cholinergic innervation, i.e. a non-neuronal cholinergic system. It might be argued that this system is of minor importance. New information obtained shows, however, that the non-neuronal cholinergic system is more widely distributed in the body than what is previously recognised. In recent studies, the existence of such a system has thus been shown for human tendons, especially in chronically painful situations (tendinopathy/tendinosis), in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis, and in the mucosa of ulcerative colitis patients. There is evidence of both acetylcholine (ACh) production and a marked existence of muscarinic (M2) ACh receptors in these situations. The non-neuronal cholinergic system may be involved in the establishment of a 'cholinergic anti-inflammatory pathway' and in proliferative and tissue reorganisation processes via autocrine/paracrine effects. The new information obtained suggests that this system plays an important functional role in chronically painful tendons and in inflammatory conditions. The findings of such a system in various parts of the body, when taken together, show that not only should the classical neuronal cholinergic system be considered in discussion of the cholinergic influences in the body. Additionally, the production of ACh in local cells in the tissues represents an important extra supply of the transmitter. ACh effects can be obtained whether or not there is a cholinergic innervation in the tissue.
Collapse
Affiliation(s)
- Sture Forsgren
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Al-Zi'abi MO, Bowolaksono A, Okuda K. Survival role of locally produced acetylcholine in the bovine corpus luteum. Biol Reprod 2009; 80:823-32. [PMID: 19129516 DOI: 10.1095/biolreprod.108.069203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The present study was conducted to explore the source of acetylcholine (ACH) in the corpus luteum (CL) and to test our hypothesis of an antiapoptotic role of ACH in the bovine CL and, further, to investigate whether nerve growth factor (NGF), insulin-like growth factor 1 (IGF1), and transforming growth factor beta1 (TGFB1) influence the expression of choline acetyltransferase (CHAT), the biosynthetic enzyme of ACH, in cultured bovine luteal cells. Protein expression and immunolocalization of CHAT were carried out at different stages throughout the luteal phase and in cultured luteal and endothelial cells. ACH was measured in luteal tissue at the different luteal stages and in luteal cells cultured for 8 and 24 h. Cell viability and TUNEL assays were performed on cultured midluteal cells treated with or without tumor necrosis factor alpha (TNF)/interferon gamma (IFNG) in the presence of ACH and its muscarinic (atropine) and nicotinic (mecamylamine) receptor antagonists. The CL was devoid of cholinergic nerve fibers. CHAT immunostaining was evident in luteal, endothelial, and stromal cells in luteal tissue sections and in cultured luteal and endothelial cells. CHAT protein was expressed throughout the cycle without any significant changes. ACH concentration in luteal tissue was not changed during the luteal stages but increased over time and with increased cell numbers in luteal cell cultures. ACH increased cell viability and prevented cell death induced by TNF/IFNG. Atropine significantly attenuated ACH action, whereas mecamylamine had no effect. TNF/IFNG treatment downregulated CHAT expression, whereas NGF, IGF1, and TGFB1 upregulated CHAT expression, in cultured luteal cells. The overall findings strongly suggest a nonneural source and antiapoptotic role of ACH in the bovine CL. Locally produced ACH appears to be regulated by NGF, IGF1, and TGFB1.
Collapse
Affiliation(s)
- M Omar Al-Zi'abi
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | |
Collapse
|
13
|
Regulation of basal tone, relaxation and contraction of the lower oesophageal sphincter. Relevance to drug discovery for oesophageal disorders. Br J Pharmacol 2007; 153:858-69. [PMID: 17994108 DOI: 10.1038/sj.bjp.0707572] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The lower oesophageal sphincter (LOS) is a specialized region of the oesophageal circular smooth muscle that allows the passage of a swallowed bolus to the stomach and prevents the reflux of gastric contents into the oesophagus. The anatomical arrangement of the LOS includes semicircular clasp fibres adjacent to the lesser gastric curvature and sling fibres following the greater gastric curvature. Such anatomical arrangement together with an asymmetric intrinsic innervation and distinct proportion of neurotransmitters in both regions produces an asymmetric pressure profile. The LOS tone is myogenic in origin and depends on smooth muscle properties that lead to opening of L-type Ca(2+) channels; however it can be modulated by enteric motor neurons, the parasympathetic and sympathetic extrinsic nervous system and several neurohumoral substances. Nitric oxide synthesized by neuronal NOS is the main inhibitory neurotransmitter involved in LOS relaxation. Different putative neurotransmitters have been proposed to play a role together with NO. So far, only ATP or related purines have shown to be co-transmitters with NO. Acetylcholine and tachykinins are involved in the LOS contraction acting through acetylcholine M(3) and tachykinin NK(2) receptors. Nitric oxide can also be involved in the regulation of LOS contraction. The understanding of the mechanisms that originate and modulate LOS tone, relaxation and contraction and the characterization of neurotransmitters and receptors involved in LOS function are important to develop new pharmacological tools to treat primary oesophageal motor disorders and gastro-oesophageal reflux disease.
Collapse
|
14
|
Jönsson M, Norrgård O, Forsgren S. Presence of a marked nonneuronal cholinergic system in human colon: study of normal colon and colon in ulcerative colitis. Inflamm Bowel Dis 2007; 13:1347-56. [PMID: 17663429 DOI: 10.1002/ibd.20224] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND The body has not only a neuronal but also a nonneuronal cholinergic system. Both systems are likely to be very important, particularly in inflammatory conditions. The patterns and importance of the nonneuronal cholinergic system in patients with ulcerative colitis (UC) are largely unknown. METHODS The colons of UC and non-UC patients were examined for expression patterns of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), and the muscarinic receptor of the M(2) subtype. RESULTS ChAT and VAChT immunoreactions and mRNA reactions for ChAT were detected in epithelial and endocrine cells, in cells in the lamina propria, and in blood vessel walls. Furthermore, a marked M(2) immunoreaction was noted for epithelium, blood vessel walls, and smooth musculature. ChAT and VAChT immunoreactions were significantly higher in endocrine and epithelial cells, respectively, in non-UC mucosa than in UC mucosa. On the other hand, there was a tendency toward higher M(2) levels in epithelium of UC patients. CONCLUSIONS There is a pronounced nonneuronal cholinergic system in the colon, which has previously been ignored when discussing cholinergic influences in UC. Furthermore, it is evident that certain changes in the nonneuronal cholinergic system occur in response to inflammation/derangement in UC. Cholinergic effects in the colon can be considered to be related not only to nerve-related effects but also to effects of acetylcholine from nonneuronal local cells. Thus, the recently discussed phenomenon of a "cholinergic antiinflammatory pathway" in the intestine may have a pronounced nonneuronal component.
Collapse
Affiliation(s)
- Maria Jönsson
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|
15
|
Gareau MG, Jury J, Perdue MH. Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am J Physiol Gastrointest Liver Physiol 2007; 293:G198-203. [PMID: 17510196 DOI: 10.1152/ajpgi.00392.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neonatal maternal separation (MS) predisposes adult rats to develop stress-induced mucosal barrier dysfunction/visceral hypersensitivity and rat pups to develop colonic epithelial dysfunction. Our aim was to examine if enhanced epithelial permeability in such pups resulted from abnormal regulation by enteric nerves. Pups were separated from the dam for 3 h/day (days 4-20); nonseparated (NS) pups served as controls. On day 20, colonic tissues were removed and mounted in Ussing chambers. Horseradish peroxidase (HRP) flux was used to measure macromolecular permeability. HRP flux was increased in MS versus NS pups. The enhanced flux was inhibited by the cholinergic muscarinic antagonist atropine and the nicotinic antagonist hexamethonium. The cholinergic component was greater in tissues from MS versus NS pups, suggesting that increased cholinergic activity was responsible for the MS elevated permeability. Western blots and immunohistochemistry of colonic tissues demonstrated increased expression of choline acetyltransferase (ChAT) in MS pups, indicating greater synthesis of acetylcholine. Since a previous study indicated that corticotrophin-releasing factor (CRF) mediates barrier dysfunction in MS pups, we examined if the two pathways were linked. In MS tissues, nonselective CRF receptor antagonism inhibited the enhanced flux, and the addition of atropine did not produce further inhibition. Using selective receptor antagonists, we identified that CRF receptor 2 was involved in mediating this effect. These findings suggest that CRF, via CRF receptor 2, acts on cholinergic nerves to induce epithelial barrier dysfunction. Our study provides evidence that MS stimulates synthesis of acetylcholine, which, together with released CRF, creates a condition conducive to the development of epithelial barrier defects.
Collapse
Affiliation(s)
- Mélanie G Gareau
- The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
16
|
Zhou L, Hodeib M, Abad JD, Mendoza L, Kore AR, Hu Z. New tissue microarray technology for analyses of gene expression in frozen pathological samples. Biotechniques 2007; 43:101-5. [PMID: 17695259 DOI: 10.2144/000112498] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue microarrays (TMAs) are widely used to analyze gene expression in multiple pathological samples on a single slide. Currently, most TMA slides are made by coring paraffinembedded tissues and arraying them into a paraffin block, from which TMA sections are cut. However, paraffin-based TMA technology may not be compatible with frozen clinical tissue samples, which have a higher quality of RNAs and proteins for preparing TMAs than paraffin-embedded tissue samples. In this study, we developed an alternative TMA technology that is applicable to a broader range of frozen tissue samples. Our method takes advantage of a newly developed array recipient block that can be used to array small tissue cores. After arraying tissue cores, the tissue block can be immediately sectioned on a cryostat microtome to make TMA slides. TMAs made using this method have well-defined array configurations and good tissue/cell morphology. Immunohistochemistry and in situ hybridization study also revealed well-preserved proteins and mRNAs on TMA slides. Our method significantly simplifies TMA preparation and assembly when frozen pathological tissues are used. Our technology provides an alternative tool for creating high-quality TMAs for the general research community to study gene expressions in pathological samples.
Collapse
|
17
|
Burleigh DE, Banks MR. Stimulation of intestinal secretion by vasoactive intestinal peptide and cholera toxin. Auton Neurosci 2007; 133:64-75. [PMID: 17023221 DOI: 10.1016/j.autneu.2006.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Affiliation(s)
- David E Burleigh
- Department of Adult and Paediatric Gastroenterology, The Wingate Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, London E1 2AJ, United Kingdom.
| | | |
Collapse
|
18
|
Steffl M, Schweiger M, Wessler I, Kunz L, Mayerhofer A, Amselgruber WM. Non-neuronal acetylcholine and choline acetyltransferase in oviductal epithelial cells of cyclic and pregnant pigs. ACTA ACUST UNITED AC 2006; 211:685-90. [PMID: 17024297 DOI: 10.1007/s00429-006-0132-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2006] [Indexed: 11/27/2022]
Abstract
Certain female reproductive tissues are known to express the non-neuronal cholinergic system. Using different experimental approaches, we tested the hypothesis that acetylcholine (ACh) in the porcine oviduct may also be derived from non-neuronal structures. Immunohistochemistry was performed to detect acetylcholine synthesizing enzyme choline acetyltransferase (ChAT) in different segments of the oviduct of cyclic and pregnant sows. Immunohistochemical experiments revealed strong immunoexpression of ChAT in the entire oviductal epithelium at metoestrus. Thereby, a particular pronounced staining was found in the supranuclear region of almost all epithelial cells. Immunostaining of ChAT decreased markedly during dioestrus and prooestrus stages, respectively. At prooestrus, ChAT immunoreactivity was confined to ciliated cells. Furthermore, we found elevated level of staining intensity of ChAT in the pregnant oviduct at day 13. Using the same ChAT antibody for Western blot analyses, we detected immunoreactive bands of MW 69,000 and 46,000 mainly in ampulla, while MW 58,000 and 30,000 forms were present mainly in infundibulum and isthmus. Furthermore ACh was detected by HPLC and fluorimetric methods in oviductal epithelium. In conclusion, we show expression of ChAT in oviductal epithelial cells at different stages of the oestrus cycle and pregnancy, indicating that these cells can synthesize ACh in a cycle-dependent manner. These results suggest as yet unexplored roles of epithelial ACh in the oviduct.
Collapse
Affiliation(s)
- M Steffl
- Department of Anatomy and Physiology of Domestic Animals, University of Hohenheim, Fruwirthstrasse 35, 70599 Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Bikopoulos GJ, Hoque T, Webb RA. Infection with the cestode Hymenolepis diminuta induces changes in acetylcholine metabolism and muscarinic receptor mRNA expression in the rat jejunum. Parasitol Res 2006; 99:231-7. [PMID: 16541262 DOI: 10.1007/s00436-006-0128-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 12/26/2005] [Indexed: 10/24/2022]
Abstract
Total and neuron-specific uptake of [3H] choline into smooth muscle/myenteric plexus (SM/MP) preparations from the jejunum of rats infected with five Hymenolepis diminuta for 30 days compared to uninfected rats was significantly increased, as was choline acetyltransferase activity and acetylcholine biosynthesis. Although acetylcholinesterase and total cholinesterase activity levels in SM/MP preparations from infected rats were not significantly different from uninfected animals, pseudocholinesterase activity was significantly elevated in infected rats. Infection resulted in a significant elevation in the relative expression of muscarinic 2 (M2) receptor mRNA in jejunum compared to uninfected rats. Conversely, in rats infected with 50 worms for 30 days, the relative expression of muscarinic 1 (M1) receptor mRNA in the jejunum was significantly depressed, while the expression of M2 receptor mRNA was not significantly different from that in five worm infections. The relative expression of muscarinic 3 receptor mRNA was unaffected by infection. The present study shows that infection of rats with low numbers of an enteric cestode leads to a significant modulation of the cholinergic components of the myenteric plexus and M2 receptor mRNA, and that large number of worms result in suppression in the relative expression of M1 receptor mRNA.
Collapse
|
20
|
Martucciello G, Pini Prato A, Puri P, Holschneider AM, Meier-Ruge W, Jasonni V, Tovar JA, Grosfeld JL. Controversies concerning diagnostic guidelines for anomalies of the enteric nervous system: a report from the fourth International Symposium on Hirschsprung's disease and related neurocristopathies. J Pediatr Surg 2005; 40:1527-31. [PMID: 16226977 DOI: 10.1016/j.jpedsurg.2005.07.053] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intestinal Dysganglionoses (IDs) represent a heterogeneous group of Enteric Nervous System anomalies including Hirschsprung's disease (HD), Intestinal Neuronal Dysplasia (IND), Internal Anal Sphincter Neurogenic Achalasia (IASNA) and Hypoganglionosis. At present HD is the only recognised clinico-pathological entity, whereas the others are not yet worldwide accepted and diagnosed. This report describes the areas of agreement and disagreement regarding definition, diagnosis, and management of IDs as discussed at the workshop of the fourth International Meeting on "Hirschsprung's disease and related neurochristopathies." The gold standards in the preoperative diagnosis of IDs are described, enlighting the importance of rectal suction biopsy in the diagnostic workup. The most important diagnostic features of HD are the combination of hypertrophic nerve trunks and aganglionosis in adequate specimens. Acetylcholinesterase staining is the best diagnostic technique to demonstrate hypertrophic nerve trunks in lamina propia mucosae, but many pathologist from different centers still use H&E staining effectively. Moreover, the importance of an adequate intraoperative pathological evaluation of the extent of IDs to avoid postoperative complications is stressed. Although it is not clear whether IND is a separate entity or some sort of secondary acquired condition, it is concluded that both IND and IASNA do exist. Other interesting conclusions are provided as well as detailed results of the discussion. Further investigation is needed to resolve the many controversies concerning IDs. The fourth International Conference in Sestri Levante stimulated discussion regarding these entities and led to the International guidelines to serve the best interest of our patients.
Collapse
|
21
|
Hayashi H, Suzuki T, Yamamoto T, Suzuki Y. Cholinergic inhibition of electrogenic sodium absorption in the guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2003; 284:G617-28. [PMID: 12444010 DOI: 10.1152/ajpgi.00201.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Submucosal cholinergic and noncholinergic neurons in intestines have been shown to be involved in regulating epithelial transport functions, particularly stimulating Cl(-) secretion. This study investigates the role of submucosal cholinergic neurons in regulating electrogenic Na(+) absorption in distal colon. Amiloride-sensitive short-circuit current (I(sc)) and (22)Na(+) flux were measured in mucosal and mucosal-submucosal preparations mounted in Ussing chambers. In the mucosal preparation, carbachol (CCh) added to the serosal side inhibited amiloride-sensitive I(sc) and amiloride-sensitive (22)Na(+) absorption. The inhibitory effect of CCh was observed at approximately 0.1 microM, and maximum inhibition of approximately 70% was attained at approximately 30 microM (IC(50) = approximately 1 microM). CCh-induced inhibition of amiloride-sensitive I(sc) was almost totally abolished by 10 microM atropine. Treatment of the tissue with ionomycin markedly reduced amiloride-sensitive I(sc), but a subsequent addition of CCh further decreased it. Also, CCh still had an inhibitory effect, although significantly attenuated, after the tissue had been incubated with a low-Ca(2+) solution containing ionomycin and BAPTA-AM. Applying electrical field stimulation to submucosal neurons in the mucosal-submucosal preparation resulted in inhibition of amiloride-sensitive I(sc), approximately 33% of this inhibition being atropine sensitive. Physostigmine inhibited amiloride-sensitive I(sc), this effect being abolished by atropine. In conclusion, submucosal cholinergic and noncholinergic neurons were involved in inhibiting electrogenic Na(+) absorption in colon. This inhibition by cholinergic neurons was mediated by muscarinic receptor activation.
Collapse
Affiliation(s)
- Hisayoshi Hayashi
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|