1
|
Teng JM, Qin S, Lu D, Gu Y, Tang SJ, Yan Q, Yao J, Zhang C. Evaluation of CYP2C19 Genetic Variant and Its Lack of Association with Valproic Acid Plasma Concentrations Among Zhuang and Han Schizophrenia Patients in Guangxi. Pharmgenomics Pers Med 2024; 17:225-236. [PMID: 38765788 PMCID: PMC11102100 DOI: 10.2147/pgpm.s457805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose To investigate the CYP2C19 genotype distribution and allelic frequency among the Zhuang and Han schizophrenic populations in Guangxi, examine the correlation between CYP2C19 genetic variants and standardized blood levels of Valproic Acid (VPA) in schizophrenic patients, and evaluate the effects of age, gender, and Body Mass Index (BMI) on standardized VPA blood concentrations. Patients and Methods Between February and December 2022, 192 Zhuang and Han schizophrenia patients treated with VPA were studied. Steady-state VPA concentrations were determined using homogeneous enzyme immunoassays, and CYP2C19 *1, *2, and *3 loci via q-PCR. CYP2C19 genotype distributions between Zhuang and Han groups in Nanning were compared using chi-square tests and contrasted with other ethnicities. Non-parametric tests analyzed VPA variations, identifying critical factors through multivariate stepwise regression. Results The study identified five CYP2C19 genotypes at the *2 and *3 loci, with the *3/*3 genotype absent in both cohorts. The CYP2C19 distribution in Guangxi Zhuang and Han mirrors, yet diverges significantly from Hui and Kazakh groups. Among 192 subjects, VPA blood levels remained consistent across metabolic types and ages 18-60 but varied significantly by gender. Multivariate analysis revealed gender and BMI as significant factors, overshadowing CYP2C19 genotype and age. Conclusion In Guangxi, CYP2C19 genetic variants in Zhuang and Han schizophrenia patients demonstrate statistically indistinguishable allelic and metabolic distributions. Gender and BMI can influence standardized VPA blood concentrations in schizophrenia patients. However, in our study cohort, the CYP2C19 genotype and age are not the primary determinants of standardized VPA blood levels.
Collapse
Affiliation(s)
- Jun Mei Teng
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shuiqing Qin
- Department of Science and Education, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Danyu Lu
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yefa Gu
- Department of Psychiatry, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shi Jie Tang
- Department of Psychiatry, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Qiong Yan
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jiawei Yao
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chao Zhang
- Laboratory Department, The Fifth People’s Hospital of Nanning, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
2
|
Aly SM, Hennart B, Gaulier JM, Allorge D. Effect of CYP2D6, 2C19, and 3A4 Phenoconversion in Drug-Related Deaths. TOXICS 2024; 12:260. [PMID: 38668482 PMCID: PMC11054314 DOI: 10.3390/toxics12040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Molecular autopsy is a very important tool in forensic toxicology. However, many determinants, such as co-medication and physiological parameters, should be considered for optimal results. These determinants could cause phenoconversion (PC), a discrepancy between the real metabolic profile after phenoconversion and the phenotype determined by the genotype. This study's objective was to assess the PC of drug-metabolizing enzymes, namely CYP2D6, 2C19, and 3A4, in 45 post-mortem cases where medications that are substrates, inducers, or inhibitors of these enzymes were detected. It also intended to evaluate how PC affected the drug's metabolic ratio (MR) in four cases. Blood samples from 45 cases of drug-related deaths were analyzed to detect and determine drug and metabolite concentrations. Moreover, all the samples underwent genotyping utilizing the HaloPlex Target Enrichment System for CYP2D6, 2C19, and 3A4. The results of the present study revealed a statistically significant rate of PC for the three investigated enzymes, with a higher frequency of poor metabolizers after PC. A compatibility was seen between the results of the genomic evaluation after PC and the observed MRs of venlafaxine, citalopram, and fentanyl. This leads us to focus on the determinants causing PC that may be mainly induced by drug interactions. This complex phenomenon can have a significant impact on the analysis, interpretation of genotypes, and accurate conclusions in forensic toxicology. Nevertheless, more research with more cases in the future is needed to confirm these results.
Collapse
Affiliation(s)
- Sanaa M. Aly
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
| | - Benjamin Hennart
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| | - Jean-Michel Gaulier
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| | - Delphine Allorge
- CHU Lille, Service de Toxicologie-Génopathies, F-59000 Lille, France
- ULR 4483—IMPECS—IMPact de l’Environnement Chimique sur la Santé Humaine, Université de Lille, F-59000 Lille, France
| |
Collapse
|
3
|
de Jong LM, Boussallami S, Sánchez-López E, Giera M, Tushuizen ME, Hoekstra M, Hawinkels LJAC, Rissmann R, Swen JJ, Manson ML. The impact of CYP2C19 genotype on phenoconversion by concomitant medication. Front Pharmacol 2023; 14:1201906. [PMID: 37361233 PMCID: PMC10285291 DOI: 10.3389/fphar.2023.1201906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Pharmacogenetics-informed drug prescribing is increasingly applied in clinical practice. Typically, drug metabolizing phenotypes are determined based on genetic test results, whereupon dosage or drugs are adjusted. Drug-drug-interactions (DDIs) caused by concomitant medication can however cause mismatches between predicted and observed phenotypes (phenoconversion). Here we investigated the impact of CYP2C19 genotype on the outcome of CYP2C19-dependent DDIs in human liver microsomes. Methods: Liver samples from 40 patients were included, and genotyped for CYP2C19*2, *3 and *17 variants. S-mephenytoin metabolism in microsomal fractions was used as proxy for CYP2C19 activity, and concordance between genotype-predicted and observed CYP2C19 phenotype was examined. Individual microsomes were subsequently co-exposed to fluvoxamine, voriconazole, omeprazole or pantoprazole to simulate DDIs. Results: Maximal CYP2C19 activity (Vmax) in genotype-predicted intermediate metabolizers (IMs; *1/*2 or *2/*17), rapid metabolizers (RMs; *1/*17) and ultrarapid metabolizers (UMs; *17/*17) was not different from Vmax of predicted normal metabolizers (NMs; *1/*1). Conversely, CYP2C19*2/*2 genotyped-donors exhibited Vmax rates ∼9% of NMs, confirming the genotype-predicted poor metabolizer (PM) phenotype. Categorizing CYP2C19 activity, we found a 40% concordance between genetically-predicted CYP2C19 phenotypes and measured phenotypes, indicating substantial phenoconversion. Eight patients (20%) exhibited CYP2C19 IM/PM phenotypes that were not predicted by their CYP2C19 genotype, of which six could be linked to the presence of diabetes or liver disease. In subsequent DDI experiments, CYP2C19 activity was inhibited by omeprazole (-37% ± 8%), voriconazole (-59% ± 4%) and fluvoxamine (-85% ± 2%), but not by pantoprazole (-2 ± 4%). The strength of CYP2C19 inhibitors remained unaffected by CYP2C19 genotype, as similar percental declines in CYP2C19 activity and comparable metabolism-dependent inhibitory constants (Kinact/KI) of omeprazole were observed between CYP2C19 genotypes. However, the consequences of CYP2C19 inhibitor-mediated phenoconversion were different between CYP2C19 genotypes. In example, voriconazole converted 50% of *1/*1 donors to a IM/PM phenotype, but only 14% of *1/*17 donors. Fluvoxamine converted all donors to phenotypic IMs/PMs, but *1/*17 (14%) were less likely to become PMs than *1/*1 (50%) or *1/*2 and *2/*17 (57%). Conclusion: This study suggests that the differential outcome of CYP2C19-mediated DDIs between genotypes are primarily dictated by basal CYP2C19 activity, that may in part be predicted by CYP2C19 genotype but likely also depends on disease-related factors.
Collapse
Affiliation(s)
- Laura M. de Jong
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden, Netherlands
| | - Soukayna Boussallami
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden, Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten E. Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden, Netherlands
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research, Leiden, Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Jesse J. Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn L. Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden, Netherlands
| |
Collapse
|
4
|
Duthaler U, Bachmann F, Suenderhauf C, Grandinetti T, Pfefferkorn F, Haschke M, Hruz P, Bouitbir J, Krähenbühl S. Liver Cirrhosis Affects the Pharmacokinetics of the Six Substrates of the Basel Phenotyping Cocktail Differently. Clin Pharmacokinet 2022; 61:1039-1055. [PMID: 35570253 PMCID: PMC9287224 DOI: 10.1007/s40262-022-01119-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Activities of hepatic cytochrome P450 enzymes (CYPs) are relevant for hepatic clearance of drugs and known to be decreased in patients with liver cirrhosis. Several studies have reported the effect of liver cirrhosis on CYP activity, but the results are partially conflicting and for some CYPs lacking. OBJECTIVE In this study, we aimed to investigate the CYP activity in patients with liver cirrhosis with different Child stages (A-C) using the Basel phenotyping cocktail approach. METHODS We assessed the pharmacokinetics of the six compounds and their CYP-specific metabolites of the Basel phenotyping cocktail (CYP1A2: caffeine, CYP2B6: efavirenz, CYP2C9: flurbiprofen, CYP2C19: omeprazole, CYP2D6: metoprolol, CYP3A: midazolam) in patients with liver cirrhosis (n = 16 Child A cirrhosis, n = 15 Child B cirrhosis, n = 5 Child C cirrhosis) and matched control subjects (n = 12). RESULTS While liver cirrhosis only marginally affected the pharmacokinetics of the low to moderate extraction drugs efavirenz and flurbiprofen, the elimination rate of caffeine was reduced by 51% in patients with Child C cirrhosis. For the moderate to high extraction drugs omeprazole, metoprolol, and midazolam, liver cirrhosis decreased the elimination rate by 75%, 37%, and 60%, respectively, increased exposure, and decreased the apparent systemic clearance (clearance/bioavailability). In patients with Child C cirrhosis, the metabolic ratio (ratio of the area under the plasma concentration-time curve from 0 to 24 h of the metabolite to the parent compound), a marker for CYP activity, decreased by 66%, 47%, 92%, 73%, and 43% for paraxanthine/caffeine (CYP1A2), 8-hydroxyefavirenz/efavirenz (CYP2B6), 5-hydroxyomeprazole/omeprazole (CYP2C19), α-hydroxymetoprolol/metoprolol (CYP2D6), and 1'-hydroxymidazolam/midazolam (CYP3A), respectively. In comparison, the metabolic ratio 4-hydroxyflurbiprofen/flurbiprofen (CYP2C9) remained unchanged. CONCLUSIONS Liver cirrhosis affects the activity of CYP isoforms differently. This variability must be considered for dose adjustment of drugs in patients with liver cirrhosis. CLINICAL TRIAL REGISTRATION NCT03337945.
Collapse
Affiliation(s)
- Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabio Bachmann
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Claudia Suenderhauf
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Tanja Grandinetti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland
| | - Florian Pfefferkorn
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland
| | - Manuel Haschke
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Petr Hruz
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Gastroenterology and Hepatology, University Hospital Basel, Basel, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel, 4031, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
- Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Lin XB, Lui KY, Guo PH, Liu XM, Liang T, Hu XG, Tong L, Wu JJ, Xia YZ, Chen P, Zhong GP, Chen X, Cai CJ. Population pharmacokinetic model-guided optimization of intravenous voriconazole dosing regimens in critically ill patients with liver dysfunction. Pharmacotherapy 2021; 42:23-33. [PMID: 34655497 DOI: 10.1002/phar.2634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022]
Abstract
STUDY OBJECTIVES This study aimed to establish a population pharmacokinetic (PPK) model of intravenous voriconazole (VRC) in critically ill patients with liver dysfunction and to explore the optimal dosing strategies in specific clinical scenarios for invasive fungal infections (IFIs) caused by common Aspergillus and Candida species. DESIGN Prospective pharmacokinetics study. SETTING The intensive care unit in a tertiary-care medical center. PATIENTS A total of 297 plasma VRC concentrations from 26 critically ill patients with liver dysfunction were included in the PPK analysis. METHODS Model-based simulations with therapeutic range of 2-6 mg/L as the plasma trough concentration (Cmin ) target and the free area under the concentration-time curve from 0 to 24 h (ƒAUC24 ) divided by the minimum inhibitory concentration (MIC) (ie, ƒAUC24 /MIC) ≥25 as the effective target were performed to optimize VRC dosing regimens for Child-Pugh class A and B (CP-A/B) and Child-Pugh class C (CP-C) patients. RESULTS A two-compartment model with first-order elimination adequately described the data. Significant covariates in the final model were body weight on both central and peripheral distribution volume and Child-Pugh class on clearance. Intravenous VRC loading dose of 5 mg/kg every 12 h (q12h) for the first day was adequate for CP-A/B and CP-C patients to attain the Cmin target at 24 h. The maintenance dose regimens of 100 mg q12h or 200 mg q24h for CP-A/B patients and 50 mg q12h or 100 mg q24h for CP-C patients could obtain the probability of effective target attainment of >90% at an MIC ≤0.5 mg/L and achieve the cumulative fraction of response of >90% against C. albicans, C. parapsilosis, C. glabrata, C. krusei, A. fumigatus, and A. flavus. Additionally, the daily VRC doses could be increased by 50 mg for CP-A/B and CP-C patients at an MIC of 1 mg/L, with plasma Cmin monitored closely to avoid serious adverse events. It is recommended that an appropriate alternative antifungal agent or a combination therapy could be adopted when an MIC ≥2 mg/L is reported, or when the infection is caused by C. tropicalis but the MIC value is not available. CONCLUSIONS For critically ill patients with liver dysfunction, the loading dose of intravenous VRC should be reduced to 5 mg/kg q12h. Additionally, based on the types of fungal pathogens and their susceptibility to VRC, the adjusted maintenance dose regimens with lower doses or longer dosing intervals should be considered for CP-A/B and CP-C patients.
Collapse
Affiliation(s)
- Xiao-Bin Lin
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ka Yin Lui
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng-Hao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Man Liu
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Liang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Guang Hu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Tong
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Jing Wu
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Zhe Xia
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pan Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guo-Ping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang-Jie Cai
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Chen X, Cui X, Pognan N, Quinlan M, Kapoor S, Rahmanzadeh G, Giovannini M, Marbury TC. Pharmacokinetics of capmatinib in participants with hepatic impairment: A phase 1, open-label, single-dose, parallel-group study. Br J Clin Pharmacol 2021; 88:91-102. [PMID: 34046915 PMCID: PMC9291822 DOI: 10.1111/bcp.14929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022] Open
Abstract
Aims Capmatinib, a mesenchymal–epithelial transition factor tyrosine kinase inhibitor, is metabolized by cytochrome P450 (CYP) 3A4 and aldehyde oxidase. In individuals with hepatic impairment, alterations in hepatobiliary excretion and metabolism could lead to higher capmatinib exposure. We compared the pharmacokinetics of a single oral dose of capmatinib 200 mg administered to participants with varying degrees of hepatic impairment vs. matched controls with normal hepatic function. Methods This phase 1, multicentre, open‐label, parallel‐group study enrolled adult participants with normal hepatic function and mild, moderate and severe hepatic impairments. Eligible participants received a single oral dose of 200 mg capmatinib. The pharmacokinetic parameters of capmatinib were analysed and compared across participants with impaired and normal hepatic function. Results Of 31 enrolled participants, 29 had an evaluable pharmacokinetic profile: normal (n = 9); mild (n = 6); moderate (n = 8); severe (n = 6). Compared with the normal group, geometric mean (GM) maximum (peak) observed plasma drug concentration after single‐dose administration decreased by 27.6% in the mild group (GM ratio [GMR] = 0.724; 90% confidence interval [CI]: 0.476–1.10), by 17.2% in the moderate group (GMR = 0.828; 90% CI: 0.563–1.22) and remained unchanged in the severe group (GMR = 1.02; 90% CI: 0.669–1.55). Compared with the normal group, GM area under the plasma concentration–time curve from time zero to infinity decreased by 23.3% in the mild group (GMR = 0.767; 90% CI: 0.532–1.11), by 8.6% in the moderate group (GMR = 0.914; 90% CI: 0.652–1.28) and increased by 24% in the severe group (GMR = 1.24; 90% CI: 0.858–1.78). Conclusion Mild, moderate and severe hepatic impairment did not have a clinically relevant impact on capmatinib pharmacokinetics. No new safety findings are reported in this study.
Collapse
Affiliation(s)
- Xinhui Chen
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | - Xiaoming Cui
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | | | - Michelle Quinlan
- Global Drug Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Shruti Kapoor
- Global Drug Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | - Monica Giovannini
- Global Drug Development, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | |
Collapse
|
7
|
Darakjian L, Deodhar M, Turgeon J, Michaud V. Chronic Inflammatory Status Observed in Patients with Type 2 Diabetes Induces Modulation of Cytochrome P450 Expression and Activity. Int J Mol Sci 2021; 22:ijms22094967. [PMID: 34067027 PMCID: PMC8124164 DOI: 10.3390/ijms22094967] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that causes a hyperglycemic status which leads, over time, to serious damage to the heart, blood vessels, eyes, kidneys and nerves. The most frequent form of diabetes is type 2 diabetes mellitus (T2DM) which is often part of a metabolic syndrome (hyperglycaemia, hypertension, hypercholesterolemia, abdominal obesity) that usually requires the use of several medications from different drug classes to bring each of these conditions under control. T2DM is associated with an increase in inflammatory markers such as interleukin-6 (IL-6) and the tumor necrosis factor alpha (TNF-α). Higher levels of IL-6 and TNF-α are associated with a downregulation of several drug metabolizing enzymes, especially the cytochrome P450 (P450) isoforms CYP3As and CYP2C19. A decrease in these P450 isoenzymes may lead to unexpected rise in plasma levels of substrates of these enzymes. It could also give rise to a mismatch between the genotypes determined for these enzymes, the predicted phenotypes based on these genotypes and the phenotypes observed clinically. This phenomenon is described as phenoconversion. Phenoconversion typically results from either a disease (such as T2DM) or concomitant administration of medications inducing or inhibiting (including competitive or non-competitive inhibition) a P450 isoenzyme used by other substrates for their elimination. Phenoconversion could have a significant impact on drug effects and genotypic-focused clinical outcomes. As the aging population is exposed to polypharmacy along with inflammatory comorbidities, consideration of phenoconversion related to drug metabolizing enzymes is of importance when applying pharmacogenomic results and establishing personalized and more precise drug regimens.
Collapse
Affiliation(s)
- Lucy Darakjian
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
| | - Malavika Deodhar
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
| | - Jacques Turgeon
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Veronique Michaud
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL 32827, USA; (L.D.); (M.D.); (J.T.)
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-407-454-9964
| |
Collapse
|
8
|
Pippa LF, Vieira CP, Caris JA, Rocha A, Garcia CP, Rezende REF, Lanchote VL. Clinical treatment for hepatitis C reverses CYP2C19 inhibition. Br J Clin Pharmacol 2021; 87:4013-4019. [PMID: 33738827 DOI: 10.1111/bcp.14829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
AIMS Infection by the hepatitis C virus (HCV) generates inflammatory response selectively modulating cytochrome P450 protein (CYP) activities. This study assessed the effect of chronic hepatitis C on CYP2C19 activity in patients with HCV. METHODS Patients with HCV infection (n = 23) at different fibrosis stages were allocated into groups 1 (F0/F1 and F2, mild to moderate fibrosis) and 2 (F3 and F4, advanced fibrosis stages). Phase 1 was conducted before the treatment with direct-acting antivirals (DAAs) and phase 2 after the sustained virological response. Participants were administered 2 mg of a single oral dose of omeprazole (OME) as probe drug in both phases. Metabolic ratios (MRs) (plasma samples collected at 4 h after OME administration) were calculated by dividing plasma concentrations of 5-hydroxyomeprazole by OME. RESULTS The MRs for group 1 were 0.45 (0.34-0.60, 90% confidence interval) and 0.69 (0.50-0.96) for phases 1 and 2, respectively, while the MRs for group 2 were 0.25 (0.21-0.31) and 0.41 (0.30-0.56) for phases 1 and 2, respectively. MRs were different (P < .05) between phases 1 and 2 for both groups, as well as between groups 1 and 2 in phase 1, but not in phase 2 (P > .05). CONCLUSIONS Both groups presented different MRs before and after treatment with DAAs, evidencing that CYP2C19 inhibition during inflammation was at least partially reversed after DAA treatment. Groups 1 and 2 were also found to be different in phase 1 but not phase 2, showing that CYP2C19 metabolic activity does not differ between groups after DAA treatment.
Collapse
Affiliation(s)
- Leandro Francisco Pippa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina Pinto Vieira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juciene Aparecida Caris
- Department of Neurosciences and Behavioural Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Adriana Rocha
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camile Prates Garcia
- Department of Internal Medicine, Division of Gastroenterology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | - Rosamar Eulira Fontes Rezende
- Department of Internal Medicine, Division of Gastroenterology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil.,Reference Centre, Hepatitis Outpatient Clinic, Municipal Health Secretary, Ribeirão Preto, São Paulo, Brazil
| | - Vera Lucia Lanchote
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
de Jong LM, Jiskoot W, Swen JJ, Manson ML. Distinct Effects of Inflammation on Cytochrome P450 Regulation and Drug Metabolism: Lessons from Experimental Models and a Potential Role for Pharmacogenetics. Genes (Basel) 2020; 11:genes11121509. [PMID: 33339226 PMCID: PMC7766585 DOI: 10.3390/genes11121509] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Personalized medicine strives to optimize drug treatment for the individual patient by taking into account both genetic and non-genetic factors for drug response. Inflammation is one of the non-genetic factors that has been shown to greatly affect the metabolism of drugs—primarily through inhibition of cytochrome P450 (CYP450) drug-metabolizing enzymes—and hence contribute to the mismatch between the genotype predicted drug response and the actual phenotype, a phenomenon called phenoconversion. This review focuses on inflammation-induced drug metabolism alterations. In particular, we discuss the evidence assembled through human in-vitro models on the effect of inflammatory mediators on clinically relevant CYP450 isoform levels and their metabolizing capacity. We also present an overview of the current understanding of the mechanistic pathways via which inflammation in hepatocytes may modulate hepatic functions that are critical for drug metabolism. Furthermore, since large inter-individual variability in response to inflammation is observed in human in-vitro models and clinical studies, we evaluate the potential role of pharmacogenetic variability in the inflammatory signaling cascade and how this can modulate the outcome of inflammation on drug metabolism and response.
Collapse
Affiliation(s)
- Laura M. de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
| | - Jesse J. Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands;
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martijn L. Manson
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands; (L.M.d.J.); (W.J.)
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
10
|
Tang D, Yan M, Song BL, Zhao YC, Xiao YW, Wang F, Liang W, Zhang BK, Chen XJ, Zou JJ, Tian Y, Wang WL, Jiang YF, Gong GZ, Zhang M, Xiang DX. Population pharmacokinetics, safety and dosing optimization of voriconazole in patients with liver dysfunction: A prospective observational study. Br J Clin Pharmacol 2020; 87:1890-1902. [PMID: 33010043 DOI: 10.1111/bcp.14578] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS Voriconazole is a broad-spectrum antifungal agent for the treatment of invasive fungal infections. There is limited information about the pharmacokinetics and appropriate dosage of voriconazole in patients with liver dysfunction. This study aimed to explore the relationship between voriconazole trough concentration (Ctrough ) and toxicity, identify the factors significantly associated with voriconazole pharmacokinetic parameters and propose an optimised voriconazole dosing regimen for patients with liver dysfunction. METHODS The study prospectively enrolled 51 patients with 272 voriconazole concentrations. Receiver operating characteristic curves were used to explore the relationship between voriconazole Ctrough and toxicity. The pharmacokinetic data was analysed with nonlinear mixed-effects method. Dosing simulations stratified by total bilirubin (TBIL, TBIL-1: TBIL < 51 μmol/L; TBIL-2: 51 μmol/L ≤ TBIL < 171 μmol/L; TBIL-3: TBIL ≥ 171 μmol/L) were performed. RESULTS Receiver operating characteristic curve analysis revealed that voriconazole Ctrough of ≤ 5.1 mg/L were associated with significantly lower the incidence of adverse events. A 1-compartment pharmacokinetic model with first-order absorption and elimination was used to describe the data. Population pharmacokinetic parameters of clearance, volume of distribution and oral bioavailability were 0.88 L/h, 148.8 L and 88.4%, respectively. Voriconazole clearance was significantly associated with TBIL and platelet count. The volume of distribution increased with body weight. Patients with TBIL-1 could be treated with a loading dose of 400 mg every 12 hours (q12h) for first day, followed by a maintenance dose of 100 mg q12h administered orally or intravenously. TBIL-2 and TBIL-3 patients could be treated with a loading dose of 200 mg q12h and maintenance doses of 50 mg q12h or 100 mg once daily and 50 mg once daily orally or intravenously, respectively. CONCLUSIONS Lower doses and longer dosing intervals should be considered for patients with liver dysfunction. TBIL-based dosing regimens provide a practical strategy for achieving voriconazole therapeutic range and therefore maximizing treatment outcomes.
Collapse
Affiliation(s)
- Dan Tang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Bai-Li Song
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yi-Chang Zhao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yi-Wen Xiao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Feng Wang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Wu Liang
- Changsha VALS Technology Co., Ltd, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xi-Jing Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jian-Jun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Tian
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Wen-Long Wang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yong-Fang Jiang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Guo-Zhong Gong
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Min Zhang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
11
|
Klomp SD, Manson ML, Guchelaar HJ, Swen JJ. Phenoconversion of Cytochrome P450 Metabolism: A Systematic Review. J Clin Med 2020; 9:jcm9092890. [PMID: 32906709 PMCID: PMC7565093 DOI: 10.3390/jcm9092890] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Phenoconversion is the mismatch between the individual’s genotype-based prediction of drug metabolism and the true capacity to metabolize drugs due to nongenetic factors. While the concept of phenoconversion has been described in narrative reviews, no systematic review is available. A systematic review was conducted to investigate factors contributing to phenoconversion and the impact on cytochrome P450 metabolism. Twenty-seven studies met the inclusion criteria and were incorporated in this review, of which 14 demonstrate phenoconversion for a specific genotype group. Phenoconversion into a lower metabolizer phenotype was reported for concomitant use of CYP450-inhibiting drugs, increasing age, cancer, and inflammation. Phenoconversion into a higher metabolizer phenotype was reported for concomitant use of CYP450 inducers and smoking. Moreover, alcohol, pregnancy, and vitamin D exposure are factors where study data suggested phenoconversion. The studies reported genotype–phenotype discrepancies, but the impact of phenoconversion on the effectiveness and toxicity in the clinical setting remains unclear. In conclusion, phenoconversion is caused by both extrinsic factors and patient- and disease-related factors. The mechanism(s) behind and the extent to which CYP450 metabolism is affected remain unexplored. If studied more comprehensively, accounting for phenoconversion may help to improve our ability to predict the individual CYP450 metabolism and personalize drug treatment.
Collapse
Affiliation(s)
- Sylvia D. Klomp
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.D.K.); (H.-J.G.)
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Martijn L. Manson
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.D.K.); (H.-J.G.)
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Jesse J. Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.D.K.); (H.-J.G.)
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Correspondence:
| |
Collapse
|
12
|
Weersink RA, Burger DM, Hayward KL, Taxis K, Drenth JP, Borgsteede SD. Safe use of medication in patients with cirrhosis: pharmacokinetic and pharmacodynamic considerations. Expert Opin Drug Metab Toxicol 2019; 16:45-57. [DOI: 10.1080/17425255.2020.1702022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rianne A. Weersink
- Department of Pharmacy, Unit of Pharmacotherapy, -Epidemiology and -Economics, University of Groningen, Groningen, The Netherlands
- Department of Clinical Decision Support, Health Base Foundation, Houten, The Netherlands
| | - David M. Burger
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kelly L. Hayward
- Centre for Liver Disease Research, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Pharmacy Department, Princess Alexandra Hospital, Brisbane, Australia
| | - Katja Taxis
- Department of Pharmacy, Unit of Pharmacotherapy, -Epidemiology and -Economics, University of Groningen, Groningen, The Netherlands
| | - Joost P.H. Drenth
- Department of Gastroenterology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander D. Borgsteede
- Department of Clinical Decision Support, Health Base Foundation, Houten, The Netherlands
| |
Collapse
|
13
|
An analysis of allele, genotype and phenotype frequencies, actionable pharmacogenomic (PGx) variants and phenoconversion in 5408 Australian patients genotyped for CYP2D6, CYP2C19, CYP2C9 and VKORC1 genes. J Neural Transm (Vienna) 2018; 126:5-18. [DOI: 10.1007/s00702-018-1922-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022]
|
14
|
Morcos PN, Cleary Y, Sturm-Pellanda C, Guerini E, Abt M, Donzelli M, Vazvaei F, Balas B, Parrott N, Yu L. Effect of Hepatic Impairment on the Pharmacokinetics of Alectinib. J Clin Pharmacol 2018; 58:1618-1628. [PMID: 30052269 PMCID: PMC6282775 DOI: 10.1002/jcph.1286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022]
Abstract
Alectinib is approved and recommended as the preferred first‐line treatment for patients with anaplastic lymphoma kinase (ALK)‐positive non–small cell lung cancer. The effect of hepatic impairment on the pharmacokinetics (PK) of alectinib was assessed with physiologically based PK modeling prospectively and in a clinical study. An open‐label study (NCT02621047) investigated a single 300‐mg dose of alectinib in moderate (n = 8) and severe (n = 8) hepatic impairment (Child‐Pugh B/C), and healthy subjects (n = 12) matched for age, sex, and body weight. Physiologically based PK modeling was conducted prospectively to inform the clinical study design and support the use of a lower dose and extended PK sampling in the study. PK parameters were calculated for alectinib, its major similarly active metabolite, M4, and the combined exposure of alectinib and M4. Unbound concentrations were assessed at 6 and 12 hours postdose. Administration of alectinib to subjects with hepatic impairment increased the area under the plasma concentration–time curve from time 0 to infinity of the combined exposure of alectinib and M4 to 136% (90% confidence interval [CI], 94.7‐196) and 176% (90%CI 98.4‐315), for moderate and severe hepatic impairment, respectively, relative to matched healthy subjects. Unbound concentrations for alectinib and M4 did not appear substantially different between hepatic‐impaired and healthy subjects. Moderate hepatic impairment had only a modest, not clinically significant effect on alectinib exposure, while the higher exposure observed in severe hepatic impairment supports a dose adjustment in this population.
Collapse
Affiliation(s)
| | | | | | | | - Markus Abt
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | | | | | - Li Yu
- Roche Innovation Center, New York City, NY, USA
| |
Collapse
|
15
|
Prasad B, Bhatt DK, Johnson K, Chapa R, Chu X, Salphati L, Xiao G, Lee C, Hop CECA, Mathias A, Lai Y, Liao M, Humphreys WG, Kumer SC, Unadkat JD. Abundance of Phase 1 and 2 Drug-Metabolizing Enzymes in Alcoholic and Hepatitis C Cirrhotic Livers: A Quantitative Targeted Proteomics Study. Drug Metab Dispos 2018; 46:943-952. [PMID: 29695616 PMCID: PMC5987995 DOI: 10.1124/dmd.118.080523] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/13/2018] [Indexed: 01/12/2023] Open
Abstract
To predict the impact of liver cirrhosis on hepatic drug clearance using physiologically based pharmacokinetic (PBPK) modeling, we compared the protein abundance of various phase 1 and phase 2 drug-metabolizing enzymes (DMEs) in S9 fractions of alcoholic (n = 27) or hepatitis C (HCV, n = 30) cirrhotic versus noncirrhotic (control) livers (n = 25). The S9 total protein content was significantly lower in alcoholic or HCV cirrhotic versus control livers (i.e., 38.3 ± 8.3, 32.3 ± 12.8, vs. 51.1 ± 20.7 mg/g liver, respectively). In general, alcoholic cirrhosis was associated with a larger decrease in the DME abundance than HCV cirrhosis; however, only the abundance of UGT1A4, alcohol dehydrogenase (ADH)1A, and ADH1B was significantly lower in alcoholic versus HCV cirrhotic livers. When normalized to per gram of tissue, the abundance of nine DMEs (UGT1A6, UGT1A4, CYP3A4, UGT2B7, CYP1A2, ADH1A, ADH1B, aldehyde oxidase (AOX)1, and carboxylesterase (CES)1) in alcoholic cirrhosis and five DMEs (UGT1A6, UGT1A4, CYP3A4, UGT2B7, and CYP1A2) in HCV cirrhosis was <25% of that in control livers. The abundance of most DMEs in cirrhotic livers was 25% to 50% of control livers. CES2 abundance was not affected by cirrhosis. Integration of UGT2B7 abundance in cirrhotic livers into the liver cirrhosis (Child Pugh C) model of Simcyp improved the prediction of zidovudine and morphine PK in subjects with Child Pugh C liver cirrhosis. These data demonstrate that protein abundance data, combined with PBPK modeling and simulation, can be a powerful tool to predict drug disposition in special populations.
Collapse
Affiliation(s)
- Bhagwat Prasad
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Deepak Kumar Bhatt
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Katherine Johnson
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Revathi Chapa
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Xiaoyan Chu
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Laurent Salphati
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Guangqing Xiao
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Caroline Lee
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Cornelis E C A Hop
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Anita Mathias
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Yurong Lai
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Mingxiang Liao
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - William G Humphreys
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Sean C Kumer
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Jashvant D Unadkat
- University of Washington, Seattle, Washington (B.P., D.K.B., K.J., R.C., J.D.U.); Merck Sharp & Dohme Corporation, Kenilworth, New Jersey (X.C.); Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Biogen, Cambridge, Massachusetts (G.X.); Ardea Biosciences, Inc., San Diego, California (C.L.); Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L., W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); and University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| |
Collapse
|
16
|
Elucidating the Plasma and Liver Pharmacokinetics of Simeprevir in Special Populations Using Physiologically Based Pharmacokinetic Modelling. Clin Pharmacokinet 2018; 56:781-792. [PMID: 27896690 DOI: 10.1007/s40262-016-0476-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The disposition of simeprevir (SMV) in humans is characterised by cytochrome P450 3A4 metabolism and hepatic uptake by organic anion transporting polypeptide 1B1/3 (OATP1B1/3). This study was designed to investigate SMV plasma and liver exposure upon oral administration in subjects infected with hepatitis C virus (HCV), in subjects of Japanese or Chinese origin, subjects with organ impairment and subjects with OATP genetic polymorphisms, using physiologically based pharmacokinetic modelling. Simulations showed that compared with healthy Caucasian subjects, SMV plasma exposure was 2.4-, 1.7-, 2.2- and 2.0-fold higher, respectively, in HCV-infected Caucasian subjects, in healthy Japanese, healthy Chinese and subjects with severe renal impairment. Further simulations showed that compared with HCV-infected Caucasian subjects, SMV plasma exposure was 1.6-fold higher in HCV-infected Japanese subjects. In subjects with OATP1B1 genetic polymorphisms, no noteworthy changes in SMV pharmacokinetics were observed. Simulations suggested that liver concentrations in Caucasians with HCV are 18 times higher than plasma concentrations.
Collapse
|
17
|
Significant change of cytochrome P450s activities in patients with hepatocellular carcinoma. Oncotarget 2018; 7:50612-50623. [PMID: 27203676 PMCID: PMC5226607 DOI: 10.18632/oncotarget.9437] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/28/2016] [Indexed: 01/01/2023] Open
Abstract
The lack of information concerning individual variation in drug-metabolizing enzymes is one of the most important obstacles for designing personalized medicine approaches for hepatocellular carcinoma (HCC) patients. To assess cytochrome P450 (CYP) in the metabolism of endogenous and exogenous molecules in an HCC setting, the activity changes of 10 major CYPs in microsomes from 105 normal and 102 HCC liver tissue samples were investigated. We found that CYP activity values expressed as intrinsic clearance (CLint) differed between HCC patients and control subjects. HCC patient samples showed increased CLint for CYP2C9, CYP2D6, and CYP2E1 compared to controls. Meanwhile, CYP1A2, CYP2C8, and CYP2C19 CLint values decreased and CYP2A6, CYP2B6, and CYP3A4/5 activity was unchanged relative to controls. For patients with HCC accompanied by fibrosis or cirrhosis, the same activity changes were seen for the CYP isoforms, except for CYP2D6 which had higher values in HCC patients with cirrhosis. Moreover, CYP2D6*10 (100C>T), CYP2C9*3 (42614 A>C), and CYP3A5*3 (6986A>G) polymorphisms had definite effects on enzyme activities. In the HCC group, the CLint of CYP2D6*10 mutant homozygote was decreased by 95% compared to wild-type samples, and the frequency of this homozygote was 2.8-fold lower than the controls. In conclusion, the activities of CYP isoforms were differentially affected in HCC patients. Genetic polymorphisms of some CYP enzymes, especially CYP2D6*10, could affect enzyme activity. CYP2D6*10 allelic frequency was significantly different between HCC patients and control subjects. These findings may be useful for personalizing the clinical treatment of HCC patients as well as predicting the risk of hepatocarcinogenesis.
Collapse
|
18
|
Gao J, Zhou J, He XP, Zhang YF, Gao N, Tian X, Fang Y, Wen Q, Jia LJ, Jin H, Qiao HL. Changes in cytochrome P450s-mediated drug clearance in patients with hepatocellular carcinoma in vitro and in vivo: a bottom-up approach. Oncotarget 2017; 7:28612-23. [PMID: 27086920 PMCID: PMC5053749 DOI: 10.18632/oncotarget.8704] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/27/2016] [Indexed: 01/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accompanied by severe liver dysfunction is a serious disease, which results in altered hepatic clearance. Generally, maintenance doses depend upon drug clearance, so individual dosage regimens should be customized for HCC patients based on the condition of patients. Based on clearance of CYP isoform-specific substrates at the microsomal level (CLM), microsomal protein per gram of liver (MPPGL), liver weight, hepatic blood flow, hepatic clearance values (CLH) for 10 CYPs in HCC patients (n=102) were extrapolated using a predictive bottom-up pharmacokinetic model. Compared with controls, the CLM values for CYP2C9, 2D6, 2E1 were significantly increased in HCC patients. Additionally, CYP1A2, 2C8, 2C19 CLM values decreased while the values for CYP2A6, 2B6, 3A4/5 were unchanged. The MPPGL values in HCC tissues were significantly reduced. CLH values of HCC patients for CYP1A2, 2A6, 2B6, 2C8, 2C19, and 3A4/5 were significantly reduced, while this for CYP2E1 were markedly increased and those for CYP2C9 and 2D6 did not change. Moreover, disease (fibrosis and cirrhosis) and polymorphisms of the CYP genes have influenced the CLH for some CYPs. Prediction of the effects of HCC on drug clearance may be helpful for the design of clinical studies and the clinical management of drugs in HCC patients.
Collapse
Affiliation(s)
- Jie Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Jun Zhou
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Xiao-Pei He
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Yun-Fei Zhang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Na Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Xin Tian
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Yan Fang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Qiang Wen
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Lin-Jing Jia
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Han Jin
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| | - Hai-Ling Qiao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Denisenko NP, Sychev DA, Sizova ZM, Smirnov VV, Ryzhikova KA, Sozaeva ZA, Grishina EA. Urine metabolic ratio of omeprazole in relation to CYP2C19 polymorphisms in Russian peptic ulcer patients. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2017; 10:253-259. [PMID: 29033601 PMCID: PMC5628683 DOI: 10.2147/pgpm.s141935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND CYP2C19 is known to be the main enzyme of biotransformation of proton pump inhibitors (PPIs), whereas the CYP2C19 gene is highly polymorphic. Genotyping and phenotyping together represent more reliable data about patient's CYP2C19 activity. PURPOSE The aim of the study was to investigate the applicability of urine metabolic ratio of omeprazole for CYP2C19 phenotyping in Russian peptic ulcer patients with different CYP2C19 genotypes. PATIENTS AND METHODS A total of 59 patients (19 men and 40 women) aged 18-91 years (mean age 53.5±15.1 years) from four Moscow clinics who were diagnosed with an endoscopically and histologically proven peptic ulcer or had a history of endoscopically and histologically proven ulcers in the past were recruited. Peripheral venous blood (6 mL) was collected for DNA extraction, and real-time polymerase chain reaction was performed for the analysis of CYP2C19*2G681A (rs4244285), CYP2C19*3G636A (rs4986893) and CYP2C19*17C-806T (rs12248560) polymorphisms. Urine samples of patients were collected in the morning between 6 am and 9 am, before food or drug intake, after at least 3 days of twice daily (b.i.d.) omeprazole intake. Omeprazole and 5-hydroxyomeprazole concentrations in the urine were measured using high-performance liquid chromatography with mass spectrometry. RESULTS Of the 59 patients, there were 27 (45.8%) extensive metabolizers (EMs; CYP2C19*1/*1), 16 (27.1%) ultrarapid metabolizers (UMs; CYP2C19*1/*17, CYP2C19*17/*17), 14 (23.7%) intermediate metabolizers (IMs; CYP2C19*1/*2, CYP2C19*2/*17, CYP2C19*3/*17) and two (3.4%) poor metabolizers (PMs; CYP2C19*2/*2). Median metabolic ratio (25%-75% percentiles) were 1.03 (0.69-1.36) for EMs, 1.95 (1.33-2.68) for UMs, 1.40 (0.78-2.13) for IMs+PMs and 1.26 (0.82-1.99) for the whole sample. A statistically significant difference in metabolic ratio (Mann-Whitney U test) was found between UMs and EMs (p=0.001) and in the multiple comparison Kruskal-Wallis test (p=0.005). CONCLUSION We found a connection between particular CYP2C19 genotypes and urine metabolic ratio of omeprazole in Russian peptic ulcer patients. This method needs to be improved as in our modification it worked mainly for UMs and did not differentiate all patients according to omeprazole biotransformation activity.
Collapse
Affiliation(s)
- Natalia P Denisenko
- Research Center, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia.,Department of Clinical Pharmacology and Therapy, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia.,Department of Social Expertise, Urgent and Outpatient Therapy, First Moscow State Medical University (Sechenov University), Ministry of Healthcare, Moscow, Russia
| | - Dmitriy A Sychev
- Department of Clinical Pharmacology and Therapy, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia
| | - Zhanna M Sizova
- Department of Social Expertise, Urgent and Outpatient Therapy, First Moscow State Medical University (Sechenov University), Ministry of Healthcare, Moscow, Russia
| | - Valeriy V Smirnov
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), Ministry of Healthcare, Moscow, Russia.,Laboratory of Clinical Pharmacology, National Research Centre, Institute of Immunology, Federal Medical Biological Agency, Moscow, Russia
| | - Kristina A Ryzhikova
- Research Center, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia
| | - Zhannet A Sozaeva
- Research Center, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia
| | - Elena A Grishina
- Research Center, Russian Medical Academy of Continuous Professional Education, Ministry of Healthcare, Moscow, Russia
| |
Collapse
|
20
|
Marsousi N, Desmeules JA, Rudaz S, Daali Y. Usefulness of PBPK Modeling in Incorporation of Clinical Conditions in Personalized Medicine. J Pharm Sci 2017; 106:2380-2391. [DOI: 10.1016/j.xphs.2017.04.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022]
|
21
|
Abstract
Despite the central role of the liver in drug metabolism, surprisingly there is lack of certainty in anticipating the extent of modification of the clearance of a given drug in a given patient. The intent of this review is to provide a conceptual framework in considering the impact of liver disease on drug disposition and reciprocally the impact of drug disposition on liver disease. It is proposed that improved understanding of the situation is gained by considering the issue as a special example of a drug-gene-environment interaction. This requires an integration of knowledge of the drug's properties, knowledge of the gene products involved in its metabolism, and knowledge of the pathophysiology of its disposition. This will enhance the level of predictability of drug disposition and toxicity for a drug of interest in an individual patient. It is our contention that advances in pharmacology, pharmacogenomics, and hepatology, together with concerted interests in the academic, regulatory, and pharmaceutical industry communities provide an ideal immediate environment to move from a qualitative reactive approach to quantitative proactive approach in individualizing patient therapy in liver disease.
Collapse
Affiliation(s)
- Nathalie K Zgheib
- a Department of Pharmacology and Toxicology , American University of Beirut Faculty of Medicine , Beirut , Lebanon
| | - Robert A Branch
- b Department of Medicine, School of Medicine , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
22
|
Wang L, Collins C, Kelly EJ, Chu X, Ray AS, Salphati L, Xiao G, Lee C, Lai Y, Liao M, Mathias A, Evers R, Humphreys W, Hop CECA, Kumer SC, Unadkat JD. Transporter Expression in Liver Tissue from Subjects with Alcoholic or Hepatitis C Cirrhosis Quantified by Targeted Quantitative Proteomics. ACTA ACUST UNITED AC 2016; 44:1752-1758. [PMID: 27543206 DOI: 10.1124/dmd.116.071050] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
Although data are available on the change of expression/activity of drug-metabolizing enzymes in liver cirrhosis patients, corresponding data on transporter protein expression are not available. Therefore, using quantitative targeted proteomics, we compared our previous data on noncirrhotic control livers (n = 36) with the protein expression of major hepatobiliary transporters, breast cancer resistance protein (BCRP), bile salt export pump (BSEP), multidrug and toxin extrusion protein 1 (MATE1), multidrug resistance-associated protein (MRP)2, MRP3, MRP4, sodium taurocholate-cotransporting polypeptide (NTCP), organic anion-transporting polypeptides (OATP)1B1, 1B3, 2B1, organic cation transporter 1 (OCT1), and P-glycoprotein (P-gp) in alcoholic (n = 27) and hepatitis C cirrhosis (n = 30) livers. Compared with control livers, the yield of membrane protein from alcoholic and hepatitis C cirrhosis livers was significantly reduced by 56 and 67%, respectively. The impact of liver cirrhosis on transporter protein expression was transporter-dependent. Generally, reduced protein expression (per gram of liver) was found in alcoholic cirrhosis livers versus control livers, with the exception that the expression of MRP3 was increased, whereas no change was observed for MATE1, MRP2, OATP2B1, and P-gp. In contrast, the impact of hepatitis C cirrhosis on protein expression of transporters (per gram of liver) was diverse, showing an increase (MATE1), decrease (BSEP, MRP2, NTCP, OATP1B3, OCT1, and P-gp), or no change (BCRP, MRP3, OATP1B1, and 2B1). The expression of hepatobiliary transporter protein differed in different diseases (alcoholic versus hepatitis C cirrhosis). Finally, incorporation of protein expression of OATP1B1 in alcoholic cirrhosis into the Simcyp physiologically based pharmacokinetics cirrhosis module improved prediction of the disposition of repaglinide in liver cirrhosis patients. These transporter expression data will be useful in the future to predict transporter-mediated drug disposition in liver cirrhosis patients.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Carol Collins
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Xiaoyan Chu
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Adrian S Ray
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Laurent Salphati
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Guangqing Xiao
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Caroline Lee
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Yurong Lai
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Mingxiang Liao
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Anita Mathias
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Raymond Evers
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - William Humphreys
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Cornelis E C A Hop
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Sean C Kumer
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (L.W., C.C., E.J.K., J.D.U.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Departments of Clinical Pharmacology and Drug Metabolism and Pharmacokinetics, Gilead Sciences, Inc., Foster City, California (A.S.R., A.M.); Drug Metabolism and Pharmacokinetics, Genentech, South San Francisco, California (L.S., C.E.C.A.H.); Preclinical PK and In Vitro ADME, Biogen, Cambridge, Massachusetts (G.X.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Ardea Biosciences, Inc., San Diego, California (C.L.); Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey (Y.L.,W.H.); Takeda Pharmaceuticals International Co., Cambridge, Massachusetts (M.L.); Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Kenilworth, New Jersey (R.E.); Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas (S.C.K.)
| |
Collapse
|
23
|
Shah RR, Smith RL. Addressing phenoconversion: the Achilles' heel of personalized medicine. Br J Clin Pharmacol 2015; 79:222-40. [PMID: 24913012 PMCID: PMC4309629 DOI: 10.1111/bcp.12441] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/04/2014] [Indexed: 02/06/2023] Open
Abstract
Phenoconversion is a phenomenon that converts genotypic extensive metabolizers (EMs) into phenotypic poor metabolizers (PMs) of drugs, thereby modifying their clinical response to that of genotypic PMs. Phenoconversion, usually resulting from nongenetic extrinsic factors, has a significant impact on the analysis and interpretation of genotype-focused clinical outcome association studies and personalizing therapy in routine clinical practice. The high phenotypic variability or genotype-phenotype mismatch, frequently observed due to phenoconversion within the genotypic EM population, means that the real number of phenotypic PM subjects may be greater than predicted from their genotype alone, because many genotypic EMs would be phenotypically PMs. If the phenoconverted population with genotype-phenotype mismatch, most extensively studied for CYP2D6, is as large as the evidence suggests, there is a real risk that genotype-focused association studies, typically correlating only the genotype with clinical outcomes, may miss clinically strong pharmacogenetic associations, thus compromising any potential for advancing the prospects of personalized medicine. This review focuses primarily on co-medication-induced phenoconversion and discusses potential approaches to rectify some of the current shortcomings. It advocates routine phenotyping of subjects in genotype-focused association studies and proposes a new nomenclature to categorize study populations. Even with strong and reliable data associating patients' genotypes with clinical outcome(s), there are problems clinically in applying this knowledge into routine pharmacotherapy because of potential genotype-phenotype mismatch. Drug-induced phenoconversion during routine clinical practice remains a major public health issue. Therefore, the principal challenges facing personalized medicine, which need to be addressed, include identification of the following factors: (i) drugs that are susceptible to phenoconversion; (ii) co-medications that can cause phenoconversion; and (iii) dosage amendments that need to be applied during and following phenoconversion.
Collapse
Affiliation(s)
| | - Robert L Smith
- Department of Surgery and Cancer, Faculty of Medicine, Imperial CollegeLondon, UK
| |
Collapse
|
24
|
Anderson GD, Hakimian S. Pharmacokinetic of antiepileptic drugs in patients with hepatic or renal impairment. Clin Pharmacokinet 2014; 53:29-49. [PMID: 24122696 DOI: 10.1007/s40262-013-0107-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many factors influence choice of antiepileptic drugs (AEDs), including efficacy of the drug for the indication (epilepsy, neuropathic pain, affective disorder, migraine), tolerability, and toxicity. The first-generation AEDs and some newer AEDs are predominately eliminated by hepatic metabolism. Other recent AEDs are eliminated by renal excretion of unchanged drug or a combination of hepatic metabolism and renal excretion. The effect of renal and hepatic disease on the dosing will depend on the fraction of the AED eliminated by hepatic and/or renal excretion, the metabolic isozymes involved, as well as the extent of protein binding, if therapeutic drug monitoring is used. For drugs that are eliminated by renal excretion, methods of estimating creatinine clearance can be used to determine dose adjustments. For drugs eliminated by hepatic metabolism, there are no specific markers of liver function that can be used to provide guidance in dosage adjustments. Based on studies with probe drugs, the hepatic metabolic enzymes are differentially affected depending on the cause and severity of hepatic disease, which can aid in predicting dose adjustment when clinical data are not available. Several AEDs are also associated with laboratory markers of mild hepatic dysfunction and, rarely, more severe hepatic injury. In contrast, the risk of renal injury from AEDs is generally low. In general, co-morbid hepatic or renal diseases influence the decision for the selection of an AED. For some patients dosing changes to their existing AEDs may be appropriate. For others, a change to another AED may be a better option.
Collapse
|
25
|
The effects of boceprevir and telaprevir on the pharmacokinetics of maraviroc: an open-label, fixed-sequence study in healthy volunteers. J Acquir Immune Defic Syndr 2014; 65:564-70. [PMID: 24346637 PMCID: PMC3984012 DOI: 10.1097/qai.0000000000000090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Objective: To evaluate the effects of boceprevir (BOC) and telaprevir (TVR) on the pharmacokinetics (PK) of maraviroc (MVC) in healthy volunteers. Methods: In this open-label, fixed-sequence study, 14 volunteers received MVC 150 mg twice daily alone for 5 days (period 1), followed by MVC + BOC 800 mg 3 times daily and MVC + TVR 750 mg 3 times daily, each for 10 days in periods 2 and 3, respectively, with a ≥10-day wash-out. PK was analyzed on day 5 of period 1 and day 10 of periods 2 and 3. Safety was also assessed. Results: Ratios of the adjusted geometric means (90% confidence intervals) for MVC area under the curve from predose to 12 hours, maximum plasma concentration, and plasma concentration at 12 hours were 3.02 (2.53 to 3.59), 3.33 (2.54 to 4.36), and 2.78 (2.40 to 3.23), respectively, for MVC + BOC versus MVC alone, and 9.49 (7.94 to 11.34), 7.81 (5.92 to 10.32), and 10.17 (8.73 to 11.85), respectively, for MVC + TVR versus MVC alone. PK profiles for MVC + BOC or TVR were consistent with historic values for BOC and TVR monotherapy. Adverse event incidence was higher with MVC + BOC and MVC + TVR versus MVC alone. Dysgeusia (50%) and pruritus (29%) occurred most commonly with MVC + BOC, and fatigue (46%) and headache (31%) with MVC + TVR. There were no serious adverse events. Conclusions: MVC exposures were significantly increased with BOC or TVR, therefore MVC should be dosed at 150 mg twice daily when coadministered with these newly approved hepatitis C protease inhibitors. No dose adjustment for BOC or TVR is warranted with MVC. MVC + BOC or TVR was generally well tolerated with no unexpected safety findings.
Collapse
|
26
|
Wang H, Blumberg JB, Chen CYO, Choi SW, Corcoran MP, Harris SS, Jacques PF, Kristo AS, Lai CQ, Lamon-Fava S, Matthan NR, McKay DL, Meydani M, Parnell LD, Prokopy MP, Scott TM, Lichtenstein AH. Dietary modulators of statin efficacy in cardiovascular disease and cognition. Mol Aspects Med 2014; 38:1-53. [PMID: 24813475 DOI: 10.1016/j.mam.2014.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and other developed countries, and is fast growing in developing countries, particularly as life expectancy in all parts of the world increases. Current recommendations for the prevention of cardiovascular disease issued jointly from the American Academy of Cardiology and American Heart Association emphasize that lifestyle modification should be incorporated into any treatment plan, including those on statin drugs. However, there is a dearth of data on the interaction between diet and statins with respect to additive, complementary or antagonistic effects. This review collates the available data on the interaction of statins and dietary patterns, cognition, genetics and individual nutrients, including vitamin D, niacin, omega-3 fatty acids, fiber, phytochemicals (polyphenols and stanols) and alcohol. Of note, although the available data is summarized, the scope is limited, conflicting and disparate. In some cases it is likely there is unrecognized synergism. Virtually no data are available describing the interactions of statins with dietary components or dietary pattern in subgroups of the population, particularly those who may benefit most were positive effects identified. Hence, it is virtually impossible to draw any firm conclusions at this time. Nevertheless, this area is important because were the effects of statins and diet additive or synergistic harnessing the effect could potentially lead to the use of a lower intensity statin or dose.
Collapse
Affiliation(s)
- Huifen Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - C-Y Oliver Chen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| | - Michael P Corcoran
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Susan S Harris
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Paul F Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Aleksandra S Kristo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Diane L McKay
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mohsen Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Max P Prokopy
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
27
|
Lang LM, Linnet K. The Ratio of 6β-Hydroxycortisol to Cortisol in Urine as a Measure of Cytochrome P450 3A Activity in Postmortem Cases. J Forensic Sci 2014; 59:1036-40. [DOI: 10.1111/1556-4029.12418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/30/2013] [Accepted: 05/04/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Lotte M. Lang
- Section of Forensic Chemistry; Department of Forensic Medicine; Faculty of Health Sciences; University of Copenhagen; Frederik V's vej 11, 3 Copenhagen DK-2100 Denmark
| | - Kristian Linnet
- Section of Forensic Chemistry; Department of Forensic Medicine; Faculty of Health Sciences; University of Copenhagen; Frederik V's vej 11, 3 Copenhagen DK-2100 Denmark
| |
Collapse
|
28
|
Gane EJ, Roberts SK, Stedman CAM, Angus PW, Ritchie B, Elston R, Ipe D, Morcos PN, Baher L, Najera I, Chu T, Lopatin U, Berrey MM, Bradford W, Laughlin M, Shulman NS, Smith PF. Oral combination therapy with a nucleoside polymerase inhibitor (RG7128) and danoprevir for chronic hepatitis C genotype 1 infection (INFORM-1): a randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet 2010; 376:1467-75. [PMID: 20951424 DOI: 10.1016/s0140-6736(10)61384-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Present interferon-based standard of care treatment for chronic hepatitis C virus (HCV) infection is limited by both efficacy and tolerability. We assessed the safety, tolerability, and antiviral activity of an all-oral combination treatment with two experimental anti-HCV drugs-RG7128, a nucleoside polymerase inhibitor; and danoprevir, an NS3/4A protease inhibitor-in patients with chronic HCV infection. METHODS Patients from six centres in New Zealand and Australia who were chronically infected with HCV genotype 1 received up to 13 days oral combination treatment with RG7128 (500 mg or 1000 mg twice daily) and danoprevir (100 mg or 200 mg every 8 h or 600 mg or 900 mg twice daily) or placebo. Eligible patients were sequentially enrolled into one of seven treatment cohorts and were randomly assigned by interactive voice or web response system to either active treatment or placebo. Patients were separately randomly assigned within each cohort with a block size that reflected the number of patients in the cohort and the ratio of treatment to placebo. The random allocation schedule was computer generated. Dose escalation was started in HCV treatment-naive patients; standard of care treatment-experienced patients, including previous null responders, were enrolled in higher-dose danoprevir cohorts. Investigators, personnel at the study centre, and patients were masked to treatment allocation. However, the pharmacist who prepared the doses, personnel involved in pharmacokinetic sample analyses, statisticians who prepared data summaries, and the clinical pharmacologists who reviewed the data before deciding to initiate dosing in the next cohort were not masked to treatment allocation. The primary outcome was change in HCV RNA concentration from baseline to day 14 in patients who received 13 days of combination treatment. All patients who completed treatment with the study drugs were included in the analyses. This study is registered with ClinicalTrials.gov, NCT00801255. FINDINGS 88 patients were randomly assigned to a study drug treatment regimen (n=74 over seven treatment groups; 73 received at least one dose of study drug) or to placebo (n=14, all of whom received at least one dose). The median change in HCV RNA concentration from baseline to day 14 ranged from -3·7 to -5·2 log(10) IU/mL in the cohorts that received 13 days of combination treatment. At the highest combination doses tested (1000 mg RG7128 and 900 mg danoprevir twice daily), the median change in HCV RNA concentration from baseline to day 14 was -5·1 log(10) IU/mL (IQR -5·6 to -4·7) in treatment-naive patients and -4·9 log(10) IU/mL in previous standard of care null responders (-5·2 to -4·5) compared with an increase of 0·1 log(10) IU/mL in the placebo group. The combination of RG7128 and danoprevir was well tolerated with no treatment-related serious or severe adverse events, no grade 3 or 4 changes in laboratory parameters, and no safety-related treatment discontinuations. INTERPRETATION This oral combination of a nucleoside analogue polymerase inhibitor and protease inhibitor holds promise as an interferon-free treatment for chronic HCV. FUNDING Roche Palo Alto.
Collapse
|
29
|
Schöller-Gyüre M, Kakuda TN, De Smedt G, Woodfall B, Berckmans C, Peeters M, Hoetelmans RMW. Effects of hepatic impairment on the steady-state pharmacokinetics of etravirine 200 mg BID: an open-label, multiple-dose, controlled Phase I study in adults. Clin Ther 2010; 32:328-37. [PMID: 20206790 DOI: 10.1016/j.clinthera.2010.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND Etravirine is a non-nucleoside reverse transcriptase inhibitor (NNRTI) with activity against both wild-type HIV and viruses harboring NNRTI resistance. Etravirine is mainly eliminated via the hepatobiliary route. OBJECTIVES This study in HIV- patients with mild or moderate hepatic impairment and healthy matched controls was conducted to explore the effects of mild and moderate hepatic impairment on the steady-state pharmacokinetics of etravirine and to provide guidance for the treatment of HIV+ patients with hepatic impairment. METHODS This open-label, multiple-dose study enrolled HIV- patients aged 18 to 65 years with mild or moderate hepatic impairment (Child-Pugh score, 5-6 or 7-9, respectively) and healthy volunteers matched for age, sex, race, and body mass index (BMI). All subjects received etravirine 200 mg BID with food for 7 days and a morning dose on day 8. Etravirine pharmacokinetics over a period of 12 hours on days 1 and 8 were determined using noncompartmental methods and analyzed using linear mixed-effects modeling. Tolerability of etravirine was assessed based on the reported adverse events, laboratory investigations, ECG, and physical examination. RESULTS Each group comprised 8 subjects (mild hepatic impairment patients: 5 men, 3 women; median age, 57 years [range, 41-65 years]; BMI, 26 kg/m(2) [range, 20-32 kg/m(2)]; moderate hepatic impairment patients: 6 men, 2 women; age, 54 years [range, 44-64 years]; BMI, 26 kg/m(2) [range, 22-32 kg/m(2)]). All patients were white and light smokers. On day 8, the least squares mean ratios (90% CIs) of the log transformed pharmacokinetic properties in patients with mild and moderate hepatic impairment were, respectively: C(min), 0.87 (0.65-1.17) and 0.98 (0.68-1.42) microg/mL; C(max), 0.79 (0.63-1.00) and 0.72 (0.54-0.96) ug/mL; and AUC(0-12), 0.87 (0.69-1.09) and 0.82 (0.60-1.11) microg/mL/h. All treatment-emergent adverse events were considered mild to moderate; the most common were headache (50% in healthy controls) and fatigue and nausea (both 25% in patients with mild hepatic impairment). No clinically significant changes in laboratory parameters, physical examination including vital signs, or ECG were observed. One serious adverse event was reported during the follow-up period in a patient with moderate hepatic impairment due to hepatic cirrhosis secondary to alcoholism. This patient presented at screening with dilated cardiomyopathy and cardiac arrhythmia. CONCLUSIONS In this Phase I pharmacokinetic study, no clinically relevant differences were observed between patients with mild or moderate hepatic impairment and healthy matched subjects with regard to the pharmacokinetics of etravirine. Based on these findings in these HIV- volunteers, no dose adjustment of etravirine appears to be necessary in patients with mild or moderate hepatic impairment. Etravirine was generally well tolerated.
Collapse
|
30
|
Johnson TN, Boussery K, Rowland-Yeo K, Tucker GT, Rostami-Hodjegan A. A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet 2010; 49:189-206. [PMID: 20170207 DOI: 10.2165/11318160-000000000-00000] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Liver cirrhosis is characterized by a decrease in functional hepatocytes, lowered circulating levels of plasma proteins and alterations in blood flow due to the development of portacaval shunts. Depending on the interplay between these parameters and the characteristics of an administered drug, varying degrees of impaired systemic clearance and first-pass metabolism are anticipated. The Simcyp Population-based ADME Simulator has already been used successfully to incorporate genetic, physiological and demographic attributes of certain subgroups within healthy populations into in vitro-in vivo extrapolation (IVIVE) of xenobiotic clearance. The objective of this study was to extend population models to predict systemic and oral drug clearance in relation to the severity of liver cirrhosis. METHODS Information on demographics, changes in hepatic blood flow, cytochrome P450 enzymes, liver size, plasma protein binding and renal function was incorporated into three separate population libraries. The latter corresponded to Child-Pugh scores A (mild), B (moderate) and C (severe) liver cirrhosis. These libraries, together with mechanistic IVIVE within the Simcyp Simulator, were used to predict the clearance of intravenous and oral midazolam, oral caffeine, intravenous and oral theophylline, intravenous and oral metoprolol, oral nifedipine, oral quinidine, oral diclofenac, oral sildenafil, and intravenous and oral omeprazole. The simulated patients matched the clinical studies as closely as possible with regard to demographics and Child-Pugh scores. Predicted clearance values in both healthy control and liver cirrhosis populations were compared with observed values, as were the fold increases in clearance values between these populations. RESULTS There was good agreement (lack of statistically significant difference, two-tailed paired t-test) between observed and predicted clearance ratios, with the exception of those for two studies of intravenous omeprazole. Predicted clearance ratios were within 0.8- to 1.25-fold of observed ratios in 65% of cases (range 0.34- to 2.5-fold). CONCLUSION The various drugs that were studied showed different changes in clearance in relation to disease severity, and a 'one size fits all' solution does not exist without considering the multiple sources of the changes. Predictions of the effects of liver cirrhosis on drug clearance are of potential value in the design of clinical studies during drug development and, clinically, in the assessment of likely dosage adjustment.
Collapse
|
31
|
Fisher CD, Lickteig AJ, Augustine LM, Ranger-Moore J, Jackson JP, Ferguson SS, Cherrington NJ. Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos 2009; 37:2087-94. [PMID: 19651758 PMCID: PMC2769034 DOI: 10.1124/dmd.109.027466] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 07/27/2009] [Indexed: 12/11/2022] Open
Abstract
Members of the cytochrome P450 (P450) enzyme families CYP1, CYP2, and CYP3 are responsible for the metabolism of approximately 75% of all clinically relevant drugs. With the increased prevalence of nonalcoholic fatty liver disease (NAFLD), it is likely that patients with this disease represent an emerging population at significant risk for alterations in these important drug-metabolizing enzymes. The purpose of this study was to determine whether three progressive stages of human NALFD alter hepatic P450 expression and activity. Microsomes isolated from human liver samples diagnosed as normal, n = 20; steatosis, n = 11; nonalcoholic steatohepatitis (NASH) (fatty liver), n = 10; and NASH (no longer fatty), n = 11 were analyzed for P450 mRNA, protein, and enzyme activity. Microsomal CYP1A2, CYP2D6, and CYP2E1 mRNA levels were decreased with NAFLD progression, whereas CYP2A6, CYP2B6, and CYP2C9 mRNA expression increased. Microsomal protein expression of CYP1A2, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 tended to decrease with NAFLD progression. Likewise, functional activity assays revealed decreasing trends in CYP1A2 (p = 0.001) and CYP2C19 (p = 0.05) enzymatic activity with increasing NAFLD severity. In contrast, activity of CYP2A6 (p = 0.001) and CYP2C9 (diclofenac, p = 0.0001; tolbutamide, p = 0.004) was significantly increased with NAFLD progression. Increased expression of proinflammatory cytokines tumor necrosis factor alpha and interleukin 1beta was observed and may be responsible for observed decreases in respective P450 activity. Furthermore, elevated CYP2C9 activity during NAFLD progression correlated with elevated hypoxia-induced factor 1alpha expression in the later stages of NAFLD. These results suggest that significant and novel changes occur in hepatic P450 activity during progressive stages of NAFLD.
Collapse
Affiliation(s)
- Craig D. Fisher
- Department of Pharmacology and Toxicology (C.D.F., A.J.L., L.M.A., N.J.C.) and
| | - Andrew J. Lickteig
- Department of Pharmacology and Toxicology (C.D.F., A.J.L., L.M.A., N.J.C.) and
| | - Lisa M. Augustine
- Department of Pharmacology and Toxicology (C.D.F., A.J.L., L.M.A., N.J.C.) and
| | - James Ranger-Moore
- Division of Epidemiology and Biostatistics (J.R.-M.), University of Arizona, Tucson, Arizona
| | | | | | | |
Collapse
|
32
|
Genetic CYP2C19 polymorphism dependent non-responders to clopidogrel therapy — Does structural design, dosing and induction strategies have a role to play? Eur J Drug Metab Pharmacokinet 2009; 34:147-50. [DOI: 10.1007/bf03191165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Shao JG, Jiang W, Li KQ, Lu JR, Sun YY. Blood concentration of pantoprazole sodium is significantly high in hepatogenic peptic ulcer patients, especially those with a poor CYP2C19 metabolism. J Dig Dis 2009; 10:55-60. [PMID: 19236548 DOI: 10.1111/j.1751-2980.2008.00363.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the plasma concentration of pantoprazole sodium by high performance liquid chromatography and its distribution in patients with different CYP2C19 genotypes in an attempt to provide experimental data for the clinical dosage adjustment of the drug. METHODS Patients with liver disease and associated peptic ulcer were genotyped according to their CYP2C19 wild-type sequences and mutations in CYP2C19m1 and CYP2C19m2 by the principles of the American Surgical Association using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The plasma concentration of pantoprazole sodium was detected after oral administration of the enteric-coated capsules in all patients. Included in the present study were 21 patients with primary liver cancer complicated by pathogenic peptic ulcers (confirmed by endoscopy), 22 patients with fatty liver and 25 healthy volunteers between January 2006 and October 2007. The subjects were administered orally with pantoprazole sodium at 40 mg/day for 1 week consecutively. The drug concentration was detected at 24 h and 1 week after drug administration by drawing 3.0 mL blood from the cubital vein. RESULTS The plasma concentration of pantoprazole sodium was related to the CYP2C19 enzyme type. The plasma concentration of extensive metabolizers (EM) was lower than that of poor metabolizers (PM) in the healthy control group at day 7 of drug administration. Regardless of PM or EM, the plasma concentration of pantoprazole sodium in primary liver cancer patients was higher than that in fatty liver patients, and even higher than that in healthy controls (P < 0.05). CONCLUSION These results suggest that CYP2C19 activity is inversely correlated with the severity of liver disease, especially in PM patients.
Collapse
Affiliation(s)
- Jian Guo Shao
- Department of Gastroenterology, Nantong No.3 People's Hospital, Nantong, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Portal hypertension gastopathy (PHG) is defined as pathological changes of stomach mucosa, which are accompanied with potral hypertesion, especially in liver cirrhosis patients. The main clinical manifestation is alimentary tract hemorrhage, which may lead to death of patients sometimes. This article aims to review the research advances in the pathogenic mechanism, endoscopic diagnosis, imaging diagnosis and treatment of portal hypertension gastopathy.
Collapse
|
35
|
Abel S, Davis J, Ridgway C, Hamlin J, Vourvahis M. Pharmacokinetics, safety and tolerability of a single oral dose of maraviroc in HIV-negative subjects with mild and moderate hepatic impairment. Antivir Ther 2009; 14:831-7. [DOI: 10.3851/imp1297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Niioka T, Uno T, Sugimoto K, Sugawara K, Hayakari M, Tateishi T. Estimation of CYP2C19 activity by the omeprazole hydroxylation index at a single point in time after intravenous and oral administration. Eur J Clin Pharmacol 2007; 63:1031-8. [PMID: 17701405 DOI: 10.1007/s00228-007-0331-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/30/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The purpose of this study was to identify the common time point to achieve hydroxylation index (HI: omeprazole plasma concentration/5-hydroxyomeprazole plasma concentration) reflecting AUCOPZ/AUC5OH-OPZ after intravenous (IV) and oral (PO) administration. METHODS Twenty young and 28 elderly healthy subjects, including different CYP2C19 genotypes, were enrolled in the study. The young subjects received either 40 mg PO or 20 mg IV omeprazole, whereas the elderly subjects received 10 mg IV. The relation between AUCOPZ/AUC5OH-OPZ and HI was determined by Spearman's rank correlation. Multiple stepwise linear regression analysis was performed to identify the common time point to calculate HI that reflects AUCOPZ/AUC5OH-OPZ after IV. RESULTS In the correlation between HI and AUCOPZ/AUC5OH-OPZ IV at observed time points, HI3h showed the highest correlation coefficients (r = 0.894, p < 0.001) in all 48 subjects. The correlation of HI between IV and PO at observed time points showed that HI3h was highest (r = 0.916, p < 0.001) in 20 young subjects. Additionally, there was no significant difference between HI(3h) of IV and that of PO (12.9 +/- 15.9 and 12.9 +/- 15.1, p = 0.997). The regression equation of HI3h was the best to estimate AUCOPZ/AUC5OH-OPZ (AUCOPZ/AUC5OH-OPZ = 1.37 * HI3h + 0.18 * Age - 7.83, r2 = 0.883, p < 0.001). CONCLUSIONS This study demonstrated that HI3h after omeprazole IV was able to estimate AUCOPZ/AUC5OH-OPZ, as well as HI3h after PO. Additionally, CYP2C19 activity can be estimated more definitely by using HI after omeprazole IV without intestinal absorption.
Collapse
Affiliation(s)
- Takenori Niioka
- Department of Pharmacy, Hirosaki University Hospital, Hirosaki, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Sarchielli P, Mancini ML, Calabresi P. Practical considerations for the treatment of elderly patients with migraine. Drugs Aging 2006; 23:461-89. [PMID: 16872231 DOI: 10.2165/00002512-200623060-00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Treatment of migraine presents special problems in the elderly. Co-morbid diseases may prohibit the use of some medications. Moreover, even when these contraindications do not exist, older patients are more likely than younger ones to develop adverse events. Managing older migraine patients, therefore, necessitates particular caution, including taking into account possible pharmacological interactions associated with the greater use of drugs for concomitant diseases in the elderly. Paracetamol (acetaminophen) is the safest drug for symptomatic treatment of migraine in the elderly. Use of selective serotonin 5-HT(1B/1D) receptor agonists ('triptans') is not recommended, even in the absence of cardiovascular or cerebrovascular risk, and NSAID use should be limited because of potential gastrointestinal adverse effects. Prophylactic treatments include antidepressants, beta-adrenoceptor antagonists, calcium channel antagonists and antiepileptics. Selection of a drug from one of these classes should be dictated by the patient's co-morbidities. Beta-adrenoceptor antagonists are appropriate in patients with hypertension but are contraindicated in those with chronic obstructive pulmonary disease, diabetes mellitus, heart failure and peripheral vascular disease. Use of antidepressants in low doses is, in general, well tolerated by elderly people and as effective, overall, as in young adults. This approach is preferred in patients with concomitant mood disorders. However, prostatism, glaucoma and heart disease make the use of tricyclic antidepressants more difficult. Fewer efficacy data in the elderly are available for selective serotonin reuptake inhibitors, which can be tried in particular cases because of their good tolerability profile. Calcium channel antagonists are contraindicated in patients with hypotension, heart failure, atrioventricular block, Parkinson's disease or depression (flunarizine), and in those taking beta-adrenoceptor antagonists and monoamine oxidase inhibitors (verapamil). Antiepileptic drug use should be limited to migraine with high frequency of attacks and refractoriness to other treatments. Promising additional strategies include ACE inhibitors and angiotensin II type 1 receptor antagonists because of their effectiveness and good tolerability in patients with migraine, particularly in those with hypertension. Because of its favourable compliance and safety profile, botulinum toxin type A can be considered an alternative treatment in elderly migraine patients who have not responded to other currently available migraine prophylactic agents. Pharmacological treatment of migraine poses special problems in regard to both symptomatic and prophylactic treatment. Contraindications to triptan use, adverse effects of NSAIDs, and unwanted reactions to some antiemetics reduce the list of drugs available for the treatment of migraine attacks in elderly patients. The choice of prophylactic treatment (beta-adrenoceptor antagonists, calcium channel antagonists, antiepileptics, and more recently, some antihypertensive drugs) is influenced by co-morbidities and should be directed at those drugs that are believed to have fewer adverse effects and a better safety profile. Unfortunately, for most of these drugs, efficacy studies are lacking in the elderly.
Collapse
Affiliation(s)
- Paola Sarchielli
- Department of Medical and Surgical Specialties and Public Health, Neurologic Clinic, University of Perugia, Perugia, Italy.
| | | | | |
Collapse
|