1
|
Outla Z, Oyman-Eyrilmez G, Korelova K, Prechova M, Frick L, Sarnova L, Bisht P, Novotna P, Kosla J, Bortel P, Borutzki Y, Bileck A, Gerner C, Rahbari M, Rahbari N, Birgin E, Kvasnicova B, Galisova A, Sulkova K, Bauer A, Jobe N, Tolde O, Sticova E, Rösel D, O'Connor T, Otahal M, Jirak D, Heikenwälder M, Wiche G, Meier-Menches SM, Gregor M. Plectin-mediated cytoskeletal crosstalk as a target for inhibition of hepatocellular carcinoma growth and metastasis. eLife 2025; 13:RP102205. [PMID: 40052672 DOI: 10.7554/elife.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Zuzana Outla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gizem Oyman-Eyrilmez
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Korelova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Magdalena Prechova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lukas Frick
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Lenka Sarnova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Piyush Bisht
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Novotna
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kosla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Patricia Bortel
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Yasmin Borutzki
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, Medical University of Vienna and University of Vienna, Heidelberg, Germany
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, Medical University of Vienna and University of Vienna, Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nuh Rahbari
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Emrullah Birgin
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Bibiana Kvasnicova
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Andrea Galisova
- Department of Radiodiagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Katerina Sulkova
- Department of Radiodiagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Andreas Bauer
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Njainday Jobe
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prumyslova, Vestec, Czech Republic
| | - Ondrej Tolde
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prumyslova, Vestec, Czech Republic
| | - Eva Sticova
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prumyslova, Vestec, Czech Republic
| | - Tracy O'Connor
- Department of Biology, North Park University, Chicago, United States
| | - Martin Otahal
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Daniel Jirak
- Department of Radiodiagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, Medical University of Vienna and University of Vienna, Heidelberg, Germany
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Hakami ZH, Abdo W, Nazeam JA, Osman SM, Goda W, Fadl SE, Alsulimani A, Al-Noshokaty TM, Haridy M, Alnasser SM, Abdeen A. Aloe arborescens Standardized Glycosidic Fraction Suppresses Hepatocarcinoma by Modulating TIMP1, MMP9 Genes Expression, and Inflammation/Ki67/TGFβ1 Pathway. Phytother Res 2025; 39:1090-1106. [PMID: 39731399 DOI: 10.1002/ptr.8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/26/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
(1) Background and aim: Aloe arborescens Mill. ( A. arborescens ) is one of the most widely distributed species in the genus Aloe and has garnered widespread recognition for its anticancer properties. However, the molecular mechanisms underlying these activities have not yet been fully elucidated. This study aimed to explore the effects of the plant polar glycosidic fraction (AAG) on hepatocellular carcinoma (HCC) in an in vivo model induced by diethylnitrosamine (DEN). (2) Experimental procedure: The fraction was standardized using HPLC-PDA-MS/MS fingerprinting, and two distinct intragastric AAG dose regimens were examined (10 and 20 mg/kg) in combination with DEN 200 mg/kg. Serum alpha-fetoprotein (AFP), gamma-glutamyl transferase (γ-GGT), glutathione S-transferase placental (GST-P), mRNA expression of metabolic cytochrome enzymes (CYP1A3 and CYP2B2), inflammatory genes (nuclear factor kappa-B p65 subunit; NF-κB p65), metalloproteases 9 (MMP9), tissue inhibitors of metalloproteases (TIMP1), transforming growth factor beta 1 (TGFβ1), and histological features were assessed. (3) Key results and conclusions and implications: AAG was characterized by five major secondary metabolites: saponins, chromones, anthraquinone, and triterpenes. The fraction reduced hepatic malignancy characteristics by diminishing the size and number of altered foci and lowering hepatic cancer biomarkers, such as γ-GGT, AFP, and GST-positive foci. It also reduced the mRNA levels of CYP1A3 and CYP2B2, NF-κB p65, and MMP9, hepatic Ki-67, and TGFβ1 while upregulating TIMP1 levels. This study revealed that AAG exhibited a marked suppressive effect on HCC cell proliferation, displaying a range of mechanistic actions, including decreasing the metabolic activation of cytochrome enzymes, which consequently reduced the production of reactive oxygen species and other genes implicated in cancer development. AAG could be a significant therapeutic candidate for patients diagnosed with hepatocarcinoma.
Collapse
Affiliation(s)
- Zaki H Hakami
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jilan A Nazeam
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Samir M Osman
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Wael Goda
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| | - Sabreen E Fadl
- Department of Biochemistry, Faculty of Veterinary Medicine, Matruh University, Matruh, Egypt
| | - Ahmad Alsulimani
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohie Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
3
|
Kremer KN, Khammash HA, Miranda AM, Rutt LN, Twardy SM, Anton PE, Campbell ML, Garza-Ortiz C, Orlicky DJ, Pelanda R, McCullough RL, Torres RM. Liver sinusoidal endothelial cells regulate the balance between hepatic immunosuppression and immunosurveillance. Front Immunol 2025; 15:1497788. [PMID: 39896805 PMCID: PMC11782242 DOI: 10.3389/fimmu.2024.1497788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
As a metabolic center, the liver prevents inappropriate immune responses to abundant dietary antigens within the liver that could result in liver injury. This self-preservation mechanism can however decrease the efficiency of immunosurveillance of malignant cells by CD8 T cells. Hepatocellular carcinoma (HCC) is initiated by chronic viral infections, chronic alcohol consumption, and/or a fatty diet that leads to liver injury, fibrosis, and cirrhosis. HCC patients have high levels of dysfunctional and exhausted T cells, however, it is unclear which stage of HCC development contributes to T cell dysfunction. Repair of liver injury is initiated by interactions between injured hepatocytes and liver sinusoidal endothelial cells (LSEC), however, chronic injury can lead to fibrosis. Here, using a diethylnitrosamine/carbon tetrachloride (DEN/CCl4) mouse model of early HCC development, we demonstrate that chronic liver injury and fibrosis are sufficient to induce a CD8 T cell exhaustion signature with a corresponding increase in expression of immunosuppressive molecules on LSEC. We show that LSEC alter T cell function at various stages of T cell differentiation/activation. LSEC compete with dendritic cells presenting the same antigen to naïve CD8 T cells resulting in a unique T cell phenotype. Furthermore, LSEC abrogate killing of target cells, in an antigen-dependent manner, by previously activated effector CD8 T cells, and LSEC change the effector cell cytokine profile. Moreover, LSEC induce functional T cell exhaustion under low dose chronic stimulation conditions. Thus, LSEC critically regulate the balance between preventing/limiting liver injury and permitting sufficient tumor immunosurveillance with normal hepatic functions likely contributing to HCC development under conditions of chronic liver insult.
Collapse
Affiliation(s)
- Kimberly N. Kremer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Hadeel A. Khammash
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Anjelica M. Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lauren N. Rutt
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Shannon M. Twardy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Paige E. Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Margaret L. Campbell
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christian Garza-Ortiz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rebecca L. McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
4
|
Cinnamon E, Stein I, Zino E, Rabinovich S, Shovman Y, Schlesinger Y, Salame TM, Reich-Zeliger S, Albrecht T, Roessler S, Schirmacher P, Lotem M, Ben-Neriah Y, Parnas O, Pikarsky E. RORc expressing immune cells negatively regulate tertiary lymphoid structure formation and support their pro-tumorigenic functions. J Hepatol 2024:S0168-8278(24)02769-7. [PMID: 39710149 DOI: 10.1016/j.jhep.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND AND AIMS RORc-expressing immune cells play important roles in inflammation, autoimmune disease and cancer. They are required for lymphoid organogenesis and have been implicated in tertiary lymphoid structure (TLS) formation. TLSs are formed in many cancer types and have been correlated with better prognosis and response to immunotherapy. In liver cancer, some TLSs are pro-tumorigenic as they harbor tumor progenitor cells and support their growth. The processes involved in TLS development and acquisition of pro- or anti-tumorigenic roles are largely unknown. This study aims to explore the role of RORc-expressing cells in TLS development in the context of inflammation-associated liver cancer. METHODS IKKβ(EE)Hep mice, exhibiting chronic liver inflammation, TLS formation and liver cancer, were crossed with RORc knockout mice to explore RORc's effect on TLS and tumor formation. TLS phenotypes were analyzed using transcriptional, proteomic, and immunohistochemical techniques. CD4, CD8, and B cell depletions were used to assess their contribution to liver TLS and tumor formation. RESULTS RORc-expressing cells are detected within TLSs of both human patients and mice developing intrahepatic cholangiocarcinoma. In mice, these cells negatively regulate TLS formation, as excess TLSs form in their absence. CD4 cells are essential for liver TLS formation, while B cells are required for TLS formation specifically in the absence of RORc-expressing cells. Importantly, in chronically inflamed livers lacking RORc-expressing cells, TLSs become anti-tumorigenic, reducing tumor load. Anti-tumorigenic TLSs revealed enrichment of exhausted CD8 cells with effector functions, germinal center B cells and plasma cells. B cells are key in limiting tumor development, possibly via tumor-directed antibodies. CONCLUSIONS RORc-expressing cells negatively regulate B cell responses and facilitate the pro-tumorigenic functions of hepatic TLSs.
Collapse
Affiliation(s)
- Einat Cinnamon
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ilan Stein
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elvira Zino
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Stav Rabinovich
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yehuda Shovman
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yehuda Schlesinger
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Thomas Albrecht
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yinon Ben-Neriah
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Oren Parnas
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Eli Pikarsky
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
5
|
Shirmard LR, Khezri S, Ahadzadeh S, Azadimoghaddam P, Azizian S, Salimi A. Preparation of gallic acid-loaded chitosan nanoparticles and their chemoprotective effects on N-ethyl-N-nitrosourea-induced hepatotoxicity and mortality in rats. J Mol Histol 2024; 56:1. [PMID: 39585491 DOI: 10.1007/s10735-024-10280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
N-ethyl-N-nitrosourea (ENU) as n-nitrosamine and alkylating agent, ubiquitous within living cells and in the environment can act as a full carcinogen and induce tumor formation in various tissues such as liver. In this study, gallic acid-loaded chitosan nanoparticles (GANPs) were synthesized and evaluated for their chemopreventive effect against ENU-induced hepatotoxicity and mortality in rats. Twenty-four male Wistar rats were divided into four groups including: control, ENU (single doses of 50 mg/kg via intraperitoneal injection), GA + ENU and GANPs + ENU. Animals were orally pretreated with GA (50 mg/kg) and GANPs (50 mg/kg) for 30 days, and liver injuries induced by ENU on the 31st day of study. After ENU administration, weight changes and mortality were monitored during 30 days, and then the animals were sacrificed and alpha-fetoprotein (AFP) as a tumor marker, liver function tests (ALT, AST and ALP), oxidative stress markers (GSH and MDA), mitochondrial toxicity parameters, and histopathological assessment were evaluated. Except for AFP and MDA, ENU caused significant elevation of liver enzymes, mitochondrial ROS formation, collapse of mitochondrial membrane potential depletion of GSH, histopathological abnormalities and mortality in rats. Our data showed that GANPs significantly increased the survival of rats by up to 66%, delayed in death time and prevented weight changes after exposure to ENU. Moreover, GANPs restored liver enzyme levels, ROS formation, mitochondrial dysfunction, GSH levels, and histopathological abnormalities towards normal. Our findings suggest that GANPs revealed a significant protective effect against deadly toxicity induced by ENU as an alkylating full carcinogen agent in liver tissue.
Collapse
Affiliation(s)
- Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, Associate Professor of Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Sara Ahadzadeh
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Paniiiz Azadimoghaddam
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepideh Azizian
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, Associate Professor of Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
6
|
Bai Z, Li H, Jiao B. Potential Therapeutic Effect of Sinigrin on Diethylnitrosamine-Induced Liver Cancer in Mice: Exploring the Involvement of Nrf-2/HO-1, PI3K-Akt-mTOR Signaling Pathways, and Apoptosis. ACS OMEGA 2024; 9:46064-46073. [PMID: 39583716 PMCID: PMC11579720 DOI: 10.1021/acsomega.4c06203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Sinigrin is a glucosinolate present in plants of the family Brassicaceae and has been considered for its anticancer potential. This study examines the efficacy of sinigrin on the liver cancer caused by diethylnitrosamine (DEN) in mice through the analysis of its impact on the Nrf-2/HO-1, PI3K-Akt-mTOR, and apoptotic pathways. Development of liver cancer was induced by intraperitoneal injection at the age of 14 days with DEN (25 mg/kg) in mice. Thereafter, sinigrin was orally administered at doses of 10 and 20 mg/kg body weight per day the last 28 days. At the end of 10 weeks, mice were sacrificed and then we conducted hepatic biochemical and molecular assessments. Sinigrin reduced the serum level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), alpha-fetoprotein (AFP), and bilirubin but increased total protein, and albumin, levels. Sinigrin increased the antioxidant enzymes (SOD, CAT, GPx, and GST) as indicated by reduced 8-OHdG, TBARS and increased glutathione. Sinigrin reduced the levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, and NF-κB p65) and PI3K/AKT/mTOR signaling pathway. Sinigrin also activated the intrinsic mitochondrial apoptosis pathway mediated by p53, downregulated antiapoptotic proteins (Bcl-2), up-regulated pro-apoptosis regulatory proteins like Bax and caspase-3. All these results indicate that the protective effects of sinigrin against liver cancer are likely to be applied as an effective therapeutic agent through its antioxidant and pro-apoptotic activities.
Collapse
Affiliation(s)
- Zhe Bai
- Department
of Hepatobiliary Pancreatic and Gastrosurgery, Shanxi Province Cancer
Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital
Affiliated to Shanxi Medical University, Xinghualing District Workers New Street 3, Taiyuan 030013, China
| | - Hui Li
- Department
of Gastroenterology, The First Hospital
of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, Shanxi 030001, China
| | - Baoping Jiao
- Department
of Hepatobiliary Pancreatic and Gastrosurgery, Shanxi Province Cancer
Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital
Affiliated to Shanxi Medical University, Xinghualing District Workers New Street 3, Taiyuan 030013, China
| |
Collapse
|
7
|
P. K, Bhattacharya A, Du L, Silswal A, Li M, Cao J, Zhou Q, Zheng W, Liu TM, Koner AL. Activity-Based Dicyanoisophorone Derivatives: Fluorogenic Toolbox Enables Direct Visualization and Monitoring of Esterase Activity in Tumor Models. Anal Chem 2024; 96:18278-18286. [PMID: 39483052 PMCID: PMC11561878 DOI: 10.1021/acs.analchem.4c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
The visualization and spatiotemporal monitoring of endogenous esterase activity are crucial for clinical diagnostics and treatment of liver diseases. Our research adopts a novel substrate hydrolysis-enzymatic activity (SHEA) approach using dicyanoisophorone-based fluorogenic ester substrates DCIP-R (R = R1-R6) to evaluate esterase preferences on diverse substrate libraries. Esterase-mediated hydrolysis yielded fluorescent DCIP-OH with a nanomolar detection limit in vitro. These probes effectively monitor ester hydrolysis kinetics with a turnover number of 4.73 s-1 and catalytic efficiency (kcat/Km) of 106 M-1 s-1 (DCIP-R1). Comparative studies utilizing two-photon imaging have indicated that substrates containing alkyl groups (DCIP-R1) as recognition elements exhibit enhanced enzymatic cleavage compared to those containing phenyl substitution on alkyl chains (DCIP-R4). Time-dependent variations in endogenous esterase levels were tracked in healthy and liver tumor models, especially in diethylnitrosamine (DEN)-induced tumors and HepG2-transplanted liver tumors. Overall, fluorescence signal quantifications demonstrated the excellent proficiency of DCIP-R1 in detecting esterase activity both in vitro and in vivo, showing promising potential for biomedical applications.
Collapse
Affiliation(s)
- Kavyashree P.
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| | - Atri Bhattacharya
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States of
America
| | - Lidong Du
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Akshay Silswal
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| | - Moxin Li
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Jiayue Cao
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Qingqing Zhou
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Weiming Zheng
- Translational
Medicine R&D Center, Zhuhai UM Science
and Technology Research Institute, Zhuhai 519000, China
| | - Tzu-Ming Liu
- Institute
of Translational Medicine, Faculty of Health Sciences & Ministry
of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Apurba Lal Koner
- Bionanotechnology
Lab, Department of Chemistry, Indian Institute
of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh, India
| |
Collapse
|
8
|
Wang Y, Leaker B, Qiao G, Sojoodi M, Eissa IR, Epstein ET, Eddy J, Dimowo O, Lauer GM, Qadan M, Lanuti M, Chung RT, Fuchs BC, Tanabe KK. Precision-cut liver slices as an ex vivo model to evaluate antifibrotic therapies for liver fibrosis and cirrhosis. Hepatol Commun 2024; 8:e0558. [PMID: 39445861 PMCID: PMC11512631 DOI: 10.1097/hc9.0000000000000558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/24/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Considering the lack of successful treatment options and poor prognosis for cirrhosis and cirrhosis-induced HCC, new platforms to investigate antifibrotic therapies are urgently needed. Precision-cut liver slice (PCLS) is a powerful ex vivo culture model that can supplement and potentially replace the traditional models. METHODS PCLS were prepared from 4 different murine cirrhotic models (choline-deficient, l-amino acid-defined, high-fat diet, thioacetamide, diethylnitrosamine, and carbon tetrachloride) and compared with in vivo murine experiments, in vitro hepatic stellate cells, and human cirrhotic PCLS. RESULTS PCLS viability in culture was stable for 72 hours. Treatment of erlotinib, an EGF receptor inhibitor, significantly inhibited profibrogenic gene expressions in PCLS from choline-deficient, l-amino acid-defined, high-fat diet or thioacetamide-induced cirrhotic rats. Erlotinib treatment of PCLS from diethylnitrosamine or carbon tetrachloride-induced cirrhotic rats inhibited the expression of profibrogenic genes, which was consistent with the impact of erlotinib on these genes in in vivo diethylnitrosamine or carbon tetrachloride-induced cirrhosis. In addition, in hepatic stellate cells at PCLS from normal mice, erlotinib treatment inhibited TGF-β1-upregulated expression of Acta2. Similar expression results were observed in in vitro hepatic stellate cells. Expression of key regulators of fibrosis progression and regression were also significantly altered. Changes in profibrogenic gene expression under erlotinib treatment were also corroborated with human cirrhotic PCLS. CONCLUSIONS Responses to antifibrotic interventions can be detected and quantified with PCLS at the gene expression level. The antifibrotic effects of erlotinib are consistent between PCLS models of murine cirrhosis and those observed in vivo and in vitro. These results were verified in human cirrhotic PCLS. PCLS is an excellent model for assessing antifibrotic therapies that are aligned with the principles of replacement, reduction, and refinement (3Rs), and it will benefit preclinical and clinical research for human fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Yongtao Wang
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ben Leaker
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT program in Health Sciences and Technology, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Guoliang Qiao
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ibrahim Ragab Eissa
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eliana T. Epstein
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Eddy
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Oizoshimoshiofu Dimowo
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Georg M. Lauer
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Motaz Qadan
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond T. Chung
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bryan C. Fuchs
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
DeAzevedo R, Steiner M, Turner BX, Liu A, Newton S, Schmidt J, Fleming R, Tolentino A, Kaseb AO, Curran MA. Type I MET inhibitors cooperate with PD-1 blockade to promote rejection of hepatocellular carcinoma. J Immunother Cancer 2024; 12:e009690. [PMID: 39477243 PMCID: PMC11529525 DOI: 10.1136/jitc-2024-009690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Blockade of the immune checkpoints programmed death-1 (PD-1) and cytotoxic lymphocyte antigen 4 has improved outcomes for patients with hepatocellular carcinoma (HCC), yet most still fail to achieve objective clinical benefit. MET plays key roles in both HCC tumorigenesis and immunosuppressive conditioning; however, inhibition of MET causes upregulation of PD-ligand 1 (PD-L1) suggesting the use of these inhibitors in the context of PD-1 blockade. We sought to investigate across the Hepa1-6, HCA-1 and diethylnitrosamine (DEN) models of HCC whether the combination of more specific type I versus more pleiotropic type II MET inhibitors would confer superior outcomes in combination with PD-1 blockade. While MET inhibition demonstrated cooperativity with αPD-1 across all three models, the type I MET inhibitor capmatinib showed optimal activity in combination and statistically significantly outperformed the combination with the type II inhibitor cabozantinib in the αPD-1 refractory DEN model. In both HCA-1 and DEN HCC, the capmatinib and αPD-1 combination enhanced CD8 T cell frequency and activation state while limiting intratumoral myeloid immune suppression. In vitro studies of antigen-specific T cell activation reveal significantly less inhibition of effector cytokine production and proliferation by capmatinib versus by type II or type III MET inhibitors. These findings suggest significant potential for clinical HCC combination studies of type I MET inhibitors and PD-1 blockade where prior trials using type II inhibitors have yielded limited benefit.
Collapse
Affiliation(s)
- Ricardo DeAzevedo
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Madeline Steiner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Broderick X Turner
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Arthur Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sherwin Newton
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | - Ahmed O Kaseb
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Montagna DR, Todero MF, Postma GC, Trigo R, Bernal A, Bustuoabad O, Vermeulen M, Ruggiero R, Duarte A. Resistance against the development of diethylnitrosamine-induced hepatocellular carcinoma in female C3H mice: an experimental model. Exp Anim 2024; 73:399-411. [PMID: 39098024 PMCID: PMC11534494 DOI: 10.1538/expanim.23-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/24/2024] [Indexed: 08/06/2024] Open
Abstract
Histopathological features of hepatocellular carcinoma (HCC) induced by diethylnitrosamine (DEN) in mice display strong similarities with those seen in humans, including the higher tumor prevalence in males than in females. Previous studies have demonstrated that continual production of the pro-inflammatory IL-6 by Kupffer cells is involved in the initiation and progression of DEN-induced HCC and that estrogen-mediated reduction of IL-6 secretion would decrease its incidence in females. Given the predominant utilization of male mice in hepatic carcinogenesis research, the objective of this study was to examine histopathological and immunological parameters in the DEN-induced liver carcinogenesis model in female C3H mice. We observed a significant prevalence of hepatocellular hyperplasias and adenomas alongside a minimal infiltration of inflammatory cells and a scarcity of senescent areas in females. Further, a low expression of immunosuppression markers is observed in females - such as neutrophil/lymphocyte ratio, PD-1 expression in CD8 T cells, and PD-L1 in myeloid cells - compared to males. Comparative studies between susceptible and resistant hosts to chemical carcinogenesis may help to unveil novel therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Daniela Romina Montagna
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - María Florencia Todero
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Gabriela Cintia Postma
- University of Buenos Aires, Faculty of Veterinary Sciences, Department of Pathology, Avenue Chorroarin 280, C1427CWO, Argentina
| | - Roberto Trigo
- University of Buenos Aires, Faculty of Veterinary Sciences, Department of Pathology, Avenue Chorroarin 280, C1427CWO, Argentina
| | - Alan Bernal
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Oscar Bustuoabad
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Raúl Ruggiero
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Alejandra Duarte
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina de Buenos Aires, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Fundación Héctor Alejandro (H.A.) Barceló, Instituto Universitario de Ciencias de la Salud, Larrea 770, C1030AAP, Buenos Aires, Argentina
| |
Collapse
|
11
|
Aguirre-Maldonado I, Herrera-López EE, López-Zenteno F, Ramírez-Nava JC, López-Hernández NA, Arellanes-Robledo J, Del Pozo-Yauner L, García-Román R, Montero H, Alexander-Aguilera A, Noyola-Díaz JM, Camacho J, Pérez-Carreón JI. Intriguing hepatoprotective effects of sucrose on hepatocellular carcinoma pathogenesis. Sci Rep 2024; 14:23689. [PMID: 39390131 PMCID: PMC11467258 DOI: 10.1038/s41598-024-74991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Chronic liver disease is closely linked to dietary intake factors, such as high consumption of simple carbohydrates including sucrose. In this study, the influence of sucrose on the development of hepatocellular carcinoma (HCC), the most common primary liver malignancy, was explored. Using the hepatocarcinogen diethylnitrosamine (DEN) to induce HCC in the rat, we co-administered sucrose with DEN. The co-administration significantly modified body, liver and pancreas weight, as well as, serum fatty acids and triglycerides. DEN caused liver structural alteration, fibrosis, and tumor formation; surprisingly, co-administration with sucrose restored hepatic lipids, improved liver architecture, and reduced fibrosis and tumor development. Sucrose intake negatively regulated tumor markers and cell proliferation, and reduced the expression of genes associated with lipid metabolism and oxidative stress response. These findings highlight a hepatoprotective effect of sucrose during DEN-induced hepatocarcinogenesis, underlining an intriguing role of high sucrose consumption during HCC development and providing new insights as well as possible pathways of cellular protection under sucrose intake on hepatocarcinogenesis.
Collapse
Affiliation(s)
- Isaac Aguirre-Maldonado
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, 14610, Ciudad de México, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Ema Elvira Herrera-López
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, 14610, Ciudad de México, Mexico
| | - Fernando López-Zenteno
- Instituto de Investigación en Ciencias de la Salud de la SEMAR, Ciudad de México, Mexico
| | | | - Norma Arely López-Hernández
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, 14610, Ciudad de México, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, 14610, Ciudad de México, Mexico
- Dirección Adjunta de Investigación Humanística y Científica, Consejo Nacional de Humanidades Ciencias y Tecnologías, Ciudad de México, Mexico
| | - Luis Del Pozo-Yauner
- Department of Pathology, College of Medicine, University of South Alabama, Alabama, USA
| | - Rebeca García-Román
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Hilda Montero
- Instituto de Salud Pública, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Juana Martha Noyola-Díaz
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico
| | - Julio Isael Pérez-Carreón
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, 14610, Ciudad de México, Mexico.
| |
Collapse
|
12
|
Wang Q, Feng Z, Shi C, Lyu X, Fan D. Sulforaphane nanoparticles coated with zein-propylene glycol alginate attenuate N-diethylnitrosamine-induced liver injury in mice. J Food Sci 2024; 89:6707-6719. [PMID: 39218937 DOI: 10.1111/1750-3841.17156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 09/04/2024]
Abstract
Sulforaphane-loaded nanoparticles (NP-SF) were prepared in this study to improve their biological effects. Based on propylene glycol alginate and zein as wall materials and anthocyanin and CaCl2 as crosslinking agents, the NPs were encapsulated by the crosslinking method and freeze-dried. With the increasing contents of anthocyanin and Ca2+, the encapsulation efficiency and loading capacity of NP-SF were both increased. In vitro simulated digestion experiments showed controlled release of SF from the NPs. The pharmacokinetics confirmed that NP-SF exerted a slower release effect in rats, with improved SF bioavailability and protective effects on liver injury induced by N-diethylnitrosamine in mice. NP-SF reduced serum indicators of liver injury, increased the activities of antioxidant enzymes and GSH levels, and reduced malondialdehyde levels in the liver. In addition, SF activated the Keap1/Nrf2 signaling pathway and upregulated the expression of the Nrf2 downstream genes NQO1 and heme oxidase 1. High doses of NP-SF, in particular, had a higher therapeutic effect. In conclusion, encapsulation enhanced the biological activity of SF and promoted physiological function.
Collapse
Affiliation(s)
- Qilei Wang
- College of Food Science and Technology, Northwest University, Xi'an, P. R. China
| | - Zhenzhen Feng
- College of Food Science and Technology, Northwest University, Xi'an, P. R. China
| | - Chan Shi
- College of Food Science and Technology, Northwest University, Xi'an, P. R. China
| | - Xingang Lyu
- College of Food Science and Technology, Northwest University, Xi'an, P. R. China
| | - DaiDi Fan
- College of Food Science and Technology, Northwest University, Xi'an, P. R. China
| |
Collapse
|
13
|
Ligi S, Ali A, Yang G. Cystathionine gamma-lyase deficiency exaggerates diethylnitrosamine-induced liver damage in mice. Nitric Oxide 2024; 151:1-9. [PMID: 39151724 DOI: 10.1016/j.niox.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cystathionine gamma-lyase (CSE) is a key enzyme in reverse transsulfuration pathway and contributes to the majority of H2S generation in liver tissues via cysteine metabolism. Dysfunction of the CSE/H2S system is linked to both chronic and acute liver damage. This study investigated the regulatory role of CSE deficiency on diethylnitrosamine (DEN)-induced liver damage in mice. A single injection of DEN was administered into 4-week-old male CSE knockout (CSE-KO) mice and wild-type (WT) littermates, and the mice were sacrificed at 28 weeks of age. Compared to age-matched WT mice, CSE-KO mice spontaneously developed steatosis with increased oxidative stress and higher expressions of inflammation and fibrosis-related genes at 28-weeks of age. Following DEN injection, CSE-KO mice experienced more severe liver damage in comparison with the WT group as reflected by elevated levels of lipid accumulation, increased activities of alanine aminotransferase and aspartate aminotransferase, higher oxidative stress and fibrosis development, and increased expressions of inflammation and fibrosis-related genes. No visible tumors were observed in both types of mice with DEN treatment. In addition, the expression levels of the three H2S-generating proteins (CSE, cystathionine beta-synthase, and 3-mercaptopyruvate sulfurtransferase) and the H2S production rate in liver tissues were unaffected by DEN. Taken together, our study demonstrates that CSE provides a significant hepatoprotective effect and deficiency of CSE exaggerates DEN-induced liver damage in mice. Based on these findings, it can be suggested that targeting the CSE/H2S signaling pathway could be a potential therapeutic target for the treatment of liver diseases.
Collapse
Affiliation(s)
- Samantha Ligi
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Arm Ali
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Natural Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
14
|
Ahmad Z, Jain SK, Mishra SK. Beta-caryophyllene attenuates experimental hepatocellular carcinoma through downregulation of oxidative stress and inflammation. J Biochem Mol Toxicol 2024; 38:e23850. [PMID: 39275950 DOI: 10.1002/jbt.23850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is caused by various factors including toxic substances and xenobiotics. Numerous treatment strategies are used to address toxicity to the liver and HCC, yet their adverse effects are drawbacks. This study aimed to assess the effect of DEN/CCl4 on morphological changes in the liver, body weight, tumor incidence, and hematological tumor incidence, hematological parameters, hepatic markers, and histopathological analysis in mice following a preventive measure by using β-caryophyllene (BCP). Adult Balb/c mice were administered a single dose of DEN 1-mg/kg body weight and 0.2-mL CCl4/kg body weight intraperitoneal twice a week (i.p.) for 22 weeks. BCP was treated in one group of mice at 30-mg/kg body weight, intraperitoneal, for 7 weeks. BCP alone was treated in one group of mice at 300-mg/kg body weight intraperitoneal for 22 weeks. DEN/CCl4 caused a reduction in mice's body weight, which was significantly attenuated by BCP administration. BCP supplementation attenuated the tumor incidence DEN/CCl4 (100%) to about 25%. DEN/CCl4 caused alterations in the hematological parameters, serum total protein albumin globulin, A/G ratio, liver function markers (AST, ALT, ALP, GGT, ACP, and bilirubin), and lipid profile markers that were significantly reinstated by BCP administration. Oxidative stress markers (MDA, SOD, CAT, NO, LDH, and GST) were reduced by DEN/CCl4, which were significantly increased in BCP-treated groups. The liver histopathology alterations caused by DEN/CCl4 were amended considerably by BCP treatment. Immunohistochemical studies suggest that AFP, caspase-3, and COX-2 were chronically overexpressed in DEN/CCl4-exposed mice, notably attenuated by BCP administration. BCP suppressed tumor incidence by downregulating inflammation and inducing caspase-3-mediated apoptosis. Conclusively, BCP appears to be a potent natural supplement capable of repressing liver inflammation and carcinoma through the mitigation of oxidative stress and inflammation pathways.
Collapse
MESH Headings
- Animals
- Polycyclic Sesquiterpenes/pharmacology
- Oxidative Stress/drug effects
- Mice, Inbred BALB C
- Mice
- Inflammation/metabolism
- Inflammation/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/prevention & control
- Carcinoma, Hepatocellular/chemically induced
- Male
- Down-Regulation/drug effects
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/prevention & control
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/drug therapy
- Sesquiterpenes/pharmacology
- Sesquiterpenes/therapeutic use
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/prevention & control
- Liver Neoplasms/drug therapy
- Liver/metabolism
- Liver/pathology
- Liver/drug effects
- Carbon Tetrachloride/toxicity
Collapse
Affiliation(s)
- Zaved Ahmad
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Subodh Kumar Jain
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | | |
Collapse
|
15
|
De Vleeschauwer SI, van de Ven M, Oudin A, Debusschere K, Connor K, Byrne AT, Ram D, Rhebergen AM, Raeves YD, Dahlhoff M, Dangles-Marie V, Hermans ER. OBSERVE: guidelines for the refinement of rodent cancer models. Nat Protoc 2024; 19:2571-2596. [PMID: 38992214 DOI: 10.1038/s41596-024-00998-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/23/2024] [Indexed: 07/13/2024]
Abstract
Existing guidelines on the preparation (Planning Research and Experimental Procedures on Animals: Recommendations for Excellence (PREPARE)) and reporting (Animal Research: Reporting of In Vivo Experiments (ARRIVE)) of animal experiments do not provide a clear and standardized approach for refinement during in vivo cancer studies, resulting in the publication of generic methodological sections that poorly reflect the attempts made at accurately monitoring different pathologies. Compliance with the 3Rs guidelines has mainly focused on reduction and replacement; however, refinement has been harder to implement. The Oncology Best-practices: Signs, Endpoints and Refinements for in Vivo Experiments (OBSERVE) guidelines are the result of a European initiative supported by EurOPDX and INFRAFRONTIER, and aim to facilitate the refinement of studies using in vivo cancer models by offering robust and practical recommendations on approaches to research scientists and animal care staff. We listed cancer-specific clinical signs as a reference point and from there developed sets of guidelines for a wide variety of rodent models, including genetically engineered models and patient derived xenografts. In this Consensus Statement, we systematically and comprehensively address refinement and monitoring approaches during the design and execution of murine cancer studies. We elaborate on the appropriate preparation of tumor-initiating biologicals and the refinement of tumor-implantation methods. We describe the clinical signs to monitor associated with tumor growth, the appropriate follow-up of animals tailored to varying clinical signs and humane endpoints, and an overview of severity assessment in relation to clinical signs, implantation method and tumor characteristics. The guidelines provide oncology researchers clear and robust guidance for the refinement of in vivo cancer models.
Collapse
Affiliation(s)
| | - Marieke van de Ven
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Karlijn Debusschere
- Animal Core Facility VUB, Brussels, Belgium
- Core ARTH Animal Facilities, Medicine and Health Sciences Ghent University, Ghent, Belgium
| | - Kate Connor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Doreen Ram
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | - Maik Dahlhoff
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Els R Hermans
- Laboratory Animal Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Janmeda P, Jain D, Chaudhary P, Meena M, Singh D. A systematic review on multipotent carcinogenic agent, N-nitrosodiethylamine (NDEA), its major risk assessment, and precautions. J Appl Toxicol 2024; 44:1108-1128. [PMID: 38212177 DOI: 10.1002/jat.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 01/13/2024]
Abstract
The International Agency for Research on Cancer has classified N-nitrosodiethylamine (NDEA) as a possible carcinogen and mutagenic substances, placing it in category 2A of compounds that are probably harmful to humans. It is found in nature and tobacco smoke, along with its precursors, and is also synthesized endogenously in the human body. The oral or parenteral administration of a minimal quantity of NDEA results in severe liver and kidney organ damage. The NDEA required bioactivation by CYP450 enzyme to form DNA adduct in the alkylation mechanism. Thus, this bioactivation directs oxidative stress and injury to cells due to the higher formation of reactive oxygen species and alters antioxidant system in tissues, whereas free radical scavengers guard the membranes from NDEA-directed injury in many enzymes. This might be one of the reasons in the etiology of cancer that is not limited to a certain target organ but can affect various organs and organ systems. Although there are various possible approaches for the treatment of NDEA-induced cancer, their therapeutic outcomes are still very dismal. However, several precautions were considered to be taken during handling or working with NDEA, as it considered being the best way to lower down the occurrence of NDEA-directed cancers. The present review was designed to enlighten the general guidelines for working with NDEA, possible mechanism, to alter the antioxidant line to cause malignancy in different parts of animal body along with its protective agents. Thus, revelation to constant, unpredictable stress situations even in common life may remarkably augment the toxic potential through the rise in the oxidative stress and damage of DNA.
Collapse
Affiliation(s)
- Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
17
|
Imran H, Lee HJ, Alam A, An J, Ko M, Lim S. Ultrasensitive detection of 5-hydroxymethylcytosine in genomic DNA using a graphene-based sensor modified with biotin and gold nanoparticles. Mater Today Bio 2024; 27:101123. [PMID: 38988817 PMCID: PMC11234158 DOI: 10.1016/j.mtbio.2024.101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024] Open
Abstract
Ten-eleven translocation (TET) proteins orchestrate deoxyribonucleic acid (DNA) methylation-demethylation dynamics by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and are frequently inactivated in various cancers. Due to the significance of 5hmC as an epigenetic biomarker for cancer diagnosis, pathogenesis, and treatment, its rapid and precise quantification is essential. Here, we report a highly sensitive electrochemical method for quantifying genomic 5hmC using graphene sheets that were electrochemically exfoliated and functionalized with biotin and gold nanoparticles (Bt-AuNPs) through a single-step electrical method. The attachment of Bt-AuNPs to graphene enhances the specificity of 5hmC-containing DNA and augments the oxidation of 5hmC to 5-formylcytosine in DNA. When coupled to a gold electrode, the Bt-AuNP-graphene-based sensor exhibits exceptional sensitivity and specificity for detecting 5hmC, with a detection limit of 63.2 fM. Furthermore, our sensor exhibits a remarkable capacity to measure 5hmC levels across a range of biological samples, including preclinical mouse tissues with varying 5hmC levels due to either TET gene disruption or oncogenic transformation, as well as human prostate cancer cell lines. Therefore, our sensing strategy has substantial potential for cancer diagnostics and prognosis.
Collapse
Affiliation(s)
- Habibulla Imran
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun-Ji Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Asrar Alam
- Mycronic AB, Nytorpsvägen 9, Täby, 183 53 Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, KTH Royal Institute of Technology, Teknikringen 56, Stockholm, 10044, Sweden
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Republic of Korea
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Sooman Lim
- Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
18
|
Yang D, Jeong H, Kim MS, Oh SI, Lee K, Kim JW, Kim B. Prenatal cigarette smoke exposure sensitizes acetaminophen-induced liver injury by modulating miR-34a-5p in male offspring mice. Front Cell Dev Biol 2024; 12:1393618. [PMID: 39139452 PMCID: PMC11319911 DOI: 10.3389/fcell.2024.1393618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: Cigarette smoke (CS) exacerbates the severity of diseases not only in lungs, but also in systemic organs having no direct contact with smoke. In addition, smoking during pregnancy can have severe health consequences for both the mother and the fetus. Therefore, our aim was to evaluate effects of prenatal exposure to CS on acetaminophen (APAP)-induced acute liver injury (ALI) in offspring. Methods: Female C57BL/6 mice on day 6 of gestation were exposed to mainstream CS (MSCS) at 0, 150, 300, or 600 μg/L for 2 h a day, 5 days a week for 2 weeks using a nose-only exposure system. At four weeks old, male offspring mice were injected intraperitoneally with a single dose of APAP at 300 mg/kg body weight to induce ALI. Results: Maternal MSCS exposure significantly amplified pathological effects associated with ALI as evidenced by elevated serum alanine aminotransferase levels, increased hepatocellular apoptosis, higher oxidative stress, and increased inflammation. Interestingly, maternal MSCS exposure reduced microRNA (miR)-34a-5p expression in livers of offspring. Moreover, treatment with a miR-34a-5p mimic significantly mitigated the severity of APAP-induced hepatotoxicity. Overexpression of miR-34a-5p completely abrogated adverse effects of maternal MSCS exposure in offspring with ALI. Mechanistically, miR-34a-5p significantly decreased expression levels of hepatocyte nuclear factor 4 alpha, leading to down-regulated expression of cytochrome P450 (CYP)1A2 and CYP3A11. Discussion: Prenatal exposure to MSCS can alter the expression of miRNAs, even in the absence of additional MSCS exposure, potentially increasing susceptibility to APAP exposure in male offspring mice.
Collapse
Affiliation(s)
- Daram Yang
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Min-Seok Kim
- Inhalation Toxicology Center, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Sang-Ik Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
19
|
Taya S, Punvittayagul C, Meepowpan P, Wongpoomchai R. Cancer Chemopreventive Effect of 2',4'-Dihydroxy-6'-methoxy-3',5'-dimethylchalcone on Diethylnitrosamine-Induced Early Stages of Hepatocarcinogenesis in Rats. PLANTS (BASEL, SWITZERLAND) 2024; 13:1975. [PMID: 39065504 PMCID: PMC11280862 DOI: 10.3390/plants13141975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC) is a major compound in Cleistocalyx nervosum seed extract (CSE), which has been reported to have various biological activities, including anti-cancer activity. Therefore, this study attempted to evaluate whether DMC is a chemopreventive compound in CSE. Moreover, the preventive mechanisms of CSE and DMC in the DEN-induced early stages of hepatocarcinogenesis in rats were investigated. Male Wistar rats were intraperitoneally injected with DEN 50 mg/kg bw once a week for 8 weeks. Rats received CSE and DMC orally throughout the experiment. The number of glutathione S-transferase placental form (GST-P)-positive foci in the liver was measured. Furthermore, the preventive mechanisms of CSE and DMC on DEN-induced HCC, including cell proliferation and apoptosis, were investigated. Administering CSE at a dosage of 400 mg/kg bw and DMC at a dosage of 10 mg/kg bw significantly decreased the number and size of GST-P-positive foci and GST-P expression. In addition, DMC inhibited the development of preneoplastic lesions by decreasing cell proliferation and causing cell apoptosis; however, CSE inhibited the development of preneoplastic lesions by inducing cell apoptosis. In conclusion, DMC exhibited a cancer chemopreventive effect on the early stages of hepatocarcinogenesis by increasing cell apoptosis and reducing cell proliferation.
Collapse
Affiliation(s)
- Sirinya Taya
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Charatda Punvittayagul
- Center of Veterinary Medical Diagnostic and Animal Health Innovation, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rawiwan Wongpoomchai
- Functional Food Research Unit, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Hu D, Lai J, Chen Q, Bai L. New advances of NG2-expressing cell subset in marrow mesenchymal stem cells as novel therapeutic tools for liver fibrosis/cirrhosis. Stem Cell Res Ther 2024; 15:199. [PMID: 38971781 PMCID: PMC11227708 DOI: 10.1186/s13287-024-03817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cell (BMMSC)-based therapy has become a major focus for treating liver fibrosis/cirrhosis. However, although these cell therapies promote the treatment of this disease, the heterogeneity of BMMSCs, which causes insufficient efficacy during clinical trials, has not been addressed. In this study, we describe a novel Percoll-Plate-Wait procedure (PPWP) for the isolation of an active cell subset from BMMSC cultures that was characterized by the expression of neuroglial antigen 2 (NG2/BMMSCs). METHODS By using the key method of PPWP and other classical biological techniques we compared NG2/BMMSCs with parental BMMSCs in biological and functional characteristics within a well-defined diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis injury male C57BL/6 mouse model also in a culture system. Of note, the pathological alterations in the model is quite similar to humans'. RESULTS The NG2/BMMSCs revealed more advantages compared to parentalBMMSCs. They exhibited greater proliferation potential than parental BMMSCs, as indicated by Ki-67 immunofluorescence (IF) staining. Moreover, higher expression of SSEA-3 (a marker specific for embryonic stem cells) was detected in NG2/BMMSCs than in parental BMMSCs, which suggested that the "stemness" of NG2/BMMSCs was greater than that of parental BMMSCs. In vivo studies revealed that an injection of NG2/BMMSCs into mice with ongoing DEN-induced liver fibrotic/cirrhotic injury enhanced repair and functional recovery to a greater extent than in mice treated with parental BMMSCs. These effects were associated with the ability of NG2/BMMSCs to differentiate into bile duct cells (BDCs). In particular, we discovered for the first time that NG2/BMMSCs exhibit unique characteristics that differ from those of parental BMMSCs in terms of producing liver sinusoidal endothelial cells (LSECs) to reconstruct injured blood vessels and sinusoidal structures in the diseased livers, which are important for initiating hepatocyte regeneration. This unique potential may also suggest that NG2/BMMSCs could be an novel off-liver progenitor of LSECs. Ex vivo studies revealed that the NG2/BMMSCs exhibited a similar trend to that of their in vivo in terms of functional differentiation responding to the DEN-diseased injured liver cues. Additionally, the obvious core role of NG2/BMMSCs in supporting the functions of BMMSCs in bile duct repair and BDC-mediated hepatocyte regeneration might also be a novel finding. CONCLUSIONS Overall, the PPWP-isolated NG2/BMMSCs could be a novel effective cell subset with increased purity to serve as a new therapeutic tool for enhancing treatment efficacy of BMMSCs and special seed cell source (BDCs, LSECs) also for bioliver engineering.
Collapse
Affiliation(s)
- Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China
- Bioengineering College, Chongqing University, No. 175 Gaotan, ShapingBa Distract, Chongqing, 400044, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China
| | - Quanyu Chen
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa Distract, Chongqing, 400038, P.R. China.
- Bioengineering College, Chongqing University, No. 175 Gaotan, ShapingBa Distract, Chongqing, 400044, China.
| |
Collapse
|
21
|
Liu S, Zhang S, Dong H, Jin X, Sun J, Zhou H, Jin Y, Li Y, Wu G. CD63 + tumor-associated macrophages drive the progression of hepatocellular carcinoma through the induction of epithelial-mesenchymal transition and lipid reprogramming. BMC Cancer 2024; 24:698. [PMID: 38849760 PMCID: PMC11157766 DOI: 10.1186/s12885-024-12472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) constitute a substantial part of human hepatocellular carcinoma (HCC). The present study was devised to explore TAM diversity and their roles in HCC progression. METHODS Through the integration of multiple 10 × single-cell transcriptomic data derived from HCC samples and the use of consensus nonnegative matrix factorization (an unsupervised clustering algorithm), TAM molecular subtypes and expression programs were evaluated in detail. The roles played by these TAM subtypes in HCC were further probed through pseudotime, enrichment, and intercellular communication analyses. Lastly, vitro experiments were performed to validate the relationship between CD63, which is an inflammatory TAM expression program marker, and tumor cell lines. RESULTS We found that the inflammatory expression program in TAMs had a more obvious interaction with HCC cells, and CD63, as a marker gene of the inflammatory expression program, was associated with poor prognosis of HCC patients. Both bulk RNA-seq and vitro experiments confirmed that higher TAM CD63 expression was associated with the growth of HCC cells as well as their epithelial-mesenchymal transition, metastasis, invasion, and the reprogramming of lipid metabolism. CONCLUSIONS These analyses revealed that the TAM inflammatory expression program in HCC is closely associated with malignant tumor cells, with the hub gene CD63 thus representing an ideal target for therapeutic intervention in this cancer type.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Shuairan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hang Dong
- Phase I Clinical Trails Center, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiuli Jin
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jing Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yifan Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yiling Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China.
| | - Gang Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
22
|
Huang F, Zhao N, Cai P, Hou M, Yang S, Zheng B, Ma Q, Jiang J, Gai X, Mao Y, Wang L, Hu Z, Zha X, Liu F, Zhang H. Active AKT2 stimulation of SREBP1/SCD1-mediated lipid metabolism boosts hepatosteatosis and cancer. Transl Res 2024; 268:51-62. [PMID: 38244769 DOI: 10.1016/j.trsl.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Due to soared obesity population worldwide, hepatosteatosis is becoming a major risk factor for hepatocellular carcinoma (HCC). Undertaken molecular events during the progression of steatosis to liver cancer are thus under intensive investigation. In this study, we demonstrated that high-fat diet potentiated mouse liver AKT2. Hepatic AKT2 hyperactivation through gain-of-function mutation of Akt2 (Akt2E17K) caused spontaneous hepatosteatosis, injury, inflammation, fibrosis, and eventually HCC in mice. AKT2 activation also exacerbated lipopolysaccharide and D-galactosamine hydrochloride-induced injury/inflammation and N-Nitrosodiethylamine (DEN)-induced HCC. A positive correlation between AKT2 activity and SCD1 expression was observed in human HCC samples. Activated AKT2 enhanced the production of monounsaturated fatty acid which was dependent on SREBP1 upregulation of SCD1. Blockage of active SREBP1 and ablation of SCD1 reduced steatosis, inflammation, and tumor burden in DEN-treated Akt2E17K mice. Therefore, AKT2 activation is crucial for the development of steatosis-associated HCC which can be treated with blockage of AKT2-SREBP1-SCD1 signaling cascade.
Collapse
Affiliation(s)
- Fuqiang Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Zhao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Blood Transfusion, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Pei Cai
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengjie Hou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhui Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bohao Zheng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Ma
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jingpeng Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaochen Gai
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianmei Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Fangming Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
23
|
Hu Z, Kurihara T, Sun Y, Cetin Z, Florentino RM, Faccioli LAP, Liu Z, Yang B, Ostrowska A, Soto-Gutierrez A, Delgado ER. A rat model of cirrhosis with well-differentiated hepatocellular carcinoma induced by thioacetamide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590120. [PMID: 38712079 PMCID: PMC11071316 DOI: 10.1101/2024.04.18.590120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths, and commonly associated with hepatic fibrosis or cirrhosis. This study aims to establish a rat model mimicking the progression from liver fibrosis to cirrhosis and subsequently to HCC using thioacetamide (TAA). We utilized male Lewis rats, treating them with intra-peritoneal injections of TAA. These rats received bi-weekly injections of either 200 mg/kg TAA or saline (as a control) over a period of 34 weeks. The development of cirrhosis and hepatocarcinogenesis was monitored through histopathological examinations, biochemical markers, and immunohistochemical analyses. Our results demonstrated that chronic TAA administration induced cirrhosis and well-differentiated HCC, characterized by increased fibrosis, altered liver architecture, and enhanced hepatocyte proliferation. Biochemical analyses revealed significant alterations in liver function markers, including elevated alpha-fetoprotein (AFP) levels, without affecting kidney function or causing significant weight loss or mortality in rats. This TAA-induced cirrhosis and HCC rat model successfully replicates the clinical progression of human HCC, including liver function impairment and early-stage liver cancer characteristics. It presents a valuable tool for future research on the mechanisms of antitumor drugs in tumor initiation and development.
Collapse
|
24
|
Mavila N, Siraganahalli Eshwaraiah M, Kennedy J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression-An Overview. Cells 2024; 13:579. [PMID: 38607018 PMCID: PMC11011399 DOI: 10.3390/cells13070579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Ductular reaction (DR) is a complex cellular response that occurs in the liver during chronic injuries. DR mainly consists of hyper-proliferative or reactive cholangiocytes and, to a lesser extent, de-differentiated hepatocytes and liver progenitors presenting a close spatial interaction with periportal mesenchyme and immune cells. The underlying pathology of DRs leads to extensive tissue remodeling in chronic liver diseases. DR initiates as a tissue-regeneration mechanism in the liver; however, its close association with progressive fibrosis and inflammation in many chronic liver diseases makes it a more complicated pathological response than a simple regenerative process. An in-depth understanding of the cellular physiology of DRs and their contribution to tissue repair, inflammation, and progressive fibrosis can help scientists develop cell-type specific targeted therapies to manage liver fibrosis and chronic liver diseases effectively.
Collapse
Affiliation(s)
- Nirmala Mavila
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mallikarjuna Siraganahalli Eshwaraiah
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| | - Jaquelene Kennedy
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.S.E.); (J.K.)
| |
Collapse
|
25
|
Giselvania A, Juniantito V, Wibowo H, Siregar TP, Gondhowiardjo S. Induction of Hepatocellular Carcinoma in Conventional Domestic Swine Using N-Diethylnitrosamine and Phenobarbital. Cancer Manag Res 2024; 16:245-257. [PMID: 38560662 PMCID: PMC10979671 DOI: 10.2147/cmar.s439787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose Large animal models are still used in many studies because of their likeness to humans. It has not been documented that regular-sized conventional farm-breed pigs, generally bred for meat production, can be used to generate hepatocellular carcinoma (HCC) animal models. The goal of this study was to investigate how N-diethylnitrosamine (DENA) and phenobarbital (PB) together can generate HCC in ordinary farmed pigs. Materials and Methods Conventional domestic swine (Sus scrofa domesticus) were used. DENA 15 mg/kg was intraperitoneally injected weekly for 12 weeks, while PB tablets (4 mg/kg) were also administered through food for 16 weeks. Blood testing and ultrasonography evaluation were performed to monitor the progress. Subsequently, computed tomography was conducted in cases with suspected nodules, followed by histopathological examination to confirm the diagnosis. Results Ten swine (seven males, three females; age: 2 months; weight: 9-15 kg) were included in the study and followed up for 25 months; nine were experimental, and one was control for ethical considerations. The maximum weight of animals during this study reached 162-228 kg. The weight gain seen in the intervention swine was predominantly lower than that documented in the control. The laboratory analysis revealed no notable abnormalities in liver function markers but did demonstrate statistically significant changes in urea (p = 0.028) and creatinine (p = 0.003) levels. Ultrasonography and computed tomography showed multiple liver nodules with characteristics resembling HCC. Serial imaging screening and more extended observations revealed that all animals eventually developed tumors. Histopathological confirmation at 15-22 weeks post-induction revealed that all intervened swine developed multiple nodules of well-differentiated HCC and some with hepatic angiosarcoma. Conclusion This study successfully generated HCC in conventional domestic swine with a DENA and PB combination. This investigation required at least 15 months to develop tumors. This model will be beneficial for future investigations of HCC in large animals.
Collapse
Affiliation(s)
- Angela Giselvania
- Doctoral Program in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia, Dr Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Vetnizah Juniantito
- Division of Pathology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Trifonia Pingkan Siregar
- Department of Radiology, Faculty of Medicine Universitas Indonesia, Dr Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Soehartati Gondhowiardjo
- Department of Radiation Oncology, Faculty of Medicine Universitas Indonesia, Dr Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
26
|
Evstafeva D, Ilievski F, Bao Y, Luo Z, Abramovic B, Kang S, Steuer C, Montanari E, Casalini T, Simicic D, Sessa D, Mitrea SO, Pierzchala K, Cudalbu C, Armbruster CE, Leroux JC. Inhibition of urease-mediated ammonia production by 2-octynohydroxamic acid in hepatic encephalopathy. Nat Commun 2024; 15:2226. [PMID: 38472276 DOI: 10.1038/s41467-024-46481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatic encephalopathy is a neuropsychiatric complication of liver disease which is partly associated with elevated ammonemia. Urea hydrolysis by urease-producing bacteria in the colon is often mentioned as one of the main routes of ammonia production in the body, yet research on treatments targeting bacterial ureases in hepatic encephalopathy is limited. Herein we report a hydroxamate-based urease inhibitor, 2-octynohydroxamic acid, exhibiting improved in vitro potency compared to hydroxamic acids that were previously investigated for hepatic encephalopathy. 2-octynohydroxamic acid shows low cytotoxic and mutagenic potential within a micromolar concentration range as well as reduces ammonemia in rodent models of liver disease. Furthermore, 2-octynohydroxamic acid treatment decreases cerebellar glutamine, a product of ammonia metabolism, in male bile duct ligated rats. A prototype colonic formulation enables reduced systemic exposure to 2-octynohydroxamic acid in male dogs. Overall, this work suggests that urease inhibitors delivered to the colon by means of colonic formulations represent a prospective approach for the treatment of hepatic encephalopathy.
Collapse
Affiliation(s)
- Diana Evstafeva
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Filip Ilievski
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Yinyin Bao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Zhi Luo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Boris Abramovic
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Sunghyun Kang
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Elita Montanari
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Tommaso Casalini
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Dunja Simicic
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Dario Sessa
- Swiss Pediatric Liver Center, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
| | - Stefanita-Octavian Mitrea
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Li L, Zeng J, Zhang X, Feng Y, Lei JH, Xu X, Chen Q, Deng CX. Sirt6 ablation in the liver causes fatty liver that increases cancer risky by upregulating Serpina12. EMBO Rep 2024; 25:1361-1386. [PMID: 38332150 PMCID: PMC10933290 DOI: 10.1038/s44319-024-00071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Non-alcoholic fatty liver disease is a chronic liver abnormality that exhibits high variability and can lead to liver cancer in advanced stages. Hepatic ablation of SIRT6 results in fatty liver disease, yet the potential mechanism of SIRT6 deficiency, particularly in relation to downstream mediators for NAFLD, remains elusive. Here we identify Serpina12 as a key gene regulated by Sirt6 that plays a crucial function in energy homeostasis. Specifically, Sirt6 suppresses Serpina12 expression through histone deacetylation at its promoter region, after which the transcription factor, Cebpα, binds to and regulates its expression. Sirt6 deficiency results in an increased expression of Serpina12 in hepatocytes, which enhances insulin signaling and promotes lipid accumulation. Importantly, CRISPR-Cas9 mediated Serpina12 knockout in the liver ameliorated fatty liver disease caused by Sirt6 ablation. Finally, we demonstrate that Sirt6 functions as a tumor suppressor in the liver, and consequently, deletion of Sirt6 in the liver leads to not only the spontaneous development of tumors but also enhanced tumorigenesis in response to DEN treatment or under conditions of obesity.
Collapse
Affiliation(s)
- Licen Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jianming Zeng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xin Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yangyang Feng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Qiang Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
28
|
Ochoa-Rios S, Grauzam SE, Gregory R, Angel PM, Drake RR, Helke KL, Mehta AS. Spatial Omics Reveals that Cancer-Associated Glycan Changes Occur Early in Liver Disease Development in a Western Diet Mouse Model of MASLD. J Proteome Res 2024; 23:786-796. [PMID: 38206822 DOI: 10.1021/acs.jproteome.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive disease and comprises different stages of liver damage; it is significantly associated with obese and overweight patients. Untreated MASLD can progress to life-threatening end-stage conditions, such as cirrhosis and liver cancer. N-Linked glycosylation is one of the most common post-translational modifications in the cell surface and secreted proteins. N-Linked glycan alterations have been established to be signatures of liver diseases. However, the N-linked glycan changes during the progression of MASLD to liver cancer are still unknown. Here, we induced different stages of MASLD in mice and liver-cancer-related phenotypes and elucidated the N-glycome profile during the progression of MASLD by quantitative and qualitative profiling in situ using matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS). Importantly, we identified specific N-glycan structures including fucosylated and highly branched N-linked glycans at very early stages of liver injury (steatosis), which in humans are associated with cancer development, establishing the importance of these modifications with disease progression. Finally, we report that N-linked glycan alterations can be observed in our models by MALDI-IMS before liver injury is identified by histological analysis. Overall, we propose these findings as promising biomarkers for the early diagnosis of liver injury in MASLD.
Collapse
Affiliation(s)
- Shaaron Ochoa-Rios
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Stéphane Elie Grauzam
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Rebecca Gregory
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
29
|
Sawie HG, Ahmed OM, Shabana ME, Elqattan GM, EL-Kassaby MI, Abou- Seif HS. Ferulic acid attenuated diethylnitrosamine-provoked hepato-renal damage and malfunction by suppressing oxidative stress, abating inflammation and upregulating nuclear factor erythroid related factor-2 signaling. EGYPTIAN PHARMACEUTICAL JOURNAL 2024; 23:16-27. [DOI: 10.4103/epj.epj_79_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Background
Diethylnitrosamine (DEN) is a potent environmental toxin that can reach humans through the food chain. It induces proliferative, degenerative and cancerous lesions in the liver and kidneys.
Objective
The principal goal of the existing research was to assess the preventive impacts of ferulic acid (FA) versus DEN- provoked hepato-renal damage and malfunction.
Materials and methods
Adult male rats were divided into four groups: group 1 (normal control) animals orally received saline every day for 14 weeks; group 2 (DEN) animals intraperitoneally received DEN (150 mg/kg twice a week) for 2 weeks; group 3 (DEN + FA) animals were injected intraperitoneally twice a week with DEN for 2 weeks besides to oral administration of FA (100 mg/kg/day) for 14 weeks; group 4 (FA) animals were given a similar dose of FA for a similar period.
Results
The results revealed that FA treatment reversed the DEN-mediated elevation in serum values of the liver enzymes activities as well as urea and creatinine levels; it also augmented the hepato-renal antioxidant system that overcame DEN-induced oxidative stress deteriorations. Moreover, FA markedly reduced the DEN-induced elevated hepato-renal levels of immuno-inflammatory markers (IL-1β and TNF-α) as well as downregulated the inflammatory mediators (Bcl-2, NF-κB, and nuclear factor erythroid related factor-2 (Nrf-2)), reflecting its protective potential.
Conclusion
The existing results elucidate that ferulic acid could prevent and ameliorate DEN-induced hepato-renal toxicological changes and can restore livers and kidneys’ functions; this effect could be mechanized through activation of anti-inflammatory and antioxidant systems, as well as regulation of NF-κB, Bcl2, and nuclear factor erythroid related factor-2 expression.
Collapse
Affiliation(s)
- Hussein G. Sawie
- Medical Physiology Department, Medical Research and Clinical Studies Institute, the National Research Centre
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef
| | - Marwa E. Shabana
- Pathology Department, Medical Research and Clinical Studies Institute, the National Research Centre, Cairo, Egypt
| | - Ghada M. Elqattan
- Medical Physiology Department, Medical Research and Clinical Studies Institute, the National Research Centre
| | - Mahitab I. EL-Kassaby
- Medical Physiology Department, Medical Research and Clinical Studies Institute, the National Research Centre
| | - Howida S. Abou- Seif
- Medical Physiology Department, Medical Research and Clinical Studies Institute, the National Research Centre
| |
Collapse
|
30
|
Zhang H, Chen Q, Hu D, Lai J, Yan M, Wu Z, Yang Z, Zheng S, Liu W, Zhang L, Bai L. Manipulating HGF signaling reshapes the cirrhotic liver niche and fills a therapeutic gap in regeneration mediated by transplanted stem cells. Exp Cell Res 2024; 434:113867. [PMID: 38043723 DOI: 10.1016/j.yexcr.2023.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Long-term stem cell survival in the cirrhotic liver niche to maintain therapeutic efficacy has not been achieved. In a well-defined diethylnitrosamine (DEN)-induced liver fibrosis/cirrhosis animal model, we previously showed that liver-resident stem/progenitor cells (MLpvNG2+ cells) or immune cells have improved survival in the fibrotic liver environment but died via apoptosis in the cirrhotic liver environment, and increased levels of hepatocyte growth factor (HGF) mediated this cell death. We tested the hypothesis that inhibiting HGF signaling during the cirrhotic phase could keep the cells alive. We used adeno-associated virus (AAV) vectors designed to silence the c-Met (HGF-only receptor) gene or a neutralizing antibody (anti-cMet-Ab) to block the c-Met protein in the DEN-induced liver cirrhosis mouse model transplanted with MLpvNG2+ cells between weeks 6 and 7 after DEN administration, which is the junction of liver fibrosis and cirrhosis at the site where most intrahepatic stem cells move toward apoptosis. After 4 weeks of treatment, the transplanted MLpvNG2+ cells survived better in c-Met-deficient mice than in wild-type mice, and cell activity was similar to that of the mice that received MLpvNG2+ cells at 5 weeks after DEN administration (liver fibrosis phase when most of these cells proliferated). Mechanistically, a lack of c-Met signaling remodeled the cirrhotic environment, which favored transplanted MLpvNG2+ cell expansion to differentiation into mature hepatocytes and initiate endogenous regeneration by promoting mature host hepatocyte generation and mediating functional improvements. Therapeutically, c-Met-mediated regeneration can be mimicked by anti-cMet-Ab to interfere functions, which is a potential drug for cell-based treatment of liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Quanyu Chen
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Deyu Hu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China; Bioengineering College, Chongqing University, No. 175 Gaotan, ShapingBa Distract, Chongqing 400044, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Min Yan
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China; Department of Specific Medicine, the First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Zhifang Wu
- Department of Specific Medicine, the First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Zhiqing Yang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Shuguo Zheng
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Wei Liu
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Leida Zhang
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwest Hospital, Army Medical University, No. 30 Gaotanyan, ShapingBa District, Chongqing 400038, China; Bioengineering College, Chongqing University, No. 175 Gaotan, ShapingBa Distract, Chongqing 400044, China; Department of Specific Medicine, the First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
31
|
Babu S, Ranajit SK, Pattnaik G, Ghosh G, Rath G, Kar B. An Insight into Different Experimental Models used for Hepatoprotective Studies: A Review. Curr Drug Discov Technol 2024; 21:e191223224660. [PMID: 39206705 DOI: 10.2174/0115701638278844231214115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 09/04/2024]
Abstract
Numerous factors, including exposure to harmful substances, drinking too much alcohol, contracting certain hepatitis serotypes, and using specific medicines, contribute to the development of liver illnesses. Lipid peroxidation and other forms of oxidative stress are the main mechanisms by which hepatotoxic substances harm liver cells. Pathological changes in the liver include a rise in the levels of blood serum, a decrease in antioxidant enzymes, as well as the formation of free radical radicals. It is necessary to find pharmaceutical alternatives to treat liver diseases to increase their efficacy and decrease their toxicity. For the development of new therapeutic medications, a greater knowledge of primary mechanisms is required. In order to mimic human liver diseases, animal models are developed. Animal models have been used for several decades to study the pathogenesis of liver disorders and related toxicities. For many years, animal models have been utilized to investigate the pathophysiology of liver illness and associated toxicity. The animal models are created to imitate human hepatic disorders. This review enlisted numerous hepatic damage in vitro and in vivo models using various toxicants, their probable biochemical pathways and numerous metabolic pathways via oxidative stressors, different serum biomarkers enzymes are discussed, which will help to identify the most accurate and suitable model to test any plant preparations to check and evaluate their hepatoprotective properties.
Collapse
Affiliation(s)
- Sucharita Babu
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Santosh K Ranajit
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 751050, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751030, India
| |
Collapse
|
32
|
Cordier P, Sangouard F, Fang J, Kabore C, Desdouets C, Celton-Morizur S. Diethylnitrosamine-Induced Liver Tumorigenesis in Mice Under High-Hat High-Sucrose Diet: Stepwise High-Resolution Ultrasound Imaging and Histopathological Correlations. Methods Mol Biol 2024; 2769:27-55. [PMID: 38315387 DOI: 10.1007/978-1-0716-3694-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The hepatotoxic N-nitroso compound diethylnitrosamine (DEN) administered intraperitoneally (i.p.) induces liver neoplasms in rodents that reproducibly recapitulate some aspects of human hepatocarcinogenesis. In particular, DEN drives the stepwise formation of pre-neoplastic and neoplastic (benign or malignant) hepatocellular lesions reminiscent of the initiation-promotion-progression sequence typical of chemical carcinogenesis. In humans, the development of hepatocellular carcinoma (HCC) is also a multi-step process triggered by continuous hepatocellular injury, chronic inflammation, and compensatory hyperplasia that fuel the emergence of dysplastic liver lesions followed by the formation of early HCC. The DEN-induced liver tumorigenesis model represents a versatile preclinical tool that enables the study of many tumor development modifiers (genetic background, gene knockout or overexpression, diets, pollutants, or drugs) with a thorough follow-up of the multistage process on live animals by means of high-resolution imaging. Here, we provide a comprehensive protocol for the induction of hepatocellular neoplasms in wild-type C57BL/6J male mice following i.p. DEN injection (25 mg/kg) at 14 days of age and 36 weeks feeding of a high-fat high-sucrose (HFHS) diet. We emphasize the use of ultrasound liver imaging to follow tumor development and provide histopathological correlations. We also discuss the extrinsic and intrinsic factors known to modify the course of liver tumorigenesis in this model.
Collapse
Affiliation(s)
- Pierre Cordier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Flora Sangouard
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Jing Fang
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Christelle Kabore
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Séverine Celton-Morizur
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France.
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
33
|
Lu S, Zhu Q, Li R. Selective adsorption of nitrate in water by organosilicon quaternary ammonium salt modified derived nickel-iron layered double hydroxide: Adsorption characteristics and mechanism. J Colloid Interface Sci 2023; 652:1481-1493. [PMID: 37659316 DOI: 10.1016/j.jcis.2023.08.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Nitrate (NO3-) is a widespread pollutant in the water environment. Due to its physicochemical properties, such as negative monovalent charge, traditional adsorption treatment processes have low selectivity for NO3- removal, resulting in low removal efficiency of NO3- by adsorbents in the presence of interfering ions. Therefore, to improve the adsorption selectivity and efficiency of NO3-. In this study, we used organosilicon quaternary modified derived nickel-iron layered double hydroxide (NiFe-MLDH/OQAS) for selective removal of NO3-. NiFe-MLDH/OQAS has a flowery globular structure, with interconnected nanosheets on the surface providing more adsorption sites for NO3-, which improves the adsorption rate and adsorption amount. What's more, the nitrate removal rate of NiFe-MLDH/OQAS only decreased by about 14.36% in the presence of the same concentration of interfering ions, and the maximum adsorption amount reached 61.05 mg/g, showing good selectivity and adsorption amount. Various characterization analyses indicate that the nitrate selectivity of NiFe-MLDH/OQAS is attributed to its unique layer spacing, as well as the abundant functional groups on the material surface. Finally, we demonstrated through experiments that NiFe-MLDH/OQAS has good cyclic regeneration ability and environmental safety. These findings demonstrate the great potential of NiFe-MLDH/OQAS for selective adsorption of NO3-.
Collapse
Affiliation(s)
- Shanshan Lu
- School of Chemistry and Materials Science, Heilongjiang University, Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, Harbin 150080, China
| | - Qi Zhu
- School of Chemistry and Materials Science, Heilongjiang University, Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, Harbin 150080, China.
| | - Renjing Li
- School of Chemistry and Materials Science, Heilongjiang University, Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, Harbin 150080, China
| |
Collapse
|
34
|
Karpova Y, Orlicky DJ, Schmidt EE, Tulin AV. Disrupting Poly(ADP-ribosyl)ating Pathway Creates Premalignant Conditions in Mammalian Liver. Int J Mol Sci 2023; 24:17205. [PMID: 38139034 PMCID: PMC10743425 DOI: 10.3390/ijms242417205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health concern, representing one of the leading causes of cancer-related deaths. Despite various treatment options, the prognosis for HCC patients remains poor, emphasizing the need for a deeper understanding of the factors contributing to HCC development. This study investigates the role of poly(ADP-ribosyl)ation in hepatocyte maturation and its impact on hepatobiliary carcinogenesis. A conditional Parg knockout mouse model was employed, utilizing Cre recombinase under the albumin promoter to target Parg depletion specifically in hepatocytes. The disruption of the poly(ADP-ribosyl)ating pathway in hepatocytes affects the early postnatal liver development. The inability of hepatocytes to finish the late maturation step that occurs early after birth causes intensive apoptosis and acute inflammation, resulting in hypertrophic liver tissue with enlarged hepatocytes. Regeneration nodes with proliferative hepatocytes eventually replace the liver tissue and successfully fulfill the liver function. However, early developmental changes predispose these types of liver to develop pathologies, including with a malignant nature, later in life. In a chemically induced liver cancer model, Parg-depleted livers displayed a higher tendency for hepatocellular carcinoma development. This study underscores the critical role of the poly(ADP-ribosyl)ating pathway in hepatocyte maturation and highlights its involvement in liver pathologies and hepatobiliary carcinogenesis. Understanding these processes may provide valuable insights into liver biology and liver-related diseases, including cancer.
Collapse
Affiliation(s)
- Yaroslava Karpova
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Grand Forks, ND 58202, USA;
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Edward E. Schmidt
- Microbiology & Cell Biology, Montana State University, Bozeman, MT 59718, USA;
- Department of Microbiology & Immunology, Lewis Hall, Bozeman, MT 59718, USA
- Redox Biology Laboratory, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Alexei V. Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Grand Forks, ND 58202, USA;
| |
Collapse
|
35
|
Bopape M, Tiloke C, Ntsapi C. Moringa oleifera and Autophagy: Evidence from In Vitro Studies on Chaperone-Mediated Autophagy in HepG 2 Cancer Cells. Nutr Cancer 2023; 75:1822-1847. [PMID: 37850743 DOI: 10.1080/01635581.2023.2270215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer in Sub-Saharan African countries, including South Africa (SA). Given the limitations in current HCC therapeutics, there is an increasing need for alternative adjuvant therapeutic options. As such, several cell survival mechanisms, such as autophagy, have been identified as potential adjuvant therapeutic targets in HCC treatment. Of the three most established autophagic pathways, the upregulation of chaperone-mediated autophagy (CMA) has been extensively described in various cancer cells, including HCC cells. CMA promotes tumor growth and chemotherapeutic drug resistance, thus contributing to HCC tumorigenesis. Therefore, the modulation of CMA serves as a promising adjuvant target for current HCC therapeutic strategies. Phytochemical extracts found in the medicinal plant, Moringa oleifera (MO), have been shown to induce apoptosis in numerous cancer cells, including HCC. MO leaves have the greatest abundance of phytochemicals displaying anticancer potential. However, the potential interaction between the pro-apoptotic effects of MO aqueous leaf extract and the survival-promoting role of CMA in an in vitro model of HCC remains unclear. This review aims to summarize the latest findings on the role of CMA, and MO in the progression of HCC.
Collapse
Affiliation(s)
- Matlola Bopape
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Charlette Tiloke
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Claudia Ntsapi
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
36
|
Wright T, Wang Y, Stratton SA, Sebastian M, Liu B, Johnson DG, Bedford MT. Loss of the methylarginine reader function of SND1 confers resistance to hepatocellular carcinoma. Biochem J 2023; 480:1805-1816. [PMID: 37905668 PMCID: PMC10860161 DOI: 10.1042/bcj20230384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Staphylococcal nuclease Tudor domain containing 1 (SND1) protein is an oncogene that 'reads' methylarginine marks through its Tudor domain. Specifically, it recognizes methylation marks deposited by protein arginine methyltransferase 5 (PRMT5), which is also known to promote tumorigenesis. Although SND1 can drive hepatocellular carcinoma (HCC), it is unclear whether the SND1 Tudor domain is needed to promote HCC. We sought to identify the biological role of the SND1 Tudor domain in normal and tumorigenic settings by developing two genetically engineered SND1 mouse models, an Snd1 knockout (Snd1 KO) and an Snd1 Tudor domain-mutated (Snd1 KI) mouse, whose mutant SND1 can no longer recognize PRMT5-catalyzed methylarginine marks. Quantitative PCR analysis of normal, KO, and KI liver samples revealed a role for the SND1 Tudor domain in regulating the expression of genes encoding major acute phase proteins, which could provide mechanistic insight into SND1 function in a tumor setting. Prior studies indicated that ectopic overexpression of SND1 in the mouse liver dramatically accelerates the development of diethylnitrosamine (DEN)-induced HCC. Thus, we tested the combined effects of DEN and SND1 loss or mutation on the development of HCC. We found that both Snd1 KO and Snd1 KI mice were partially protected against malignant tumor development following exposure to DEN. These results support the development of small molecule inhibitors that target the SND1 Tudor domain or the use of upstream PRMT5 inhibitors, as novel treatments for HCC.
Collapse
Affiliation(s)
- Tanner Wright
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
- MD Anderson UTHealth Houston, Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, U.S.A
| | - Yalong Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Sabrina A. Stratton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Manu Sebastian
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - David G. Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| | - Mark T. Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, U.S.A
| |
Collapse
|
37
|
He J, Han J, Lin K, Wang J, Li G, Li X, Gao Y. PTEN/AKT and Wnt/β-catenin signaling pathways regulate the proliferation of Lgr5+ cells in liver cancer. Biochem Biophys Res Commun 2023; 683:149117. [PMID: 37857166 DOI: 10.1016/j.bbrc.2023.10.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
The progression and spread of tumors are believed to be primarily caused by cancer stem cells (CSCs). Nevertheless, the task of focusing on CSCs for cancer treatment continues to be difficult. Lgr5, a G-protein-coupled receptor containing leucine-rich repeats, is highly expressed in different types of cancer and serves as a distinctive marker for cancer stem cells (CSCs). In this study, we employed the Cre-loxP system and Lgr5 tracking mice of male to selectively remove PTEN and β-catenin in Lgr5+ cells of DEN-induced liver cancer and monitor the behavior of Lgr5+ cells. The tracking data revealed that the activation of PTEN-mediated AKT signaling in Lgr5 led to a significant rise in the quantity of Lgr5+ cells, whereas the inhibition of Wnt/β-catenin signaling decreased the number of cells in DEN-induced liver cancer. Therefore, we have shown that the growth of Lgr5+ cells can be controlled by the PTEN/AKT and Wnt/β-catenin pathways, offering a potential treatment option for fighting against liver cancer.
Collapse
Affiliation(s)
- Jia He
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Jimin Han
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Kaijun Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingru Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guiqiang Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaohong Li
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Ying Gao
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
38
|
Fahrer J, Wittmann S, Wolf AC, Kostka T. Heme Oxygenase-1 and Its Role in Colorectal Cancer. Antioxidants (Basel) 2023; 12:1989. [PMID: 38001842 PMCID: PMC10669411 DOI: 10.3390/antiox12111989] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and cancer-related mechanisms. In this review, we first summarize the importance of HO-1 in physiology and pathophysiology with a focus on the digestive system. We then detail its structure and function, followed by a section on the regulatory mechanisms that control HO-1 expression and activity. Moreover, HO-2 as important further HO isoform is discussed, highlighting the similarities and differences with regard to HO-1. Subsequently, we describe the direct and indirect cytoprotective functions of HO-1 and its breakdown products carbon monoxide and biliverdin-IXa, but also highlight possible pro-inflammatory effects. Finally, we address the role of HO-1 in cancer with a particular focus on colorectal cancer. Here, relevant pathways and mechanisms are presented, through which HO-1 impacts tumor induction and tumor progression. These include oxidative stress and DNA damage, ferroptosis, cell cycle progression and apoptosis as well as migration, proliferation, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| | | | | | - Tina Kostka
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| |
Collapse
|
39
|
Wang Y, Leaker B, Qiao G, Sojoodi M, Eissa IR, Epstein ET, Eddy J, Dimowo O, Lauer GM, Chung RT, Qadan M, Lanuti M, Fuchs BC, Tanabe KK. Precision-Cut Liver Slices as an ex vivo model to evaluate antifibrotic therapies for liver fibrosis and cirrhosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564772. [PMID: 37961334 PMCID: PMC10635008 DOI: 10.1101/2023.10.30.564772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Precision-Cut Liver Slices (PCLS) are an ex vivo culture model developed to study hepatic drug metabolism. One of the main benefits of this model is that it retains the structure and cellular composition of the native liver. PCLS also represents a potential model system to study liver fibrosis in a setting that more closely approximates in vivo pathology than in vitro methods. The aim of this study was to assess whether responses to antifibrotic interventions can be detected and quantified with PCLS. Methods PCLS of 250 μm thickness were prepared from four different murine fibrotic liver models: choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), thioacetamide (TAA), diethylnitrosamine (DEN), and carbon tetrachloride (CCl4). PCLS were treated with 5 μM Erlotinib for 72 hours. Histology and gene expression were then compared with in vivo murine experiments and TGF-β1 activated hepatic stellate cells (HSCs). These types of PCLS characterization were also evaluated in PCLS from human cirrhotic liver. Results PCLS viability in culture was stable for 72 hours. Treatment of erlotinib, an EGFR inhibitor significantly inhibited the expression of profibrogenic genes Il6, Col1a1 and Timp1 in PCLS from CDAHFD-induced cirrhotic mice, and Il6, Col1a1 and Tgfb1 in PCLS from TAA-induced cirrhotic rats. Erlotinib treatment of PCLS from DEN-induced cirrhotic rats inhibited the expression of Col1a1, Timp1, Tgfb1 and Il6, which was consistent with the impact of erlotinib on Col1a1 and Tgfb1 expression in in vivo DEN-induced cirrhosis. Erlotinib treatment of PCLS from CCl4-induced cirrhosis caused reduced expression of Timp1, Col1a1 and Tgfb1, which was consistent with the effect of erlotinib in in vivo CCl4-induced cirrhosis. In addition, in HSCs at PCLS from normal mice, TGF-β1 treatment upregulated Acta2 (αSMA), while treatment with erlotinib inhibited the expression of Acta2. Similar expression results were observed in TGF-β1 treated in vitro HSCs. Expression of MMPs and TIMPs, key regulators of fibrosis progression and regression, were also significantly altered under erlotinib treatment in PCLS. Expression changes under erlotinib treatment were also corroborated with PCLS from human cirrhosis samples. Conclusion The responses to antifibrotic interventions can be detected and quantified with PCLS at the gene expression level. The antifibrotic effects of erlotinib are consistent between PCLS models of murine cirrhosis and those observed in vivo and in vitro. Similar effects were also reproduced in PCLS derived from patients with cirrhosis. PCLS is an excellent model to assess antifibrotic therapies that is aligned with the principles of Replacement, Reduction and Refinement (3Rs).
Collapse
Affiliation(s)
- Yongtao Wang
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ben Leaker
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Harvard-MIT program in Health Sciences and Technology, Massachusetts Institute of Technology, Boston, MA, United States
| | - Guoliang Qiao
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mozhdeh Sojoodi
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ibrahim Ragab Eissa
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Eliana T. Epstein
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jonathan Eddy
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Oizoshimoshiofu Dimowo
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Georg M. Lauer
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Raymond T. Chung
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Motaz Qadan
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bryan C. Fuchs
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Kenneth K. Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Boykov IN, Montgomery MM, Hagen JT, Aruleba RT, McLaughlin KL, Coalson HS, Nelson MA, Pereyra AS, Ellis JM, Zeczycki TN, Vohra NA, Tan SF, Cabot MC, Fisher-Wellman KH. Pan-tissue mitochondrial phenotyping reveals lower OXPHOS expression and function across cancer types. Sci Rep 2023; 13:16742. [PMID: 37798427 PMCID: PMC10556099 DOI: 10.1038/s41598-023-43963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023] Open
Abstract
Targeting mitochondrial oxidative phosphorylation (OXPHOS) to treat cancer has been hampered due to serious side-effects potentially arising from the inability to discriminate between non-cancerous and cancerous mitochondria. Herein, comprehensive mitochondrial phenotyping was leveraged to define both the composition and function of OXPHOS across various murine cancers and compared to both matched normal tissues and other organs. When compared to both matched normal tissues, as well as high OXPHOS reliant organs like heart, intrinsic expression of the OXPHOS complexes, as well as OXPHOS flux were discovered to be consistently lower across distinct cancer types. Assuming intrinsic OXPHOS expression/function predicts OXPHOS reliance in vivo, these data suggest that pharmacologic blockade of mitochondrial OXPHOS likely compromises bioenergetic homeostasis in healthy oxidative organs prior to impacting tumor mitochondrial flux in a clinically meaningful way. Although these data caution against the use of indiscriminate mitochondrial inhibitors for cancer treatment, considerable heterogeneity was observed across cancer types with respect to both mitochondrial proteome composition and substrate-specific flux, highlighting the possibility for targeting discrete mitochondrial proteins or pathways unique to a given cancer type.
Collapse
Affiliation(s)
- Ilya N Boykov
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - McLane M Montgomery
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Raphael T Aruleba
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Kelsey L McLaughlin
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Hannah S Coalson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Margaret A Nelson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Andrea S Pereyra
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Jessica M Ellis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Nasreen A Vohra
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Myles C Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
- East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Drive, Greenville, NC, 27834, USA.
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Abdel-Hamid NM, Zakaria SM, Ansary AM, El-Senduny FF, El-Shishtawy MM. The expression of tuftelin 1 as a new theranostic marker in early diagnosis and as a therapeutic target in hepatocellular carcinoma. Cell Biochem Funct 2023; 41:788-800. [PMID: 37470499 DOI: 10.1002/cbf.3828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Currently, many challenges are associated with hepatocellular carcinoma (HCC) as the failure of early diagnosis, and the lack of effective therapy. This study aimed to investigate the possible role of tuftelin 1 (TUFT 1) in the early diagnosis of HCC and evaluate the potential contribution of the TUFT 1/Ca+2 /phosphinositol 3 kinase (PI3K) pathway in dantrolene sodium (Dan) therapeutic outcomes. The study was performed on two sets of rats, the staging (30 rats) and treatment sets (80 rats). HCC was induced by a single dose of diethylnitrosamine (DENA). The hepatic content of TUFT 1 protein was assayed via western blot and immunohistochemistry (IHC), while PI3K, vascular endothelial growth factor (VEGF), Cyclin D1, and matrix-metalloproteinase-9 (MMP-9) contents were assessed using enzyme-linked immunosorbent assay. Hepatic and serum calcium were measured colorimetrically. Furthermore, the nuclear proliferation marker, (Ki-67), (Kiel [Ki] where the antibody was produced in the University Department of Pathology and the original clone number is 67)-expression was assessed by IHC. TUFT 1/Ca+2 /PI3K signaling pathway was progressively activated in the 3 studied stages of HCC with subsequent upregulation of angiogenesis, cell cycle, and metastasis. More interestingly, Dan led to TUFT 1/Ca+2 /PI3K pathway disruption by diminution of the hepatic contents of TUFT 1, calcium, PI3K, VEGF, Cyclin D1, and MMP-9 in a dose-dependent pattern. TUFT 1 can serve as a theranostic biomarker in HCC. Moreover, Dan exerted an antineoplastic effect against HCC via the interruption of TUFT 1/Ca+2 /PI3K pathway.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sherin M Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abeer M Ansary
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fardous F El-Senduny
- Department of Chemistry (Biochemistry Division), Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
42
|
Ma L, Wu Q, Tam PKH. The Current Proceedings of PSC-Based Liver Fibrosis Therapy. Stem Cell Rev Rep 2023; 19:2155-2165. [PMID: 37490204 DOI: 10.1007/s12015-023-10592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Liver fibrosis was initially considered to be an irreversible process which will eventually lead to the occurrence of liver cancer. So far there has been no effective therapeutic approach to treat liver fibrosis although scientists have put tremendous efforts into the underlying mechanisms of this disease. Therefore, in-depth research on novel and safe treatments of liver fibrosis is of great significance to human health. Pluripotent stem cells (PSCs) play important roles in the study of liver fibrosis due to their unique features in self-renewal ability, pluripotency, and paracrine function. This article mainly reviews the applications of PSCs in the study of liver fibrosis in recent years. We discuss the role of PSC-derived liver organoids in the study of liver fibrosis, and the latest research advances on the differentiation of PSCs into hepatocytes or macrophages. We also highlight the importance of exosomes of PSCs for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Li Ma
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China.
| | - Paul Kwong-Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China.
| |
Collapse
|
43
|
Awad B, Hamza AA, Al-Maktoum A, Al-Salam S, Amin A. Combining Crocin and Sorafenib Improves Their Tumor-Inhibiting Effects in a Rat Model of Diethylnitrosamine-Induced Cirrhotic-Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4063. [PMID: 37627094 PMCID: PMC10452334 DOI: 10.3390/cancers15164063] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies, with continuously increasing cases and fatalities. Diagnosis often occurs in the advanced stages, confining patients to systemic therapies such as sorafenib. Sorafenib (SB), a multi-kinase inhibitor, has not yet demonstrated sufficient efficacy against advanced HCC. There is a strong argument in favor of studying its use in combination with other medications to optimize the therapeutic results. According to our earlier work, crocin (CR), a key bioactive component of saffron, hinders HCC development and liver cancer stemness. In this study, we investigated the therapeutic use of CR or its combination with SB in a cirrhotic rat model of HCC and evaluated how effectively SB and CR inhibited tumor growth in this model. Diethylnitrosamine (DEN) was administered intraperitoneally to rats once a week for 15 weeks, leading to cirrhosis, and then 19 weeks later, leading to multifocal HCC. After 16 weeks of cancer induction, CR (200 mg/kg daily) and SB (10 mg/kg daily) were given orally to rats for three weeks, either separately or in combination. Consistently, the combination treatment considerably decreased the incidence of dyschromatic nodules, nodule multiplicity, and dysplastic nodules when compared to the HCC group of single therapies. Combined therapy also caused the highest degree of apoptosis, along with decreased proliferating and β-catenin levels in the tumor tissues. Additionally, when rats received combined therapy with CR, it showed anti-inflammatory characteristics where nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (Cox-2) were considerably and additively lowered. As a result, CR potentiates the suppressive effects of SB on tumor growth and provides the opportunity to strengthen the therapeutic effects of SB in the treatment of HCC.
Collapse
Affiliation(s)
- Basma Awad
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (B.A.); (A.A.-M.)
| | - Alaaeldin Ahmed Hamza
- National Organization for Drug Control and Research, Giza 12611, Egypt;
- National Committee for Biochemistry and Molecular Biology and Medical Research Council, Academy of Scientific Research, Cairo 11334, Egypt
| | - Amna Al-Maktoum
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (B.A.); (A.A.-M.)
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Amr Amin
- Biology Department, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (B.A.); (A.A.-M.)
| |
Collapse
|
44
|
Otuechere CA, Neupane NP, Adewuyi A, Pathak P, Novak J, Grishina M, Khalilullah H, Jaremko M, Verma A. Green Synthesis of Genistein-Fortified Zinc Ferrite Nanoparticles as a Potent Hepatic Cancer Inhibitor: Validation through Experimental and Computational Studies. Chem Biodivers 2023; 20:e202300719. [PMID: 37312449 DOI: 10.1002/cbdv.202300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
In hepatic cancer, precancerous nodules account for damage and inflammation in liver cells. Studies have proved that phyto-compounds based on biosynthetic metallic nanoparticles display superior action against hepatic tumors. This study targeted the synthesis of genistein-fortified zinc ferrite nanoparticles (GENP) trailed by anticancer activity assessment against diethylnitrosamine and N-acetyl-2-aminofluorene induced hepatic cancer. The process of nucleation was confirmed by UV/VIS spectrophotometry, X-ray beam diffraction, field-emission scanning electron microscopy, and FT-IR. An in vitro antioxidant assay illustrated that the leaves of Pterocarpus mildbraedii have strong tendency as a reductant and, in the nanoformulation synthesis, as a natural capping agent. A MTT assay confirmed that GENP have a strong selective cytotoxic potential against HepG2 cancer cells. In silico studies of genistein exemplified the binding tendency towards human matrix metalloproteinase comparative to the standard drug marimastat. An in vivo anticancer evaluation showed that GENP effectively inhibit the growth of hepatic cancer by interfering with hepatic and non-hepatic biochemical markers.
Collapse
Affiliation(s)
- Chiagoziem A Otuechere
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, 232101, Ede, Nigeria
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| | - Netra P Neupane
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| | - Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, 232101, Ede, Nigeria
| | - Prateek Pathak
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008, Chelyabinsk, Russia
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, 51000, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000, Rijeka, Croatia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008, Chelyabinsk, Russia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911, Unayzah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| |
Collapse
|
45
|
Wang Z, Jiang X, Zhang L, Chen H. Protective effects of Althaea officinalis L. extract against N-diethylnitrosamine-induced hepatocellular carcinoma in male Wistar rats through antioxidative, anti-inflammatory, mitochondrial apoptosis and PI3K/Akt/mTOR signaling pathways. Food Sci Nutr 2023; 11:4756-4772. [PMID: 37576045 PMCID: PMC10420783 DOI: 10.1002/fsn3.3455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma is the fourth cause of death due to cancer and includes 90% of liver tumors. Therefore, in this study, it was tried to show that Althaea officinalis L. flower extract (ALOF) can protect hepatocytes against N-diethylnitrosamine (DEN)-induced hepatocellular carcinoma. Totally, 70 Wistar rats were divided into seven groups (n = 10/group) of sham, DEN, treatment with silymarin (SIL; DEN + SIL), treatment with ALOF (DEN + 250 and 500 ALOF), and cotreatment with SIL and ALOF (DEN + SIL + 250 and 500 ALOF). At the end of the study, the serum levels of liver indices (albumin, total protein, bilirubin, C-reactive protein, ALT, AST, and ALP), inflammatory cytokines (IL-6, IL-1β, IL-10, and TNF-α), and oxidants parameters (glutathione peroxidase [GPx], superoxide dismutase [SOD], catalase [CAT] activity along with nitric oxide [NO] levels) were evaluated. The level of Bax, Bcl-2, Caspase-3, p53, PI3K, mTOR, and AKT genes were measured. ALOF in cotreatment with SIL was able to regulate liver biochemical parameters, improve serum antioxidant indices, and decrease the level of proinflammatory cytokines significantly (p < .05). ALOF extract in both doses of 250 and 500 mg/kg in cotreatment with SIL caused a significant (p < .05) decrease in the p53-positive cells and a significant (p < .05) increase in Bcl-2-positive cells. Therefore, ALOF was able to modulate the proliferation of cancer cells and protect normal cells through the regulation of Bax/Bcl-2/p53 and PI3K/Akt/mTOR signaling pathways. It seems that ALOF can be used as a prodrug or complementary treatment in the protection of hepatocytes in induced damages caused by carcinogens.
Collapse
Affiliation(s)
- Zhenqian Wang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Xiao Jiang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Long Zhang
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| | - Han Chen
- Department of General Surgery905th Hospital of the Chinese People's Liberation Army NavyShanghaiP.R. China
| |
Collapse
|
46
|
Galvão FHF, Traldi MCC, Araújo RSS, Stefano JT, D'Albuquerque LAC, Oliveira CP. PRECLINICAL MODELS OF LIVER CÂNCER. ARQUIVOS DE GASTROENTEROLOGIA 2023; 60:383-392. [PMID: 37792769 DOI: 10.1590/s0004-2803.230302023-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 10/06/2023]
Abstract
•In this review, we described different murine models of carcinogenesis: classic models, new transgenic and combined models, that reproduce the key points for HCC and CCA genesis allowing a better understanding of its genetic physiopathological, and environmental abnormalities. •Each model has its advantages, disadvantages, similarities, and differences with the corresponding human disease and should be chosen according to the specificity of the study. Ultimately, those models can also be used for testing new anticancer therapeutic approaches. •Cholangiocarcinoma has been highlighted, with an increase in prevalence. This review has an important role in understanding the pathophysiology and the development of new drugs. Background - This manuscript provides an overview of liver carcinogenesis in murine models of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). Objective - A review through MEDLINE and EMBASE was performed to assess articles until August 2022.Methods - Search was conducted of the entire electronic databases and the keywords used was HCC, CCA, carcinogenesis, animal models and liver. Articles exclusion was based on the lack of close relation to the subject. Carcinogenesis models of HCC include HCC induced by senescence in transgenic animals, HCC diet-induced, HCC induced by chemotoxicagents, xenograft, oncogenes, and HCC in transgenic animals inoculated with B and C virus. The models of CCA include the use of dimethylnitrosamine (DMN), diethylnitrosamine (DEN), thioacetamide (TAA), and carbon tetrachloride (CCl4). CCA murine models may also be induced by: CCA cells, genetic manipulation, Smad4, PTEN and p53 knockout, xenograft, and DEN-left median bile duct ligation. Results - In this review, we described different murine models of carcinogenesis that reproduce the key points for HCC and CCA genesis allowing a better understanding of its genetic, physiopathological, and environmental abnormalities. Conclusion - Each model has its advantages, disadvantages, similarities, and differences with the corresponding human disease and should be chosen according to the specificity of the study. Ultimately, those models can also be used for testing new anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Flávio Henrique Ferreira Galvão
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | - Maria Clara Camargo Traldi
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | | | - Jose Tadeu Stefano
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), São Paulo, SP, Brasil
| | - Luiz Augusto Carneiro D'Albuquerque
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Transplante e Cirurgia do Fígado (LIM-37), São Paulo, SP, Brasil
| | - Claudia P Oliveira
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia, São Paulo, SP, Brasil
- Laboratório de Gastroenterologia Clínica e Experimental (LIM-07), São Paulo, SP, Brasil
| |
Collapse
|
47
|
Sánchez-Meza J, Campos-Valdez M, Domínguez-Rosales JA, Godínez-Rubí JM, Rodríguez-Reyes SC, Martínez-López E, Zúñiga-González GM, Sánchez-Orozco LV. Chronic Administration of Diethylnitrosamine and 2-Acetylaminofluorene Induces Hepatocellular Carcinoma in Wistar Rats. Int J Mol Sci 2023; 24:ijms24098387. [PMID: 37176094 PMCID: PMC10179122 DOI: 10.3390/ijms24098387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to analyze the biochemical, histological, and gene expression alterations produced in a hepatocarcinogenesis model induced by the chronic administration of diethylnitrosamine (DEN) and 2-acetylaminofluorene (2-AAF) in Wistar rats. Thirteen rats weighing 180 to 200 g were divided into two groups: control and treated. Rats in the treated group were administered an intraperitoneal (i.p.) injection of DEN (50 mg/kg/week) and an intragastric (i.g.) dose of 2-AAF (25 mg/kg/week) for 18 weeks. The treated group had significant increases in their total cholesterol, HDL-C, AST, ALT, ALKP, and GGT levels. Furthermore, a histological analysis showed the loss of normal liver architecture with nuclear pleomorphism in the hepatocytes, atypical mitosis, and fibrous septa that were distributed between the portal triads and collagen fibers through the hepatic sinusoids. The gene expressions of 24 genes related to fibrosis, inflammation, apoptosis, cell growth, angiogenesis, lipid metabolism, and alpha-fetoprotein (AFP) were analyzed; only TGFβ, COL1α1, CYP2E1, CAT, SOD, IL6, TNF-α, and ALB showed significant differences when both groups were compared. Additionally, lung histopathological alterations were found in the treated group, suggesting metastasis. In this model, the chronic administration of DEN+2-AAF induces characteristic alterations of hepatocellular carcinoma in Wistar rats without AFP gene expression changes, highlighting different signatures in hepatocellular carcinoma heterogeneity.
Collapse
Affiliation(s)
- Jaime Sánchez-Meza
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Marina Campos-Valdez
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Alfredo Domínguez-Rosales
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Juliana Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquímica, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Sarai Citlalic Rodríguez-Reyes
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico
| | - Guillermo M Zúñiga-González
- Laboratorio de Mutagénesis, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Laura Verónica Sánchez-Orozco
- Instituto de Enfermedades Crónico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
48
|
Pocasap P, Weerapreeyakul N, Wongpoomchai R. Thai Rat-Tailed Radish Prevents Hepatocarcinogenesis in Rats by Blocking Mutagenicity, Inducing Hepatic Phase II Enzyme, and Decreasing Hepatic Pro-Inflammatory Cytokine Gene Expression. Cancers (Basel) 2023; 15:cancers15061906. [PMID: 36980792 PMCID: PMC10047847 DOI: 10.3390/cancers15061906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Raphanus sativus L. var. caudatus Alef (RS) is an indigenous Thai plant with nutritional and medicinal values such as anticancer activity, but only in vitro. The chemopreventive effects of RS were, therefore, investigated in the initial stage of hepatocarcinogenesis in rats. Diethylnitrosamine (DEN), a carcinogen, was intraperitoneally injected into rats to induce liver cancer. Along with the DEN injection, either aqueous (RS-H2O) or dichloromethane (RS-DCM) extract was administered orally. Immunohistochemistry was used to detect glutathione S-transferase placental (GST-P) positive foci and apoptotic cells in rat livers as indicators of initial-stage carcinogenesis. The underlying mechanisms of chemoprevention were investigated with (a) antimutagenic activity, (b) hepatic phase II enzyme induction, and (c) hepatic pro-inflammatory cytokine gene expression. The results showed that RS-DCM was more potent than RS-H2O in decreasing GST-P positive foci and apoptotic cells induced by DEN. The mechanisms of RS-DCM (phenolics and sulforaphene contents) against liver carcinogenesis (1) block the activity of carcinogens; (2) elevate phase II detoxifying enzymes; and (3) suppress the pro-inflammatory gene expression. RS-H2O (phenolics contents), in contrast, only decreases pro-inflammatory gene expression. In conclusion, the RS extract consisting of phenolics and isothiocyanates exerted significant chemopreventive activity against DEN-induced liver carcinogenesis.
Collapse
Affiliation(s)
- Piman Pocasap
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
49
|
The anti-toxic effect of the date palm fruit extract loaded on chitosan nanoparticles against CCl 4-induced liver fibrosis in a mouse model. Int J Biol Macromol 2023; 235:123804. [PMID: 36842736 DOI: 10.1016/j.ijbiomac.2023.123804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
The liver is the most important organ in the body. Hepatocyte oxidative damage occurs to excess ROS. Liver fibrosis is a mechanism that the immune system uses to treat extreme inflammation by repairing damaged tissue with the creation of a scar. The outcome of fibrosis may be reversed by consuming natural plant extracts with high ROS-scavenging ability. The date palm fruits contain caffeic acid, gallic acid, syringic acid, and ferulic acid, which have anti-inflammatory, antioxidant, and hepatoprotective properties. This study aimed to prepare a date fruit extract, load it onto chitosan nanoparticles, and compare its anti-fibrotic activity with the unloaded crude extract in the CCl4-mouse model. Our findings show that nanocomposite (Cs@FA/DEx) has anti-fibrotic properties and can improve liver function enzymes and endogenous antioxidant enzymes by inhibiting cell apoptosis caused by CCl4-induction in mice. Furthermore, significantly reduced CD95 and ICAM1 levels and down-regulation of TGFβ-1 and collagen-α-1 expression demonstrated the anti-fibrotic effects of the Cs@FA/DEx. Therefore, the Cs@FA/DEx might be an innovative supplement for inhibiting liver fibrosis and hepatocyte inflammation induced by chemical toxins. Besides, this nano-supplement could be a promising anti-hepatocellular carcinoma agent as it has potent in vitro anticancer activity against the HePG2 cell line.
Collapse
|
50
|
Oxley M, Francis H, Sato K. Growth Hormone Signaling in Liver Diseases: Therapeutic Potentials and Controversies. Semin Liver Dis 2023; 43:24-30. [PMID: 36652958 DOI: 10.1055/a-2015-1359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Growth hormone (GH) and downstream insulin-like growth factor 1 (IGF1) signaling mediate growth and metabolism. GH deficiency causes short stature or dwarfism, and excess GH causes acromegaly. Although the association of GH/IGF1 signaling with liver diseases has been suggested previously, current studies are controversial and the functional roles of GH/IGF1 signaling are still undefined. GH supplementation therapy showed promising therapeutic effects in some patients, such as non-alcoholic fatty liver disease, but inhibition of GH signaling may be beneficial for other liver diseases, such as hepatocellular carcinoma. The functional roles of GH/IGF1 signaling and the effects of agonists/antagonists targeting this signaling may differ depending on the liver injury or animal models. This review summarizes current controversial studies of GH/IGF1 signaling in liver diseases and discusses therapeutic potentials of GH therapy.
Collapse
Affiliation(s)
- Madisyn Oxley
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|