1
|
Bhandari S, Kyrrestad I, Simón-Santamaría J, Li R, Szafranska KJ, Dumitriu G, Sánchez Romano J, Smedsrød B, Sørensen KK. Mouse liver sinusoidal endothelial cell responses to the glucocorticoid receptor agonist dexamethasone. Front Pharmacol 2024; 15:1377136. [PMID: 39439887 PMCID: PMC11494038 DOI: 10.3389/fphar.2024.1377136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) which make up the fenestrated wall of the hepatic sinusoids, are active scavenger cells involved in blood waste clearance and liver immune functions. Dexamethasone is a synthetic glucocorticoid commonly used in the clinic and as cell culture supplement. However, the response is dependent on tissue, cell type, and cell state. The aim of this study was to investigate the effect of dexamethasone on primary mouse LSECs (C57BL/6J); their viability (live-dead, LDH release, caspase 3/7 assays), morphology (scanning electron microscopy), release of inflammatory markers (ELISA), and scavenging functions (endocytosis assays), and associated biological processes and pathways. We have characterized and catalogued the proteome of LSECs cultured for 1, 10, or 48 h to elucidate time-dependent and dexamethasone-specific cell responses. More than 6,000 protein IDs were quantified using tandem mass tag technology and advanced mass spectrometry (synchronous precursor selection multi-notch MS3). Enrichment analysis showed a culture-induced upregulation of stress and inflammatory markers, and a significant shift in cell metabolism already at 10 h, with enhancement of glycolysis and concomitant repression of oxidative phosphorylation. At 48 h, changes in metabolic pathways were more pronounced with dexamethasone compared to time-matched controls. Dexamethasone repressed the activation of inflammatory pathways (IFN-gamma response, TNF-alpha signaling via NF-kB, Cell adhesion molecules), and culture-induced release of interleukin-6, VCAM-1, and ICAM-1, and improved cell viability partly through inhibition of apoptosis. The mouse LSECs did not proliferate in culture. Dexamethasone treated cells showed upregulation of xanthine dehydrogenase/oxidase (Xdh), and the transcription regulator Foxo1. The drug further delayed but did not block the culture-induced loss of LSEC fenestration. The LSEC capacity for endocytosis was significantly reduced at 48 h, independent of dexamethasone, which correlated with diminished expression of several scavenger receptors and C-type lectins and altered expression of proteins in the endocytic machinery. The glucocorticoid receptor (NR3C1) was suppressed by dexamethasone at 48 h, suggesting limited effect of the drug in prolonged LSEC culture. Conclusion: The study presents a detailed overview of biological processes and pathways affected by dexamethasone in mouse LSECs in vitro.
Collapse
|
2
|
Kruger A, Joffe D, Lloyd-Jones G, Khan MA, Šalamon Š, Laubscher GJ, Putrino D, Kell DB, Pretorius E. Vascular Pathogenesis in Acute and Long COVID: Current Insights and Therapeutic Outlook. Semin Thromb Hemost 2024. [PMID: 39348850 DOI: 10.1055/s-0044-1790603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Long coronavirus disease 2019 (COVID-19)-a postacute consequence of severe acute respiratory syndrome coronavirus 2 infection-manifests with a broad spectrum of relapsing and remitting or persistent symptoms as well as varied levels of organ damage, which may be asymptomatic or present as acute events such as heart attacks or strokes and recurrent infections, hinting at complex underlying pathogenic mechanisms. Central to these symptoms is vascular dysfunction rooted in thrombotic endothelialitis. We review the scientific evidence that widespread endothelial dysfunction (ED) leads to chronic symptomatology. We briefly examine the molecular pathways contributing to endothelial pathology and provide a detailed analysis of how these cellular processes underpin the clinical picture. Noninvasive diagnostic techniques, such as flow-mediated dilation and peripheral arterial tonometry, are evaluated for their utility in identifying ED. We then explore mechanistic, cellular-targeted therapeutic interventions for their potential in treating ED. Overall, we emphasize the critical role of cellular health in managing Long COVID and highlight the need for early intervention to prevent long-term vascular and cellular dysfunction.
Collapse
Affiliation(s)
- Arneaux Kruger
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - David Joffe
- Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney, Australia
- World Health Network, Cambridge, Massachusetts
| | - Graham Lloyd-Jones
- Department of Radiology, Salisbury District Hospital, Salisbury NHS Foundation Trust, United Kingdom
| | - Muhammed Asad Khan
- World Health Network, Cambridge, Massachusetts
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | | | | | - David Putrino
- Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney, Australia
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- World Health Network, Cambridge, Massachusetts
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
Dos Passos RR, Santos CV, Priviero F, Briones AM, Tostes RC, Webb RC, Bomfim GF. Immunomodulatory Activity of Cytokines in Hypertension: A Vascular Perspective. Hypertension 2024; 81:1411-1423. [PMID: 38686582 PMCID: PMC11168883 DOI: 10.1161/hypertensionaha.124.21712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cytokines play a crucial role in the structure and function of blood vessels in hypertension. Hypertension damages blood vessels by mechanisms linked to shear forces, activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, oxidative stress, and a proinflammatory milieu that lead to the generation of neoantigens and damage-associated molecular patterns, ultimately triggering the release of numerous cytokines. Damage-associated molecular patterns are recognized by PRRs (pattern recognition receptors) and activate inflammatory mechanisms in endothelial cells, smooth muscle cells, perivascular nerves, and perivascular adipose tissue. Activated vascular cells also release cytokines and express factors that attract macrophages, dendritic cells, and lymphocytes to the blood vessels. Activated and differentiated T cells into Th1, Th17, and Th22 in secondary lymphoid organs migrate to the vessels, releasing specific cytokines that further contribute to vascular dysfunction and remodeling. This chronic inflammation alters the profile of endothelial and smooth muscle cells, making them dysfunctional. Here, we provide an overview of how cytokines contribute to hypertension by impacting the vasculature. Furthermore, we explore clinical perspectives about the modulation of cytokines as a potential therapeutic intervention to specifically target hypertension-linked vascular dysfunction.
Collapse
Affiliation(s)
- Rinaldo R Dos Passos
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
| | - Cintia V Santos
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (C.V.S., R.C.T.)
| | - Fernanda Priviero
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Biomedical Engineering, College of Engineering and Computing (F.P., R.C.W.), University of South Carolina, Columbia
| | - Ana M Briones
- Department of Pharmacology, Facultad de Medicina, Universidad Autónoma de Madrid, Spain (A.M.B.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.M.B.)
- CIBER Cardiovascular, Madrid, Spain (A.M.B.)
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Brazil (C.V.S., R.C.T.)
| | - R Clinton Webb
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- Department of Biomedical Engineering, College of Engineering and Computing (F.P., R.C.W.), University of South Carolina, Columbia
| | - Gisele F Bomfim
- Cardiovascular Translational Research Center, School of Medicine (R.R.d.P., C.V.S., F.P., R.C.W., G.F.B.), University of South Carolina, Columbia
- NUPADS - Health Education and Research Center, Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil (G.F.B.)
| |
Collapse
|
4
|
Krajcsir B, Pócsi M, Fejes Z, Nagy B, Kappelmayer J, Beke Debreceni I. Ponatinib Induces a Procoagulant Phenotype in Human Coronary Endothelial Cells via Inducing Apoptosis. Pharmaceutics 2024; 16:559. [PMID: 38675220 PMCID: PMC11055157 DOI: 10.3390/pharmaceutics16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BCR-ABL tyrosine kinase inhibitors (TKIs) are effective drugs in the treatment of patients with chronic myeloid leukemia. However, based on clinical studies, ponatinib was associated with the development of thrombotic complications. Since endothelial cells (ECs) regulate blood coagulation, their abnormal phenotype may play a role in the development of thrombotic events. We here aimed to investigate the effect of ponatinib on the procoagulant activity of cultured endothelial cells in vitro. Human coronary artery endothelial cells (HCAECs) were incubated with 50, 150, and 1000 nM of ponatinib. Subsequently, phosphatidylserine (PS) exposure and endothelial microvesicles (EMVs) were measured by flow cytometry. In addition, EC- and EMV-dependent thrombin generation was analyzed. To investigate pro-apoptotic effects of ponatinib, the level of Bax and Bcl-xL proteins were studied using Western blot and F3, THBD, and VCAM1 mRNAs were quantified by qPCR. Therapeutic concentrations of ponatinib significantly increased PS expression on ECs and the amount of EMVs which significantly shortened the time parameters of thrombin generation. In addition, these changes were associated with an increased ratio of Bax and Bcl-xL proteins in the presence of the decreased THBD mRNA level. Overall, ponatinib enhances the procoagulant activity of ECs via inducing apoptosis, which may contribute to thrombotic events.
Collapse
Affiliation(s)
- Bálint Krajcsir
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
- Laki Kálmán Doctoral School, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Ildikó Beke Debreceni
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| |
Collapse
|
5
|
Akiyama T, Sadahiro T, Yamada Y, Fujita R, Abe Y, Nakano K, Honda S, Ema M, Kubota Y, Sakai S, Hizawa N, Ieda M. Flk1 Deficiency and Hypoxia Synergistically Promote Endothelial Dysfunction, Vascular Remodeling, and Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2023; 43:1668-1683. [PMID: 37534464 DOI: 10.1161/atvbaha.123.319266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND The mechanisms underlying pulmonary hypertension (PH) remain largely unknown; further, why advanced vascular remodeling preferentially occurs in arterioles is yet to be answered. VEGF (vascular endothelial growth factor) regulates angiogenesis through Flk1 (fetal liver kinase 1) and Flt1 (fms-like tyrosine kinase 1) on endothelial cells (ECs), which may be related to PH pathogenesis. However, spatiotemporal expression patterns of Flk1 and Flt1 in the pulmonary vascular system and the role of endothelial Flk1 in PH development remain poorly understood. METHODS We analyzed multiple reporter mice, including Flk1-GFP (green fluorescent protein) bacterial artificial chromosome transgenic (Tg), Flt1-DsRed bacterial artificial chromosome Tg, and Flk1-GFP/Flt1-DsRed double Tg mice, to determine the spatiotemporal expression of Flk1 and Flt1 in hypoxia-induced PH. We also used Cdh5CreERT2/Flk1f/f/Tomato (Flk1-KO [knockout]) mice to induce EC-specific Flk1 deletion and lineage tracing in chronic hypoxia. RESULTS Flk1 was specifically expressed in the ECs of small pulmonary vessels, including arterioles. Conversely, Flt1 was more broadly expressed in the ECs of large- to small-sized vessels in adult mouse lungs. Intriguingly, Flk1+ ECs were transiently increased in hypoxia with proliferation, whereas Flt1 expression was unchanged. Flk1-KO mice did not exhibit pulmonary vascular remodeling nor PH in normoxia; however, the arteriolar ECs changed to a cuboidal shape with protrusion. In hypoxia, Flk1 deletion exacerbated EC dysfunction and reduced their number via apoptosis. Additionally, Flk1 deletion promoted medial thickening and neointimal formation in arterioles and worsened PH. Mechanistically, lineage tracing revealed that neointimal cells were derived from Flk1-KO ECs. Moreover, RNA sequencing in pulmonary ECs demonstrated that Flk1 deletion and hypoxia synergistically activated multiple pathways, including cell cycle, senescence/apoptosis, and cytokine/growth factor, concomitant with suppression of cell adhesion and angiogenesis, to promote vascular remodeling. CONCLUSIONS Flk1 and Flt1 were differentially expressed in pulmonary ECs. Flk1 deficiency and hypoxia jointly dysregulated arteriolar ECs to promote vascular remodeling. Thus, dysfunction of Flk1+ ECs may contribute to the pathogenesis of advanced vascular remodeling in pulmonary arterioles.
Collapse
Affiliation(s)
- Tatsuya Akiyama
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Department of Respiratory Medicine (T.A., N.H.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Taketaro Sadahiro
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yu Yamada
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryo Fujita
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Division of Regenerative Medicine, Transborder Medical Research Center (R.F.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuto Abe
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Koji Nakano
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Seiichiro Honda
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masatsugu Ema
- Division of Regenerative Medicine, Transborder Medical Research Center (R.F.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshiaki Kubota
- Departments of Anatomy (Y.K.), Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Sakai
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Faculty of Health Science, Tsukuba University of Technology, Japan (S.S.)
| | - Nobuyuki Hizawa
- Department of Respiratory Medicine (T.A., N.H.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masaki Ieda
- Department of Cardiology (T.A., T.S., Y.Y., R.F., Y.A., K.N., S.H., S.S., M.I.), Institute of Medicine, University of Tsukuba, Ibaraki, Japan
- Cardiology (M.I.), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Koshman YE, Bielinski AL, Bird BM, Green JR, Kowalkowski KL, Lai-Zhang J, Mahalingaiah PK, Sawicki JW, Talaty NN, Wilsey AS, Zafiratos MT, Van Vleet TR. Disconnect between COX-2 selective inhibition and cardiovascular risk in preclinical models. J Pharmacol Toxicol Methods 2023; 120:107251. [PMID: 36792039 DOI: 10.1016/j.vascn.2023.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/20/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Secondary pharmacology profiling is routinely applied in pharmaceutical drug discovery to investigate the pharmaceutical effects of a drug at molecular targets distinct from (off-target) the intended therapeutic molecular target (on-target). Data from a randomized, placebo-controlled clinical trial, the APPROVe (Adenomatous Polyp Prevention on VIOXX, rofecoxib) trial, raised significant concerns about COX-2 inhibition as a primary or secondary target, shaping the screening and decision-making processes of some pharmaceutical companies. COX-2 is often included in off-target screens due to cardiovascular (CV) safety concerns about secondary interactions with this target. Several potential mechanisms of COX-2-mediated myocardial infarctions have been considered including, effects on platelet stickiness/aggregation, vasal tone and blood pressure, and endothelial cell activation. In the present study, we focused on each of these mechanisms as potential effects of COX-2 inhibitors, to find evidence of mechanism using various in vitro and in vivo preclinical models. METHODS Compounds tested in the study, with a range of COX-2 selectivity, included rofecoxib, celecoxib, etodolac, and meloxicam. Compounds were screened for inhibition of COX-2 vs COX-1 enzymatic activity, ex vivo platelet aggregation (using whole blood from multiple species), ex vivo canine femoral vascular ring model, in vitro human endothelial cell activation (with and without COX-2 induction), and in vivo cardiovascular assessment (anesthetized dog). RESULTS The COX-2 binding assessment generally confirmed the COX-2 selectivity previously reported. COX-2 inhibitors did not have effects on platelet function (spontaneous aggregation or inhibition of aggregation), cardiovascular parameters (mean arterial pressure, heart rate, and left ventricular contractility), or endothelial cell activation. However, rofecoxib uniquely produced an endothelial mediated constriction response in canine femoral arteries. CONCLUSION Our data suggest that rofecoxib-related cardiovascular events in humans are not predicted by COX-2 potency or selectivity. In addition, the vascular ring model suggested possible adverse cardiovascular effects by COX-2 inhibitors, although these effects were not seen in vivo studies. These results may also suggest that COX-2 inhibition alone is not responsible for rofecoxib-mediated adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America.
| | - Aimee L Bielinski
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Brandan M Bird
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Jonathon R Green
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Kenneth L Kowalkowski
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Jie Lai-Zhang
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | | | - James W Sawicki
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Nari N Talaty
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Amanda S Wilsey
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Mark T Zafiratos
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Terry R Van Vleet
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| |
Collapse
|
7
|
Kearns JD, Wassmann P, Olgac U, Fichter M, Christen B, Rubic-Schneider T, Koepke S, Cochin de Billy B, Ledieu D, Andre C, Hawtin S, Fischer B, Moretti F, Hug C, Bepperling A, Brannetti B, Mendez-Garcia C, Littlewood-Evans A, Clemens A, Grosskreutz CL, Mehan P, Schmouder RL, Sasseville V, Brees D, Karle AC. A root cause analysis to identify the mechanistic drivers of immunogenicity against the anti-VEGF biotherapeutic brolucizumab. Sci Transl Med 2023; 15:eabq5068. [PMID: 36724241 DOI: 10.1126/scitranslmed.abq5068] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunogenicity against intravitreally administered brolucizumab has been previously described and associated with cases of severe intraocular inflammation, including retinal vasculitis/retinal vascular occlusion (RV/RO). The presence of antidrug antibodies (ADAs) in these patients led to the initial hypothesis that immune complexes could be key mediators. Although the formation of ADAs and immune complexes may be a prerequisite, other factors likely contribute to some patients having RV/RO, whereas the vast majority do not. To identify and characterize the mechanistic drivers underlying the immunogenicity of brolucizumab and the consequence of subsequent ADA-induced immune complex formation, a translational approach was performed to bridge physicochemical characterization, structural modeling, sequence analysis, immunological assays, and a quantitative systems pharmacology model that mimics physiological conditions within the eye. This approach revealed that multiple factors contributed to the increased immunogenic potential of brolucizumab, including a linear epitope shared with bacteria, non-natural surfaces due to the single-chain variable fragment format, and non-native drug species that may form over prolonged time in the eye. Consideration of intraocular drug pharmacology and disease state in a quantitative systems pharmacology model suggested that immune complexes could form at immunologically relevant concentrations modulated by dose intensity. Assays using circulating immune cells from treated patients or treatment-naïve healthy volunteers revealed the capacity of immune complexes to trigger cellular responses such as enhanced antigen presentation, platelet aggregation, endothelial cell activation, and cytokine release. Together, these studies informed a mechanistic understanding of the clinically observed immunogenicity of brolucizumab and associated cases of RV/RO.
Collapse
Affiliation(s)
- Jeffrey D Kearns
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Paul Wassmann
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Ufuk Olgac
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Marie Fichter
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Brigitte Christen
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | | | - Stephan Koepke
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | | | - David Ledieu
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Cedric Andre
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Stuart Hawtin
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Benoit Fischer
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Francesca Moretti
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Christian Hug
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | | | - Barbara Brannetti
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | | | | | - Andreas Clemens
- Medical Affairs Region Europe, Novartis Pharma AG, Basel CH-4056, Switzerland
| | | | - Pawan Mehan
- TRD Biologics and CGT, Novartis Pharma AG, Basel CH-4056, Switzerland
| | - Robert L Schmouder
- Novartis Institutes for BioMedical Research, East Hanover, NJ 07960, USA
| | - Vito Sasseville
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Dominique Brees
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Anette C Karle
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| |
Collapse
|
8
|
Zhang W, Pang Y, Cheng W, Wang T, Li Y, Li X, Zhang J, Xia X, Zheng Y, Zhang R, Tang J. Ex vivo coronary endothelial cell activation associated with indoor coal combustion initiated atherosclerosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160174. [PMID: 36379326 DOI: 10.1016/j.scitotenv.2022.160174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Plenty of rural populations still chronically exposed to indoor coal burning, which tremendously raises the risk of cardiovascular disease, in China. This study aimed to further investigate the association between indoor coal burning exposure and atherosclerotic cardiovascular diseases to search for relevant markers for disease prevention. Herein, we conducted a cross-sectional study, carried out on 752 local long-term residents with or without bituminous coal for cooking and heating indoor, in Nangong County, Hebei Province, China. We utilized a nearest neighbor propensity score match (PSM) with a caliper distance equal to 0.001 to eliminate bias caused by confounding factors. The expression of genes associated with endothelial activation (CCL2, CCL5, CXCL8, CXCL12, VCAM, ICAM, SELP) in primary human coronary artery endothelial cells (HCAECs) were quantified through ex vivo biosensor assay. Multiple linear regression models with stratification analyses by gender and binary logit regression models were used to evaluate the association between mRNA expression of biosensor genes and indoor coal burning pollution or carotid atherosclerosis, respectively. Protein secretion level was detected by enzyme-linked immunosorbent assay (ELISA). The prevalence of carotid atherosclerosis in exposure group was higher than control (P = 0.023), before PSM. The gene expression of CCL2 in exposure group was significantly higher than control (P = 0.002). Indoor coal burning exposure was correlated with gene expression of CCL2 (β = 3.45, 95 % CI: 0.04-6.87, P = 0.047) and CXCL8 (β = 1.25, 95 % CI: 0.02-2.49, P = 0.046) in female. A higher risk of carotid atherosclerosis was observed in the same as the increase expression of CCL2 (OR = 1.07, 95 % CI: 1.01-1.14, P = 0.020). In conclusion, prolonged exposure to indoor coal burning could elevate the gene expression of CCL2 by activating vascular endothelial cells and was relative to the initiation of carotid atherosclerosis.
Collapse
Affiliation(s)
- Wanjun Zhang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Wenting Cheng
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, People's Republic of China
| | - Tao Wang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yanting Li
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xin Li
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jianzhong Zhang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xiaowen Xia
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yuxin Zheng
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, People's Republic of China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| | - Jinglong Tang
- Departmental of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, People's Republic of China.
| |
Collapse
|
9
|
A Review on COVID-19: Primary Receptor, Endothelial Dysfunction, Related Comorbidities, and Therapeutics. IRANIAN JOURNAL OF SCIENCE 2023. [PMCID: PMC9843681 DOI: 10.1007/s40995-022-01400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic named coronavirus disease-19 (COVID-19) and resulted in a worldwide economic crisis. Utilizing the spike-like protein on its surface, the SARS-CoV-2 binds to the receptor angiotensin-converting enzyme 2 (ACE2), which highly expresses on the surface of many cell types. Given the crucial role of ACE2 in the renin–angiotensin system, its engagement by SARS-CoV-2 could potentially result in endothelial cell perturbation. This is supported by the observation that one of the most common consequences of COVID-19 infection is endothelial dysfunction and subsequent vascular damage. Furthermore, endothelial dysfunction is the shared denominator among previous comorbidities, including hypertension, kidney disease, cardiovascular diseases, etc., which are associated with an increased risk of severe disease and mortality in COVID-19 patients. Several vaccines and therapeutics have been developed and suggested for COVID-19 therapy. The present review summarizes the relationship between ACE2 and endothelial dysfunction and COVID-19, also reviews the most common comorbidities associated with COVID-19, and finally reviews several categories of potential therapies against COVID-19.
Collapse
|
10
|
Zhong M, Huang J, Wu Z, Chan KG, Wang L, Li J, Lee LH, Law JWF. Potential Roles of Selectins in Periodontal Diseases and Associated Systemic Diseases: Could They Be Targets for Immunotherapy? Int J Mol Sci 2022; 23:14280. [PMID: 36430760 PMCID: PMC9698067 DOI: 10.3390/ijms232214280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Periodontal diseases are predisposing factors to the development of many systemic disorders, which is often initiated via leukocyte infiltration and vascular inflammation. These diseases could significantly affect human health and quality of life. Hence, it is vital to explore effective therapies to prevent disease progression. Periodontitis, which is characterized by gingival bleeding, disruption of the gingival capillary's integrity, and irreversible destruction of the periodontal supporting bone, appears to be caused by overexpression of selectins in periodontal tissues. Selectins (P-, L-, and E-selectins) are vital members of adhesion molecules regulating inflammatory and immune responses. They are mainly located in platelets, leukocytes, and endothelial cells. Furthermore, selectins are involved in the immunopathogenesis of vascular inflammatory diseases, such as cardiovascular disease, diabetes, cancers, and so on, by mediating leukocyte recruitment, platelet activation, and alteration of endothelial barrier permeability. Therefore, selectins could be new immunotherapeutic targets for periodontal disorders and their associated systemic diseases since they play a crucial role in immune regulation and endothelium dysfunction. However, the research on selectins and their association with periodontal and systemic diseases remains limited. This review aims to discuss the critical roles of selectins in periodontitis and associated systemic disorders and highlights the potential of selectins as therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhong
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Jiangyong Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Lijing Wang
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiang Li
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
11
|
The Response of the Human Umbilical Vein Endothelial Cell Transcriptome to Variation in Magnesium Concentration. Nutrients 2022; 14:nu14173586. [PMID: 36079843 PMCID: PMC9460622 DOI: 10.3390/nu14173586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular endothelial cells have a critical role in the maintenance of cardiovascular function. Evidence suggests that endothelial function may be compromised under conditions of magnesium deficiency, which increases vulnerability to inflammation. Whole genome transcription analysis was used to explore the acute (24 h) effects of magnesium on human umbilical vascular endothelial cells (HUVEC) cultured in low (0.1 mM) or high (5 mM) concentrations. With low magnesium 2728 transcripts were differentially expressed compared to the 1 mM control cultures and 3030 were differentially expressed with high magnesium. 615 transcripts were differentially expressed under both conditions, of which only 34 showed a concentration-dependent response. Analysis indicated that cellular organisation and biogenesis and key cellular processes such as apoptosis were impacted by both low and high conditions. High magnesium also influenced protein binding functions, intracellular signal transduction, metabolic and catalytic processes. Both conditions impacted on stress-related processes, in particular the inflammatory response. Key mediators of calcium-dependent regulation of gene expression were responsive to both high and low magnesium conditions. The HUVEC transcriptome is highly sensitive to acute changes in the concentration of magnesium in culture medium. The findings of this study support the view that whilst inflammation is an important process that is responsive to magnesium, the function of the endothelium may be impacted by other magnesium-induced changes including maintenance of cellular integrity, receptor expression and metabolic functions. The high proportion of transcripts that did not show a concentration-dependent response suggests variation in magnesium may elicit indirect changes, possibly mediated by other ions.
Collapse
|
12
|
Quick S, Procter TV, Moss J, Seeker L, Walton M, Lawson A, Baker S, Beletski A, Garcia DJ, Mohammad M, Mungall W, Onishi A, Tobola Z, Stringer M, Jansen MA, Vallatos A, Giarratano Y, Bernabeu MO, Wardlaw JM, Williams A. Loss of the heterogeneous expression of flippase ATP11B leads to cerebral small vessel disease in a normotensive rat model. Acta Neuropathol 2022; 144:283-303. [PMID: 35635573 PMCID: PMC9288385 DOI: 10.1007/s00401-022-02441-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/20/2023]
Abstract
Cerebral small vessel disease (SVD) is the leading cause of vascular dementia, causes a quarter of strokes, and worsens stroke outcomes. The disease is characterised by patchy cerebral small vessel and white matter pathology, but the underlying mechanisms are poorly understood. This microvascular and tissue damage has been classically considered secondary to extrinsic factors, such as hypertension, but this fails to explain the patchy nature of the disease, the link to endothelial cell (EC) dysfunction even when hypertension is absent, and the increasing evidence of high heritability to SVD-related brain damage. We have previously shown the link between deletion of the phospholipase flippase Atp11b and EC dysfunction in an inbred hypertensive rat model with SVD-like pathology and a single nucleotide polymorphism (SNP) in ATP11B associated with human sporadic SVD. Here, we generated a novel normotensive transgenic rat model, where Atp11b is deleted, and show pathological, imaging and behavioural changes typical of those in human SVD, but that occur without hypertension. Atp11bKO rat brain and retinal small vessels show ECs with molecular and morphological changes of dysfunction, with myelin disruption in a patchy pattern around some but not all brain small vessels, similar to the human brain. We show that ATP11B/ATP11B is heterogeneously expressed in ECs in normal rat and human brain even in the same transverse section of the same blood vessel, suggesting variable effects of the loss of ATP11B on each vessel and an explanation for the patchy nature of the disease. This work highlights a link between inherent EC dysfunction and vulnerability to SVD white matter damage with a marked heterogeneity of ECs in vivo which modulates this response, occurring even in the absence of hypertension. These findings refocus our strategies for therapeutics away from antihypertensive (and vascular risk factor) control alone and towards ECs in the effort to provide alternative targets to prevent a major cause of stroke and dementia.
Collapse
Affiliation(s)
- Sophie Quick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Tessa V Procter
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Jonathan Moss
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Luise Seeker
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Marc Walton
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Angus Lawson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Serena Baker
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Anna Beletski
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Daniela Jaime Garcia
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Mehreen Mohammad
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - William Mungall
- Bioresearch and Veterinary Services, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Ami Onishi
- Bioresearch and Veterinary Services, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Zuzanna Tobola
- Centre for Clinical Brain Sciences, Edinburgh Imaging, Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Michael Stringer
- Centre for Clinical Brain Sciences, Edinburgh Imaging, Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Maurits A Jansen
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Antoine Vallatos
- Centre for Clinical Brain Sciences, Edinburgh Imaging, Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Ylenia Giarratano
- College of Medicine and Veterinary Medicine, College of Science and Engineering, Bayes Centre, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Miguel O Bernabeu
- College of Medicine and Veterinary Medicine, College of Science and Engineering, Bayes Centre, Usher Institute, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh Imaging, Row Fogo Centre for Research into Ageing and the Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK.
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
13
|
Tzimas P, Lefkou E, Karakosta A, Argyrou S, Papapetrou E, Pantazi D, Tselepis A, Van Dreden P, Stratigopoulou P, Gerotziafas GT, Glantzounis G. Perioperative coagulation profile in major liver resection for cancer: a prospective observational study. Thromb Haemost 2022; 122:1662-1672. [PMID: 35483884 DOI: 10.1055/a-1839-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hepatectomy induced coagulation disturbances have been well studied over the past decade. Cumulative evidence supports the superiority of global coagulation analysis compared to conventional coagulation tests (i.e. PT or aPTT) for clinical decision making. Cancer, however, represents an acquired prothrombotic state and liver resection for cancer deserves a more thorough investigation. This prospective observational study was conducted to assess the perioperative coagulation status of patients undergoing major hepatectomies for primary or metastatic hepatic malignancy. Patients were followed up to the 10th postoperative day by serial measurements of conventional coagulation tests, plasma levels of coagulation factors and thrombin generation assay parameters. An abnormal coagulation profile was detected at presentation and included elevated FVIII levels, decreased levels of antithrombin and lag time prolongation in thrombin generation. Serial hematological data demonstrated increased vWF, FVIII, D-dimer, fibrinogen and decreased levels of natural anticoagulant proteins in the early postoperative period predisposing to a hypercoagulable state. The ratio of the anticoagulant protein C to the procoagulant FVIII was low at baseline and further declined postoperatively, indicating a prothrombotic state. Though no bleeding complications were reported, one patient experienced pulmonary embolism while under thromboprophylaxis. Overall, patients with hepatic carcinoma presenting for elective major hepatectomy may have baseline malignancy associated coagulation disturbances, aggravating the hypercoagulable state documented in the early postoperative period.
Collapse
|
14
|
Cheng W, Pang H, Campen MJ, Zhang J, Li Y, Gao J, Ren D, Ji X, Rothman N, Lan Q, Zheng Y, Leng S, Hu Z, Tang J. Circulatory metabolites trigger ex vivo arterial endothelial cell dysfunction in population chronically exposed to diesel exhaust. Part Fibre Toxicol 2022; 19:20. [PMID: 35313899 PMCID: PMC8939222 DOI: 10.1186/s12989-022-00463-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/15/2022] [Indexed: 11/27/2022] Open
Abstract
Background Chronic exposure to diesel exhaust has a causal link to cardiovascular diseases in various environmental and occupational settings. Arterial endothelial cell function plays an important role in ensuring proper maintenance of cardiovascular homeostasis and the endothelial cell dysfunction by circulatory inflammation is a hallmark in cardiovascular diseases. Acute exposure to diesel exhaust in controlled exposure studies leads to artery endothelial cells dysfunction in previous study, however the effect of chronic exposure remains unknown. Results We applied an ex vivo endothelial biosensor assay for serum samples from 133 diesel engine testers (DETs) and 126 non-DETs with the aim of identifying evidence of increased risk for cardiovascular diseases. Environmental monitoring suggested that DETs were exposed to high levels of diesel exhaust aerosol (282.3 μg/m3 PM2.5 and 135.2 μg/m3 elemental carbon). Surprisingly, chronic diesel exhaust exposure was associated with a pro-inflammatory phenotype in the ex vivo endothelial cell model, in a dose-dependent manner with CCL5 and VCAM as most affected genes. This dysfunction was not mediated by reduction in circulatory pro-inflammatory factors but significantly associated with a reduction in circulatory metabolites cGMP and an increase in primary DNA damage in leucocyte in a dose-dependent manner, which also explained a large magnitude of association between diesel exhaust exposure and ex vivo endothelial biosensor response. Exogenous cGMP addition experiment further confirmed the induction of ex vivo biosensor gene expressions in endothelial cells treated with physiologically relevant levels of metabolites cGMP. Conclusion Serum-borne bioactivity caused the arterial endothelial cell dysfunction may attribute to the circulatory metabolites based on the ex vivo biosensor assay. The reduced cGMP and increased polycyclic aromatic hydrocarbons metabolites-induced cyto/geno-toxic play important role in the endothelial cell dysfunction of workers chronic exposure to diesel exhaust. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00463-0.
Collapse
Affiliation(s)
- Wenting Cheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jianzhong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Yanting Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Jinling Gao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xiaoya Ji
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Shuguang Leng
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA. .,Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
15
|
Liu N, Long H, Sun J, Li H, He Y, Wang Q, Pan K, Tong Y, Wang B, Wu Q, Gong L. New laboratory evidence for the association between endothelial dysfunction and COVID-19 disease progression. J Med Virol 2022; 94:3112-3120. [PMID: 35246853 PMCID: PMC9088409 DOI: 10.1002/jmv.27693] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
There is growing evidence that angiotensin‐converting enzyme 2 is highly expressed on endothelial cells, endothelial dysfunction plays a critical role in coronavirus disease 2019 (COVID‐19) progression, but laboratory evidence is still lacking. This study established a multicenter retrospective cohort of 966 COVID‐19 patients from three hospitals in Wuhan, China. We found that male (62.8% vs. 46.5%), old age [72 (17) vs. 60.5 (21)], and coexisting chronic diseases (88.5% vs. 60.0%) were associated with poor clinical prognosis in COVID‐19. Furthermore, the deteriorated patients exhibited more severe multiorgan damage, coagulation dysfunction, and extensive inflammation. Additionally, a cross‐sectional study including 41 non‐COVID‐19 controls and 39 COVID‐19 patients assayed endothelial function parameters in plasma and showed that COVID‐19 patients exhibited elevated vascular cell adhesion molecule‐1 (VCAM‐1) (median [IQR]: 0.32 [0.27] vs. 0.17 [0.11] μg/ml, p < 0.001), E‐selectin (21.06 [12.60] vs. 11.01 [4.63] ng/ml, p < 0.001), tissue‐type plasminogen activator (tPA) (0.22 [0.12] vs. 0.09 [0.04] ng/ml, p < 0.001), and decreased plasminogen activator inhibitor‐1 (0.75 [1.31] vs 6.20 [5.34] ng/ml, p < 0.001), as compared to normal controls. Moreover, VCAM‐1 was positively correlated with
d‐dimer (R = 0.544, p < 0.001); tPA was positively correlated with
d‐dimer (R = 0.800, p < 0.001) and blood urea nitrogen (R = 0.638, p < 0.001). Our findings further confirm the strong association between endothelial dysfunction and poor prognosis of COVID‐19, which offers a rationale for targeting endothelial dysfunction as a therapeutic strategy for COVID‐19.
Collapse
Affiliation(s)
- Nan Liu
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hui Long
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jianhua Sun
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huan Li
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yunting He
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Pan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yongliang Tong
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bingshun Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingming Wu
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China.,Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Likun Gong
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
16
|
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci 2021; 22:11545. [PMID: 34768974 PMCID: PMC8584259 DOI: 10.3390/ijms222111545] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the most important problems in modern medicine. Its high prevalence and social significance determine the need for a better understanding of the mechanisms of the disease's development and progression. Lipid metabolism and its disorders are one of the key links in the pathogenesis of atherosclerosis. Lipids are involved in many processes, including those related to the mechanoreception of endothelial cells. The multifaceted role of lipids in endothelial mechanobiology and mechanisms of atherogenesis are discussed in this review. Endothelium is involved in ensuring adequate vascular hemodynamics, and changes in blood flow characteristics are detected by endothelial cells and affect their structure and function.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
17
|
Oliva A, Rando E, Al Ismail D, De Angelis M, Cancelli F, Miele MC, Aronica R, Mauro V, Di Timoteo F, Loffredo L, Mastroianni CM. Role of Serum E-Selectin as a Biomarker of Infection Severity in Coronavirus Disease 2019. J Clin Med 2021; 10:4018. [PMID: 34501466 PMCID: PMC8432564 DOI: 10.3390/jcm10174018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION E-selectin is a recognized marker of endothelial activation; however, its place in Coronavirus Disease 2019 (COVID-19) has not been fully explored. Aims of the study are to compare sE-selectin values among the Intensive Care Unit (ICU)-admitted and non-admitted, survived and non-survived patients and those with or without thrombosis. METHODS A single-center study of patients with COVID-19 hospitalized at Policlinico Umberto I (Rome) from March to May 2020 was performed. Simple and multiple logistic regression models were developed. RESULTS One hundred patients were included, with a median age (IQR) of 65 years (58-78). Twenty-nine (29%) were admitted to ICU, twenty-eight (28%) died and nineteen (19%) had a thrombotic event. The median value (IQR) of sE-selectin was 26.1 ng/mL (18.1-35). sE-selectin values did not differ between deceased and survivors (p = 0.06) and among patients with or without a thrombotic event (p = 0.22). Compared with patients who did not receive ICU treatments, patients requiring ICU care had higher levels of sE-selectin (36.6 vs. 24.1 ng/mL; p < 0.001). In the multiple logistic regression model, sE-selectin levels > 33 ng/mL, PaO2/FiO2 < 200 and PaO2/FiO2 200-300 were significantly associated with an increased risk of ICU admission. sE-selectin values significantly correlated with a neutrophil count (R = 0.32 (p = 0.001)) and the number of days from the symptoms onset to hospitalization (R = 0.28 (p = 0.004)). CONCLUSIONS sE-selectin levels are predictive of ICU admission in COVID-19 patients. Since data on the relation between sE-selectin and COVID-19 are scarce, this study aims to contribute toward the comprehension of the pathogenic aspects of COVID-19 disease, giving a possible clinical marker able to predict its severity.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (E.R.); (D.A.I.); (M.D.A.); (F.C.); (M.C.M.); (R.A.); (V.M.); (F.D.T.); (C.M.M.)
| | - Emanuele Rando
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (E.R.); (D.A.I.); (M.D.A.); (F.C.); (M.C.M.); (R.A.); (V.M.); (F.D.T.); (C.M.M.)
- Sapienza School for Advanced Studies (SSAS), Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy
| | - Dania Al Ismail
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (E.R.); (D.A.I.); (M.D.A.); (F.C.); (M.C.M.); (R.A.); (V.M.); (F.D.T.); (C.M.M.)
| | - Massimiliano De Angelis
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (E.R.); (D.A.I.); (M.D.A.); (F.C.); (M.C.M.); (R.A.); (V.M.); (F.D.T.); (C.M.M.)
| | - Francesca Cancelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (E.R.); (D.A.I.); (M.D.A.); (F.C.); (M.C.M.); (R.A.); (V.M.); (F.D.T.); (C.M.M.)
| | - Maria Claudia Miele
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (E.R.); (D.A.I.); (M.D.A.); (F.C.); (M.C.M.); (R.A.); (V.M.); (F.D.T.); (C.M.M.)
| | - Raissa Aronica
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (E.R.); (D.A.I.); (M.D.A.); (F.C.); (M.C.M.); (R.A.); (V.M.); (F.D.T.); (C.M.M.)
| | - Vera Mauro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (E.R.); (D.A.I.); (M.D.A.); (F.C.); (M.C.M.); (R.A.); (V.M.); (F.D.T.); (C.M.M.)
| | - Federica Di Timoteo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (E.R.); (D.A.I.); (M.D.A.); (F.C.); (M.C.M.); (R.A.); (V.M.); (F.D.T.); (C.M.M.)
| | - Lorenzo Loffredo
- Department of Clinical, Internal Medicine, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Claudio M. Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (E.R.); (D.A.I.); (M.D.A.); (F.C.); (M.C.M.); (R.A.); (V.M.); (F.D.T.); (C.M.M.)
| |
Collapse
|
18
|
Kocaaga A, Cakmak Genc G, Karakas Celık S, Koca R, Dursun A. Association of NOD1, NOD2, PYDC1 and PYDC2 genes with Behcet's disease susceptibility and clinical manifestations. Ophthalmic Genet 2021; 42:691-697. [PMID: 34294014 DOI: 10.1080/13816810.2021.1955273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Purpose: Behçet's disease (BD) is an autoinflammatory disease with clinical manifestations such as mucocutaneous, ocular, vascular, gastrointestinal, musculoskeletal and central nervous system involvement. Features of innate and adaptive immunity and inflammasome pathways have been claimed in the pathogenesis of BD. We aimed to investigate the roles of NOD1, NOD2, PYDC1 and PYDC2 genes in the genetic predisposition of BD.Materials and Methods: Genetic variations of NOD1 (rs2075820 and rs2075818) and NOD2 (R334Q and R334W) genes were explored in 68 BD patients and 70 controls with PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) approach. PYDC1 and PYDC2 gene variants were investigated by Sanger sequencing.Results: The polymorphism of rs2075820 (NOD1 G/A) had a statistically significant difference between the BD and controls, AA genotype was 2.460-fold protective. When compared in terms of cardiovascular involvement in BD patients, AA genotype was increased the risk of cardiovascular involvement 4.286-fold. There was a significant difference between BD and controls in rs2075818 (NOD1 G/C) polymorphism and CC genotype increased the risk of BD by 3.780-fold. In terms of rs2075818 variants, there was a statistically significant difference between BD patients with ocular lesions, joints, cardiovascular and gastrointestinal involvement and controls. There was a significant difference between the patients with joint involvement and controls and the risk increased of 3.310-fold.Conclusion: The data shed new light on the association between polymorphisms of NOD1 gene and BD and clinicial manifestations. However, NOD2, PYDC1 and PYDC2 genes were not associated with BD in the Turkish population.
Collapse
Affiliation(s)
- Ayca Kocaaga
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - Gunes Cakmak Genc
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - Sevim Karakas Celık
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - Rafet Koca
- Department of Dermatology, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - Ahmet Dursun
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| |
Collapse
|
19
|
Chen Y, Nilsson AH, Goncalves I, Edsfeldt A, Engström G, Melander O, Orho-Melander M, Rauch U, Tengryd C, Venuraju SM, Lahiri A, Liang C, Nilsson J. Evidence for a protective role of placental growth factor in cardiovascular disease. Sci Transl Med 2021; 12:12/572/eabc8587. [PMID: 33268513 DOI: 10.1126/scitranslmed.abc8587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Placental growth factor (PlGF) is a mitogen for endothelial cells, but it can also act as a proinflammatory cytokine. Because it promotes early stages of plaque formation in experimental models of atherosclerosis and was implicated in epidemiological associations with risk of cardiovascular disease (CVD), PlGF has been attributed a pro-atherogenic role. Here, we investigated whether PlGF has a protective role in CVD and whether elevated PlGF reflects activation of repair processes in response to vascular stress. In a population cohort of 4742 individuals with 20 years of follow-up, high baseline plasma PlGF was associated with increased risk of cardiovascular death, myocardial infarction, and stroke, but these associations were lost or weakened when adjusting for cardiovascular risk factors known to cause vascular stress. Exposure of cultured endothelial cells to high glucose, oxidized low-density lipoprotein (LDL) or an inducer of apoptosis enhanced the release of PlGF. Smooth muscle cells and endothelial cells treated with PlGF small interference RNA demonstrated that autocrine PlGF stimulation plays an important role in vascular repair responses. High expression of PlGF in human carotid plaques removed at surgery was associated with a more stable plaque phenotype and a lower risk of future cardiovascular events. When adjusting associations of PlGF with cardiovascular risk in the population cohort for plasma soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-2, a biomarker of cellular stress, a high PlGF/TRAIL receptor-2 ratio was associated with a lower risk. Our findings provide evidence for a protective role of PlGF in CVD.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.,Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, 200003 Shanghai, China
| | | | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, 20502 Malmö, Sweden
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Sweden-Klinikgatan 32, 22184 Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden.,Department of Emergency and Internal Medicine, Skåne University Hospital, 20502 Malmö, Sweden
| | | | - Uwe Rauch
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | | | | | | | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, 200003 Shanghai, China
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden. .,Department of Emergency and Internal Medicine, Skåne University Hospital, 20502 Malmö, Sweden
| |
Collapse
|
20
|
申 杰, 杨 迪, 陈 梦, 郭 新. [Effects of length and chemical modification on the activation of vascular endothelial cells induced by multi walled carbon nanotubes]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:439-446. [PMID: 34145842 PMCID: PMC8220036 DOI: 10.19723/j.issn.1671-167x.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effects of multi-walled carbon nanotubes (MWCNTs) with different length or chemical modification on endothelial cell activation and to explore the role of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. METHODS MWCNTs were characterized by dynamic light scattering (DLS) after being suspended in culture medium. The immortalized mouse cerebral microvascular endothelial cell line b.End3 was treated with short MWCNTs (S-MWCNT, 0.5 to 2 μm), long MWCNTs (L-MWCNT, 10 to 30 μm) and the above long MWCNTs functionalized by carboxyl-(L-MWCNT-COOH), amino-(L-MWCNT-NH2) or hydroxyl-(L-MWCNT-OH) modification. Cytotoxicity of MWCNTs in b.End3 cells was determined by cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release assay, and non-toxic low dose was selected for subsequent experiments. Effects of all types of MWCNTs on the endothelial activation of b.End3 were determined by the measurement of vascular cell adhesion molecule-1 (VCAM-1) concentration in cell supernatant and adhesion assay of human monocytic cell line THP-1 to b.End3.To further elucidate the mechanism involved, the protein expressions of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3(NLRP3) in cells treated with S-MWCNT, L-MWCNT and L-MWCNT-COOH were measured by Western blot. RESULTS At a higher concentration (125 μg/cm2) and treated for 24 h, all types of MWCNTs significantly inhibited viability of b.End3 cells. At a sub-toxic concentration (6.25 μg/cm2), all types of MWCNTs treated for 12 h significantly induced the activation of b.End3 cells, as evidenced by the elevated VCAM-1 release and THP-1 adhesion. Compared with S-MWCNT, L-MWCNT significantly promoted endothelial cell activation. L-MWCNT and L-MWCNT-COOH activated b.End3 cells to a similar extent. Furthermore, treatment with S-MWCNT, L-MWCNT and L-MWCNT-COOH increased NLRP3 expression in a time-dependent manner at 6.25 μg/cm2. Compared with S-MWCNT, cells treated with L-MWCNT for 4 h and 12 h exhibited significantly increased protein expressions of NLRP3. However, no significant differences were detected in the level of NLRP3 protein in cells treated with L-MWCNT and L-MWCNT-COOH. CONCLUSION Compared with the surface chemical modification, length changes of MWCNTs exerted more influence on endothelial cell activation, which may be related to the activation of NLRP3 inflammasome. Our study contributes further understanding of the impact of MWCNTs on endothelial cells, which may have implications for the improvement of safety evaluation of MWCNTs.
Collapse
Affiliation(s)
- 杰 申
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 迪 杨
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 梦圆 陈
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 新彪 郭
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
21
|
Advances in Electrochemical and Acoustic Aptamer-Based Biosensors and Immunosensors in Diagnostics of Leukemia. BIOSENSORS-BASEL 2021; 11:bios11060177. [PMID: 34073054 PMCID: PMC8227535 DOI: 10.3390/bios11060177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Early diagnostics of leukemia is crucial for successful therapy of this disease. Therefore, development of rapid, sensitive, and easy-to-use methods for detection of this disease is of increased interest. Biosensor technology is challenged for this purpose. This review includes a brief description of the methods used in current clinical diagnostics of leukemia and provides recent achievements in sensor technology based on immuno- and DNA aptamer-based electrochemical and acoustic biosensors. The comparative analysis of immuno- and aptamer-based sensors shows a significant advantage of DNA aptasensors over immunosensors in the detection of cancer cells. The acoustic technique is of comparable sensitivity with those based on electrochemical methods; moreover, it is label-free and provides straightforward evaluation of the signal. Several examples of sensor development are provided and discussed.
Collapse
|
22
|
Sidiropoulou S, Papadaki S, Tsouka AN, Koutsaliaris IK, Chantzichristos VG, Pantazi D, Paschopoulos ME, Hansson KM, Tselepis AD. The Effect of Platelet-Rich Plasma on Endothelial Progenitor Cell Functionality. Angiology 2021; 72:776-786. [PMID: 33678047 DOI: 10.1177/0003319721998895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Platelets mediate circulating endothelial progenitor cell (EPC) recruitment and maturation, participating in vascular repair, however the underlying mechanism(s) remain unclear. We investigated the effect of platelet-rich plasma (PRP) on the functionality of CD34+-derived late-outgrowth endothelial cells (OECs) in culture. Confluent OECs were coincubated with PRP under platelet aggregation (with adenosine diphosphate; ADP) and nonaggregation conditions, in the presence/absence of the reversible P2Y12 platelet receptor antagonist ticagrelor. Outgrowth endothelial cell activation was evaluated by determining prostacyclin (PGI2) and monocyte chemoattractant protein-1 (MCP-1) release and intercellular adhesion molecule-1 (ICAM-1) membrane expression. Similar experiments were performed using human umbilical vein endothelial cells (HUVECs). Platelet-rich plasma increased ICAM-1 expression and PGI2 and MCP-1 secretion compared with autologous platelet-poor plasma, whereas ADP-aggregated platelets in PRP did not exhibit any effect. Platelet-rich plasma pretreated with ticagrelor prior to activation with ADP increased all markers to a similar extent as PRP. Similar results were obtained using HUVECs. In conclusion, PRP induces OEC activation, a phenomenon not observed when platelets are aggregated with ADP. Platelet inhibition with ticagrelor restores the PRP capability to activate OECs. Since EPC activation is important for endothelial regeneration and angiogenesis, we suggest that agents inhibiting platelet aggregation, such as ticagrelor, may promote platelet-EPC interaction and EPC function.
Collapse
Affiliation(s)
- Sofia Sidiropoulou
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Styliani Papadaki
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Aikaterini N Tsouka
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Ioannis K Koutsaliaris
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Vasileios G Chantzichristos
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Despoina Pantazi
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| | - Minas E Paschopoulos
- Department of Obstetrics and Gynecology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Kenny M Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
23
|
Zhang J, Tecson KM, McCullough PA. Role of endothelial cell receptors in the context of SARS-CoV-2 infection (COVID-19). Proc (Bayl Univ Med Cent) 2021; 34:262-268. [PMID: 33664552 PMCID: PMC7852287 DOI: 10.1080/08998280.2021.1874231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endothelial cell (EC) dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy, and the angiotensin-converting enzyme 2 (ACE2) receptor plays a role in EC dysfunction in COVID-19. To expand the understanding of the role of the ACE2 receptor relative to EC dysfunction, this review addresses (1) tissue distribution of the ACE2 protein and its mRNA expression in humans, (2) susceptibility of the capillary ECs to SARS-CoV-2 infection, and (3) the role of EC dysfunction relevant to ACE2 and nuclear factor-κB in COVID-19.
Collapse
Affiliation(s)
- Jun Zhang
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| | - Kristen M Tecson
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| | - Peter A McCullough
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas.,Division of Cardiology, Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas.,Division of Cardiology, Department of Internal Medicine, Baylor Jack and Jane Hamilton Heart and Vascular Hospital, Dallas, Texas
| |
Collapse
|
24
|
Salvatore T, Pafundi PC, Galiero R, Rinaldi L, Caturano A, Vetrano E, Aprea C, Albanese G, Di Martino A, Ricozzi C, Imbriani S, Sasso FC. Can Metformin Exert as an Active Drug on Endothelial Dysfunction in Diabetic Subjects? Biomedicines 2020; 9:biomedicines9010003. [PMID: 33375185 PMCID: PMC7822116 DOI: 10.3390/biomedicines9010003] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular mortality is a major cause of death among in type 2 diabetes (T2DM). Endothelial dysfunction (ED) is a well-known important risk factor for the development of diabetes cardiovascular complications. Therefore, the prevention of diabetic macroangiopathies by preserving endothelial function represents a major therapeutic concern for all National Health Systems. Several complex mechanisms support ED in diabetic patients, frequently cross-talking each other: uncoupling of eNOS with impaired endothelium-dependent vascular response, increased ROS production, mitochondrial dysfunction, activation of polyol pathway, generation of advanced glycation end-products (AGEs), activation of protein kinase C (PKC), endothelial inflammation, endothelial apoptosis and senescence, and dysregulation of microRNAs (miRNAs). Metformin is a milestone in T2DM treatment. To date, according to most recent EASD/ADA guidelines, it still represents the first-choice drug in these patients. Intriguingly, several extraglycemic effects of metformin have been recently observed, among which large preclinical and clinical evidence support metformin’s efficacy against ED in T2DM. Metformin seems effective thanks to its favorable action on all the aforementioned pathophysiological ED mechanisms. AMPK pharmacological activation plays a key role, with metformin inhibiting inflammation and improving ED. Therefore, aim of this review is to assess metformin’s beneficial effects on endothelial dysfunction in T2DM, which could preempt development of atherosclerosis.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, I-80138 Naples, Italy;
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Concetta Aprea
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Carmen Ricozzi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (L.R.); (A.C.); (E.V.); (C.A.); (G.A.); (A.D.M.); (C.R.); (S.I.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
25
|
Quick S, Moss J, Rajani RM, Williams A. A Vessel for Change: Endothelial Dysfunction in Cerebral Small Vessel Disease. Trends Neurosci 2020; 44:289-305. [PMID: 33308877 DOI: 10.1016/j.tins.2020.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/24/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023]
Abstract
The blood vessels of the brain are lined with endothelial cells and it has been long known that these help to regulate blood flow to the brain. However, there is increasing evidence that these cells also interact with the surrounding brain tissue. These interactions change when the endothelial cells become dysfunctional and have an impact in diseases such as cerebral small vessel disease, the leading cause of vascular dementia. In this review, we focus on what endothelial dysfunction is, what causes it, how it leads to surrounding brain pathology, how researchers can investigate it with current models, and where this might lead in the future for dementia therapies.
Collapse
Affiliation(s)
- Sophie Quick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jonathan Moss
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rikesh M Rajani
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
26
|
Davydkin IL, Kuzmina TP, Naumova KV, Khayretdinov RK, Danilova OE, Stepanova TY, Osadchuk AM, Mordvinova EV. Endothelial dysfunction in patients with lymphoproliferative disorders and its changes in the course of polychemotherapy. RUSSIAN OPEN MEDICAL JOURNAL 2020. [DOI: 10.15275/rusomj.2020.0309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The article is dedicated to contemporary views on the change of endothelial function in the patients with lymphoproliferative disorders prior to, and in the process of, chemotherapeutic treatment. Considering that possibilities of standard examination do not always help identifying subclinical endothelial dysfunction, it is necessary to use specific methods, in particular, to determine the levels of endothelin-1 and vascular endothelial growth factor to monitor endothelial function. The objective of this review is to identify problems and prospects for recognizing early subclinical changes of endothelial function in the patients with lymphoproliferative disorders before and after chemotherapy. Assessing presence and severity of endothelial dysfunction may be useful for determining subclinical stages of cardiovascular damage, stratifying the risk of the patients with confirmed cardiovascular disease, and reducing the likelihood of cardio- and endotheliotoxic effects in patients long after chemotherapy. That is why early detection and immediate therapy of cardiovascular toxicity is currently the most important task in the patients with lymphoproliferative disorders, receiving chemotherapy.
Collapse
|
27
|
Tang J, Cheng W, Gao J, Li Y, Yao R, Rothman N, Lan Q, Campen MJ, Zheng Y, Leng S. Occupational exposure to carbon black nanoparticles increases inflammatory vascular disease risk: an implication of an ex vivo biosensor assay. Part Fibre Toxicol 2020; 17:47. [PMID: 32993720 PMCID: PMC7523398 DOI: 10.1186/s12989-020-00378-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Among manufactured or engineered nanoparticles, carbon black (CB) has largest production worldwide and is also an occupational respiratory hazard commonly seen in rubber industry. Few studies have assessed the risk for cardiovascular disease in carbon black exposed populations. An endothelial biosensor assay was used to quantify the capacity of sera from 82 carbon black packers (CBP) and 106 non-CBPs to induce endothelial cell activation ex vivo. The mediation effect of circulatory proinflammatory factors on the association between carbon black exposure and endothelial cell activation was assessed and further validated using in vitro intervention experiments. Results The average elemental carbon level inside carbon black bagging facilities was 657.0 μg/m3, which was 164-fold higher than that seen in reference areas (4.0 μg/m3). A global index was extracted from mRNA expression of seven candidate biosensor genes using principal component analysis and used to quantify the magnitude of endothelial cell activation. This global index was found to be significantly altered in CBPs compared to non-CBPs (P < 0.0001), however this difference did not vary by smoking status (P = 0.74). Individual gene analyses identified that de novo expression of key adhesion molecules (e.g., ICAM and VCAM) and chemotactic factors (e.g., CCL2, CCL5, and CXCL8) responsible for the recruitment of leukocytes was dramatically induced in CBPs with CXCL8 showing the highest fold of induction (relative quantification = 9.1, P < 0.0001). The combination of mediation analyses and in vitro functional validation confirmed TNF-α, IL-1β, and IL-6 as important circulatory factors mediating the effects of carbon black exposure on endothelial cell activation responses. Conclusions Inflammatory mediators in sera from CBPs may bridge carbon black exposure and endothelial cell activation response assessed ex vivo. CBPs may have elevated risk for cardiovascular diseases when comorbidity exists. Our study may serve as a benchmark for understanding health effects of engineered carbon based nanoparticles with environmental and occupational health relevance.
Collapse
Affiliation(s)
- Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Wenting Cheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Jinling Gao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Yanting Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Ruyong Yao
- Department of Central Laboratory, Affiliated Hospital of Medical College of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, 87131, USA
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, China.
| | - Shuguang Leng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, China. .,Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA. .,Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
28
|
Chen YF, Stampley JE, Irving BA, Dugas TR. Chronic Nucleoside Reverse Transcriptase Inhibitors Disrupt Mitochondrial Homeostasis and Promote Premature Endothelial Senescence. Toxicol Sci 2020; 172:445-456. [PMID: 31545371 DOI: 10.1093/toxsci/kfz203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Combination antiretroviral therapy (cART) has improved the life expectancy of HIV patients, thus increasing the number of people living with HIV (PLWH). However, cardiovascular diseases (CVD) are now one of the most prevalent causes of death among PLWH. Nucleoside reverse transcriptase inhibitors (NRTIs) are the backbone of cART, and the emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) coformulation is commonly used. In prior studies, acute NRTI treatment-induced endothelial dysfunction, increased reactive oxygen species production, and mitophagic activity, suggesting that mitochondrial dysfunction may be critical to NRTI-induced endothelial dysfunction. Mitochondrial dysfunction plays a causal role in endothelial senescence, whereas premature endothelial senescence can promote the development of CVD. We hypothesize that for chronic NRTI treatment, a disruption in mitochondrial homeostasis leads to premature endothelial senescence and predisposes PLWH to CVD. We used human aortic endothelial cells (HAEC) and HIV-1 transgenic (Tg26) mice to test the interrelationship between mitochondrial and vascular dysfunction after chronic NRTI treatment in vitro and in vivo. Mitochondrial DNA copy number was decreased in late-passage HAEC treated with NRTIs, and senescence-associated β-galactosidase accumulation was elevated. In late-passage HAEC, NRTIs decreased the activity of Parkin-mediated mitophagy. In Tg26 mice treated with FTC, plasma nitrite levels were decreased. Endothelium-dependent vasodilation in NRTI-treated Tg26 mice was also reduced. Our work suggests that long-term use of NRTI may disrupt mitochondrial homeostasis, induce premature endothelial senescence, and impair vascular function.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana 70808
| | - James E Stampley
- College of Human Sciences and Education, LSU School of Kinesiology, Baton Rouge, Louisiana 70803
| | - Brian A Irving
- College of Human Sciences and Education, LSU School of Kinesiology, Baton Rouge, Louisiana 70803.,Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808
| | - Tammy R Dugas
- Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, Louisiana 70808
| |
Collapse
|
29
|
Fink AF, Ciliberti G, Popp R, Sirait-Fischer E, Frank AC, Fleming I, Sekar D, Weigert A, Brüne B. IL27Rα Deficiency Alters Endothelial Cell Function and Subverts Tumor Angiogenesis in Mammary Carcinoma. Front Oncol 2019; 9:1022. [PMID: 31637217 PMCID: PMC6787910 DOI: 10.3389/fonc.2019.01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
IL-27 regulates inflammatory diseases by exerting a pleiotropic impact on immune cells. In cancer, IL-27 restricts tumor growth by acting on tumor cells directly, while its role in the tumor microenvironment is still controversially discussed. To explore IL-27 signaling in the tumor stroma, we used a mammary carcinoma syngraft approach in IL27Rα-deficient mice. Tumor growth in animals lacking IL27Rα was markedly reduced. We noticed a decrease in immune cell infiltrates, enhanced tumor cell death, and fibroblast accumulation. However, most striking changes pertain the tumor vasculature. Tumors in IL27Rα-deficient mice were unable to form functional vessels. Blocking IL-27-STAT1 signaling in endothelial cells in vitro provoked an overshooting migration/sprouting of endothelial cells. Apparently, the lack of the IL-27 receptor caused endothelial cell hyper-activation via STAT1 that limited vessel maturation. Our data reveal a so far unappreciated role of IL-27 in endothelial cells with importance in pathological vessel formation.
Collapse
Affiliation(s)
- Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Giorgia Ciliberti
- Faculty of Medicine, Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt, Germany
| | - Rüdiger Popp
- Faculty of Medicine, Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt, Germany
| | - Evelyn Sirait-Fischer
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ann-Christin Frank
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ingrid Fleming
- Faculty of Medicine, Institute for Vascular Signalling, Goethe-University Frankfurt, Frankfurt, Germany
| | - Divya Sekar
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
30
|
Host's Endogenous Caveolin-1 Expression is Downregulated in the Lung During Sepsis to Promote Cytoprotection. Shock 2019; 50:199-208. [PMID: 28957875 DOI: 10.1097/shk.0000000000001005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study focuses on the profile of "endogeneous" caveolin-1 protein in septic lung (CLP model).Caveolin-1, CD25, pP38, pAkt, and 14-3-3b protein expression profiles were studied using flow cytometry and immunohistochemistry 6, 12, 24, 36, and 48 h after sepsis induction. Cell viability was determined by 7-AAD staining and fibrosis by Masson trichrome stain. The effect of protein C zymogen concentrate (PC) on caveolin-1 expression was also investigated given that PC, once dissociated from caveolin-1, elicits a PAR-1-mediated protective signaling by forming a complex with endothelial protein C receptor (EPCR).CLP treatment increased lung inflammation and cell apoptosis. Fibrosis was apparent in vessels and alveoli. Caveolin-1+ cells presented reduced protein expression, especially 12 h post-CLP (P = 0.002). Immunohistochemistry revealed caveolin-1 positive expression mainly in regions with strong inflammatory reaction. Early induction of pP38+ cell population (P = 0.014) and gradual increase of CD25+ cells were also observed. Alternations in 14-3-3b expression related to apoptosis were apparent and accompanied by increased AKT phosphorylation activity late during sepsis progression.After PC administration, cell apoptosis was reduced (P = 0.004) and both the percentile and expression intensity of caveolin-1 positive cells were compromised (P = 0.009 and P = 0.027, respectively). 14-3-3b, CD25, and pP38 protein expression were decreased (P = 0.014, P = 0.004, and P = 0.007, respectively), whereas pAkt expression was induced (P = 0.032).The observed decline of endogenous caveolin-1 protein expression during sepsis implies its involvement in host's cytoprotective reaction either directly, by controlling caveolae population to decrease bacterial burden, or indirectly via regulating 14-3-3b-dependent apoptosis and EPCR-PAR-1-dependent protective signaling.
Collapse
|
31
|
A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 2019; 220:119396. [PMID: 31398556 DOI: 10.1016/j.biomaterials.2019.119396] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022]
Abstract
Alterations of the microbial composition in the gut and the concomitant dysregulation of the mucosal immune response are associated with the pathogenesis of opportunistic infections, chronic inflammation, and inflammatory bowel disease. To create a platform for the investigation of the underlying mechanisms, we established a three-dimensional microphysiological model of the human intestine. This model resembles organotypic microanatomical structures and includes tissue resident innate immune cells exhibiting features of mucosal macrophages and dendritic cells. The model displays the physiological immune tolerance of the intestinal lumen to microbial-associated molecular patterns and can, therefore, be colonised with living microorganisms. Functional studies on microbial interaction between probiotic Lactobacillus rhamnosus and the opportunistic pathogen Candida albicans show that pre-colonization of the intestinal lumen of the model by L. rhamnosus reduces C. albicans-induced tissue damage, lowers its translocation, and limits fungal burden. We demonstrate that microbial interactions can be efficiently investigated using the in vitro model creating a more physiological and immunocompetent microenvironment. The intestinal model allows a detailed characterisation of the immune response, microbial pathogenicity mechanisms, and quantification of cellular dysfunction attributed to alterations in the microbial composition.
Collapse
|
32
|
Vijay V, Miller R, Vue GS, Pezeshkian MB, Maywood M, Ast AM, Drusbosky LM, Pompeu Y, Salgado AD, Lipten SD, Geddes T, Blenc AM, Ge Y, Ostrov DA, Cogle CR, Madlambayan GJ. Interleukin-8 blockade prevents activated endothelial cell mediated proliferation and chemoresistance of acute myeloid leukemia. Leuk Res 2019; 84:106180. [PMID: 31299413 DOI: 10.1016/j.leukres.2019.106180] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
One of the greatest challenges in treating acute myeloid leukemia (AML) is chemotherapy refractory disease. Previously, we demonstrated a novel mechanism whereby AML-induced endothelial cell (EC) activation leads to subsequent leukemia cell adherence, quiescence and chemoresistance, identifying activated ECs as potential mediators of relapse. We now show mechanistically that EC activation induces the secretion of interleukin-8 (IL-8) leading to significant expansion of non-adherent AML cells and resistance to cytarabine (Ara-C). Through crystallography and computational modeling, we identified a pocket within IL-8 responsible for receptor binding, screened for small molecules that fit within this pocket, and blocked IL-8 induced proliferation and chemo-protection of AML cells with a hit compound. Results from this study show a new therapeutic strategy for targeting the sanctuary of an activated leukemia microenvironment.
Collapse
Affiliation(s)
- Vindhya Vijay
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Regan Miller
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Gau Shoua Vue
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | | | - Michael Maywood
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Allison M Ast
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Leylah M Drusbosky
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuri Pompeu
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alan D Salgado
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel D Lipten
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Timothy Geddes
- Department of Radiation Oncology, William Beaumont Health System, Royal Oak, MI, USA
| | - Ann Marie Blenc
- Department of Hematopathology, William Beaumont Health System, Royal Oak, MI, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
33
|
Venkatesulu BP, Sanders KL, Hsieh C, Kim BK, Krishnan S. Biomarkers of radiation-induced vascular injury. Cancer Rep (Hoboken) 2019; 2:e1152. [PMID: 32721134 PMCID: PMC7941417 DOI: 10.1002/cnr2.1152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Cancer survivorship has thrown the spotlight on the incidence of nonmalignant chronic diseases in cancer patients. Endothelial injury is increasingly recognized as a consequence of cancer treatment, particularly after radiation therapy (RT). This review is to provide a current understanding on the pathophysiological mechanisms and predictive biomarkers of radiation-induced vascular injury. RECENT FINDINGS Radiation directly impacts vasculature by causing endothelial apoptosis and senescence, and alterations in normal homeostasis. This altered milieu at the endothelial surface may contribute to a systemic chronic inflammatory state that is superimposed upon the cascade of normal senescence processes leading to acceleration of age-related disorders, atherosclerosis, and chronic fibrosis. Vasculature imaging, blood-based or cell-component biomarkers, and signatures of genomics, proteomics, metabolomics, and radiomics are potential tools for detection of vascular damage after irradiation. CONCLUSIONS Development of a valid prediction model by combining an array of imaging tools, blood-based biomarkers, coupled with novel predictors like exosomes and metabolic degradation products can serve to identify RT-induced vascular injury early for subsequent introduction of newer therapeutic approaches to counter radiation morbidity.
Collapse
Affiliation(s)
- Bhanu Prasad Venkatesulu
- Departments of Experimental Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
| | - Keith L. Sanders
- Departments of Experimental Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
| | - Cheng‐En Hsieh
- Departments of Experimental Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- The University of Texas MD Anderson Cancer Center‐UT Health Graduate School of Biomedical SciencesHoustonTexas
- Departments of Radiation Oncology, Chang Gung Memorial HospitalLinkou and Chang Gung UniversityTaoyuanTaiwan, ROC
| | - Byung Kyu Kim
- Departments of Experimental Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- The University of Texas MD Anderson Cancer Center‐UT Health Graduate School of Biomedical SciencesHoustonTexas
| | - Sunil Krishnan
- Departments of Experimental Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- Radiation OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexas
- The University of Texas MD Anderson Cancer Center‐UT Health Graduate School of Biomedical SciencesHoustonTexas
| |
Collapse
|
34
|
Armaroli G, Verweyen E, Pretzer C, Kessel K, Hirono K, Ichida F, Okabe M, Cabral DA, Foell D, Brown KL, Kessel C. Monocyte-Derived Interleukin-1β As the Driver of S100A12-Induced Sterile Inflammatory Activation of Human Coronary Artery Endothelial Cells: Implications for the Pathogenesis of Kawasaki Disease. Arthritis Rheumatol 2019; 71:792-804. [PMID: 30447136 DOI: 10.1002/art.40784] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Kawasaki disease (KD) is an acute vasculitis of childhood, predominantly affecting the coronary arteries. S100A12, a granulocyte-derived agonist of both the receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR-4), is strongly up-regulated in KD. This study was undertaken to investigate the potential contributions of S100A12 to the pathogenesis of KD. METHODS Serum samples from patients with KD (n = 30) at different stages pre- and post-intravenous immunoglobulin (IVIG) treatment were analyzed for the expression of S100A12, cytokines, chemokines, and soluble markers of endothelial cell activation. Primary human coronary artery endothelial cells (HCAECs) were analyzed for responsiveness to direct stimulation with S100A12 or lipopolysaccharide (LPS), as assessed by real-time quantitative reverse transcription-polymerase chain reaction analysis of cytokine and endothelial cell adhesion molecule messenger RNA expression. Alternatively, HCAECs were cultured in conditioned medium obtained from primary human monocytes that were stimulated with LPS or S100A12 in the absence or presence of IVIG or cytokine antagonists. RESULTS In the serum of patients with KD, pretreatment S100A12 levels were associated with soluble vascular cell adhesion molecule 1 titers in the course of IVIG therapy (rs = -0.6, P = 0.0003). Yet, HCAECs were not responsive to direct S100A12 stimulation, despite the presence of appropriate receptors (RAGE, TLR-4). HCAECs did, however, respond to supernatants obtained from S100A12-stimulated primary human monocytes, as evidenced by the gene expression of inflammatory cytokines and adhesion molecules. This response was strictly dependent on interleukin-1β (IL-1β) signaling (P < 0.001). CONCLUSION In its role as a highly expressed mediator of sterile inflammation in KD, S100A12 appears to activate HCAECs in an IL-1β-dependent manner. These data provide new mechanistic insights into the contributions of S100A12 and IL-1β to disease pathogenesis, and may therefore support current IL-1-targeting studies in the treatment of patients with KD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mako Okabe
- University of Toyama, Toyama City, Japan
| | - David A Cabral
- University of British Columbia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Dirk Foell
- University Children's Hospital, Munster, Germany
| | - Kelly L Brown
- University of British Columbia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
35
|
D'Andrea S, Barbonetti A, Martorella A, Necozione S, Francavilla F, Francavilla S. Effect of prolonged treatment with phosphodiesterase-5-inhibitors on endothelial dysfunction in vascular diseases and vascular risk conditions: A systematic review analysis and meta-analysis of randomized double-blind placebo-controlled trials. Int J Clin Pract 2019; 73:e13296. [PMID: 30471172 DOI: 10.1111/ijcp.13296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To challenge the argument that continuous use of phosphodiesterase-5-selective inhibitors may reduce endothelial cell dysfunction in patients with vascular diseases or vascular risk conditions. DESIGN This study included systematic reviews and meta-analysis of randomized double-blind placebo-controlled trials dealing with the prolonged use of phosphodiesterase-5-selective inhibitors. The risk of bias and quality of trials were assessed by the Cochrane algorithm. Fixed or random effect models, standardised mean differences and heterogeneity were estimated in the study. DATA SOURCES Systematic search for randomized double-blind placebo-controlled trials was done in PubMed, Scopus, CINAHL, Science direct and the Cochrane Library. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Randomized double-blind placebo-controlled trials reporting measures of endothelial cell dysfunction and/or endothelial cell activation were included. RESULTS On the whole, 469 subjects were allocated to the phosphodiesterase-5-selective inhibitor group, while 463 were assigned to the placebo group in 13 randomized double-blind placebo-controlled trials. Flow-mediated dilation of the brachial artery was found to improve after the administration of phosphodiesterase-5-selective inhibitors (P < 0.0001). The results were questioned by the elevated and uncorrectable heterogeneity (I2 = 92%) and the asymmetry of the funnel plot suggested a publication bias. Phosphodiesterase-5-selective inhibitors have no effect on endothelial cell dysfunction, as assessed in the resistance vessels by digital arterial tonometry. The blood level of endothelin-1 was observed to be decreased in phosphodiesterase-5-selective inhibitors arm (P = 0.03), although the effect disappeared once the publication bias and heterogeneity were corrected. The effect of phosphodiesterase-5-selective inhibitors on biomarkers of endothelial cell activation was found to be inconsistent. CONCLUSIONS The results on the benefits of a prolonged use of phosphodiesterase-5-selective inhibitors, with the objective of lowering endothelial cell dysfunction in patients with vascular diseases or vascular risk conditions are not convincing. This is because of the overall low quality of evidence, giving an unclear scientific support to this treatment. Systematic review registration: PROSPERO registration: CRD42017055399.
Collapse
Affiliation(s)
- Settimio D'Andrea
- Department of Life, Health and Environmental Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| | - Arcangelo Barbonetti
- Department of Life, Health and Environmental Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| | - Alessio Martorella
- Department of Life, Health and Environmental Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| | | | - Felice Francavilla
- Department of Life, Health and Environmental Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| | - Sandro Francavilla
- Department of Life, Health and Environmental Sciences, Andrology Unit, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
36
|
Kutryb-Zajac B, Mierzejewska P, Sucajtys-Szulc E, Bulinska A, Zabielska MA, Jablonska P, Serocki M, Koszalka P, Milczarek R, Jasztal A, Bartoszewski R, Chlopicki S, Slominska EM, Smolenski RT. Inhibition of LPS-stimulated ecto-adenosine deaminase attenuates endothelial cell activation. J Mol Cell Cardiol 2019; 128:62-76. [PMID: 30641086 DOI: 10.1016/j.yjmcc.2019.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
Vascular inflammation is an important factor in the pathophysiology of cardiovascular diseases, such as atherosclerosis. Changes in the extracellular nucleotide and in particular adenosine catabolism may alter a chronic inflammation and endothelial activation. This study aimed to evaluate the relation between vascular ecto-adenosine deaminase (eADA) activity and endothelial activation in humans and to analyze the effects of LPS-mediated inflammation on this activity as well as mechanisms of its increase. Moreover, we investigated a therapeutic potential of ADA inhibition by deoxycofromycin (dCF) for endothelial activation. We demonstrated a positive correlation of vascular eADA activity and ADA1 mRNA expression with endothelial activation parameters in humans with atherosclerosis. The activation of vascular eADA was also observed under LPS stimulation in vivo along with endothelial activation, an increase in markers of inflammation and alterations in the lipid profile of a rat model. Ex vivo and in vitro studies on human specimen demonstrated that at an early stage of vascular pathology, eADA activity originated from activated endothelial cells, while at later stages also from an inflammatory infiltrate. We proposed that LPS-stimulated increase in endothelial adenosine deaminase activity could be a result of IL-6/JAK/STAT pathway activation, since the lack of IL-6 in mice was associated with lower vascular and plasma eADA activities. Furthermore, the inhibitors of JAK/STAT pathway decreased LPS-stimulated adenosine deaminase activity in endothelial cells. We demonstrated that cell surface eADA activity could be additionally regulated by transcytosis pathways, as exocytosis inhibitors including lipid raft inhibitor, methyl-β-cyclodextrin decreased LPS-induced eADA activity. This suggests that cholesterol-dependent protein externalization mediated by lipid rafts could be an important factor in the eADA increase. Moreover, endocytosis inhibitors and exocytosis activators increased this activity on the cell surface. Furthermore, the inhibition of adenosine deaminase in endothelial cells in vitro attenuated LPS-mediated IL-6 release and soluble ICAM-1 and VCAM-1 concentration in the incubation medium through the restoration of the extracellular adenosine pool and adenosine receptor-dependent pathways. This study demonstrated that the vascular endothelial eADA activity remains under control of inflammatory mediators acting through JAK/STAT pathway that could be further modified by dyslipidemic-dependent exocytosis and transcytosis pathways. Inhibition of eADA blocked endothelial activation suggesting a crucial role of this enzyme in the control of vascular inflammation. This supports the concept of eADA targeted vascular protection therapy.
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Elzbieta Sucajtys-Szulc
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, 7 Debinki St., 80-952 Gdansk, Poland
| | - Alicja Bulinska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; Department of Physiology, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107 St., 80-416 Gdansk, Poland
| | - Patrycja Koszalka
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Ryszard Milczarek
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107 St., 80-416 Gdansk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland.
| |
Collapse
|
37
|
Essential Role of Endothelial MCPIP in Vascular Integrity and Post-Ischemic Remodeling. Int J Mol Sci 2019; 20:ijms20010172. [PMID: 30621250 PMCID: PMC6337340 DOI: 10.3390/ijms20010172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 11/17/2022] Open
Abstract
MCP-1-induced protein (MCPIP, also known as Zc3h12a or Regnase-1), a newly identified suppressor of cytokine signaling, is expressed in endothelial cells (ECs). To investigate the role of endothelial MCPIP in vascular homeostasis and function, we deleted the MCPIP gene specifically in ECs using the Cre-LoxP system. EC-specific MCPIP deletion resulted in systemic inflammation, increased vessel permeability, edema, thrombus formation, and premature death in mice. Serum levels of cytokines, chemokines, and biomarkers of EC dysfunction were significantly elevated in these mice. Upon lipopolysaccharide (LPS) challenge, mice with EC-specific MCPIP depletion were highly susceptible to LPS-induced death. When subjected to ischemia, these mice showed defective post-ischemic angiogenesis and impaired blood flow recovery in hind limb ischemia. In aortic ring cultures, the MCPIP-deficient ECs displayed significantly impaired vessel sprouting and tube elongation. Mechanistically, silencing of MCPIP by small interfering RNAs in cultured ECs enhanced NF-κΒ activity and dysregulated synthesis of microRNAs linked with elevated cytokines and biomarkers of EC dysfunction. Collectively, these results establish that constitutive expression of MCPIP in ECs is essential to maintaining endothelial homeostasis and function by serving as a key negative feedback regulator that keeps the inflammatory signaling suppressed.
Collapse
|
38
|
Kutryb-Zajac B, Koszalka P, Slominska EM, Smolenski RT. The effects of pro- and anti-atherosclerotic factors on intracellular nucleotide concentration in murine endothelial cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:645-652. [PMID: 30587074 DOI: 10.1080/15257770.2018.1498513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endothelial cell activation and dysfunction could lead to endothelial injury that is an important factor in the development of vascular diseases. Vascular injury is strongly associated with disturbed endothelial cell energetics and pyridine nucleotide pool. This study aimed to evaluate the effects of inflammatory stimuli (IL-6, LPS), uric acid, hyperglycemia, fatty acids, flavonoids, statins and nonsteroidal anti-inflammatory drugs on cellular concentration of adenosine triphosphate (ATP), adenosine diphosphate (ADP) and nicotinamide adenine dinucleotide (NAD+) in cultured endothelial cells. Murine-immortalized heart endothelial cells (H5V cells) were treated with different concentrations of pro- and anti-atherosclerotic factors and intracellular concentration of nucleotides were measured using high performance liquid chromatography. Intracellular ATP concentration in H5V cells was not changed by inflammatory stimuli (IL-6 and LPS), uric acid, glucose, atorvastatin, acetylsalicylic acid, monounsaturated and polyunsaturated fatty acids. Only high concentration of palmitic acid (1 mM) and kaempferol (>0.1 mM) decreased intracellular ATP concentration. The concentration of intracellular ADP has not been altered by any of tested compounds. In turn, intracellular NAD+ pool was modified only by polyunsaturated fatty acids and atorvastatin. Linoleic acid, docosahexaenoic acid and atorvastatin increased cellular NAD+ concentration. Tested compounds have a small influence on murine endothelial cell energetics, but polyunsaturated fatty acids and atorvastatin increased intracellular NAD+ concentration that could be an important protective mechanism against endothelial cell injury.
Collapse
Affiliation(s)
| | - Patrycja Koszalka
- b Department of Cell Biology, Intercollegiate Faculty of Biotechnology , Medical University of Gdansk , Gdansk , Poland
| | - Ewa M Slominska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - Ryszard T Smolenski
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| |
Collapse
|
39
|
Kamtchum-Tatuene J, Mwandumba H, Al-Bayati Z, Flatley J, Griffiths M, Solomon T, Benjamin L. HIV is associated with endothelial activation despite ART, in a sub-Saharan African setting. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 6:e531. [PMID: 30697583 PMCID: PMC6340379 DOI: 10.1212/nxi.0000000000000531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/16/2018] [Indexed: 11/15/2022]
Abstract
Objective To study the relationship between endothelial dysfunction, HIV infection, and stroke in Malawians. Methods Using a cross-sectional design, we measured plasma levels of intercellular adhesion molecule-1 (ICAM-1), plasminogen activator inhibitor-1 (PAI-1), vascular endothelial growth factor (VEGF), and soluble thrombomodulin (sTM) in stroke patients and controls, stratified by HIV status. These biomarkers were measured using ELISA. After dichotomization, each biomarker was used as the dependent variable in a multivariable logistic regression model. Primary independent variables included HIV and stroke status. Adjustment variables were age, sex, hypertension, diabetes mellitus, tobacco and alcohol consumption, personal/family history of stroke, antiretroviral therapy status, and hypercholesterolemia. Results Sixty-one stroke cases (19 HIV+) and 168 controls (32 HIV+) were enrolled. The median age was 55 years (38.5–65.0) for controls and 52 years (38.0–73.0) for cases (p = 0.38). The median CD4+ T-cell count was 260.1 cells/mm3 (156.3–363.9) and 452 cells/mm3 (378.1–527.4) in HIV-infected cases and controls, respectively. HIV infection was independently associated with high levels of ICAM-1 (OR = 3.6, 95% CI: 1.3–10.6, p = 0.018) in controls but not in stroke cases even after excluding patients with a viral load >1,000 RNA copies/mL (OR = 4.1, 95% CI: 1.3–13.1, p = 0.017). There was no association between the clinical profiles of HIV-positive controls or HIV-positive stroke and high levels of PAI-1, VEGF, and sTM. Conclusions HIV infection is associated with endothelial activation despite antiretroviral treatment. Our findings underscore the need for larger clinical cohorts to better understand the contribution of this perturbation of the endothelial function to the increasing burden of cardiovascular diseases in sub-Saharan Africa.
Collapse
Affiliation(s)
- Joseph Kamtchum-Tatuene
- Institute of Infection and Global Health (J.K.-T., Z.A.-B., J.F., M.G., T.S., L.B.), University of Liverpool; Malawi-Liverpool-Wellcome Trust Clinical Research Programme (J.K.-T., H.M.), University of Malawi College of Medicine, Blantyre; Department of Clinical Sciences (H.M.), Liverpool School of Tropical Medicine, United Kingdom
| | - Henry Mwandumba
- Institute of Infection and Global Health (J.K.-T., Z.A.-B., J.F., M.G., T.S., L.B.), University of Liverpool; Malawi-Liverpool-Wellcome Trust Clinical Research Programme (J.K.-T., H.M.), University of Malawi College of Medicine, Blantyre; Department of Clinical Sciences (H.M.), Liverpool School of Tropical Medicine, United Kingdom
| | - Zaid Al-Bayati
- Institute of Infection and Global Health (J.K.-T., Z.A.-B., J.F., M.G., T.S., L.B.), University of Liverpool; Malawi-Liverpool-Wellcome Trust Clinical Research Programme (J.K.-T., H.M.), University of Malawi College of Medicine, Blantyre; Department of Clinical Sciences (H.M.), Liverpool School of Tropical Medicine, United Kingdom
| | - Janet Flatley
- Institute of Infection and Global Health (J.K.-T., Z.A.-B., J.F., M.G., T.S., L.B.), University of Liverpool; Malawi-Liverpool-Wellcome Trust Clinical Research Programme (J.K.-T., H.M.), University of Malawi College of Medicine, Blantyre; Department of Clinical Sciences (H.M.), Liverpool School of Tropical Medicine, United Kingdom
| | - Michael Griffiths
- Institute of Infection and Global Health (J.K.-T., Z.A.-B., J.F., M.G., T.S., L.B.), University of Liverpool; Malawi-Liverpool-Wellcome Trust Clinical Research Programme (J.K.-T., H.M.), University of Malawi College of Medicine, Blantyre; Department of Clinical Sciences (H.M.), Liverpool School of Tropical Medicine, United Kingdom
| | - Tom Solomon
- Institute of Infection and Global Health (J.K.-T., Z.A.-B., J.F., M.G., T.S., L.B.), University of Liverpool; Malawi-Liverpool-Wellcome Trust Clinical Research Programme (J.K.-T., H.M.), University of Malawi College of Medicine, Blantyre; Department of Clinical Sciences (H.M.), Liverpool School of Tropical Medicine, United Kingdom
| | - Laura Benjamin
- Institute of Infection and Global Health (J.K.-T., Z.A.-B., J.F., M.G., T.S., L.B.), University of Liverpool; Malawi-Liverpool-Wellcome Trust Clinical Research Programme (J.K.-T., H.M.), University of Malawi College of Medicine, Blantyre; Department of Clinical Sciences (H.M.), Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
40
|
Chen Z, Tang M, Huang D, Jiang W, Li M, Ji H, Park J, Xu B, Atchison LJ, Truskey GA, Leong KW. Real-time observation of leukocyte-endothelium interactions in tissue-engineered blood vessel. LAB ON A CHIP 2018; 18:2047-2054. [PMID: 29927449 PMCID: PMC6055475 DOI: 10.1039/c8lc00202a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Human cell-based 3D tissue constructs play an increasing role in disease modeling and drug screening. Inflammation, atherosclerosis, and many autoimmune disorders involve the interactions between immune cells and blood vessels. However, it has been difficult to image and model these interactions under realistic conditions. In this study, we fabricated a perfusion and imaging chamber to allow the real-time visualization of leukocyte perfusion, adhesion, and migration inside a tissue-engineered blood vessel (TEBV). We monitored the elevated monocyte adhesion to the TEBV wall and transendothelial migration (TEM) as the TEBV endothelium was activated by the inflammatory cytokine TNF-α. We demonstrated that treatment with anti-TNF-α or an NF-kB signaling pathway inhibitor would attenuate the endothelium activation and reduce the number of leukocyte adhesion (>74%) and TEM events (>87%) close to the control. As the first demonstration of real-time imaging of dynamic cellular events within a TEBV, this work paves the way for drug screening and disease modeling in TEBV-associated microphysiological systems.
Collapse
Affiliation(s)
- Z Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
de Brito JM, Mauad T, Cavalheiro GF, Yoshizaki K, de André PA, Lichtenfels AJFC, Guimarães ET, Rivero DHRF, Antonangelo L, Oliveira LB, Pedroso LRM, Macchione M, Saldiva PHN. Acute exposure to diesel and sewage biodiesel exhaust causes pulmonary and systemic inflammation in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1223-1233. [PMID: 30045544 DOI: 10.1016/j.scitotenv.2018.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/11/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Biodiesel is a renewable energy source that reduces particle emission, but few studies have assessed its effects. To assess the effects of acute inhalation of two doses (600 and 1200 μg/m3) of diesel (DE) and biodiesel (BD) fuels on the inflammatory pulmonary and systemic profile of mice. Animals were exposed for 2 h in an inhalation chamber inside the Container Laboratory for Fuels. Heart rate, heart rate variability (HRV) and blood pressure were determined 30 min after exposure. After 24 h, we analyzed the lung inflammation using bronchoalveolar lavage fluid (BALF); neutrophil and macrophage quantification in the lung parenchyma was performed, and blood and bone marrow biomarkers as well as receptor of endothelin-A (ET-Ar), receptor of endothelin-B (ET-Br), vascular cell adhesion molecule 1 (VCAM-1), inducible nitric oxide synthase (iNOs) and isoprostane (ISO) levels in the pulmonary vessels and bronchial epithelium were evaluated. HRV increased for BD600, D600 and D1200 compared to filtered air (FA). Both fuels (DE and BD) produced alterations in red blood cells independent of the dose. BALF from the BD600 and BD1200 groups showed an increase in neutrophils compared to those of the FA group. Numeric density of the polymorphonuclear and mononuclear cells was elevated with BD600 compared to FA. In the peribronchiolar vessels, there was an increase in ET-Ar and ET-Br expression following BD600 compared to FA; and there was a reduction in the iNOs expression for BD1200 and the VCAM-1 for D1200 compared to FA. In the bronchial epithelium, there was an increase in ETAr at BD600, ET-Br at two doses (600 and 1200 μg/m3) of DE and BD, iNOs at D600 and VCAM-1 at BD1200 and D600; all groups were compared to the FA group. Acute exposure to DE and BD derived from sewage methyl esters triggered pulmonary and cardiovascular inflammatory alterations in mice.
Collapse
Affiliation(s)
- Jôse Mára de Brito
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Thais Mauad
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Guilherme Franco Cavalheiro
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Kelly Yoshizaki
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Paulo Afonso de André
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Ana Julia F C Lichtenfels
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Eliane Tigre Guimarães
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | | | - Leila Antonangelo
- Department of Pathology, Clinical Laboratory, LIM 03 - Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Luciano Basto Oliveira
- Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, Universidade Federal do Rio de Janeiro UFRJ, Rio de Janeiro, RJ, Brazil; Eco 100 Sustained Development LTDA, Rio de Janeiro, RJ, Brazil.
| | | | - Mariangela Macchione
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Paulo Hilário Nascimento Saldiva
- Department of Pathology, Experimental Air Pollution Laboratory, LIM 05 - Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
42
|
Gonzalez RJ, Lin SA, Bednar B, Connolly B, LaFranco-Scheuch L, Mesfin GM, Philip T, Patel S, Johnson T, Sistare FD, Glaab WE. Vascular Imaging of Matrix Metalloproteinase Activity as an Informative Preclinical Biomarker of Drug-induced Vascular Injury. Toxicol Pathol 2018; 45:633-648. [PMID: 28830331 DOI: 10.1177/0192623317720731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lack of biomarkers specific to and either predictive or diagnostic of drug-induced vascular injury (DIVI) continues to be a major obstacle during drug development. Biomarkers derived from physiologic responses to vessel injury, such as inflammation and vascular remodeling, could make good candidates; however, they characteristically lack specificity for vasculature. We evaluated whether vascular remodeling-associated protease activity, as well as changes to vessel permeability resulting from DIVI, could be visualized ex vivo in affected vessels, thereby allowing for visual monitoring of the pathology to address specificity. We found that visualization of matrix metalloproteinase activation accompanied by increased vascular leakage in the mesentery of rats treated with agents known to induce vascular injury correlated well with incidence and severity of histopathological findings and associated inflammation as well as with circulating levels of tissue inhibitors of metalloproteinase 1 and neutrophil gelatinase-associated lipocalin. The weight of evidence approach reported here shows promise as a composite DIVI preclinical tool by means of complementing noninvasive monitoring of circulating biomarkers of inflammation with direct imaging of affected vasculature and thus lending specificity to its interpretation. These findings are supportive of a potential strategy that relies on translational imaging tools in conjunction with circulating biomarker data for high-specificity monitoring of VI both preclinically and clinically.
Collapse
Affiliation(s)
- Raymond J Gonzalez
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Shu-An Lin
- 2 MRL, West Point, Pennsylvania, USA.,3 Imaging, West Point, Pennsylvania, USA
| | - Bohumil Bednar
- 2 MRL, West Point, Pennsylvania, USA.,3 Imaging, West Point, Pennsylvania, USA
| | - Brett Connolly
- 2 MRL, West Point, Pennsylvania, USA.,3 Imaging, West Point, Pennsylvania, USA
| | - Lisa LaFranco-Scheuch
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Gebre M Mesfin
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Thomas Philip
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Shetal Patel
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Timothy Johnson
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Frank D Sistare
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| | - Warren E Glaab
- 1 Safety Assessment and Laboratory Animal Resources, West Point, Pennsylvania, USA.,2 MRL, West Point, Pennsylvania, USA
| |
Collapse
|
43
|
Ziganshina MM, Amiraslanov EY, Yarotskaya EL, Dolgushina NV, Sergunina OA, Nikolaeva MA, Kan NE, Tyutyunnik VL, Mantrova DA, Loginova NS, Konradi AO, Sukhikh GT. Autoantibodies to endothelial cells in patients with hypertensive disorders during pregnancy. Pregnancy Hypertens 2018; 12:65-70. [PMID: 29674202 DOI: 10.1016/j.preghy.2018.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Marina M Ziganshina
- Laboratory of Clinical Immunology, Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation", Moscow, Russian Federation.
| | - Elrad Y Amiraslanov
- Observational Department, Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation"
| | - Ekaterina L Yarotskaya
- Department of International Cooperation, Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation"
| | - Nataliya V Dolgushina
- R&D Department, Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation"
| | - Olga A Sergunina
- Observational Department, Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation"
| | - Marina A Nikolaeva
- Laboratory of Clinical Immunology, Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation", Moscow, Russian Federation
| | - Natalia E Kan
- Observational Department, Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation"
| | - Victor L Tyutyunnik
- Obstetrical Physiologic Department, Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation"
| | - Diana A Mantrova
- Observational Department, Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation"
| | - Natalya S Loginova
- Laboratory of Clinical Immunology, Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation", Moscow, Russian Federation
| | | | - Gennady T Sukhikh
- Federal State Budget Institution "National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation"
| |
Collapse
|
44
|
Thrombosis-on-a-chip: Prospective impact of microphysiological models of vascular thrombosis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 5:29-34. [DOI: 10.1016/j.cobme.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Chan W, Bosch JA, Phillips AC, Chin SH, Antonysunil A, Inston N, Moore S, Kaur O, McTernan PG, Borrows R. The Associations of Endotoxemia With Systemic Inflammation, Endothelial Activation, and Cardiovascular Outcome in Kidney Transplantation. J Ren Nutr 2017; 28:13-27. [PMID: 29089280 DOI: 10.1053/j.jrn.2017.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/09/2017] [Accepted: 06/14/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Cardiovascular disease is the leading cause of death in kidney transplant recipients (KTRs), yet incompletely accountable by traditional risk factors. Inflammation is an unconventional cardiovascular risk factor, with gut-derived endotoxemia potentially driving inflammation and endothelial disease. Comparable data are lacking in kidney transplantation. This study investigated the associations of endotoxemia with inflammation, endothelial activation, and 5-year cardiovascular events in KTRs. Determinants of endotoxemia were also explored. DESIGN AND METHODS This is a single-center cross-sectional study with prospective follow-up from a prevalent cohort of 128 KTRs. MAIN OUTCOME MEASURES Demographic, nutritional and clinical predictors of inflammation (high-sensitivity C-reactive protein [hsCRP]), endothelial activation (sE-selectin), and endotoxemia (endotoxin) were assessed. Follow-up data on 5-year cardiovascular event rates were collected. RESULTS Endotoxemia (P = .03), reduced 25-hydroxyvitamin D (P = .04), high fructose intake (P < .001), decreased fiber intake (P < .001), and abdominal obesity (P = .002) were independently associated with elevated hsCRP. In turn, endotoxemia (P = .007) and increasing hsCRP (P = .02) were both independently associated with raised sE-selectin. Furthermore, endotoxemia predicted increased cardiovascular event rate (P = .02), independent of hsCRP and a global measure of cardiovascular risk estimated by a validated algorithm of 7-year risk for major adverse cardiac events in kidney transplantation. Determinants of endotoxemia included reduced 25-hydroxyvitamin D (P < .001), hypertriglyceridemia (P < .001), increased fructose intake (P = .01), and abdominal obesity (P = .01). CONCLUSIONS Endotoxemia in KTRs contributes to inflammation, endothelial activation, and increased cardiovascular events. This study highlights the clinical relevance of endotoxemia in KTRs, suggesting future interventional targets.
Collapse
Affiliation(s)
- Winnie Chan
- Department of Nephrology & Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Department of Nutrition & Dietetics, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Jos A Bosch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Department of Clinical Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna C Phillips
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Shui Hao Chin
- Department of Cardiovascular Sciences, Clinical Sciences Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Adaikala Antonysunil
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK
| | - Nicholas Inston
- Department of Nephrology & Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Sue Moore
- Department of Nephrology & Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Okdeep Kaur
- Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Philip G McTernan
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Richard Borrows
- Department of Nephrology & Kidney Transplantation, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, UK; Centre for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
46
|
Brown RA, Shantsila E, Varma C, Lip GYH. Current Understanding of Atherogenesis. Am J Med 2017; 130:268-282. [PMID: 27888053 DOI: 10.1016/j.amjmed.2016.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Scientific understanding of atherogenesis is constantly developing. From Virchow's observations 160 years ago we now recognize the endothelial response to injury as inflammatory, involved in all stages of atherosclerosis. Endothelial activation may cause reversible injury or dysfunction, or lead to irreparable damage. Indeed, early atherosclerosis is reversible. The introduction of genome-wide association testing has furthered the identification of potentially important genetic variants that help explain the heritability of coronary artery disease as well as spontaneous cases of severe coronary artery disease in patients with otherwise minimal risk factors. However, the mechanisms by which many of the newer variants exert their influence remain unknown.
Collapse
Affiliation(s)
- Richard A Brown
- Department of Medicine, University of Birmingham Institute of Cardiovascular Sciences, City Hospital, United Kingdom
| | - Eduard Shantsila
- Department of Medicine, University of Birmingham Institute of Cardiovascular Sciences, City Hospital, United Kingdom; Cardiology Department at Sandwell and West Birmingham Hospitals NHS Trust, City Hospital and Sandwell Hospital, West Bromwich, United Kingdom
| | - Chetan Varma
- Cardiology Department at Sandwell and West Birmingham Hospitals NHS Trust, City Hospital and Sandwell Hospital, West Bromwich, United Kingdom
| | - Gregory Y H Lip
- Department of Medicine, University of Birmingham Institute of Cardiovascular Sciences, City Hospital, United Kingdom; Cardiology Department at Sandwell and West Birmingham Hospitals NHS Trust, City Hospital and Sandwell Hospital, West Bromwich, United Kingdom.
| |
Collapse
|
47
|
Schulz C, Vukićević R, Krüger-Genge A, Neffe AT, Lendlein A, Jung F. Monolayer formation and shear- resistance of human vein endothelial cells on gelatin-based hydrogels with tailorable elasticity and degradability. Clin Hemorheol Microcirc 2017; 64:699-710. [DOI: 10.3233/ch-168007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Svilaas T, Lefrandt JD, Gietema JA, Kamphuisen PW. Long-term arterial complications of chemotherapy in patients with cancer. Thromb Res 2017; 140 Suppl 1:S109-18. [PMID: 27067963 DOI: 10.1016/s0049-3848(16)30109-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The number of cancer survivors has gradually increased in recent decades. However, the cancer survivors are at risk for conditions related to their initial disease and its treatment, i.e. surgery, systemic treatment or radiotherapy. Cardiovascular complications, such as myocardial infarction, are common side effects of these therapies. Cardiovascular damage can occur during treatment or month to years after the initial treatment, as late effect of the cancer treatment. The pathophysiology of these effects is not yet fully understood, but an important part of the cardiovascular complications are thought to be the result of effects of anticancer agents on the structural and functional properties of the endothelium. Because these conditions can result in a high degree of morbidity and mortality, understanding how to improve the prevention, recognition, and treatment of vascular disease is an important medical priority in the care for cancer survivors. This review will focus on the long-term arterial complications of chemotherapy in cancer survivors. It will summarize the epidemiology and pathophysiology of these complications. Furthermore, important long-term clinical conditions related to these effects will be outlined, including cardiovascular risk management in terms of prevention, evaluation and therapy.
Collapse
Affiliation(s)
- Tone Svilaas
- Department of Vascular Medicine, University Medical Center Groningen, The Netherlands
| | - Joop D Lefrandt
- Department of Vascular Medicine, University Medical Center Groningen, The Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University Medical Center Groningen, The Netherlands
| | - Pieter W Kamphuisen
- Department of Vascular Medicine, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
49
|
Keir LS, Firth R, Aponik L, Feitelberg D, Sakimoto S, Aguilar E, Welsh GI, Richards A, Usui Y, Satchell SC, Kuzmuk V, Coward RJ, Goult J, Bull KR, Sharma R, Bharti K, Westenskow PD, Michael IP, Saleem MA, Friedlander M. VEGF regulates local inhibitory complement proteins in the eye and kidney. J Clin Invest 2017; 127:199-214. [PMID: 27918307 PMCID: PMC5199702 DOI: 10.1172/jci86418] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Outer retinal and renal glomerular functions rely on specialized vasculature maintained by VEGF that is produced by neighboring epithelial cells, the retinal pigment epithelium (RPE) and podocytes, respectively. Dysregulation of RPE- and podocyte-derived VEGF is associated with neovascularization in wet age-related macular degeneration (ARMD), choriocapillaris degeneration, and glomerular thrombotic microangiopathy (TMA). Since complement activation and genetic variants in inhibitory complement factor H (CFH) are also features of both ARMD and TMA, we hypothesized that VEGF and CFH interact. Here, we demonstrated that VEGF inhibition decreases local CFH and other complement regulators in the eye and kidney through reduced VEGFR2/PKC-α/CREB signaling. Patient podocytes and RPE cells carrying disease-associated CFH genetic variants had more alternative complement pathway deposits than controls. These deposits were increased by VEGF antagonism, a common wet ARMD treatment, suggesting that VEGF inhibition could reduce cellular complement regulatory capacity. VEGF antagonism also increased markers of endothelial cell activation, which was partially reduced by genetic complement inhibition. Together, these results suggest that VEGF protects the retinal and glomerular microvasculature, not only through VEGFR2-mediated vasculotrophism, but also through modulation of local complement proteins that could protect against complement-mediated damage. Though further study is warranted, these findings could be relevant for patients receiving VEGF antagonists.
Collapse
Affiliation(s)
- Lindsay S. Keir
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Rachel Firth
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Lyndsey Aponik
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel Feitelberg
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Susumu Sakimoto
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Edith Aguilar
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Gavin I. Welsh
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Anna Richards
- Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Yoshihiko Usui
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
- Tokyo Medical University Hospital, Tokyo, Japan
| | - Simon C. Satchell
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Valeryia Kuzmuk
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard J. Coward
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Jonathan Goult
- Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Katherine R. Bull
- Centre for Cellular and Molecular Physiology, University of Oxford, United Kingdom
| | - Ruchi Sharma
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Kapil Bharti
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Peter D. Westenskow
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
- The Lowy Medical Research Institute, La Jolla, California, USA
| | | | - Moin A. Saleem
- Academic Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
50
|
Patten DA, Wilson GK, Bailey D, Shaw RK, Jalkanen S, Salmi M, Rot A, Weston CJ, Adams DH, Shetty S. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: A new step in migration. Hepatology 2017; 65:294-309. [PMID: 27770554 PMCID: PMC5321563 DOI: 10.1002/hep.28879] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022]
Abstract
The recruitment of lymphocytes via the hepatic sinusoidal channels and positioning within liver tissue is a critical event in the development and persistence of chronic inflammatory liver diseases. The hepatic sinusoid is a unique vascular bed lined by hepatic sinusoidal endothelial cells (HSECs), a functionally and phenotypically distinct subpopulation of endothelial cells. Using flow-based adhesion assays to study the migration of lymphocytes across primary human HSECs, we found that lymphocytes enter into HSECs, confirmed by electron microscopy demonstrating clear intracellular localization of lymphocytes in vitro and by studies in human liver tissues. Stimulation by interferon-γ increased intracellular localization of lymphocytes within HSECs. Furthermore, using confocal imaging and time-lapse recordings, we demonstrated "intracellular crawling" of lymphocytes entering into one endothelial cell from another. This required the expression of intracellular adhesion molecule-1 and stabilin-1 and was facilitated by the junctional complexes between HSECs. CONCLUSION Lymphocyte migration is facilitated by the unique structure of HSECs. Intracellular crawling may contribute to optimal lymphocyte positioning in liver tissue during chronic hepatitis. (Hepatology 2017;65:294-309).
Collapse
Affiliation(s)
- Daniel A. Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Medical SchoolUniversity of BirminghamBirminghamUnited Kingdom
| | - Garrick K. Wilson
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental MedicineImperial College LondonLondonUnited Kingdom
| | - Dalan Bailey
- Institute of Immunology and Immunotherapy, Institute of Biomedical ResearchUniversity of BirminghamBirminghamUnited Kingdom
| | - Robert K. Shaw
- Technology Hub Imaging Facility, Infrastructure and Facilities, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Sirpa Jalkanen
- MediCity Research Laboratory, and Department of Medical Microbiology and ImmunologyUniversity of TurkuTurkuFinland
| | - Marko Salmi
- MediCity Research Laboratory, and Department of Medical Microbiology and ImmunologyUniversity of TurkuTurkuFinland
| | - Antal Rot
- Centre for Immunology and Infection, Department of BiologyUniversity of YorkYorkUnited Kingdom
| | - Chris J. Weston
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Medical SchoolUniversity of BirminghamBirminghamUnited Kingdom
| | - David H. Adams
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Medical SchoolUniversity of BirminghamBirminghamUnited Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver Research, Medical SchoolUniversity of BirminghamBirminghamUnited Kingdom
| |
Collapse
|