1
|
Mikami K, Kozono Y, Masukawa M, Kobayashi S. A fast in situ hybridization chain reaction method in Drosophila embryos and ovaries. Fly (Austin) 2025; 19:2428499. [PMID: 39639000 PMCID: PMC11633216 DOI: 10.1080/19336934.2024.2428499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
The in situ hybridization chain reaction (isHCR) is a powerful method for visualizing mRNA in many species. We present a rapid isHCR method for Drosophila embryos and ovaries. Ethylene carbonate was added to the hybridization buffer to facilitate the hybridization reaction, and a modified short hairpin DNA was used in the amplification reaction; these modifications decreased the RNA staining time from 3 days to 1 day. This method is compatible with immunohistochemistry and can detect multiple mRNAs. The proposed method could significantly reduce staining time for Drosophila researchers using isHCR.
Collapse
Affiliation(s)
- Kyohei Mikami
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Kozono
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masaki Masukawa
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Kobayashi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Khanduri I, Maru DM, Parra ER. Exploratory study of macrophage polarization and spatial distribution in colorectal cancer liver metastasis: a pilot study. Front Immunol 2023; 14:1223864. [PMID: 37637998 PMCID: PMC10449458 DOI: 10.3389/fimmu.2023.1223864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Background The liver is the most typical site of metastatic disease for patients with colorectal cancer (CRC), and up to half the patients with CRC will develop colorectal liver metastasis (CLM). Studying the tumor microenvironment, particularly macrophages and their spatial distribution, can give us critical insight into treatment. Methods Ten CLMs (five treatment-naïve and five post-neoadjuvant chemotherapy) were stained with multiplex immunofluorescence panels against cytokeratins, CD68, Arg1, CD206, CD86, CD163, PD-L1, and MRP8-14. Densities of cell phenotypes and their spatial distribution in the tumor center and the normal liver-tumor interface were correlated with clinicopathological variables. Results M2 macrophages were the predominant subtype in both the tumor center and the periphery, with a relatively higher density at the periphery. The larger tumors, more than 3.9 cm, were associated with higher densities of total CD68+ macrophages and CD68+CD163+ CD206neg and CD68+CD206+ CD163neg M2 macrophage subtypes. Total macrophages in the tumor periphery demonstrated significantly greater proximity to malignant cells than did those in the tumor center (p=0.0371). The presence of higher than median CD68+MRP8-14+CD86neg M1 macrophages in the tumor center was associated with poor overall survival (median 2.34 years) compared to cases with lower than median M1 macrophages at the tumor center (median 6.41 years) in univariate analysis. Conclusion The dominant polarization of the M2 macrophage subtype could drive new therapeutic approaches in CLM patients.
Collapse
Affiliation(s)
- Isha Khanduri
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dipen M. Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Edwin R. Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
3
|
Watanabe H, Maehara D, Nishihara T, Tanabe K. Alkyne-tethered oligodeoxynucleotides that allow simultaneous detection of multiple DNA/RNA targets using Raman spectroscopy. RSC Adv 2023; 13:20756-20760. [PMID: 37441041 PMCID: PMC10334030 DOI: 10.1039/d3ra03861k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Detection of multiple DNA/RNA targets is essential for understanding cellular function. Herein, we propose a general method for the simultaneous detection of plural nucleic acids based on surface-enhanced Raman scattering (SERS) using gold nanoparticles bearing functional oligodeoxynucleotides (ODNs) on their surface. Modified ODNs bearing an acetylene tag hybridized with their complementary ODNs on the surface of the gold nanoparticles, inducing a strong SERS signal of the acetylene tag. The addition of the target nucleic acid to the system resulted in a spontaneous displacement of the strand on the particle and dissociation of the alkyne-tagged ODN from the particle, resulting in a dramatic decrease in signal intensity. By using an alkyne tag for each of the multiple target nucleic acids, each target could be detected simultaneously. In addition, we successfully detected cellular microRNA. Different targets showed changes with different wavenumbers in the Raman spectra, allowing for the detection of multiple nucleic acids.
Collapse
Affiliation(s)
- Hikaru Watanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara 252-5258 Japan
| | - Daigo Maehara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara 252-5258 Japan
| | - Tatsuya Nishihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara 252-5258 Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara 252-5258 Japan
| |
Collapse
|
4
|
Zhang J, Wu J, Chen C, He G, Liu W, Xu S, Gu H, Wang Y, Xu H. A micro-chamber free digital bio-detection for multiplexed and ultrasensitive immunoassay based on encoded magnetic microbeads and tyramide signal amplification strategy. Talanta 2023; 262:124685. [PMID: 37220690 DOI: 10.1016/j.talanta.2023.124685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
Digital bio-detection has become one of the most appealing methods in recent years due to its excellent performance with ultra-sensitivity in detection of low-abundance targets. Traditional digital bio-detection needs the utilization of micro-chambers for physical isolation of targets, while the recently developed beads-based micro-chamber free one is attracting extensive attention, although there exist the disadvantages of overlaps between positive ("1") and negative ("0") signals as well as the decreased detection sensitivity in multiplexed mode. Here we propose a feasible and robust micro-chamber free digital bio-detection for multiplexed and ultrasensitive immunoassay based on encoded magnetic microbeads (EMMs) and tyramide signal amplification (TSA) strategy. An EMMs-based multiplexed platform is constructed by using a fluorescent encoding method, then a puissant signal amplification of positive events in TSA procedure is achieved via systematical revelation of key factors influences. For proof of concept, a three-plexed tumor markers detection is performed to evaluate our established platform. The detection sensitivity is comparable to the corresponding single-plexed assays and is also approximately 30-15,000 times improvement compared to the conventional suspension chip. Therefore, this multiplexed micro-chamber free digital bio-detection paves a promising way to be an ultrasensitive and powerful tool for clinical diagnosis.
Collapse
Affiliation(s)
- Jiayu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiancong Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Cang Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guoqing He
- Hangzhou Joinstar Biotechnology Co., Ltd., Hangzhou, 310000, China
| | - Wei Liu
- Hangzhou Joinstar Biotechnology Co., Ltd., Hangzhou, 310000, China
| | - Sitong Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hongchen Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Hong Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
5
|
Comprehensive Assessment of the Virulence Factors sub 3, sub 6 and mcpA in the Zoonotic Dermatophyte Trichophyton benhamiae Using FISH and qPCR. J Fungi (Basel) 2021; 8:jof8010024. [PMID: 35049964 PMCID: PMC8778074 DOI: 10.3390/jof8010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
Skin infections by keratinophilic fungi are commonly referred to as dermatophytosis and represent a major health burden worldwide. Although patient numbers are on the rise, data on virulence factors, their function and kinetics are scarce. We employed an ex vivo infection model based on guinea pig skin explants (GPSE) for the zoonotic dermatophyte Trichophyton (T.) benhamiae to investigate kinetics of the virulence factors subtilisin (sub) 3, sub 6, metallocarboxypeptidase A (mcpA) and isocitrate lyase (isol) at gene level for ten days. Fluorescence in situ hybridization (FISH) and quantitative polymerase chain reaction (qPCR) were used to detect and quantify the transcripts, respectively. Kingdom-spanning, species-specific and virulence factor-specific probes were successfully applied to isolated fungal elements showing inhomogeneous fluorescence signals along hyphae. Staining results for inoculated GPSE remained inconsistent despite thorough optimization. qPCR revealed a significant increase of sub 3- and mcpA-transcripts toward the end of culture, sub 6 and isol remained at a low level throughout the entire culture period. Sub 3 is tightly connected to the de novo formation of conidia during culture. Since sub 6 is considered an in vivo disease marker. However, the presented findings urgently call for further research on the role of certain virulence factors during infection and disease.
Collapse
|
6
|
Leung HY, Yeung MHY, Leung WT, Wong KH, Tang WY, Cho WCS, Wong HT, Tsang HF, Wong YKE, Pei XM, Cheng HYL, Chan AKC, Wong SCC. The current and future applications of in situ hybridization technologies in anatomical pathology. Expert Rev Mol Diagn 2021; 22:5-18. [PMID: 34779317 DOI: 10.1080/14737159.2022.2007076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION In situ hybridization (ISH) plays an important role in the field of molecular diagnostics, especially in an anatomical pathology laboratory. ISH is a technique that can detect the targeted DNA or RNA sequences in tissue sections from frozen or fixed materials with labeled DNA or RNA probes. Radioactive and non-radioactive probes are the two major probes that can be used to label the targeted nucleic acids. AREAS COVERED Two decades after the Human Genome Project, ISH has not only simply been applied to identify the chromosomal location of a human gene but has also been extensively applied to gene expressions studies and utilized for clinical diagnosis, especially for the determination of biomarkers for breast and ovarian cancers - human epidermal growth factor receptor 2. Duchenne muscular dystrophy, Cri-du-chat syndrome, Angelman syndrome, PraderWilli syndrome, cystic fibrosis, and trisomy are diseases that can also be detected by ISH. In this review, the basic principles, historical development, advantages and disadvantages, enhancement in reporting molecules and probes, advancement in detection methods, in situ PCR, clinical applications and novel applications of ISH will be discussed. EXPERT OPINION With the advancement in ISH technologies and appropriate training, diagnosis can be improved in Anatomical Pathology.
Collapse
Affiliation(s)
- Hoi Yi Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Wai Tung Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - King Hin Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Wai Yan Tang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| | - Heong Ting Wong
- Department of Pathology, Kiang Wu Hospital, Santo António, Macau Special Administrative Region, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Xiao Meng Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Hennie Yuk Lin Cheng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Amanda Kit Ching Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| |
Collapse
|
7
|
Trailin A, Mrazova P, Hruba P, Voska L, Sticova E, Slavcev A, Novotny M, Kocik M, Viklicky O. Chronic Active Antibody-Mediated Rejection Is Associated With the Upregulation of Interstitial But Not Glomerular Transcripts. Front Immunol 2021; 12:729558. [PMID: 34616398 PMCID: PMC8488163 DOI: 10.3389/fimmu.2021.729558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Molecular assessment of renal allografts has already been suggested in antibody-mediated rejection (ABMR), but little is known about the gene transcript patterns in particular renal compartments. We used laser capture microdissection coupled with quantitative RT-PCR to distinguish the transcript patterns in the glomeruli and tubulointerstitium of kidney allografts in sensitized retransplant recipients at high risk of ABMR. The expressions of 13 genes were quantified in biopsies with acute active ABMR, chronic active ABMR, acute tubular necrosis (ATN), and normal findings. The transcripts were either compartment specific (TGFB1 in the glomeruli and HAVCR1 and IGHG1 in the tubulointerstitium), ABMR specific (GNLY), or follow-up specific (CXCL10 and CX3CR1). The transcriptional profiles of early acute ABMR shared similarities with ATN. The transcripts of CXCL10 and TGFB1 increased in the glomeruli in both acute ABMR and chronic active ABMR. Chronic active ABMR was associated with the upregulation of most genes (SH2D1B, CX3CR1, IGHG1, MS4A1, C5, CD46, and TGFB1) in the tubulointerstitium. In this study, we show distinct gene expression patterns in specific renal compartments reflecting cellular infiltration observed by conventional histology. In comparison with active ABMR, chronic active ABMR is associated with increased transcripts of tubulointerstitial origin.
Collapse
Affiliation(s)
- Andriy Trailin
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Petra Mrazova
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ludek Voska
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Eva Sticova
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Antonij Slavcev
- Department of Immunogenetics, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Marek Novotny
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Matej Kocik
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
8
|
Mori H, Bolen J, Schuetter L, Massion P, Hoyt CC, VandenBerg S, Esserman L, Borowsky AD, Campbell MJ. Characterizing the Tumor Immune Microenvironment with Tyramide-Based Multiplex Immunofluorescence. J Mammary Gland Biol Neoplasia 2020; 25:417-432. [PMID: 33590360 PMCID: PMC7960613 DOI: 10.1007/s10911-021-09479-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Multiplex immunofluorescence (mIF) allows simultaneous antibody-based detection of multiple markers with a nuclear counterstain on a single tissue section. Recent studies have demonstrated that mIF is becoming an important tool for immune profiling the tumor microenvironment, further advancing our understanding of the interplay between cancer and the immune system, and identifying predictive biomarkers of response to immunotherapy. Expediting mIF discoveries is leading to improved diagnostic panels, whereas it is important that mIF protocols be standardized to facilitate their transition into clinical use. Manual processing of sections for mIF is time consuming and a potential source of variability across numerous samples. To increase reproducibility and throughput we demonstrate the use of an automated slide stainer for mIF incorporating tyramide signal amplification (TSA). We describe two panels aimed at characterizing the tumor immune microenvironment. Panel 1 included CD3, CD20, CD117, FOXP3, Ki67, pancytokeratins (CK), and DAPI, and Panel 2 included CD3, CD8, CD68, PD-1, PD-L1, CK, and DAPI. Primary antibodies were first tested by standard immunohistochemistry and single-plex IF, then multiplex panels were developed and images were obtained using a Vectra 3.0 multispectral imaging system. Various methods for image analysis (identifying cell types, determining cell densities, characterizing cell-cell associations) are outlined. These mIF protocols will be invaluable tools for immune profiling the tumor microenvironment.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA.
| | - Jennifer Bolen
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Louis Schuetter
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Pierre Massion
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Scott VandenBerg
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Laura Esserman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
- Mt Zion Carol Franc Buck Breast Care Center, University of California San Francisco, San Francisco, CA, USA
| | - Alexander D Borowsky
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA.
| | - Michael J Campbell
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Chenlo M, Aliyev E, Rodrigues JS, Vieiro-Balo P, Blanco Freire MN, Cameselle-Teijeiro JM, Alvarez CV. Sequential Colocalization of ERa, PR, and AR Hormone Receptors Using Confocal Microscopy Enables New Insights into Normal Breast and Prostate Tissue and Cancers. Cancers (Basel) 2020; 12:cancers12123591. [PMID: 33266334 PMCID: PMC7761237 DOI: 10.3390/cancers12123591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary At present, platforms for multiplex immunohistochemistry (e.g., Opal) identify markers in distinct cell populations within a tissue section using multispectral fluorescence and optic microscopy. However, the optic resolution is not enough to colocalize markers at the subcellular level in the main epithelial or cancer population. We use confocal microscopy in multiplex detection of nuclear hormone receptors since they are an important part of the diagnosis and treatment of breast and prostate cancer. Moreover, we increased the quantitative dynamic range and resolution through increasing the signal/noise ration through reducing autofluorescence and increased longer antibody incubations. ColNu mIHCF identified distinct patterns of nuclear receptor colocalization in breast cancers. Furthermore, in prostate cancer all cancer epithelium was positive for ERa at the plasma membrane; and in normal prostate a small ERa+/p63+/AR− basal population suggest stem cell commitment to differentiation. ColNu mIHCF could be used for improving diagnosis and treatment in cancer. Abstract Multiplex immunohistochemistry (mIHC) use markers staining different cell populations applying widefield optical microscopy. Resolution is low not resolving subcellular co-localization. We sought to colocalize markers at subcellular level with antibodies validated for clinical diagnosis, including the single secondary antibody (combination of anti-rabbit/mouse-antibodies) used for diagnostic IHC with any primary antibody, and confocal microscopy. We explore colocalization in the nucleus (ColNu) of nuclear hormone receptors (ERa, PR, and AR) along with the baseline marker p63 in paired samples of breast and prostate tissues. We established ColNu mIHCF as a reliable technique easily implemented in a hospital setting. In ERa+ breast cancer, we identified different colocalization patterns (nuclear or cytoplasmatic) with PR and AR on the luminal epithelium. A triple-negative breast-cancer case expressed membrane-only ERa. A PR-only case was double positive PR/p63. In normal prostate, we identified an ERa+/p63+/AR-negative distinct population. All prostate cancer cases characteristically expressed ERa on the apical membrane of the AR+ epithelium. We confirmed this using ERa IHC and needle-core biopsies. ColNu mIHCF is feasible and already revealed a new marker for prostate cancer and identified sub-patterns in breast cancer. It could be useful for pathology as well as for functional studies in normal prostate and breast tissues.
Collapse
Affiliation(s)
- Miguel Chenlo
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Moleculary Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (M.C.); (J.S.R.)
| | - Elvin Aliyev
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Galician Healthcare Service (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (E.A.); (P.V.-B.)
| | - Joana S. Rodrigues
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Moleculary Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (M.C.); (J.S.R.)
| | - Paula Vieiro-Balo
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Galician Healthcare Service (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (E.A.); (P.V.-B.)
| | - Manuel N. Blanco Freire
- Department of Surgery, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Galician Healthcare Service (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain;
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), Galician Healthcare Service (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain; (E.A.); (P.V.-B.)
- Correspondence: (J.M.C.-T.); (C.V.A.)
| | - Clara V. Alvarez
- Neoplasia & Endocrine Differentiation P0L5, Centro de Investigación en Medicina Moleculary Enfermedades Crónicas (CIMUS), Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (M.C.); (J.S.R.)
- Correspondence: (J.M.C.-T.); (C.V.A.)
| |
Collapse
|
10
|
Ogata M, Hayashi G, Ichiu A, Okamoto A. L-DNA-tagged fluorescence in situ hybridization for highly sensitive imaging of RNAs in single cells. Org Biomol Chem 2020; 18:8084-8088. [PMID: 33001106 DOI: 10.1039/d0ob01635g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an effective fluorescence in situ hybridization strategy, named l-DNA tagged FISH (LT-FISH), for highly sensitive RNA detection in fixed cultured cells. LT-FISH includes two-step hybridization processes with a l-d chimera oligonucleotide probe and a fluorescence-labeled PCR product tethering a l-DNA tag. The degree of fluorescence enhancement, depending on the length of PCR products, was up to 14-fold when the 606 bp product was used. Endogenous mRNA and miRNA in cancer cells were visualized by utilizing this l-DNA-mediated signal amplification technique.
Collapse
Affiliation(s)
- Motoyuki Ogata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Anri Ichiu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. and Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
11
|
He J, Mo D, Chen J, Luo L. Combined whole-mount fluorescence in situ hybridization and antibody staining in zebrafish embryos and larvae. Nat Protoc 2020; 15:3361-3379. [DOI: 10.1038/s41596-020-0376-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/19/2020] [Indexed: 01/05/2023]
|
12
|
Krzyzanowska A, Cabrerizo M, Clascá F, Ramos-Moreno T. Reelin Immunoreactivity in the Adult Spinal Cord: A Comparative Study in Rodents, Carnivores, and Non-human Primates. Front Neuroanat 2020; 13:102. [PMID: 31969808 PMCID: PMC6960112 DOI: 10.3389/fnana.2019.00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
Reelin is a large extracellular matrix (ECM) glycoprotein secreted by several neuronal populations in a specific manner in both the developing and the adult central nervous system. The extent of Reelin protein distribution and its functional role in the adult neocortex is well documented in different mammal models. However, its role in the adult spinal cord has not been well characterized and its distribution in the rodent spinal cord is fragmentary and has not been investigated in carnivores or primates as of yet. To gain insight into which neuronal populations and specific circuits may be influenced by Reelin in the adult spinal cord, we have conducted light and confocal microscopy study analysis of Reelin-immunoreactive cell types in the adult spinal cord. Here, we describe and compare Reelin immunoreactive cell type and distribution in the spinal cord of adult non-human primate (macaque monkeys, Macaca mulatta), carnivore (ferret, Mustela putorius) and rodent (rat, Rattus norvegicus). Our results show that in all three species studied, Reelin-immunoreactive neurons are present in the intermediate gray matter, ventricular zone and superficial dorsal horn and intermedio-lateral nucleus, while positive cells in the Clarke nucleus are only found in rats and primates. In addition, Reelin intermediolateral neurons colocalize with choline acetyltransferase (ChAT) only in macaque whilst motor neurons also colocalize Reelin and ChAT in macaque, ferret and rat spinal cord. The different expression patterns might reflect a differential role for Reelin in the pathways involved in the coordination of locomotor activity in the fore- and hind limbs.
Collapse
Affiliation(s)
- Agnieszka Krzyzanowska
- Department of Anatomy and Neuroscience, School of Medicine, Autonoma University, Madrid, Spain.,Division of Urological Cancers, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marina Cabrerizo
- Department of Anatomy and Neuroscience, School of Medicine, Autonoma University, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Clascá
- Department of Anatomy and Neuroscience, School of Medicine, Autonoma University, Madrid, Spain
| | - Tania Ramos-Moreno
- Department of Anatomy and Neuroscience, School of Medicine, Autonoma University, Madrid, Spain.,Lund Stem Cell Center, Division of Neurosurgery, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Lauter G, Söll I, Hauptmann G. Sensitive Multiplexed Fluorescent In Situ Hybridization Using Enhanced Tyramide Signal Amplification and Its Combination with Immunofluorescent Protein Visualization in Zebrafish. Methods Mol Biol 2020; 2047:397-409. [PMID: 31552667 DOI: 10.1007/978-1-4939-9732-9_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluorescent in situ hybridization (FISH) provides sensitive detection and visualization of RNA transcripts in tissues and cells with high resolution. We present here a multiplex RNA FISH method using enhanced tyramide signal amplification (TSA) for colocalization analysis of three different transcripts in intact zebrafish brains. To achieve enhancement of fluorescent signals, essential steps of the FISH procedure are optimized including embryo permeability, hybridization efficacy, and fluorogenic TSA-reaction conditions. Critical to this protocol, the enzymatic peroxidase (PO) reactivity is significantly improved by the application of viscosity-increasing polymers, PO accelerators, and highly effective bench-made tyramide substrates. These advancements lead to an optimized TSA-FISH protocol with dramatically increased signal intensity and signal-to-background ratio allowing for visualization of three mRNA transcript patterns simultaneously. The TSA-FISH procedure can be combined with immunofluorescence (IF) to compare mRNA transcript and protein expression patterns.
Collapse
Affiliation(s)
- Gilbert Lauter
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Iris Söll
- Department of Molecular Biosciences, The Wenner-Gren Institute, MBW, Stockholm University, Stockholm, Sweden
| | - Giselbert Hauptmann
- Department of Molecular Biosciences, The Wenner-Gren Institute, MBW, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
14
|
Saka SK, Wang Y, Kishi JY, Zhu A, Zeng Y, Xie W, Kirli K, Yapp C, Cicconet M, Beliveau BJ, Lapan SW, Yin S, Lin M, Boyden ES, Kaeser PS, Pihan G, Church GM, Yin P. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat Biotechnol 2019; 37:1080-1090. [PMID: 31427819 PMCID: PMC6728175 DOI: 10.1038/s41587-019-0207-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/27/2019] [Indexed: 01/13/2023]
Abstract
Spatial mapping of proteins in tissues is hindered by limitations in multiplexing, sensitivity and throughput. Here we report immunostaining with signal amplification by exchange reaction (Immuno-SABER), which achieves highly multiplexed signal amplification via DNA-barcoded antibodies and orthogonal DNA concatemers generated by primer exchange reaction (PER). SABER offers independently programmable signal amplification without in situ enzymatic reactions, and intrinsic scalability to rapidly amplify and visualize a large number of targets when combined with fast exchange cycles of fluorescent imager strands. We demonstrate 5- to 180-fold signal amplification in diverse samples (cultured cells, cryosections, formalin-fixed paraffin-embedded sections and whole-mount tissues), as well as simultaneous signal amplification for ten different proteins using standard equipment and workflows. We also combined SABER with expansion microscopy to enable rapid, multiplexed super-resolution tissue imaging. Immuno-SABER presents an effective and accessible platform for multiplexed and amplified imaging of proteins with high sensitivity and throughput.
Collapse
Affiliation(s)
- Sinem K Saka
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Yu Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Jocelyn Y Kishi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allen Zhu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Yitian Zeng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Wenxin Xie
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Koray Kirli
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Clarence Yapp
- Image and Data Analysis Core, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Marcelo Cicconet
- Image and Data Analysis Core, Harvard Medical School, Boston, MA, USA
| | - Brian J Beliveau
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sylvain W Lapan
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Siyuan Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Millicent Lin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - German Pihan
- Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Jurischka C, Dinter F, Sowa M, Noack J, Schiebel J, Roggenbuck D, Schierack P, Rödiger S. Tyramide signal amplification as universal detection method on protein coated microbeads. ACTA ACUST UNITED AC 2019. [DOI: 10.3233/jcb-189003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- C. Jurischka
- Department of Multiparametric Diagnostics, BTU Cottbus - Senftenberg, Germany
| | - F. Dinter
- Department of Multiparametric Diagnostics, BTU Cottbus - Senftenberg, Germany
| | - M. Sowa
- Department of Multiparametric Diagnostics, BTU Cottbus - Senftenberg, Germany
| | - J. Noack
- Department of Multiparametric Diagnostics, BTU Cottbus - Senftenberg, Germany
| | - J. Schiebel
- Department of Multiparametric Diagnostics, BTU Cottbus - Senftenberg, Germany
| | - D. Roggenbuck
- Department of Multiparametric Diagnostics, BTU Cottbus - Senftenberg, Germany
- GA Generic Assays GmbH, Dahlewitz, Germany
| | - P. Schierack
- Department of Multiparametric Diagnostics, BTU Cottbus - Senftenberg, Germany
| | - S. Rödiger
- Department of Multiparametric Diagnostics, BTU Cottbus - Senftenberg, Germany
| |
Collapse
|
16
|
Abstract
There are currently several methods that address proteomic proximity labeling, and that depend on the biological question asked and localization in the cell. These include BioID, APEX, EMARS, and SPPLAT. Here we describe SPPLAT, a method that can identify members of protein microenvironments localized to the plasma membrane, as well as proteins that interact with each other in endocytic pathways. The SPPLAT protocol is particularly useful as a discovery-based approach, to identify novel molecular neighbors of a predetermined plasma membrane protein target. It allows a quick survey of the target proteins' environment without the need for genetic manipulation. By using various readily available biotin-reactive reagents, together with suitable antibodies, drugs, or toxins directed to a protein target, the user can vary the amount of labeling and can decide to keep or cleave the covalent tag for downstream applications. Proteins and other macromolecules that are specifically biotin tagged can easily be purified and then identified my mass spectrometry, thus allowing one to build a map of cell-surface protein microenvironments that are often the target for therapeutics.
Collapse
|
17
|
Arantes TD, Theodoro RC, Teixeira MDM, Bagagli E. Use of fluorescent oligonucleotide probes for differentiation between Paracoccidioides brasiliensis and Paracoccidioides lutzii in yeast and mycelial phase. Mem Inst Oswaldo Cruz 2017; 112:140-145. [PMID: 28177048 PMCID: PMC5293123 DOI: 10.1590/0074-02760160374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/31/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Fluorescence in situ hybridisation (FISH) associated with Tyramide Signal Amplification (TSA) using oligonucleotides labeled with non-radioactive fluorophores is a promising technique for detection and differentiation of fungal species in environmental or clinical samples, being suitable for microorganisms which are difficult or even impossible to culture. OBJECTIVE In this study, we aimed to standardise an in situ hybridisation technique for the differentiation between the pathogenic species Paracoccidioides brasiliensis and Paracoccidioides lutzii, by using species-specific DNA probes targeting the internal transcribed spacer-1 (ITS-1) of the rRNA gene. METHODS Yeast and mycelial phase of each Paracoccidioides species, were tested by two different detection/differentiation techniques: TSA-FISH for P. brasiliensis with HRP (Horseradish Peroxidase) linked to the probe 5' end; and FISH for P. lutzii with the fluorophore TEXAS RED-X® also linked to the probe 5' end. After testing different protocols, the optimised procedure for both techniques was accomplished without cross-positivity with other pathogenic fungi. FINDINGS The in silico and in vitro tests show no reaction with controls, like Candida and Cryptococcus (in silico) and Histoplasma capsulatum and Aspergillus spp. (in vitro). For both phases (mycelial and yeast) the in situ hybridisation showed dots of hybridisation, with no cross-reaction between them, with a lower signal for Texas Red probe than HRP-TSA probe. The dots of hybridisation was confirmed with genetic material marked with 4',6-diamidino-2-phenylindole (DAPI), visualised in a different filter (WU) on fluorescent microscopic. MAIN CONCLUSION Our results indicated that TSA-FISH and/or FISH are suitable for in situ detection and differentiation of Paracoccidioides species. This approach has the potential for future application in clinical samples for the improvement of paracoccidioidomycosis patients prognosis.
Collapse
Affiliation(s)
- Thales Domingos Arantes
- Universidade Estadual Paulista, Instituto de Biociências de Botucatu, Departamento de Microbiologia e Imunologia, Botucatu, SP, Brasil.,Universidade Federal do Rio Grande do Norte, Centro de Biociências, Instituto de Medicina Tropical, Programa de Pós-Graduação em Bioquímica, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| | - Raquel Cordeiro Theodoro
- Universidade Federal do Rio Grande do Norte, Centro de Biociências, Instituto de Medicina Tropical, Programa de Pós-Graduação em Bioquímica, Campus Universitário Lagoa Nova, Natal, RN, Brasil.,Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Biologia Celular e Genética, Natal, RN, Brasil
| | - Marcus de Melo Teixeira
- Northern Arizona Center for Valley Fever Research, Translational Genomics Research Institute - Tgen North, Phoenix, AZ, US
| | - Eduardo Bagagli
- Universidade Estadual Paulista, Instituto de Biociências de Botucatu, Departamento de Microbiologia e Imunologia, Botucatu, SP, Brasil
| |
Collapse
|
18
|
Cicala F, Moore JD, Cáceres-Martínez J, Del Río-Portilla MA, Hernández-Rodríguez M, Vásquez-Yeomans R, Rocha-Olivares A. Multigenetic characterization of 'Candidatus Xenohaliotis californiensis'. Int J Syst Evol Microbiol 2016; 67:42-49. [PMID: 27902186 DOI: 10.1099/ijsem.0.001563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
'Candidatus Xenohaliotis californiensis' (or Ca.Xc) is the aetiological agent of withering syndrome, a chronic wasting disease affecting most if not all North American species of abalone, and has been described as a Rickettsiales-like prokaryote. Genetic data regarding this species are limited to the 16S rRNA gene. The inability to grow it axenically has hindered its genetic and genomic characterization and, in consequence, a thorough analysis of its systematics. Here, we amplified and sequenced five genes (16S rRNA, 23S rRNA, ftsZ, virD4 and virB11) of Ca.Xc from infected abalone to analyse its phylogenetic position. Phylogenies from concatenated DNA and amino acid sequences with representative genera of most Rickettsiales unequivocally place Ca.Xc in the family Anaplasmataceae. Furthermore, the family has two reciprocally monophyletic lineages: one leading to (Neorickettsia, Ca.Xc) and the other to ((Ehrlichia, Anaplasma), Wolbachia)). A molecular-clock Bayesian reconstruction places Ca.Xc as the most basal lineage in Anaplasmataceae. These phylogenetic hypotheses shed light on patterns of host evolution and of ecological transitions. Specifically, Neorickettsia and Ca.Xc inhabit aquatic hosts whereas the remaining Anaplasmataceae are found in terrestrial hosts. Additionally, our evolutionary timeline places the directly transmitted marine Ca.Xc as the basal Anaplasmataceae, ancestral to both freshwater and terrestrial species with adaptations leading to more complex life cycles involving intermediate vectors or reservoir species; this supports the hypothesis of a marine origin for this bacterial family.
Collapse
Affiliation(s)
- Francesco Cicala
- Molecular Ecology Laboratory, Department of Biological Oceanography, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada Baja California 22860, Mexico
| | - James D Moore
- Bodega Marine Laboratory, University of California at Davis, PO Box 247, Bodega Bay, CA, USA
| | - Jorge Cáceres-Martínez
- Department of Aquaculture, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada Baja California 22860, Mexico
| | - Miguel A Del Río-Portilla
- Department of Aquaculture, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada Baja California 22860, Mexico
| | - Mónica Hernández-Rodríguez
- Department of Aquaculture, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada Baja California 22860, Mexico
| | - Rebeca Vásquez-Yeomans
- Department of Aquaculture, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada Baja California 22860, Mexico
| | - Axayácatl Rocha-Olivares
- Molecular Ecology Laboratory, Department of Biological Oceanography, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada Baja California 22860, Mexico
| |
Collapse
|
19
|
Donadoni C, Corti S, Locatelli F, Papadimitriou D, Guglieri M, Strazzer S, Bossolasco P, Salani S, Comi GP. Improvement of Combined FISH and Immunofluorescence to Trace the Fate of Somatic Stem Cells after Transplantation. J Histochem Cytochem 2016; 52:1333-9. [PMID: 15385579 DOI: 10.1177/002215540405201009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) combined with immunohistochemistry of tissue-specific markers provides a reliable method for characterizing the fate of somatic stem cells in transplantation experiments. Furthermore, the association between FISH and fluorescent gene reporter detection can unravel cell fusion phenomena, which could account for apparent transdifferentiation events. However, despite the widespread use of these techniques, they still require labor-extensive protocol adjustments to achieve correct and satisfactory simultaneous signal detection. In the present paper, we describe an improvement of simultaneous FISH and immunofluorescence detection. We applied this protocol to the identification of transplanted human and mouse hematopoietic stem cells in murine brain and muscle. This technique provides unique opportunities for following the path taken by transplanted cells and their differentiation into mature cell types.
Collapse
Affiliation(s)
- Chiara Donadoni
- Dipartimento di Scienze Neurologiche, Università di Milano, Padiglione Ponti, Ospedale Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Khrustaleva L, Jiang J, Havey MJ. High-resolution tyramide-FISH mapping of markers tightly linked to the male-fertility restoration (Ms) locus of onion. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:535-545. [PMID: 26704420 DOI: 10.1007/s00122-015-2646-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Tyramide FISH was used to locate relatively small genomic amplicons from molecular markers linked to Ms locus onto onion chromosome 2 near the centromere, a region of relatively low recombination. Fluorescence in situ hybridization (FISH) has not been readily exploited for physical mapping of molecular markers in plants due to the technical challenge of visualizing small single-copy probes. Signal amplification using tyramide (tyr) FISH can increase sensitivity up to 100-fold. We used tyr-FISH to physically locate molecular markers tightly linked to the nuclear male-fertility (Ms) restoration locus of onion onto mitotic metaphase, pachytene, and super-stretched pachytene chromosomes. Relatively short genomic amplicons (846-2251 bp) and a cDNA clone (666 bp) were visualized in 9-42 % of observed cells. The markers were assigned to proximal locations close to the centromere on the long arm of chromosome 2, a region of lower recombination, revealing that tightly linked markers may be physically distant from Ms. This result explains why several labs have identified molecular markers tightly linked to the Ms locus after screening relatively few DNA clones or primers and segregating progenies. Although these markers are still useful for marker-aided selection, our results indicate that map-based cloning of Ms will likely be difficult due to reduced recombination near this gene.
Collapse
Affiliation(s)
- Ludmila Khrustaleva
- Center of Molecular Biotechnology, Department of Genetics and Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy, 49, Timiryazevskaya Str., 127550, Moscow, Russia.
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin, Madison, WI, 53706, USA
| | - Michael J Havey
- USDA-ARS and Department of Horticulture, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
21
|
Detection and signal amplification in zebrafish RNA FISH. Methods 2016; 98:50-59. [PMID: 26821229 DOI: 10.1016/j.ymeth.2016.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 11/23/2022] Open
Abstract
In situ hybridization (ISH) has become an invaluable tool for the detection of RNA in cells, tissues and organisms. Due to improvements in target and signal amplification and in probe design remarkable progress has been made concerning sensitivity, specificity and resolution of chromogenic and fluorescent ISH (FISH). These advancements allow for exquisite cellular and sub-cellular resolution and for detecting multiple RNA species at a time by multiplexing. In zebrafish (F)ISH non-enzymatic and enzymatic amplification systems have been employed to obtain enhanced signal intensities and signal-to-noise ratios. These amplification strategies include branched DNA-based RNAscope and in situ hybridization chain reaction (HCR) techniques, as well as alkaline phosphatase (AP)- and horseradish peroxidase (PO)-based immunoassays. For practical application, we provide proven multiplex FISH protocols for AP- and PO-based visualization of mRNAs at high resolution. The protocols take advantage of optimized tyramide signal amplification (TSA) conditions of the PO assay and long-lasting high signal-to-noise ratio of the AP reaction, thereby enabling detection of less abundant transcripts.
Collapse
|
22
|
Polaske NW, Kelly BD, Ashworth-Sharpe J, Bieniarz C. Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates. Bioconjug Chem 2016; 27:660-6. [DOI: 10.1021/acs.bioconjchem.5b00652] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan W. Polaske
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Brian D. Kelly
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Julia Ashworth-Sharpe
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| | - Christopher Bieniarz
- Ventana Medical Systems, Inc., 1910 East Innovation
Park Drive, Tucson, Arizona 85755, United States
| |
Collapse
|
23
|
Fouz M, Mukumoto K, Averick S, Molinar O, McCartney BM, Matyjaszewski K, Armitage BA, Das SR. Bright Fluorescent Nanotags from Bottlebrush Polymers with DNA-Tipped Bristles. ACS CENTRAL SCIENCE 2015; 1:431-8. [PMID: 27163005 PMCID: PMC4827471 DOI: 10.1021/acscentsci.5b00259] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 05/30/2023]
Abstract
Bright signal outputs are needed for fluorescence detection of biomolecules at their native expression levels. Increasing the number of labels on a probe often results in crowding-induced self-quenching of chromophores, and maintaining the function of the targeting moiety (e.g., an antibody) is a concern. Here we demonstrate a simple method to accommodate thousands of fluorescent dye molecules on a single antibody probe while avoiding the negative effects of self-quenching. We use a bottlebrush polymer from which extend hundreds of duplex DNA strands that can accommodate hundreds of covalently attached and/or thousands of noncovalently intercalated fluorescent dyes. This polymer-DNA assembly sequesters the intercalated fluorophores against dissociation and can be tethered through DNA hybridization to an IgG antibody. The resulting fluorescent nanotag can detect protein targets in flow cytometry, confocal fluorescence microscopy, and dot blots with an exceptionally bright signal that compares favorably to commercially available antibodies labeled with organic dyes or quantum dots.
Collapse
Affiliation(s)
- Munira
F. Fouz
- Department of Chemistry, Center for Nucleic Acids Science
and Technology, Center for Macromolecular
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kosuke Mukumoto
- Department of Chemistry, Center for Nucleic Acids Science
and Technology, Center for Macromolecular
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Saadyah Averick
- Department of Chemistry, Center for Nucleic Acids Science
and Technology, Center for Macromolecular
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Olivia Molinar
- Department of Chemistry, Center for Nucleic Acids Science
and Technology, Center for Macromolecular
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Brooke M. McCartney
- Department of Chemistry, Center for Nucleic Acids Science
and Technology, Center for Macromolecular
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Nucleic Acids Science
and Technology, Center for Macromolecular
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Bruce A. Armitage
- Department of Chemistry, Center for Nucleic Acids Science
and Technology, Center for Macromolecular
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R. Das
- Department of Chemistry, Center for Nucleic Acids Science
and Technology, Center for Macromolecular
Engineering, and Department of Biological Sciences, Carnegie
Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
24
|
Trinh LA, Fraser SE. Imaging the Cell and Molecular Dynamics of Craniofacial Development: Challenges and New Opportunities in Imaging Developmental Tissue Patterning. Curr Top Dev Biol 2015; 115:599-629. [PMID: 26589939 DOI: 10.1016/bs.ctdb.2015.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of the vertebrate head requires cell-cell and tissue-tissue interactions between derivatives of the three germ layers to coordinate morphogenetic movements in four dimensions (4D: x, y, z, t). The high spatial and temporal resolution offered by optical microscopy has made it the main imaging modularity for capturing the molecular and cellular dynamics of developmental processes. In this chapter, we highlight the challenges and new opportunities provided by emerging technologies that enable dynamic, high-information-content imaging of craniofacial development. We discuss the challenges of varying spatial and temporal scales encountered from the biological and technological perspectives. We identify molecular and fluorescence imaging technology that can provide solutions to some of the challenges. Application of the techniques described within this chapter combined with considerations of the biological and technical challenges will aid in formulating the best image-based studies to extend our understanding of the genetic and environmental influences underlying craniofacial anomalies.
Collapse
Affiliation(s)
- Le A Trinh
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Scott E Fraser
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
25
|
Urbanek MO, Nawrocka AU, Krzyzosiak WJ. Small RNA Detection by in Situ Hybridization Methods. Int J Mol Sci 2015; 16:13259-86. [PMID: 26068454 PMCID: PMC4490494 DOI: 10.3390/ijms160613259] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022] Open
Abstract
Small noncoding RNAs perform multiple regulatory functions in cells, and their exogenous mimics are widely used in research and experimental therapies to interfere with target gene expression. MicroRNAs (miRNAs) are the most thoroughly investigated representatives of the small RNA family, which includes short interfering RNAs (siRNAs), PIWI-associated RNA (piRNAs), and others. Numerous methods have been adopted for the detection and characterization of small RNAs, which is challenging due to their short length and low level of expression. These include molecular biology methods such as real-time RT-PCR, northern blotting, hybridization to microarrays, cloning and sequencing, as well as single cell miRNA detection by microscopy with in situ hybridization (ISH). In this review, we focus on the ISH method, including its fluorescent version (FISH), and we present recent methodological advances that facilitated its successful adaptation for small RNA detection. We discuss relevant technical aspects as well as the advantages and limitations of ISH. We also refer to numerous applications of small RNA ISH in basic research and molecular diagnostics.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Anna U Nawrocka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
26
|
Zinc-based fixation for high-sensitivity in situ hybridization: a nonradioactive colorimetric method for the detection of rare transcripts on tissue sections. Methods Mol Biol 2015; 1211:125-38. [PMID: 25218382 DOI: 10.1007/978-1-4939-1459-3_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Nonradioactive colorimetric in situ hybridization (NoRISH) has been widely applied to analyze gene expression at the single-cell level. Zinc fixation is time efficient and provides excellent tissue morphology. Furthermore, it improves the preservation of the RNA, facilitating the detection of rare transcripts or the identification of expressing cells scattered within a tissue. Here we present a rapid, highly sensitive NoRISH method that uses a zinc-salt-based fixative and is especially suitable for the study of genes expressed at low levels and/or in a small number of cells within a structure.
Collapse
|
27
|
Grabinski TM, Kneynsberg A, Manfredsson FP, Kanaan NM. A method for combining RNAscope in situ hybridization with immunohistochemistry in thick free-floating brain sections and primary neuronal cultures. PLoS One 2015; 10:e0120120. [PMID: 25794171 PMCID: PMC4368734 DOI: 10.1371/journal.pone.0120120] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022] Open
Abstract
In situ hybridization (ISH) is an extremely useful tool for localizing gene expression and changes in expression to specific cell populations in tissue samples across numerous research fields. Typically, a research group will put forth significant effort to design, generate, validate and then utilize in situ probes in thin or ultrathin paraffin embedded tissue sections. While combining ISH and IHC is an established technique, the combination of RNAscope ISH, a commercially available ISH assay with single transcript sensitivity, and IHC in thick free-floating tissue sections has not been described. Here, we provide a protocol that combines RNAscope ISH with IHC in thick free-floating tissue sections from the brain and allows simultaneous co-localization of genes and proteins in individual cells. This approach works well with a number of ISH probes (e.g. small proline-rich repeat 1a, βIII-tubulin, tau, and β-actin) and IHC antibody stains (e.g. tyrosine hydroxylase, βIII-tubulin, NeuN, and glial fibrillary acidic protein) in rat brain sections. In addition, we provide examples of combining ISH-IHC dual staining in primary neuron cultures and double-ISH labeling in thick free-floating tissue sections from the brain. Finally, we highlight the ability of RNAscope to detect ectopic DNA in neurons transduced with viral vectors. RNAscope ISH is a commercially available technology that utilizes a branched or "tree" in situ method to obtain ultrasensitive, single transcript detection. Immunohistochemistry is a tried and true method for identifying specific protein in cell populations. The combination of a sensitive and versatile oligonucleotide detection method with an established and versatile protein assay is a significant advancement in studies using free-floating tissue sections.
Collapse
Affiliation(s)
- Tessa M. Grabinski
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Andrew Kneynsberg
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Fredric P. Manfredsson
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Nicholas M. Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
- * E-mail:
| |
Collapse
|
28
|
Carabajal Paladino LZ, Nguyen P, Síchová J, Marec F. Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella. BMC Genet 2014; 15 Suppl 2:S15. [PMID: 25471491 PMCID: PMC4255786 DOI: 10.1186/1471-2156-15-s2-s15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Results Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. Conclusions We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms.
Collapse
|
29
|
Shubernetskaya OS, Skvortsov DA, Evfratov SA, Rubtsova MP, Belova EV, Strelkova OS, Cherepaninets VD, Zhironkina OA, Olovnikov AM, Zvereva ME, Kireev II, Dontsova OA. High expression levels and nuclear localization of novel Danio rerio ncRNA transcribed from a genomic region containing repetitive elements. Mol Biol 2014. [DOI: 10.1134/s002689331404013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Choi HMT, Beck VA, Pierce NA. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS NANO 2014; 8:4284-94. [PMID: 24712299 PMCID: PMC4046802 DOI: 10.1021/nn405717p] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/31/2014] [Indexed: 05/17/2023]
Abstract
Hybridization chain reaction (HCR) provides multiplexed, isothermal, enzyme-free, molecular signal amplification in diverse settings. Within intact vertebrate embryos, where signal-to-background is at a premium, HCR in situ amplification enables simultaneous mapping of multiple target mRNAs, addressing a longstanding challenge in the biological sciences. With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The properties of HCR lead to straightforward multiplexing, deep sample penetration, high signal-to-background, and sharp subcellular signal localization within fixed whole-mount zebrafish embryos, a standard model system for the study of vertebrate development. However, RNA reagents are expensive and vulnerable to enzymatic degradation. Moreover, the stringent hybridization conditions used to destabilize nonspecific hairpin binding also reduce the energetic driving force for HCR polymerization, creating a trade-off between minimization of background and maximization of signal. Here, we eliminate this trade-off by demonstrating that low background levels can be achieved using permissive in situ amplification conditions (0% formamide, room temperature) and engineer next-generation DNA HCR amplifiers that maximize the free energy benefit per polymerization step while preserving the kinetic trapping property that underlies conditional polymerization, dramatically increasing signal gain, reducing reagent cost, and improving reagent durability.
Collapse
Affiliation(s)
- Harry M. T. Choi
- Division of Biology & Biological Engineering and Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Victor A. Beck
- Division of Biology & Biological Engineering and Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Niles A. Pierce
- Division of Biology & Biological Engineering and Division of Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
31
|
Yuan J, Wu S, Duan N, Ma X, Xia Y, Chen J, Ding Z, Wang Z. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 2014; 127:163-8. [PMID: 24913871 DOI: 10.1016/j.talanta.2014.04.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/29/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
In this study, a gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus (S. aureus) using tyramine signal amplification (TSA) technology has been developed. First, the biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of the microtiter plate via biotin-avidin binding. Then, the target bacteria (S. aureus), biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and avidin-catalase were successively introduced into the wells of the microtiter plate. After that, the existing catalase consumed the hydrogen peroxide. Finally, the freshly prepared gold (III) chloride trihydrate was added, the color of the reaction production would be changed and the absorbance at 550 nm could be measured with a plate reader. Under optimized conditions, there was a linear relationship between the absorbance at 550 nm and the concentration of S. aureus over the range from 10 to 10(6) cfu mL(-1) (with an R² of 0.9947). The limit of the developed method was determined to be 9 cfu mL(-1).
Collapse
Affiliation(s)
- Jinglei Yuan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhansheng Ding
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
32
|
Li XW, Rees JS, Xue P, Zhang H, Hamaia SW, Sanderson B, Funk PE, Farndale RW, Lilley KS, Perrett S, Jackson AP. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J Biol Chem 2014; 289:14434-47. [PMID: 24706754 PMCID: PMC4031500 DOI: 10.1074/jbc.m113.529578] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the vertebrate immune system, each B-lymphocyte expresses a surface IgM-class B cell receptor (BCR). When cross-linked by antigen or anti-IgM antibody, the BCR accumulates with other proteins into distinct surface clusters that activate cell signaling, division, or apoptosis. However, the molecular composition of these clusters is not well defined. Here we describe a quantitative assay we call selective proteomic proximity labeling using tyramide (SPPLAT). It allows proteins in the immediate vicinity of a target to be selectively biotinylated, and hence isolated for mass spectrometry analysis. Using the chicken B cell line DT40 as a model, we use SPPLAT to provide the first proteomic analysis of any BCR cluster using proximity labeling. We detect known components of the BCR cluster, including integrins, together with proteins not previously thought to be BCR-associated. In particular, we identify the chicken B-lymphocyte allotypic marker chB6. We show that chB6 moves to within about 30–40 nm of the BCR following BCR cross-linking, and we show that cross-linking chB6 activates cell binding to integrin substrates laminin and gelatin. Our work provides new insights into the nature and composition of the BCR cluster, and confirms SPPLAT as a useful research tool in molecular and cellular proteomics.
Collapse
Affiliation(s)
- Xue-Wen Li
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, the University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Johanna S Rees
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom, the Cambridge Centre for Proteomics, Tennis Court Road, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Peng Xue
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Hong Zhang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Samir W Hamaia
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Bailey Sanderson
- the Department of Biological Sciences, DePaul University, Chicago, Illinois 60604, and
| | - Phillip E Funk
- the Department of Biological Sciences, DePaul University, Chicago, Illinois 60604, and
| | - Richard W Farndale
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Kathryn S Lilley
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom, the Cambridge Centre for Proteomics, Tennis Court Road, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China,
| | - Antony P Jackson
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom,
| |
Collapse
|
33
|
Wolfe AD, Downs KM. Mixl1 localizes to putative axial stem cell reservoirs and their posterior descendants in the mouse embryo. Gene Expr Patterns 2014; 15:8-20. [PMID: 24632399 DOI: 10.1016/j.gep.2014.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/22/2023]
Abstract
Mixl1 is thought to play important roles in formation of mesoderm and endoderm. Previously, Mixl1 expression was reported in the posterior primitive streak and allantois, but the precise spatiotemporal whereabouts of Mixl1 protein throughout gastrulation have not been elucidated. To localize Mixl1 protein, immunohistochemistry was carried out at 2-4 h intervals on mouse gastrulae between primitive streak and 16-somite pair (s) stages (~E6.5-9.5). Mixl1 localized to the entire primitive streak early in gastrulation. However, by headfold stages (~E7.75-8.0), Mixl1 diminished within the mid-streak but remained concentrated at either end of the streak, and localized throughout midline posterior visceral endoderm. At the streak's anterior end, Mixl1 was confined to the posterior crown cells of Hensen's node, which contribute to dorsal hindgut endoderm, and the posterior notochord. In the posterior streak, Mixl1 localized to the Allantoic Core Domain (ACD), which is the source of most of the allantois and contributes to the posterior embryonic-extraembryonic interface. In addition, Mix1 co-localized with the early hematopoietic marker, Runx1, in the allantois and visceral yolk sac blood islands. During hindgut invagination (4-16s, ~E8.5-9.5), Mixl1 localized to the hindgut lip, becoming concentrated within the midline anastomosis of the splanchnopleure, which appears to create the ventral component of the hindgut and omphalomesenteric artery. Surrounding the distal hindgut, Mixl1 identified midline cells within tailbud mesoderm. Mixl1 was also found in the posterior notochord. These findings provide a critical systematic, and tissue-level understanding of embryonic Mixl1 localization, and support its role in regulation of crucial posterior axial mesendodermal stem cell niches during embryogenesis.
Collapse
Affiliation(s)
- Adam D Wolfe
- Department of Pediatrics, Division of Pediatric Hematology, Oncology & Bone Marrow Transplant, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, 4105 WIMR, Madison, WI 53705, United States
| | - Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, United States
| |
Collapse
|
34
|
KSHV cell attachment sites revealed by ultra sensitive tyramide signal amplification (TSA) localize to membrane microdomains that are up-regulated on mitotic cells. Virology 2014; 452-453:75-85. [PMID: 24606685 DOI: 10.1016/j.virol.2014.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/28/2013] [Accepted: 01/07/2014] [Indexed: 11/24/2022]
Abstract
Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry.
Collapse
|
35
|
van der Loos CM. Is the Catalyzed System Amplification (CSA) II Kit Also Applicable for Cryostat Tissue Sections and Double Staining? J Histotechnol 2013. [DOI: 10.1179/his.2006.29.3.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1120-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Zhou H, Chen Z, Zhang W, Xing G. Middle ear squamous papilloma: A report of four cases analyzed by HPV and EBV in situ hybridization. Oncol Lett 2013; 7:41-46. [PMID: 24348817 PMCID: PMC3861571 DOI: 10.3892/ol.2013.1675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 11/04/2013] [Indexed: 11/22/2022] Open
Abstract
Squamous papilloma involving the middle ear as a primary lesion is an extremely rare occurrence. The aims of the present study were to investigate the presence of human papilloma virus (HPV) and Epstein-Barr virus (EBV) infections in primary middle ear squamous papilloma and to describe the clinical and pathological features of the disease along with therapeutic strategies. A retrospective review was conducted of four patients with clinical and pathological diagnoses of middle ear squamous papilloma. In situ hybridization (ISH) for a wide range of HPV DNA subtypes and EBV-encoded RNA was performed in the tissue samples obtained from these patients. Only two cases of primary squamous papilloma in the middle ear have been previously reported in the English literature. These papillomas developed in males of ~60-years of age and otorrhea was the most frequent complaint. Premalignant changes were observed in two of the present cases and ISH of HPV and EBV was negative in all four cases. The results of the present study indicated that chronic inflammatory stimulation, not HPV and EBV infection, is involved in the occurrence of middle ear squamous papilloma and its malignant transformation. Radical surgery and long-term postoperative follow-up are recommended due to its malignant and recurrent potential. Further genetic investigations with additional new cases are required to clarify the pathogenesis of squamous papilloma involving the middle ear.
Collapse
Affiliation(s)
- Han Zhou
- Department of Otolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiming Zhang
- Department of Pathology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
38
|
Ramos-Vara JA, Miller MA. When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry--the red, brown, and blue technique. Vet Pathol 2013; 51:42-87. [PMID: 24129895 DOI: 10.1177/0300985813505879] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Once focused mainly on the characterization of neoplasms, immunohistochemistry (IHC) today is used in the investigation of a broad range of disease processes with applications in diagnosis, prognostication, therapeutic decisions to tailor treatment to an individual patient, and investigations into the pathogenesis of disease. This review addresses the technical aspects of immunohistochemistry (and, to a lesser extent, immunocytochemistry) with attention to the antigen-antibody reaction, optimal fixation techniques, tissue processing considerations, antigen retrieval methods, detection systems, selection and use of an autostainer, standardization and validation of IHC tests, preparation of proper tissue and reagent controls, tissue microarrays and other high-throughput systems, quality assurance/quality control measures, interpretation of the IHC reaction, and reporting of results. It is now more important than ever, with these sophisticated applications, to standardize the entire IHC process from tissue collection through interpretation and reporting to minimize variability among laboratories and to facilitate quantification and interlaboratory comparison of IHC results.
Collapse
Affiliation(s)
- J A Ramos-Vara
- Animal Disease Diagnostic Laboratory and Department of Comparative Pathobiology, Purdue University, 406 South University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
39
|
|
40
|
|
41
|
Huang X, Wang J, Liu H, Lan T, Ren J. Quantum dot-based FRET for sensitive determination of hydrogen peroxide and glucose using tyramide reaction. Talanta 2013; 106:79-84. [DOI: 10.1016/j.talanta.2012.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 12/01/2022]
|
42
|
Ito E, Watabe S, Morikawa M, Kodama H, Okada R, Miura T. Detection of H2O2 by Fluorescence Correlation Spectroscopy. Methods Enzymol 2013; 526:135-43. [DOI: 10.1016/b978-0-12-405883-5.00008-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
43
|
Yuan L, Xu L, Liu S. Integrated tyramide and polymerization-assisted signal amplification for a highly-sensitive immunoassay. Anal Chem 2012. [PMID: 23181414 DOI: 10.1021/ac302439v] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel strategy for ultrasensitive detection of model protein based on the integration of tyramide signal amplification (TSA) and polymerization-assisted signal amplification was proposed. The surface-initiated atom transfer radical polymerization (SI-ATRP) of glycidyl methacrylate (GMA) was triggered by the initiator-coupled protein immobilized on the electrode surface through sandwiched immunoreactions. Growth of long chain polymeric materials provided numerous epoxy groups for subsequent coupling of horseradish peroxidase (HRP), which in turn significantly increased the loading of quantum dots (QDs) labeled tyramide in the presence of hydrogen peroxide. As a result, electrochemiluminescence (ECL) and square-wave voltammetric (SWV) measurements showed 9.4- and 10.5-fold increase in detection signal in comparison with the unamplified method, respectively. To demonstrate the feasibility of this approach, human immunoglobulin G antigen (IgG) as a model target protein was employed and the detection limits were 0.73 and 0.09 pg mL(-1) for ECL and SWV, respectively. The results showed that sensitivity of the presented immunoassay significantly increased by one-order of magnitude and offered great application promises in providing a sensitive, specific, and potent method for biological detection.
Collapse
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, 211189, P.R. China
| | | | | |
Collapse
|
44
|
Schmidt H, Eickhorst T, Tippkötter R. Evaluation of tyramide solutions for an improved detection and enumeration of single microbial cells in soil by CARD-FISH. J Microbiol Methods 2012; 91:399-405. [PMID: 23022442 DOI: 10.1016/j.mimet.2012.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022]
Abstract
Several tyramide solutions were evaluated for the application of fluorescence in situ hybridization with catalyzed reporter deposition (CARD-FISH) in soil. Fluorescently labeled tyramide solutions were synthesized and compared to commercially available tyramides for the detection and quantification of single microbial cells. Among the tyramide solutions tested, a succinimidyl ester of fluorescein diluted with dimethylformamide containing iodophenolboronic acid (SFX-DMF-IPBA) gave the best results, yielding highly reproducible cell numbers and detection rates of archaea and bacteria along with negligible non-specific signals. The addition of organic and inorganic compounds to the amplification reagents had a positive impact on the detection of prokaryotic cells. The applicability of SFX-DMF-IPBA for CARD-FISH in soil was further evaluated in soils of different texture. Cell numbers and detection rates of bacteria and archaea remained on a high level independent of the clay or organic matter content. Based on the results obtained in this study, the choice of the tyramide solution used for CARD-FISH has a significant influence on the detection and quantification of single microbial cells in soil. Therefore, we suggest the application of the presented tyramide signal amplification procedure including the tyramide solution SFX-DMF-IPBA for comprehensive CARD-FISH studies investigating the abundance and spatial distribution of soil microorganisms.
Collapse
|
45
|
Abstract
Detection of RNAs by in situ hybridization (ISH) is a well-established technique that permits the study of specific RNA expression patterns in tissues; however, not all tissues are equally amenable to staining using the same procedure. Here we describe a protocol that combines whole-mount immunofluorescence (IF) and fluorescence in situ hybridization (FISH) for the simultaneous detection of specific RNA transcripts and proteins, greatly enhancing the spatial resolution of RNA expression in complex, intact fly tissues. To date, we have successfully used this protocol in adult testis, larval male gonads, adult intestine and Malpighian tubules. IF is conducted in RNase-free solutions, prior to the harsh conditions of FISH, in order to preserve protein antigenicity within dissected tissues. Separate protocols are described for mRNA and miRNA detection, which are based on robust digoxigenin (DIG) RNA and locked nucleic acid (LNA) probes, respectively. The combined IF-FISH procedure can be completed in 2 d for miRNA detection and 4 d for mRNA detection. Although optimized for Drosophila, this IF-FISH protocol should be adaptable to a wide variety of organisms, tissues, antibodies and probes, thus providing a reliable and simple means to compare RNA and protein abundance and localization.
Collapse
|
46
|
Deckelbaum RA, Holmes G, Zhao Z, Tong C, Basilico C, Loomis CA. Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1. Development 2012; 139:1346-58. [PMID: 22395741 DOI: 10.1242/dev.076729] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The characterization of mesenchymal progenitors is central to understanding development, postnatal pathology and evolutionary adaptability. The precise identity of the mesenchymal precursors that generate the coronal suture, an important structural boundary in mammalian skull development, remains unclear. We show in mouse that coronal suture progenitors originate from hedgehog-responsive cephalic paraxial mesoderm (Mes) cells, which migrate rapidly to a supraorbital domain and establish a unidirectional lineage boundary with neural crest (NeuC) mesenchyme. Lineage tracing reveals clonal and stereotypical expansion of supraorbital mesenchymal cells to form the coronal suture between E11.0 and E13.5. We identify engrailed 1 (En1) as a necessary regulator of cell movement and NeuC/Mes lineage boundary positioning during coronal suture formation. In addition, we provide genetic evidence that En1 functions upstream of fibroblast growth factor receptor 2 (Fgfr2) in regulating early calvarial osteogenic differentiation, and postulate that it plays an additional role in precluding premature osteogenic conversion of the sutural mesenchyme.
Collapse
Affiliation(s)
- Ron A Deckelbaum
- Department of Pathology, New York University School of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Huang X, Lan T, Zhang B, Ren J. Gold nanoparticle–enzyme conjugates based FRET for highly sensitive determination of hydrogen peroxide, glucose and uric acid using tyramide reaction. Analyst 2012; 137:3659-66. [DOI: 10.1039/c2an35503e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Highly sensitive determination of hydrogen peroxide and glucose by fluorescence correlation spectroscopy. PLoS One 2011; 6:e22955. [PMID: 21850246 PMCID: PMC3151274 DOI: 10.1371/journal.pone.0022955] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/01/2011] [Indexed: 11/19/2022] Open
Abstract
Background Because H2O2 is generated by various oxidase-catalyzed reactions, a highly sensitive determination method of H2O2 is applicable to measurements of low levels of various oxidases and their substrates such as glucose, lactate, glutamate, urate, xanthine, choline, cholesterol and NADPH. We propose herein a new, highly sensitive method for the measurement of H2O2 and glucose using fluorescence correlation spectroscopy (FCS). Methodology/Principal Findings FCS has the advantage of allowing us to determine the number of fluorescent molecules. FCS measures the fluctuations in fluorescence intensity caused by fluorescent probe movement in a small light cavity with a defined volume generated by confocal illumination. We thus developed a highly sensitive determination system of H2O2 by FCS, where horseradish peroxidase (HRP) catalyzes the formation of a covalent bond between fluorescent molecules and proteins in the presence of H2O2. Our developed system gave a linear calibration curve for H2O2 in the range of 28 to 300 nM with the detection limit of 8 nM. In addition, by coupling with glucose oxidase (GOD)-catalyzed reaction, the method allows to measure glucose in the range of 80 nM to 1.5 µM with detection limit of 24 nM. The method was applicable to the assay of glucose in blood plasma. The mean concentration of glucose in normal human blood plasma was determined to be 4.9 mM. Conclusions/Significance In comparison with commercial available methods, the detection limit and the minimum value of determination for glucose are at least 2 orders of magnitude more sensitive in our system. Such a highly sensitive method leads the fact that only a very small amount of plasma (20 nL) is needed for the determination of glucose concentration in blood plasma.
Collapse
|
49
|
Avens HJ, Berron BJ, May AM, Voigt KR, Seedorf GJ, Balasubramaniam V, Bowman CN. Sensitive immunofluorescent staining of cells via generation of fluorescent nanoscale polymer films in response to biorecognition. J Histochem Cytochem 2011; 59:76-87. [PMID: 21339175 DOI: 10.1369/jhc.2010.955948] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immunofluorescent staining is central to nearly all cell-based research, yet only a few fluorescent signal amplification approaches for cell staining exist, each with distinct limitations. Here, the authors present a novel, fluorescent polymerization-based amplification (FPBA) method that is shown to enable similar signal intensities as the highly sensitive, enzyme-based tyramide signal amplification (TSA) approach. Being non-enzymatic, FPBA is not expected to suffer from nonspecific staining of endogenous enzymes, as occurs with enzyme-based approaches. FPBA employs probes labeled with photopolymerization initiators, which lead to the controlled formation of fluorescent polymer films only at targeted biorecognition sites. Nuclear pore complex proteins (NPCs; in membranes), vimentin (in filaments), and von Willebrand factor (in granules) were all successfully immunostained by FPBA. Also, FPBA was demonstrated to be capable of multicolor immunostaining of multiple antigens. To assess relative sensitivity, decreasing concentrations of anti-NPC antibody were used, indicating that both FPBA and TSA stained NPC down to a 1:100,000 dilution. Nonspecific, cytoplasmic signal resulting from NPC staining was found to be reduced up to 5.5-fold in FPBA as compared to TSA, demonstrating better signal localization with FPBA. FPBA's unique approach affords a combination of preferred attributes, including high sensitivity and specificity not otherwise available with current techniques.
Collapse
Affiliation(s)
- Heather J Avens
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol 2010; 28:1208-12. [PMID: 21037591 PMCID: PMC3058322 DOI: 10.1038/nbt.1692] [Citation(s) in RCA: 513] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/24/2010] [Indexed: 11/08/2022]
Abstract
In situ hybridization methods enable the mapping of mRNA expression within intact biological samples. With current approaches, it is challenging to simultaneously map multiple target mRNAs within whole-mount vertebrate embryos, representing a significant limitation in attempting to study interacting regulatory elements in systems most relevant to human development and disease. Here, we report a multiplexed fluorescent in situ hybridization method based on orthogonal amplification with hybridization chain reactions (HCR). With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability and sequence specificity of these amplification cascades enable multiple HCR amplifiers to operate orthogonally at the same time in the same sample. Robust performance is achieved when imaging five target mRNAs simultaneously in fixed whole-mount and sectioned zebrafish embryos. HCR amplifiers exhibit deep sample penetration, high signal-to-background ratios and sharp signal localization.
Collapse
|