1
|
Di Filippo F, Brevini TAL, Pennarossa G, Gandolfi F. Generation of bovine decellularized testicular bio-scaffolds as a 3D platform for testis bioengineering. Front Bioeng Biotechnol 2025; 12:1532107. [PMID: 39877269 PMCID: PMC11772495 DOI: 10.3389/fbioe.2024.1532107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Accelerating the genetic selection to obtain animals more resilient to climate changes, and with a lower environmental impact, would greatly benefit by a substantial shortening of the generation interval. One way to achieve this goal is to generate male gametes directly from embryos. However, spermatogenesis is a complex biological process that, at present, can be partially reproduced in vitro only in the mouse. The development of reliable 3D in vitro models able to mimic the architecture and the physiological microenvironment of the testis, represents a possible strategy to facilitate ex vivo haploid male gamete generation in domestic species. Here we describe the creation of bovine testicular bio-scaffolds and their successful repopulation in vitro with bovine testicular cells. In particular, bovine testes are subjected to three different decellularization protocols. Cellular compartment removal and extracellular matrix preservation are evaluated. The generated bio-scaffolds are then repopulated with bovine testicular fibroblasts. The results obtained demonstrate that the decellularization protocol involving the use of 0.3% sodium dodecyl sulfate (SDS) for 12 h efficiently eliminates native cells, while preserving intact ECM composition and microstructure. Its subsequent repopulation with bovine fibroblasts demonstrates successful cell homing, colonization and growth, consistent with the scaffold ability to sustain cell adherence and proliferation. Overall, the generated 3D bio-scaffolds may constitute a suitable artificial niche for ex vivo culture of testicular cells and may represent a possible strategy to reproduce spermatogenesis in vitro.
Collapse
Affiliation(s)
- Francesca Di Filippo
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Clarke DO, Datta K, French K, Leach MW, Olaharski D, Mohr S, Strein D, Bussiere J, Feyen B, Gauthier BE, Graziano M, Harding J, Hershman K, Jacob B, Ji S, Lange R, Salian-Mehta S, Sayers B, Thomas N, Flandre T. Opportunities and challenges for use of minipigs in nonclinical pharmaceutical development: Results of a follow-up IQ DruSafe survey. Regul Toxicol Pharmacol 2024; 154:105729. [PMID: 39481797 DOI: 10.1016/j.yrtph.2024.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
Minipigs are valid nonrodent species infrequently utilized for pharmaceutical research and development (R&D) compared with dogs or nonhuman primates (NHPs). A 2022 IQ DruSafe survey revealed a modest increase in minipig use by pharmaceutical companies compared with a prior 2014 survey, primarily in the development of oral small molecules and parenteral protein molecules. Some companies considered using minipigs more often due to NHP shortages and regional ethical concerns with using NHPs and dogs. However, for most pharmaceutical companies, minipigs still represent ≤5% of their nonrodent animal use. Key challenges noted by companies to wider adoption of minipigs were high test article requirement, limited historical control data, and lack of relevant reagents or assays. Additionally, some companies expressed uncertainties about contract research organization (CRO) capabilities and experience, a perception not shared by respondent CROs. These latest survey results indicate persistence of many concerns previously identified in 2014. Several case studies are included to illustrate areas of expanded minipig use as well as the challenges that hinder broader adoption. Ongoing, focused, and industry-wide initiatives to address the identified or perceived challenges may lead to more frequent or routine consideration of minipigs as a test species in pharmaceutical R&D.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bianca Feyen
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
| | | | | | - Joanna Harding
- Exscientia (formerly represented Astra Zeneca), Oxford, UK
| | | | | | - Shaofei Ji
- Johnson & Johnson Innovative Medicine, Springhouse, PA, USA
| | | | | | | | | | | |
Collapse
|
3
|
Stirm M, Klymiuk N, Nagashima H, Kupatt C, Wolf E. Pig models for translational Duchenne muscular dystrophy research. Trends Mol Med 2024; 30:950-964. [PMID: 38749865 DOI: 10.1016/j.molmed.2024.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 10/12/2024]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked DMD gene, resulting in the absence of dystrophin, progressive muscle degeneration, and heart failure. Genetically tailored pig models resembling human DMD mutations recapitulate the biochemical, clinical, and pathological hallmarks of DMD with an accelerated disease progression compared to human patients. DMD pigs have been used to evaluate therapeutic concepts such as gene editing to reframe a disrupted DMD reading frame or the delivery of artificial chromosome vectors carrying the complete DMD gene. Moreover, DMD pigs have been instrumental in validating new diagnostic modalities such as multispectral optoacoustic tomography (MSOT) for non-invasive monitoring of disease progression. DMD pigs may thus help to bridge the gap between proof-of-concept studies in cellular or rodent models and clinical studies in patients.
Collapse
Affiliation(s)
- Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU, Munich, 85764, Oberschleißheim, Germany; Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models (CiMM), LMU, Munich, 85764, Oberschleißheim, Germany; Large Animal Models in Cardiovascular Research, Internal Medical Department I, Technical University of Munich (TU Munich), 81675 Munich, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa 214-8571, Japan
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, 81675 Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU, Munich, 85764, Oberschleißheim, Germany; Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
4
|
Thiem DGE, Stephan D, Ziebart A, Ruemmler R, Riedel J, Vinayahalingam S, Al-Nawas B, Blatt S, Kämmerer PW. Effects of volume management on free flap perfusion and metabolism in a large animal model study. Lab Anim (NY) 2024; 53:268-275. [PMID: 39122993 PMCID: PMC11439732 DOI: 10.1038/s41684-024-01410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/27/2024] [Indexed: 08/12/2024]
Abstract
Free flap failure represents a substantial clinical burden. The role of intraoperative volume management remains controversial, with valid studies lacking. Here, using a large animal model, we investigated the influence of volume management on free flap perfusion and metabolism. Autotransfer of a musculocutaneous gracilis flap was performed on 31 German domestic pigs, with arterial anastomosis and catheterization of the pedicle vein for sequential blood sampling. Flap reperfusion was followed by induction of a hemorrhagic shock with maintenance for 30 min and subsequent circulation stabilization with crystalloid solution, crystalloid solution and catecholamine, autotransfusion or colloidal solution. Flap perfusion and oxygenation were periodically assessed using hyperspectral imaging. Flap metabolism was assessed via periodic blood gas analyses. Hyperspectral imaging revealed no difference in either superficial or deep tissue oxygen saturation, tissue hemoglobin or tissue water content between the test groups at any time point. Blood gas analyses showed that lactate levels were significantly increased in the group that received crystalloid solution and catecholamine, after circulatory stabilization and up to 2 h after. We conclude that, in hemorrhagic shock, volume management impacts acid-base balance in free flaps. Crystalloid solutions with norepinephrine increase lactate levels, yet short-term effects on flap perfusion seem minimal, suggesting that vasopressors are not detrimental.
Collapse
Affiliation(s)
- Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Daniel Stephan
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Ziebart
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Robert Ruemmler
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julian Riedel
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Shankeeth Vinayahalingam
- Department of Oral and Maxillofacial Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
5
|
Laane L, Renner S, Kemter E, Stirm M, Rathkolb B, Blutke A, Bidlingmaier M, de Angelis MH, Wolf E, Hinrichs A. Decreased β-cell volume and insulin secretion but preserved glucose tolerance in a growth hormone insensitive pig model. Pituitary 2024; 27:567-576. [PMID: 38960990 PMCID: PMC11513746 DOI: 10.1007/s11102-024-01424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE Growth hormone (GH) is a central regulator of β-cell proliferation, insulin secretion and sensitivity. Aim of this study was to investigate the effect of GH insensitivity on pancreatic β-cell histomorphology and consequences for metabolism in vivo. METHODS Pancreata from pigs with growth hormone receptor deficiency (GHR-KO, n = 12) were analyzed by unbiased quantitative stereology in comparison to wild-type controls (WT, n = 12) at 3 and 7-8.5 months of age. In vivo secretion capacity for insulin and glucose tolerance were assessed by intravenous glucose tolerance tests (ivGTTs) in GHR-KO (n = 3) and WT (n = 3) pigs of the respective age groups. RESULTS Unbiased quantitative stereological analyses revealed a significant reduction in total β-cell volume (83% and 73% reduction in young and adult GHR-KO vs. age-matched WT pigs; p < 0.0001) and volume density of β-cells in the pancreas of GHR-KO pigs (42% and 39% reduction in young and adult GHR-KO pigs; p = 0.0018). GHR-KO pigs displayed a significant, age-dependent increase in the proportion of isolated β-cells in the pancreas (28% in young and 97% in adult GHR-KO vs. age-matched WT pigs; p = 0.0009). Despite reduced insulin secretion in ivGTTs, GHR-KO pigs maintained normal glucose tolerance. CONCLUSION GH insensitivity in GHR-KO pigs leads to decreased β-cell volume and volume proportion of β-cells in the pancreas, causing a reduced insulin secretion capacity. The increased proportion of isolated β-cells in the pancreas of GHR-KO pigs highlights the dependency on GH stimulation for proper β-cell maturation. Preserved glucose tolerance accomplished with decreased insulin secretion indicates enhanced sensitivity for insulin in GH insensitivity.
Collapse
Affiliation(s)
- Laeticia Laane
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, German Mouse Clinic (GMC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Martin Bidlingmaier
- Endocrine Laboratory, Medizinische Klinik Und Poliklinik IV, Klinikum Der Universität München, Munich, Germany
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, German Mouse Clinic (GMC), Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany.
| |
Collapse
|
6
|
Arcuri S, Pennarossa G, Prasadani M, Gandolfi F, Brevini TAL. Use of Decellularized Bio-Scaffolds for the Generation of a Porcine Artificial Intestine. Methods Protoc 2024; 7:76. [PMID: 39452790 PMCID: PMC11510128 DOI: 10.3390/mps7050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
In recent years, great interest has been focused on the development of highly reproducible 3D in vitro models that are able to mimic the physiological architecture and functionality of native tissues. To date, a wide range of techniques have been proposed to recreate an intestinal barrier in vitro, including synthetic scaffolds and hydrogels, as well as complex on-a-chip systems and organoids. Here, we describe a novel protocol for the generation of an artificial intestine based on the creation of decellularized bio-scaffolds and their repopulation with intestinal stromal and epithelial cells. Organs collected at the local slaughterhouse are subjected to a decellularization protocol that includes a freezing/thawing step, followed by sequential incubation in 1% SDS for 12 h, 1% Triton X-100 for 12 h, and 2% deoxycholate for 12 h. At the end of the procedure, the generated bio-scaffolds are repopulated with intestinal fibroblasts and then with epithelial cells. The protocol described here represents a promising and novel strategy to generate an in vitro bioengineered intestine platform able to mimic some of the complex functions of the intestinal barrier, thus constituting a promising 3D strategy for nutritional, pharmaceutical, and toxicological studies.
Collapse
Affiliation(s)
- Sharon Arcuri
- Department of Veterinary Medicine, Università degli Studi di Sassari, Via Vienna, 07100 Sassari, Italy;
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| | - Madhusha Prasadani
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| |
Collapse
|
7
|
Shashikadze B, Flenkenthaler F, Kemter E, Franzmeier S, Stöckl JB, Haid M, Riols F, Rothe M, Pichl L, Renner S, Blutke A, Wolf E, Fröhlich T. Multi-omics analysis of diabetic pig lungs reveals molecular derangements underlying pulmonary complications of diabetes mellitus. Dis Model Mech 2024; 17:dmm050650. [PMID: 38900131 PMCID: PMC11583917 DOI: 10.1242/dmm.050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Growing evidence shows that the lung is an organ prone to injury by diabetes mellitus. However, the molecular mechanisms of these pulmonary complications have not yet been characterized comprehensively. To systematically study the effects of insulin deficiency and hyperglycaemia on the lung, we combined proteomics and lipidomics with quantitative histomorphological analyses to compare lung tissue samples from a clinically relevant pig model for mutant INS gene-induced diabetes of youth (MIDY) with samples from wild-type littermate controls. Among others, the level of pulmonary surfactant-associated protein A (SFTPA1), a biomarker of lung injury, was moderately elevated. Furthermore, key proteins related to humoral immune response and extracellular matrix organization were significantly altered in abundance. Importantly, a lipoxygenase pathway was dysregulated as indicated by 2.5-fold reduction of polyunsaturated fatty acid lipoxygenase ALOX15 levels, associated with corresponding changes in the levels of lipids influenced by this enzyme. Our multi-omics study points to an involvement of reduced ALOX15 levels and an associated lack of eicosanoid switching as mechanisms contributing to a proinflammatory milieu in the lungs of subjects with diabetes mellitus.
Collapse
Affiliation(s)
- Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elisabeth Kemter
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Sophie Franzmeier
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core (MPC), Helmholtz Munich, 85764 Neuherberg, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core (MPC), Helmholtz Munich, 85764 Neuherberg, Germany
| | | | - Lisa Pichl
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Andreas Blutke
- Institute for Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
8
|
Shashikadze B, Franzmeier S, Hofmann I, Kraetzl M, Flenkenthaler F, Blutke A, Fröhlich T, Wolf E, Hinrichs A. Structural and proteomic repercussions of growth hormone receptor deficiency on the pituitary gland: Lessons from a translational pig model. J Neuroendocrinol 2024; 36:e13277. [PMID: 37160285 DOI: 10.1111/jne.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Growth hormone receptor deficiency (GHRD) results in low serum insulin-like growth factor 1 (IGF1) and high, but non-functional serum growth hormone (GH) levels in human Laron syndrome (LS) patients and animal models. This study investigated the quantitative histomorphological and molecular alterations associated with GHRD. Pituitary glands from 6 months old growth hormone receptor deficient (GHR-KO) and control pigs were analyzed using a quantitative histomorphological approach in paraffin (9 GHR-KO [5 males, 4 females] vs. 11 controls [5 males, 6 females]), ultrathin sections tissue sections (3 male GHR-KO vs. 3 male controls) and label-free proteomics (4 GHR-KO vs. 4 control pigs [2 per sex]). GHR-KO pigs displayed reduced body weights (60% reduction in comparison to controls; p < .0001) and decreased pituitary volumes (54% reduction in comparison to controls; p < .0001). The volume proportion of the adenohypophysis did not differ in GHR-KO and control pituitaries (65% vs. 71%; p = .0506) and GHR-KO adenohypophyses displayed a reduced absolute volume but an unaltered volume density of somatotrophs in comparison to controls (21% vs. 18%; p = .3164). In GHR-KO pigs, somatotroph cells displayed a significantly reduced volume density of granules (23.5%) as compared to controls (67.7%; p < .0001). Holistic proteome analysis of adenohypophysis samples identified 4660 proteins, of which 592 were differentially abundant between the GHR-KO and control groups. In GHR-KO samples, the abundance of somatotropin precursor was decreased, whereas increased abundances of proteins involved in protein production, transport and endoplasmic reticulum (ER) stress were revealed. Increased protein production and secretion as well as significantly reduced proportion of GH-storing granules in somatotroph cells of the adenohypophysis without an increase in volume density of somatotroph cells in the adenohypophysis could explain elevated serum GH levels in GHR-KO pigs.
Collapse
Affiliation(s)
- Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sophie Franzmeier
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Kraetzl
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| |
Collapse
|
9
|
Lange A, Medugorac I, Ali A, Kessler B, Kurome M, Zakhartchenko V, Hammer SE, Hauser A, Denner J, Dobenecker B, Wess G, Tan PLJ, Garkavenko O, Reichart B, Wolf E, Kemter E. Genetic diversity, growth and heart function of Auckland Island pigs, a potential source for organ xenotransplantation. Xenotransplantation 2024; 31:e12858. [PMID: 38646921 DOI: 10.1111/xen.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
One of the prerequisites for successful organ xenotransplantation is a reasonable size match between the porcine organ and the recipient's organ to be replaced. Therefore, the selection of a suitable genetic background of source pigs is important. In this study, we investigated body and organ growth, cardiac function, and genetic diversity of a colony of Auckland Island pigs established at the Center for Innovative Medical Models (CiMM), LMU Munich. Male and female Auckland Island pig kidney cells (selected to be free of porcine endogenous retrovirus C) were imported from New Zealand, and founder animals were established by somatic cell nuclear transfer (SCNT). Morphologically, Auckland Island pigs have smaller body stature compared to many domestic pig breeds, rendering their organ dimensions well-suited for human transplantation. Furthermore, echocardiography assessments of Auckland Island pig hearts indicated normal structure and functioning across various age groups throughout the study. Single nucleotide polymorphism (SNP) analysis revealed higher runs of homozygosity (ROH) in Auckland Island pigs compared to other domestic pig breeds and demonstrated that the entire locus coding the swine leukocyte antigens (SLAs) was homozygous. Based on these findings, Auckland Island pigs represent a promising genetic background for organ xenotransplantation.
Collapse
Affiliation(s)
- Andreas Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Andreas Hauser
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University of Berlin, Berlin, Germany
| | - Britta Dobenecker
- Chair for Animal Nutrition, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Gerhard Wess
- Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | | | | | - Bruno Reichart
- Walter-Brendel-Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| |
Collapse
|
10
|
McKnight CA, Diehl LJ, Bergin IL. Digestive Tract and Salivary Glands. HASCHEK AND ROUSSEAUX' S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2024:1-148. [DOI: 10.1016/b978-0-12-821046-8.00001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Young JA, Hinrichs A, Bell S, Geitgey DK, Hume-Rivera D, Bounds A, Soneson M, Laron Z, Yaron-Shaminsky D, Wolf E, List EO, Kopchick JJ, Berryman DE. Growth hormone insensitivity and adipose tissue: tissue morphology and transcriptome analyses in pigs and humans. Pituitary 2023; 26:660-674. [PMID: 37747600 PMCID: PMC10956721 DOI: 10.1007/s11102-023-01355-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE Growth hormone receptor knockout (GHR-KO) pigs have recently been developed, which serve as a large animal model of Laron syndrome (LS). GHR-KO pigs, like individuals with LS, are obese but lack some comorbidities of obesity. The purpose of this study was to examine the histological and transcriptomic phenotype of adipose tissue (AT) in GHR-KO pigs and humans with LS. METHODS Intraabdominal (IA) and subcutaneous (SubQ) AT was collected from GHR-KO pigs and examined histologically for adipocyte size and collagen content. RNA was isolated and cDNA sequenced, and the results were analyzed to determine differentially expressed genes that were used for enrichment and pathway analysis in pig samples. For comparison, we also performed limited analyses on human AT collected from a single individual with and without LS. RESULTS GHR-KO pigs have increased adipocyte size, while the LS AT had a trend towards an increase. Transcriptome analysis revealed 55 differentially expressed genes present in both depots of pig GHR-KO AT. Many significant terms in the enrichment analysis of the SubQ depot were associated with metabolism, while in the IA depot, IGF and longevity pathways were negatively enriched. In pathway analysis, multiple expected and novel pathways were significantly affected by genotype, i.e. KO vs. controls. When GH related gene expression was analyzed, SOCS3 and CISH showed species-specific changes. CONCLUSION AT of GHR-KO pigs has several similarities to that of humans with LS in terms of adipocyte size and gene expression profile that help describe the depot-specific adipose phenotype of both groups.
Collapse
Affiliation(s)
- Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Stephen Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | | | | | - Addison Bounds
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Maggie Soneson
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Zvi Laron
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Danielle Yaron-Shaminsky
- Endocrinology and Diabetes Research Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
12
|
Stirm M, Shashikadze B, Blutke A, Kemter E, Lange A, Stöckl JB, Jaudas F, Laane L, Kurome M, Keßler B, Zakhartchenko V, Bähr A, Klymiuk N, Nagashima H, Walter MC, Wurst W, Kupatt C, Fröhlich T, Wolf E. Systemic deletion of DMD exon 51 rescues clinically severe Duchenne muscular dystrophy in a pig model lacking DMD exon 52. Proc Natl Acad Sci U S A 2023; 120:e2301250120. [PMID: 37428903 PMCID: PMC10629550 DOI: 10.1073/pnas.2301250120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.
Collapse
Affiliation(s)
- Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich80539, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Andreas Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Florian Jaudas
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Laeticia Laane
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Barbara Keßler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Andrea Bähr
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki214-8571, Japan
| | - Maggie C. Walter
- Department of Neurology, Friedrich Baur Institute, LMU Munich, Munich80336, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg85674, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising85354, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich81675, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer, LMU Munich, Munich81377, Germany
| |
Collapse
|
13
|
Fiedler S, Schrader H, Theobalt N, Hofmann I, Geiger T, Arndt D, Wanke R, Schwaiger J, Blutke A. Standardized tissue sampling guidelines for histopathological and molecular analyses of rainbow trout (Oncorhynchus mykiss) in ecotoxicological studies. PLoS One 2023; 18:e0288542. [PMID: 37440561 DOI: 10.1371/journal.pone.0288542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
In ecotoxicology, evaluation of toxicities and no observed effect concentrations (NOEC) of test compounds in experimental fish is commonly based on molecular-, biochemical- and analytical chemistry analyses of organ/tissue samples and the assessment of (histo-) pathological lesions. Standardization of organ/tissue sampling locations, sample numbers, and sample processing contributes to warrant the reproducibility and inter- and intra-study comparability of analysis results. The present article provides the first comprehensive tissue sampling guidelines specifically adapted to rainbow trout (Oncorhynchus mykiss) as a frequently used fish species in ecotoxicological studies. A broad spectrum of ~40 different organs and tissues is covered. Appropriate sampling locations, sample sizes and sample numbers for subsequent routine histopathological evaluation (all organs/tissue) and for molecular analyses (~30 organs/tissues) are described in detail and illustrated with schematic drawings and representative macroscopic and histological images. These field-proven sampling guidelines were developed based on the pertinent literature and practical experience in ecotoxicological fish studies. They are intended to serve as a standard reference for any routine ecotoxicological study using rainbow trout as a test system. A broad application of the featured tissue sampling procedures will help to improve the reproducibility of analyses and to reduce inter- and intra-study variability induced by sampling bias and (normal) inter-sample morphological variation, and will therefore provide a robust basis for reliable characterization of toxicity and NOEC identification of diverse test substances and aquatic pollutants.
Collapse
Affiliation(s)
- Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannah Schrader
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tobias Geiger
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Daniela Arndt
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Schwaiger
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| |
Collapse
|
14
|
Siciliani D, Kortner TM, Berge GM, Hansen AK, Krogdahl Å. Effects of dietary lipid level and environmental temperature on lipid metabolism in the intestine and liver, and choline requirement in Atlantic salmon ( Salmo salar L) parr. J Nutr Sci 2023; 12:e61. [PMID: 37252685 PMCID: PMC10214143 DOI: 10.1017/jns.2023.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/18/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Choline was recently established as an essential nutrient for Atlantic salmon at all life stages. Choline deficiency is manifested as an excessive accumulation of dietary fat within the intestinal enterocytes, a condition known as steatosis. Most of today's plant-based salmon feeds will be choline-deficient unless choline is supplemented. Choline's role in lipid transport suggests that choline requirement may depend on factors such as dietary lipid level and environmental temperature. The present study was therefore conducted to investigate whether lipid level and water temperature can affect steatosis symptoms, and thereby choline requirement in Atlantic salmon. Four choline-deficient plant-based diets were formulated differing in lipid level of 16, 20, 25 and 28 % and fed to salmon of 25 g initial weight in duplicate tanks per diet at two different environmental temperatures: 8 and 15 °C. After 8 weeks of feeding, samples of blood, tissue and gut content from six fish per tank were collected, for analyses of histomorphological, biochemical and molecular biomarkers of steatosis and choline requirement. Increasing lipid level did not affect growth rate but increased relative weight and lipid content of the pyloric caeca and histological symptoms of intestinal steatosis and decreased fish yield. Elevation of the water temperature from 8 to 15 °C, increased growth rate, relative weight of the pyloric caeca, and the histological symptoms of steatosis seemed to become more severe. We conclude that dietary lipid level, as well as environmental temperature, affect choline requirement to a magnitude of importance for fish biology and health, and for fish yield.
Collapse
Affiliation(s)
- Daphne Siciliani
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Trond M. Kortner
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Åshild Krogdahl
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
15
|
Birzle C, Schrader H, Blutke A, Ferling H, Scholz-Göppel K, Wanke R, Schwaiger J. Detection of Diclofenac-Induced Alterations in Rainbow Trout (Oncorhynchus mykiss) Using Quantitative Stereological Methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:859-872. [PMID: 36705425 DOI: 10.1002/etc.5573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In 2013, the nonsteroidal anti-inflammatory drug diclofenac (DCF) was included in the watch list for emerging pollutants under the European Union Water Framework Directive. Frequently, monitoring data revealed DCF concentrations in surface waters exceeding the proposed environmental quality standards of 0.04 µg L-1 and 0.126 µg L-1 . In recent literature, the possible effects of DCF on fish are discussed controversially. To contribute to a realistic risk assessment of DCF, a 28-day exposure experiment was carried on rainbow trout (Oncorhynchus mykiss). To warrant reliability of data, experiments were conducted considering the Criteria for Reporting and Evaluating Ecotoxicity Data. The test concentrations of DCF used (0.1, 0.5, 1, 5, 25, and 100 µg L-1 ) also included environmentally relevant concentrations. The lowest-observed-effect concentration (LOEC) for a significant decrease in the plasma concentrations of the DCF biomarker prostaglandin E2 was 0.5 µg L-1 (male fish). For objective evaluation of relevant histomorphological parameters of gills and trunk kidneys, unbiased quantitative stereological methods were applied. In the gills, significant increases in the thickness of the secondary lamella and in the true harmonic mean of barrier thickness in secondary lamellae were present at DCF concentrations of 25 µg L-1 and 100 µg L-1 . In the trunk kidneys, the absolute and relative volumes of nephrons were significantly decreased, paralleled by a significant increase of the volume of the interstitial renal tissue. With regard to quantitative histomorphological alterations in the trunk kidney, the observed LOEC was 0.5 µg L-1 . The quantitative histomorphological analyses that were conducted allow identification and objective quantification of even subtle but significant morphological effects and thus provide an important contribution for the comparability of study results for the determination of no-observed-effect concentrations (NOEC). Environ Toxicol Chem 2023;42:859-872. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Christoph Birzle
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Hannah Schrader
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center of Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hermann Ferling
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Karin Scholz-Göppel
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center of Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Schwaiger
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| |
Collapse
|
16
|
Hussein K, Ahmed AF, Omar MMA, Galhom RA, Salah M, Elrouby O, Nassar Y. Assessment of hemodynamics, blood gases, and lung histopathology of healthy Pig model on two different mechanical ventilators. Heliyon 2022; 8:e10736. [PMID: 36164656 PMCID: PMC9493143 DOI: 10.1016/j.heliyon.2022.e10736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/18/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
In response to COVID-19 global crisis and arising from social responsibility, efforts have been exerted to promptly research, develop and manufacture ICU ventilators locally to meet the spike in demand. This study aimed at : Evaluating the safety and performance of a newly developed mechanical ventilator; EZVent compared to a commercial ventilator regarding hemodynamics, arterial blood gases (ABG), lung inflammatory markers, and histopathology in a healthy pig model using three different ventilation modes. Methods: Eight adult male pigs were anesthetized and randomly assigned into two equal groups: Commercial vent and EZVent group, the animals of which were ventilated using a standard commercial ventilator and EZVent, respectively. On every animal, three ventilation modes were tested, each mode for 30 min: CMV-VC, CMV-PC, and CPAP-PS modes. Vital signs, ECG, Lung Mechanics (LM), and ABG were measured before ventilation and after 30 min of ventilation of each mode. After animals' euthanasia, histological examinations of lung samples including morphometric assessment of alveolar edema, alveolar wall thickening, and the mean number of inflammatory cellular infiltrate/cm2 of lung tissue were analyzed. TNF-α and Il-6 expression and localization in lung tissue were assessed by western blot and immunohistochemistry. Results: The vital signs, LM, ABG, morphometric analysis, and histopathological score during the different ventilation modes showed non-significant differences between the study groups. TNF-α and IL-6 were minimally expressed in the bronchiolar epithelium and the alveolar septa. Their increased expression level was insignificant. Conclusion: EZVent is equivalent to the commercial ventilator regarding its safety and efficacy.
Collapse
Affiliation(s)
- Kamal Hussein
- Animal Surgery, Anesthesia, and Radiology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ahmed F Ahmed
- Animal Surgery, Anesthesia, and Radiology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Magda M A Omar
- Animal Surgery, Anesthesia, and Radiology Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Rania A Galhom
- Human Anatomy & Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Human Anatomy & Embryology Department, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | | | - Ola Elrouby
- Clinical Research Department, TCD MENA, Egypt
| | - Yasser Nassar
- Critical Care Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
O'Brien MT, Schuh JCL, Wancket LM, Cramer SD, Funk KA, Jackson ND, Kannan K, Keane K, Nyska A, Rousselle SD, Schucker A, Thomas VS, Tunev S. Scientific and Regulatory Policy Committee Points to Consider for Medical Device Implant Site Evaluation in Nonclinical Studies. Toxicol Pathol 2022; 50:512-530. [PMID: 35762822 DOI: 10.1177/01926233221103202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nonclinical implantation studies are a common and often critical step for medical device safety assessment in the bench-to-market pathway. Nonclinical implanted medical devices or drug-device combination products require complex macroscopic and microscopic pathology evaluations due to the physical presence of the device itself and unique tissue responses to device materials. The Medical Device Implant Site Evaluation working group of the Society of Toxicologic Pathology's (STP) Scientific and Regulatory Policy Committee (SRPC) was tasked with reviewing scientific, technical, and regulatory considerations for these studies. Implant site evaluations require highly specialized methods and analytical schemes that should be designed on a case-by-case basis to address specific study objectives. Existing STP best practice recommendations can serve as a framework when performing nonclinical studies under Good Laboratory Practices and help mitigate limitations in standards and guidances for implant evaluations (e.g., those from the International Organization for Standardization [ISO], ASTM International). This article integrates standards referenced by sponsors and regulatory bodies with practical pathology evaluation methods for implantable medical devices and combination products. The goal is to ensure the maximum accuracy and scientific relevance of pathology data acquired during a medical device or combination drug-device implantation study.
Collapse
Affiliation(s)
| | | | - Lyn M Wancket
- Charles River Laboratories, Durham, North Carolina, USA
| | | | - Kathleen A Funk
- Experimental Pathology Laboratories, Sterling, Virginia, USA
| | | | - Kamala Kannan
- Adgyl Lifesciences Private Limited, Bangalore, India
| | - Kevin Keane
- Blueprint Medicines, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
18
|
Self-regulating novel iron oxide nanoparticle-based magnetic hyperthermia in swine: biocompatibility, biodistribution, and safety assessments. Arch Toxicol 2022; 96:2447-2464. [DOI: 10.1007/s00204-022-03314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
|
19
|
Stirm M, Fonteyne LM, Shashikadze B, Stöckl JB, Kurome M, Keßler B, Zakhartchenko V, Kemter E, Blum H, Arnold GJ, Matiasek K, Wanke R, Wurst W, Nagashima H, Knieling F, Walter MC, Kupatt C, Fröhlich T, Klymiuk N, Blutke A, Wolf E. Pig models for Duchenne muscular dystrophy – from disease mechanisms to validation of new diagnostic and therapeutic concepts. Neuromuscul Disord 2022; 32:543-556. [DOI: 10.1016/j.nmd.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
|
20
|
Grotz S, Schäfer J, Wunderlich KA, Ellederova Z, Auch H, Bähr A, Runa-Vochozkova P, Fadl J, Arnold V, Ardan T, Veith M, Santamaria G, Dhom G, Hitzl W, Kessler B, Eckardt C, Klein J, Brymova A, Linnert J, Kurome M, Zakharchenko V, Fischer A, Blutke A, Döring A, Suchankova S, Popelar J, Rodríguez-Bocanegra E, Dlugaiczyk J, Straka H, May-Simera H, Wang W, Laugwitz KL, Vandenberghe LH, Wolf E, Nagel-Wolfrum K, Peters T, Motlik J, Fischer MD, Wolfrum U, Klymiuk N. Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes. EMBO Mol Med 2022; 14:e14817. [PMID: 35254721 PMCID: PMC8988205 DOI: 10.15252/emmm.202114817] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 01/17/2023] Open
Abstract
Usher syndrome (USH) is the most common form of monogenic deaf-blindness. Loss of vision is untreatable and there are no suitable animal models for testing therapeutic strategies of the ocular constituent of USH, so far. By introducing a human mutation into the harmonin-encoding USH1C gene in pigs, we generated the first translational animal model for USH type 1 with characteristic hearing defect, vestibular dysfunction, and visual impairment. Changes in photoreceptor architecture, quantitative motion analysis, and electroretinography were characteristics of the reduced retinal virtue in USH1C pigs. Fibroblasts from USH1C pigs or USH1C patients showed significantly elongated primary cilia, confirming USH as a true and general ciliopathy. Primary cells also proved their capacity for assessing the therapeutic potential of CRISPR/Cas-mediated gene repair or gene therapy in vitro. AAV-based delivery of harmonin into the eye of USH1C pigs indicated therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Sophia Grotz
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Jessica Schäfer
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Kirsten A Wunderlich
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Hannah Auch
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Petra Runa-Vochozkova
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Janet Fadl
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Vanessa Arnold
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Taras Ardan
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Miroslav Veith
- Ophthalmology Clinic, University Hospital Kralovske Vinohrady, Praha, Czech Republic
| | - Gianluca Santamaria
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Georg Dhom
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Wolfgang Hitzl
- Biostatistics and Data Science, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kessler
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Christian Eckardt
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Joshua Klein
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Anna Brymova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Mayuko Kurome
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Valeri Zakharchenko
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Fischer
- Veterinary Faculty, Small Animal Clinics, LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Anna Döring
- Veterinary Faculty, Small Animal Clinics, LMU Munich, Munich, Germany
| | - Stepanka Suchankova
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Jiri Popelar
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Eduardo Rodríguez-Bocanegra
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Julia Dlugaiczyk
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), University of Zurich, Zurich, Switzerland
| | - Hans Straka
- Faculty of Biology, LMU Munich, Planegg, Germany
| | - Helen May-Simera
- Institute of Molecular Physiology, Cilia Biology, JGU Mainz, Mainz, Germany
| | - Weiwei Wang
- Grousbeck Gene Therapy Center, Mass Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Karl-Ludwig Laugwitz
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Mass Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Kerstin Nagel-Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany.,Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Tobias Peters
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - M Dominik Fischer
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK.,Nuffield Laboratory of Ophthalmology, NDCN, University of Oxford, Oxford, UK
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University (JGU), Mainz, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models, LMU Munich, Munich, Germany.,Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany
| |
Collapse
|
21
|
Shashikadze B, Flenkenthaler F, Stöckl JB, Valla L, Renner S, Kemter E, Wolf E, Fröhlich T. Developmental Effects of (Pre-)Gestational Diabetes on Offspring: Systematic Screening Using Omics Approaches. Genes (Basel) 2021; 12:1991. [PMID: 34946940 PMCID: PMC8701487 DOI: 10.3390/genes12121991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/27/2022] Open
Abstract
Worldwide, gestational diabetes affects 2-25% of pregnancies. Due to related disturbances of the maternal metabolism during the periconceptional period and pregnancy, children bear an increased risk for future diseases. It is well known that an aberrant intrauterine environment caused by elevated maternal glucose levels is related to elevated risks for increased birth weights and metabolic disorders in later life, such as obesity or type 2 diabetes. The complexity of disturbances induced by maternal diabetes, with multiple underlying mechanisms, makes early diagnosis or prevention a challenging task. Omics technologies allowing holistic quantification of several classes of molecules from biological fluids, cells, or tissues are powerful tools to systematically investigate the effects of maternal diabetes on the offspring in an unbiased manner. Differentially abundant molecules or distinct molecular profiles may serve as diagnostic biomarkers, which may also support the development of preventive and therapeutic strategies. In this review, we summarize key findings from state-of-the-art Omics studies addressing the impact of maternal diabetes on offspring health.
Collapse
Affiliation(s)
- Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| | - Libera Valla
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; (L.V.); (S.R.); (E.K.)
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; (B.S.); (F.F.); (J.B.S.)
| |
Collapse
|
22
|
Flenkenthaler F, Ländström E, Shashikadze B, Backman M, Blutke A, Philippou-Massier J, Renner S, Hrabe de Angelis M, Wanke R, Blum H, Arnold GJ, Wolf E, Fröhlich T. Differential Effects of Insulin-Deficient Diabetes Mellitus on Visceral vs. Subcutaneous Adipose Tissue-Multi-omics Insights From the Munich MIDY Pig Model. Front Med (Lausanne) 2021; 8:751277. [PMID: 34888323 PMCID: PMC8650062 DOI: 10.3389/fmed.2021.751277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Adipose tissue (AT) is no longer considered to be responsible for energy storage only but is now recognized as a major endocrine organ that is distributed across different parts of the body and is actively involved in regulatory processes controlling energy homeostasis. Moreover, AT plays a crucial role in the development of metabolic disease such as diabetes. Recent evidence has shown that adipokines have the ability to regulate blood glucose levels and improve metabolic homeostasis. While AT has been studied extensively in the context of type 2 diabetes, less is known about how different AT types are affected by absolute insulin deficiency in type 1 or permanent neonatal diabetes mellitus. Here, we analyzed visceral and subcutaneous AT in a diabetic, insulin-deficient pig model (MIDY) and wild-type (WT) littermate controls by RNA sequencing and quantitative proteomics. Multi-omics analysis indicates a depot-specific dysregulation of crucial metabolic pathways in MIDY AT samples. We identified key proteins involved in glucose uptake and downstream signaling, lipogenesis, lipolysis and β-oxidation to be differentially regulated between visceral and subcutaneous AT in response to insulin deficiency. Proteins related to glycogenolysis, pyruvate metabolism, TCA cycle and lipogenesis were increased in subcutaneous AT, whereas β-oxidation-related proteins were increased in visceral AT from MIDY pigs, pointing at a regionally different metabolic adaptation to master energy stress arising from diminished glucose utilization in MIDY AT. Chronic, absolute insulin deficiency and hyperglycemia revealed fat depot-specific signatures using multi-omics analysis. The generated datasets are a valuable resource for further comparative and translational studies in clinical diabetes research.
Collapse
Affiliation(s)
- Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,German Center for Diabetes Research (DZD), Oberschleißheim, Germany
| | - Erik Ländström
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,Gene Center, Graduate School of Quantitative Biosciences Munich (QBM), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Mattias Backman
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,Gene Center, Graduate School of Quantitative Biosciences Munich (QBM), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Andreas Blutke
- Helmholtz Zentrum München, Institute of Experimental Genetics, Oberschleißheim, Germany
| | - Julia Philippou-Massier
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,German Center for Diabetes Research (DZD), Oberschleißheim, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), Oberschleißheim, Germany.,Department of Veterinary Sciences, Gene Center, Institute for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität (LMU) Munich, Oberschleißheim, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Oberschleißheim, Germany.,Helmholtz Zentrum München, Institute of Experimental Genetics, Technical University of Munich, Munich, Germany
| | - Rüdiger Wanke
- Center for Clinical Veterinary Medicine, Institute of Veterinary Pathology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,German Center for Diabetes Research (DZD), Oberschleißheim, Germany.,Department of Veterinary Sciences, Gene Center, Institute for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität (LMU) Munich, Oberschleißheim, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| |
Collapse
|
23
|
Stirm M, Fonteyne LM, Shashikadze B, Lindner M, Chirivi M, Lange A, Kaufhold C, Mayer C, Medugorac I, Kessler B, Kurome M, Zakhartchenko V, Hinrichs A, Kemter E, Krause S, Wanke R, Arnold GJ, Wess G, Nagashima H, de Angelis MH, Flenkenthaler F, Kobelke LA, Bearzi C, Rizzi R, Bähr A, Reese S, Matiasek K, Walter MC, Kupatt C, Ziegler S, Bartenstein P, Fröhlich T, Klymiuk N, Blutke A, Wolf E. A scalable, clinically severe pig model for Duchenne muscular dystrophy. Dis Model Mech 2021; 14:273744. [PMID: 34796900 PMCID: PMC8688409 DOI: 10.1242/dmm.049285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Large animal models for Duchenne muscular dystrophy (DMD) are crucial for evaluation of diagnostic procedures and treatment strategies. Pigs cloned from male cells lacking DMD exon 52 (DMDΔ52) resemble molecular, clinical and pathological hallmarks of DMD, but die before sexual maturity and cannot be propagated by breeding. Therefore, we generated female DMD+/- carriers. A single founder animal had 11 litters with 29 DMDY/-, 34 DMD+/- as well as 36 male and 29 female wild-type offspring. Breeding with F1 and F2 DMD+/- carriers resulted in additional 114 DMDY/- piglets. With intensive neonatal management, the majority survived for 3-4 months, providing statistically relevant cohorts for experimental studies. Pathological investigations and proteome studies of skeletal muscles and myocardium confirmed the resemblance of human disease mechanisms. Importantly, DMDY/- pigs reveal progressive myocardial fibrosis and increased expression of connexin-43, associated with significantly reduced left ventricular ejection fraction already at age 3 months. Furthermore, behavioral tests provided evidence for impaired cognitive ability. Our breeding cohort of DMDΔ52 pigs and standardized tissue repositories provide important resources for studying DMD disease mechanisms and for testing novel treatment strategies.
Collapse
Affiliation(s)
- Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Lina Marie Fonteyne
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Magdalena Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Maila Chirivi
- Fondazione Istituto Nazionale di Genetica Molecolare, Milan, Italy.,Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Andreas Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Clara Kaufhold
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Christian Mayer
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Sabine Krause
- Friedrich Baur Institute, Department of Neurology, LMU Munich, Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Gerhard Wess
- Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | | | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Levin Arne Kobelke
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare, Milan, Italy.,Institute of Genetic and Biomedical Research, UOS of Milan, National Research Council (IRGB-CNR), Milan, Italy
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare, Milan, Italy.,Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Andrea Bähr
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Sven Reese
- Chair for Anatomy, Histology and Embryology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Kaspar Matiasek
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich Baur Institute, Department of Neurology, LMU Munich, Munich, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Experimental Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany.,Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
24
|
Pardo ID, Manno RA, Capobianco R, Sargeant AM, Morrison JP, Bolon B, Garman RH. Nervous System Sampling for General Toxicity and Neurotoxicity Studies in the Laboratory Minipig With Emphasis on the Göttingen Minipig. Toxicol Pathol 2021; 49:1140-1163. [PMID: 34423710 DOI: 10.1177/01926233211019941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of minipigs as an alternative nonclinical species has increased in the last 20 years. The Society of Toxicologic Pathology (STP) has produced generic "best practice" recommendations for nervous system sampling in nonrodents during general toxicity studies (Toxicol Pathol 41[7]: 1028-1048, 2013), but their adaptation to the minipig has not been attempted. Here, we describe 2 trimming schemes suitable for evaluating the unique neuroanatomic features of the minipig brain in nonclinical toxicity studies. The first scheme is intended for general toxicity studies (Tier 1) to screen agents with unknown or no anticipated neurotoxic potential; this approach using 7 coronal hemisections accords with the published STP "best practice" recommendations. The second trimming scheme for neurotoxicity studies (Tier 2) uses 14 coronal hemisections and 2 full coronal sections to investigate toxicants where the nervous system is a suspected or known target organ. Collection of spinal cord, ganglia (somatic and autonomic), and nerves from minipigs during nonclinical studies should follow published STP "best practice" recommendations for sampling the central (CNS, Toxicol Pathol 41[7]: 1028-1048, 2013) and peripheral (PNS, Toxicol Pathol 46[4]: 372-402, 2018) nervous systems.
Collapse
Affiliation(s)
- Ingrid D Pardo
- Pfizer, Inc, Global Pathology and Investigative Toxicology, Groton, CT, USA
| | - Rosa A Manno
- Pathology Science, ERBC Group, Pomezia (RM), Italy
| | - Raffaella Capobianco
- 426218Janssen Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Nonclinical Safety, Beerse, Belgium
| | | | | | | | - Robert H Garman
- Consultants in Veterinary Pathology, Inc, Murrysville, PA, USA
| |
Collapse
|
25
|
Skydsgaard M, Dincer Z, Haschek WM, Helke K, Jacob B, Jacobsen B, Jeppesen G, Kato A, Kawaguchi H, McKeag S, Nelson K, Rittinghausen S, Schaudien D, Vemireddi V, Wojcinski ZW. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Minipig. Toxicol Pathol 2021; 49:110-228. [PMID: 33393872 DOI: 10.1177/0192623320975373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions) Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the minipig used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
| | - Zuhal Dincer
- Pathology Department, Covance Laboratories Limited, Harrogate, United Kingdom
| | - Wanda M Haschek
- Department of Pathobiology, University of Illinois, Urbana, IL, USA
| | - Kris Helke
- Medical University of South Carolina, Charleston, SC, USA
| | | | - Bjoern Jacobsen
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Gitte Jeppesen
- Charles River Laboratories Copenhagen, Lille Skensved, Denmark
| | - Atsuhiko Kato
- Chugai Pharmaceutical Co, Ltd Research Division, Shizuoka, Japan
| | | | - Sean McKeag
- Pathology Department, Covance Laboratories Limited, Harrogate, United Kingdom
| | | | - Susanne Rittinghausen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | | | | |
Collapse
|
26
|
Zhang K, Tao C, Xu J, Ruan J, Xia J, Zhu W, Xin L, Ye H, Xie N, Xia B, Li C, Wu T, Wang Y, Schroyen M, Xiao X, Fan J, Yang S. CD8 + T Cells Involved in Metabolic Inflammation in Visceral Adipose Tissue and Liver of Transgenic Pigs. Front Immunol 2021; 12:690069. [PMID: 34322121 PMCID: PMC8311854 DOI: 10.3389/fimmu.2021.690069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Anti-inflammatory therapies have the potential to become an effective treatment for obesity-related diseases. However, the huge gap of immune system between human and rodent leads to limitations of drug discovery. This work aims at constructing a transgenic pig model with higher risk of metabolic diseases and outlining the immune responses at the early stage of metaflammation by transcriptomic strategy. We used CRISPR/Cas9 techniques to targeted knock-in three humanized disease risk genes, GIPRdn , hIAPP and PNPLA3I148M . Transgenic effect increased the risk of metabolic disorders. Triple-transgenic pigs with short-term diet intervention showed early symptoms of type 2 diabetes, including glucose intolerance, pancreatic lipid infiltration, islet hypertrophy, hepatic lobular inflammation and adipose tissue inflammation. Molecular pathways related to CD8+ T cell function were significantly activated in the liver and visceral adipose samples from triple-transgenic pigs, including antigen processing and presentation, T-cell receptor signaling, co-stimulation, cytotoxicity, and cytokine and chemokine secretion. The similar pro-inflammatory signaling in liver and visceral adipose tissue indicated that there might be a potential immune crosstalk between the two tissues. Moreover, genes that functionally related to liver antioxidant activity, mitochondrial function and extracellular matrix showed distinct expression between the two groups, indicating metabolic stress in transgenic pigs' liver samples. We confirmed that triple-transgenic pigs had high coincidence with human metabolic diseases, especially in the scope of inflammatory signaling at early stage metaflammation. Taken together, this study provides a valuable large animal model for the clinical study of metaflammation and metabolic diseases.
Collapse
Affiliation(s)
- Kaiyi Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianping Xu
- The Ministry of Health Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinxue Ruan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jihan Xia
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wenjuan Zhu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leilei Xin
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaqiong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Xie
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boce Xia
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenxiao Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianwen Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Xinhua Xiao
- The Ministry of Health Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangao Fan
- Shanghai Key Laboratory of Children's Digestion and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Hofmann I, Kemter E, Fiedler S, Theobalt N, Fonteyne L, Wolf E, Wanke R, Blutke A. A new method for physical disector analyses of numbers and mean volumes of immunohistochemically labeled cells in paraffin sections. J Neurosci Methods 2021; 361:109272. [PMID: 34216707 DOI: 10.1016/j.jneumeth.2021.109272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND In the neurosciences, the physical disector method represents an established quantitative stereological method for unbiased sampling and counting of cells in histological tissue sections of known thickness. Physical disector analyses are conventionally performed using plastic-embedded tissue samples, because plastic-embedding causes a comparably low and definable shrinkage of the embedded tissue, and the thickness of thin plastic sections can be determined adequately. However, immunohistochemistry protocols often don't work satisfactorily in sections of plastic-embedded tissue. NEW METHOD Here, a new methodological approach is presented, allowing for physical disector analyses of immunohistochemically labeled cells in paraffin sections. The embedding-related tissue shrinkage is standardized by using defined tissue sample volumes and paraffin volumes, and the extent of tissue shrinkage can be determined accurately from the sample volumes prior to and after embedding. Co-embedding of polyethylene section thickness standards together with the tissue samples allows the precise determination of individual paraffin section thicknesses by spectral reflectance measurements. RESULTS AND COMPARISON WITH EXISTING METHOD(S) The applicability of the new method is demonstrated by physical disector analysis of immunohistochemically identified somatotroph cells in paraffin sections of porcine pituitary gland tissue. With consideration of individual shrinkage factors and section thicknesses, the cell numbers and mean volumes estimated in paraffin disector sections do not significantly differ from the results obtained by analyses of plastic-embedded pituitary tissue samples of the identical animals (2.4% average difference). CONCLUSIONS The featured method enables combination of paraffin section immunohistochemistry and physical disector analyses for unbiased quantitative stereological analyses of different cell types.
Collapse
Affiliation(s)
- Isabel Hofmann
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany.
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Feodor-Lynen-Straße 25, 81377 München, Germany; Center for Innovative Medical Models (CiMM) Ludwig-Maximilians-Universität München, Hackerstraße 27, 85764 Oberschleißheim, Germany.
| | - Sonja Fiedler
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany.
| | - Natalie Theobalt
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany.
| | - Lina Fonteyne
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Feodor-Lynen-Straße 25, 81377 München, Germany; Center for Innovative Medical Models (CiMM) Ludwig-Maximilians-Universität München, Hackerstraße 27, 85764 Oberschleißheim, Germany.
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Feodor-Lynen-Straße 25, 81377 München, Germany; Center for Innovative Medical Models (CiMM) Ludwig-Maximilians-Universität München, Hackerstraße 27, 85764 Oberschleißheim, Germany.
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany.
| | - Andreas Blutke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Veterinärstraße 13, 80539 Munich, Germany.
| |
Collapse
|
28
|
Theobalt N, Hofmann I, Fiedler S, Renner S, Dhom G, Feuchtinger A, Walch A, Hrabĕ de Angelis M, Wolf E, Wanke R, Blutke A. Unbiased analysis of obesity related, fat depot specific changes of adipocyte volumes and numbers using light sheet fluorescence microscopy. PLoS One 2021; 16:e0248594. [PMID: 33725017 PMCID: PMC7963095 DOI: 10.1371/journal.pone.0248594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
In translational obesity research, objective assessment of adipocyte sizes and numbers is essential to characterize histomorphological alterations linked to obesity, and to evaluate the efficacies of experimental medicinal or dietetic interventions. Design-based quantitative stereological techniques based on the analysis of 2D-histological sections provide unbiased estimates of relevant 3D-parameters of adipocyte morphology, but often involve complex and time-consuming tissue processing and analysis steps. Here we report the application of direct 3D light sheet fluorescence microscopy (LSFM) for effective and accurate analysis of adipocyte volumes and numbers in optically cleared adipose tissue samples from a porcine model of diet-induced obesity (DIO). Subcutaneous and visceral adipose tissue samples from DIO-minipigs and lean controls were systematically randomly sampled, optically cleared with 3DISCO (3-dimensional imaging of solvent cleared organs), stained with eosin, and subjected to LSFM for detection of adipocyte cell membrane autofluorescence. Individual adipocytes were unbiasedly sampled in digital 3D reconstructions of the adipose tissue samples, and their individual cell volumes were directly measured by automated digital image analysis. Adipocyte numbers and mean volumes obtained by LSFM analysis did not significantly differ from the corresponding values obtained by unbiased quantitative stereological analysis techniques performed on the same samples, thus proving the applicability of LSFM for efficient analysis of relevant morphological adipocyte parameters. The results of the present study demonstrate an adipose tissue depot specific plasticity of adipocyte growth responses to nutrient oversupply. This was characterized by an exclusively hypertrophic growth of visceral adipocytes, whereas adipocytes in subcutaneous fat tissue depots also displayed a marked (hyperplastic) increase in cell number. LSFM allows for accurate and efficient determination of relevant quantitative morphological adipocyte parameters. The applied stereological methods and LSFM protocols are described in detail and can serve as a guideline for unbiased quantitative morphological analyses of adipocytes in other studies and species.
Collapse
Affiliation(s)
- Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simone Renner
- Gene Center and Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Georg Dhom
- Gene Center and Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
29
|
Ayuso M, Buyssens L, Stroe M, Valenzuela A, Allegaert K, Smits A, Annaert P, Mulder A, Carpentier S, Van Ginneken C, Van Cruchten S. The Neonatal and Juvenile Pig in Pediatric Drug Discovery and Development. Pharmaceutics 2020; 13:44. [PMID: 33396805 PMCID: PMC7823749 DOI: 10.3390/pharmaceutics13010044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy in pediatric patients is challenging in view of the maturation of organ systems and processes that affect pharmacokinetics and pharmacodynamics. Especially for the youngest age groups and for pediatric-only indications, neonatal and juvenile animal models can be useful to assess drug safety and to better understand the mechanisms of diseases or conditions. In this respect, the use of neonatal and juvenile pigs in the field of pediatric drug discovery and development is promising, although still limited at this point. This review summarizes the comparative postnatal development of pigs and humans and discusses the advantages of the juvenile pig in view of developmental pharmacology, pediatric diseases, drug discovery and drug safety testing. Furthermore, limitations and unexplored aspects of this large animal model are covered. At this point in time, the potential of the neonatal and juvenile pig as nonclinical safety models for pediatric drug development is underexplored.
Collapse
Affiliation(s)
- Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Marina Stroe
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Hospital Pharmacy, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Neonatal Intensive Care Unit, University Hospitals UZ Leuven, 3000 Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
| | - Antonius Mulder
- Department of Neonatology, University Hospital Antwerp, 2650 Edegem, Belgium;
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| |
Collapse
|
30
|
Bryja A, Latosiński G, Jankowski M, Angelova Volponi A, Mozdziak P, Shibli JA, Bryl R, Spaczyńska J, Piotrowska-Kempisty H, Krawiec K, Kempisty B, Dyszkiewicz-Konwińska M. Transcriptomic and Morphological Analysis of Cells Derived from Porcine Buccal Mucosa-Studies on an In Vitro Model. Animals (Basel) 2020; 11:ani11010015. [PMID: 33374146 PMCID: PMC7824432 DOI: 10.3390/ani11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Domestic pigs express high phylogenetic similarity to humans and are often used as a compatible model in biomedical research. Porcine tissues are used as an accessible biomaterial in human skin transplants and tissue architecture reconstruction. We used transcriptional analysis to investigate the dynamics of complex biological system of the mucosa. Additionally, we performed computer analysis of microscopic images of cultured cells in vitro. Computer analysis of images identified epithelial cells and connective tissue cells in in vitro culture. Abstract Transcriptional analysis and live-cell imaging are a powerful tool to investigate the dynamics of complex biological systems. In vitro expanded porcine oral mucosal cells, consisting of populations of epithelial and connective lineages, are interesting and complex systems for study via microarray transcriptomic assays to analyze gene expression profile. The transcriptomic analysis included 56 ontological groups with particular focus on 7 gene ontology groups that are related to the processes of differentiation and development. Most analyzed genes were upregulated after 7 days and downregulated after 15 and 30 days of in vitro culture. The performed transcriptomic analysis was then extended to include automated analysis of differential interference contrast microscopy (DIC) images obtained during in vitro culture. The analysis of DIC imaging allowed to identify the different populations of keratinocytes and fibroblasts during seven days of in vitro culture, and it was possible to evaluate the proportion of these two populations of cells. Porcine mucosa may be a suitable model for reference research on human tissues. In addition, it can provide a reference point for research on the use of cells, scaffolds, or tissues derived from transgenic animals for applications in human tissues reconstruction.
Collapse
Affiliation(s)
- Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Grzegorz Latosiński
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Ana Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, King’s College University of London, London WC2R 2LS, UK;
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos 07030-010, SP, Brazil;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
| | - Julia Spaczyńska
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-631 Poznań, Poland; (J.S.); (H.P.-K.)
| | - Krzysztof Krawiec
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznań, Poland; (G.L.); (K.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznań, Poland
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
- Correspondence: ; Tel.: +48-61-8546418
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznań, Poland; (A.B.); (M.J.); (R.B.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
31
|
Fiedler S, Wünnemann H, Hofmann I, Theobalt N, Feuchtinger A, Walch A, Schwaiger J, Wanke R, Blutke A. A practical guide to unbiased quantitative morphological analyses of the gills of rainbow trout (Oncorhynchus mykiss) in ecotoxicological studies. PLoS One 2020; 15:e0243462. [PMID: 33296424 PMCID: PMC7725368 DOI: 10.1371/journal.pone.0243462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) are frequently used as experimental animals in ecotoxicological studies, in which they are experimentally exposed to defined concentrations of test substances, such as heavy metals, pesticides, or pharmaceuticals. Following exposure to a broad variety of aquatic pollutants, early morphologically detectable toxic effects often manifest in alterations of the gills. Suitable methods for an accurate and unbiased quantitative characterization of the type and the extent of morphological gill alterations are therefore essential prerequisites for recognition, objective evaluation and comparison of the severity of gill lesions. The aim of the present guidelines is to provide practicable, standardized and detailed protocols for the application of unbiased quantitative stereological analyses of relevant morphological parameters of the gills of rainbow trout. These gill parameters inter alia include the total volume of the primary and secondary gill lamellae, the surface area of the secondary gill lamellae epithelium (i.e., the respiratory surface) and the thickness of the diffusion barrier. The featured protocols are adapted to fish of frequently used body size classes (300-2000 g). They include well-established, conventional sampling methods, probes and test systems for unbiased quantitative stereological analyses of light- and electron microscopic 2-D gill sections, as well as the application of modern 3-D light sheet fluorescence microscopy (LSFM) of optically cleared gill samples as an innovative, fast and efficient quantitative morphological analysis approach. The methods shown here provide a basis for standardized and representative state-of-the-art quantitative morphological analyses of trout gills, ensuring the unbiasedness and reproducibility, as well as the intra- and inter-study comparability of analyses results. Their broad implementation will therefore significantly contribute to the reliable identification of no observed effect concentration (NOEC) limits in ecotoxicological studies and, moreover, to limit the number of experimental animals by reduction of unnecessary repetition of experiments.
Collapse
Affiliation(s)
- Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannah Wünnemann
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Schwaiger
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
32
|
Hinrichs A, Riedel EO, Klymiuk N, Blutke A, Kemter E, Längin M, Dahlhoff M, Keßler B, Kurome M, Zakhartchenko V, Jemiller EM, Ayares D, Bidlingmaier M, Flenkenthaler F, Hrabĕ de Angelis M, Arnold GJ, Reichart B, Fröhlich T, Wolf E. Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation 2020; 28:e12664. [PMID: 33241624 DOI: 10.1111/xen.12664] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many genetically multi-modified donor lines for xenotransplantation have a background of domestic pigs with rapid body and organ growth. The intrinsic growth potential of porcine xeno-organs may impair their long-term function after orthotopic transplantation in non-human primate models. Since growth hormone is a major stimulator of postnatal growth, we deleted its receptor (GHR-KO) to reduce the size of donor pigs in one step. METHODS Heart weight and proteome profile of myocardium were investigated in GHR-KO and control pigs. GHR-KO mutations were introduced using CRISPR/Cas9 in an α1,3-galactosyltransferase (GGTA1)-deficient background expressing the human cluster of differentiation (hCD46) and human thrombomodulin (hTHBD) to generate quadruple-modified (4GM) pigs. RESULTS At age 6 months, GHR-KO pigs had a 61% reduced body weight and a 63% reduced heart weight compared with controls. The mean minimal diameter of cardiomyocytes was 28% reduced. A holistic proteome study of myocardium samples from the two groups did not reveal prominent differences. Two 4GM founder sows had low serum insulin-like growth factor 1 (IGF1) levels (24 ± 1 ng/mL) and reached body weights of 70.3 and 73.4 kg at 9 months. Control pigs with IGF1 levels of 228 ± 24 ng/mL reached this weight range three months earlier. The 4GM sows showed normal sexual development and were mated with genetically multi-modified boars. Offspring revealed the expected Mendelian transmission of the genetic modifications and consistent expression of the transgenes. CONCLUSION GHR-KO donor pigs can be used at an age beyond the steepest phase of their growth curve, potentially reducing the problem of xeno-organ overgrowth in preclinical studies.
Collapse
Affiliation(s)
- Arne Hinrichs
- Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Evamaria O Riedel
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Experimental Genetics, Helmholtz Zentrum München, Chair of Experimental Genetics, Technical University of Munich, Neuherberg, Germany
| | - Elisabeth Kemter
- Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Maik Dahlhoff
- Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Barbara Keßler
- Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Mayuko Kurome
- Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Eva-Maria Jemiller
- Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | | | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Martin Hrabĕ de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Chair of Experimental Genetics, Technical University of Munich, Neuherberg, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Bruno Reichart
- Walter Brendel Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany.,Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
33
|
Blutke A, Sun N, Xu Z, Buck A, Harrison L, Schriever SC, Pfluger PT, Wiles D, Kunzke T, Huber K, Schlegel J, Aichler M, Feuchtinger A, Matiasek K, Hauck SM, Walch A. Light sheet fluorescence microscopy guided MALDI-imaging mass spectrometry of cleared tissue samples. Sci Rep 2020; 10:14461. [PMID: 32879402 PMCID: PMC7468256 DOI: 10.1038/s41598-020-71465-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Light sheet fluorescence microscopy (LSFM) of optically cleared biological samples represents a powerful tool to analyze the 3-dimensional morphology of tissues and organs. Multimodal combinations of LSFM with additional analyses of the identical sample help to limit the consumption of restricted specimen and reduce inter-sample variation. Here, we demonstrate the proof-of-concept that LSFM of cleared brain tissue samples can be combined with Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI) for detection and quantification of proteins. Samples of freshly dissected murine brain and of archived formalin-fixed paraffin-embedded (FFPE) human brain tissue were cleared (3DISCO). Tissue regions of interest were defined by LSFM and excised, (re)-embedded in paraffin, and sectioned. Mouse sections were coated with sinapinic acid matrix. Human brain sections were pre-digested with trypsin and coated with α-cyano-4-hydroxycinnamic acid matrix. Subsequently, sections were subjected to MALDI-time-of-flight (TOF)-MSI in mass ranges between 0.8 to 4 kDa (human tissue sections), or 2.5–25 kDa (mouse tissue sections) with a lateral resolution of 50 µm. Protein- and peptide-identities corresponding to acquired MALDI-MSI spectra were confirmed by parallel liquid chromatography tandem mass spectrometry (LC–MS/MS) analysis. The spatial abundance- and intensity-patterns of established marker proteins detected by MALDI-MSI were also confirmed by immunohistochemistry.
Collapse
Affiliation(s)
- Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Zhihao Xu
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Luke Harrison
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, 80333, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | | | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Katharina Huber
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Jürgen Schlegel
- Institute for Pathology, Department of Neuropathology, Technische Universität München, 80333, Munich, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany.
| | - Kaspar Matiasek
- Institute for Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Stefanie M Hauck
- Research Unit for Protein Science, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 8576, Neuherberg, Germany
| |
Collapse
|
34
|
Zettler S, Renner S, Kemter E, Hinrichs A, Klymiuk N, Backman M, Riedel EO, Mueller C, Streckel E, Braun-Reichhart C, Martins AS, Kurome M, Keßler B, Zakhartchenko V, Flenkenthaler F, Arnold GJ, Fröhlich T, Blum H, Blutke A, Wanke R, Wolf E. A decade of experience with genetically tailored pig models for diabetes and metabolic research. Anim Reprod 2020; 17:e20200064. [PMID: 33029223 PMCID: PMC7534555 DOI: 10.1590/1984-3143-ar2020-0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The global prevalence of diabetes mellitus and other metabolic diseases is rapidly increasing. Animal models play pivotal roles in unravelling disease mechanisms and developing and testing therapeutic strategies. Rodents are the most widely used animal models but may have limitations in their resemblance to human disease mechanisms and phenotypes. Findings in rodent models are consequently often difficult to extrapolate to human clinical trials. To overcome this ‘translational gap’, we and other groups are developing porcine disease models. Pigs share many anatomical and physiological traits with humans and thus hold great promise as translational animal models. Importantly, the toolbox for genetic engineering of pigs is rapidly expanding. Human disease mechanisms and targets can therefore be reproduced in pigs on a molecular level, resulting in precise and predictive porcine (PPP) models. In this short review, we summarize our work on the development of genetically (pre)diabetic pig models and how they have been used to study disease mechanisms and test therapeutic strategies. This includes the generation of reporter pigs for studying beta-cell maturation and physiology. Furthermore, genetically engineered pigs are promising donors of pancreatic islets for xenotransplantation. In summary, genetically tailored pig models have become an important link in the chain of translational diabetes and metabolic research.
Collapse
Affiliation(s)
- Silja Zettler
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Simone Renner
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Arne Hinrichs
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Nikolai Klymiuk
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Mattias Backman
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | | | - Christiane Mueller
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Elisabeth Streckel
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Christina Braun-Reichhart
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Ana Sofia Martins
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Mayuko Kurome
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Barbara Keßler
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | - Valeri Zakhartchenko
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany
| | | | - Georg Josef Arnold
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleißheim, Germany.,German Center for Diabetes Research, Neuherberg, Germany.,Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich
| |
Collapse
|
35
|
Verdile N, Pasquariello R, Scolari M, Scirè G, Brevini TAL, Gandolfi F. A Detailed Study of Rainbow Trout ( Onchorhynchus mykiss) Intestine Revealed That Digestive and Absorptive Functions Are Not Linearly Distributed along Its Length. Animals (Basel) 2020; 10:ani10040745. [PMID: 32344584 PMCID: PMC7223369 DOI: 10.3390/ani10040745] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Aquaculture is the fastest growing food-producing sector due to the increase of fish intended for human consumption. However, aquaculture growth generates concerns, since carnivorous fish are extensively fed using fish-meal and fish-oil. This constitutes a severe limit to the aquaculture industry, questioning its sustainability. Consequently, alternative feeds are continuously searched through extensive in vivo feeding trials. Undoubtedly, to evaluate their impact on the gastrointestinal tract health, detailed knowledge of the intestine morphology and physiology is required. To date, extensive studies have been performed in several livestock species; however, available information on fish is limited nowadays, most importantly because their alimentary canal is able to easily adapt to external stimuli, and their intestinal morphology is affected by external factors. Therefore, it is essential to establish accurate reference values, especially along the productive cycle of animals raised in standardized conditions. Here, we performed a detailed characterization of the epithelial cells lining the intestinal mucosa in rainbow trout along the first year of development. We studied the absorptive and secretory activity as well as its ability to self-renewal. Our results indicate that, in this species, both digestive and absorptive functions are not linearly distributed along the intestinal length. Abstract To increase the sustainability of trout farming, the industry requires alternatives to fish-based meals that do not compromise animal health and growth performances. To develop new feeds, detailed knowledge of intestinal morphology and physiology is required. We performed histological, histochemical, immunohistochemical and morphometric analysis at typical time points of in vivo feeding trials (50, 150 and 500 g). Only minor changes occurred during growth whereas differences characterized two compartments, not linearly distributed along the intestine. The first included the pyloric caeca, the basal part of the complex folds and the villi of the distal intestine. This was characterized by a significantly smaller number of goblet cells with smaller mucus vacuoles, higher proliferation and higher apoptotic rate but a smaller extension of fully differentiated epithelial cells and by the presence of numerous pinocytotic vacuolization. The second compartment was formed by the proximal intestine and the apical part of the posterior intestine complex folds. Here we observed more abundant goblet cells with bigger vacuoles, low proliferation rate, few round apoptotic cells, a more extended area of fully differentiated cells and no pinocytotic vacuoles. Our results suggest that rainbow trout intestine is physiologically arranged to mingle digestive and absorptive functions along its length.
Collapse
Affiliation(s)
- Nicole Verdile
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy;
- Correspondence: (N.V.); (F.G.); Tel.: +39-02-5031-6449 (N.V.); +39-02-5031-7990 (F.G.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy;
| | - Marco Scolari
- Skretting Aquaculture Research Centre, 37100 Verona, Italy; (M.S.); (G.S.)
| | - Giulia Scirè
- Skretting Aquaculture Research Centre, 37100 Verona, Italy; (M.S.); (G.S.)
| | - Tiziana A. L. Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milano, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy;
- Correspondence: (N.V.); (F.G.); Tel.: +39-02-5031-6449 (N.V.); +39-02-5031-7990 (F.G.)
| |
Collapse
|
36
|
Hofmann I, Kemter E, Theobalt N, Fiedler S, Bidlingmaier M, Hinrichs A, Aichler M, Burkhardt K, Klymiuk N, Wolf E, Wanke R, Blutke A. Linkage between growth retardation and pituitary cell morphology in a dystrophin-deficient pig model of Duchenne muscular dystrophy. Growth Horm IGF Res 2020; 51:6-16. [PMID: 31926372 DOI: 10.1016/j.ghir.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Human patients with Duchenne muscular dystrophy (DMD) commonly exhibit a short stature, but the pathogenesis of this growth retardation is not completely understood. Due to the suspected involvement of the growth hormone/insulin-like growth factor 1 (GH/IGF1) system, controversial therapeutic approaches have been developed, including both GH- administration, as well as GH-inhibition. In the present study, we examined relevant histomorphological and ultrastructural features of adenohypophyseal GH-producing somatotroph cells in a porcine DMD model. METHODS The numbers and volumes of immunohistochemically labelled somatotroph cells were determined in consecutive semi-thin sections of plastic resin embedded adenohypophyseal tissue samples using unbiased state-of-the-art quantitative stereological analysis methods. RESULTS DMD pigs displayed a significant growth retardation, accounting for a 55% reduction of body weight, accompanied by a significant 50% reduction of the number of somatotroph cells, as compared to controls. However, the mean volumes of somatotroph cells and the volume of GH-granules per cell were not altered. Western blot analyses of the adenohypophyseal protein samples showed no differences in the relative adenohypophyseal GH-abundance between DMD pigs and controls. CONCLUSION The findings of this study do not provide evidence for involvement of somatotroph cells in the pathogenesis of growth retardation of DMD pigs. These results are in contrast with previous findings in other dystrophin-deficient animal models, such as the golden retriever model of Duchenne muscular dystrophy, where increased mean somatotroph cell volumes and elevated volumes of intracellular GH-granules were reported and associated with DMD-related growth retardation. Possible reasons for the differences of somatotroph morphology observed in different DMD models are discussed.
Collapse
Affiliation(s)
- I Hofmann
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - E Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany; Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - N Theobalt
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - S Fiedler
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - M Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - A Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany; Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - M Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - K Burkhardt
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany; Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - N Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany; Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - E Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany; Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany; Laboratory for Functional Genome Analysis (LAFUGA), Gene Centre, Ludwig-Maximilians-Universität München, Munich, Germany
| | - R Wanke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - A Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
37
|
Functional changes of the liver in the absence of growth hormone (GH) action - Proteomic and metabolomic insights from a GH receptor deficient pig model. Mol Metab 2020; 36:100978. [PMID: 32277923 PMCID: PMC7184181 DOI: 10.1016/j.molmet.2020.100978] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The liver is a central target organ of growth hormone (GH), which stimulates the synthesis of insulin-like growth factor 1 (IGF1) and affects multiple biochemical pathways. A systematic multi-omics analysis of GH effects in the liver has not been performed. GH receptor (GHR) deficiency is a unique model for studying the consequences of lacking GH action. In this study, we used molecular profiling techniques to capture a broad spectrum of these effects in the liver of a clinically relevant large animal model for Laron syndrome. METHODS We performed holistic proteome and targeted metabolome analyses of liver samples from 6-month-old GHR-deficient (GHR-KO) pigs and GHR-expressing controls (four males, four females per group). RESULTS GHR deficiency resulted in an increased abundance of enzymes involved in amino acid degradation, in the urea cycle, and in the tricarboxylic acid cycle. A decreased ratio of long-chain acylcarnitines to free carnitine suggested reduced activity of carnitine palmitoyltransferase 1A and thus reduced mitochondrial import of fatty acids for beta-oxidation. Increased levels of short-chain acylcarnitines in the liver and in the circulation of GHR-KO pigs may result from impaired beta-oxidation of short-chain fatty acids or from increased degradation of specific amino acids. The concentration of mono-unsaturated glycerophosphocholines was significantly increased in the liver of GHR-KO pigs without morphological signs of steatosis, although the abundances of several proteins functionally linked to non-alcoholic fatty liver disease (fetuin B, retinol binding protein 4, several mitochondrial proteins) were increased. Moreover, GHR-deficient liver samples revealed distinct changes in the methionine and glutathione metabolic pathways, in particular, a significantly increased level of glycine N-methyltransferase and increased levels of total and free glutathione. Several proteins revealed a sex-related abundance difference in the control group but not in the GHR-KO group. CONCLUSIONS Our integrated proteomics/targeted metabolomics study of GHR-deficient and control liver samples from a clinically relevant large animal model identified a spectrum of biological pathways that are significantly altered in the absence of GH action. Moreover, new insights into the role of GH in the sex-related specification of liver functions were provided.
Collapse
|
38
|
Biobanking in amphibian and reptilian conservation and management: opportunities and challenges. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01142-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380:341-378. [PMID: 31932949 DOI: 10.1007/s00441-019-03158-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.
Collapse
|
40
|
Kangawa A, Nishimura T, Nishimura T, Otake M, Enya S, Yoshida T, Shibata M. Spontaneous Age-Related Histopathological Changes in Microminipigs. Toxicol Pathol 2019; 47:817-832. [PMID: 31337280 DOI: 10.1177/0192623319861350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microminipigs have become an attractive animal model for toxicology and pharmacology studies and for human disease models, owing to their manageable size. Although there are numerous reports of spontaneous age-related lesions in mice, rats, dogs, and monkeys, those in minipigs are scarce. In the present study, spontaneous age-related histopathological changes were investigated using 37 microminipigs (20 males and 17 females) that were 6 months to 10 years of age. Abnormal deposits of materials were evident in several animals from 6 years of age, and these deposits included amyloid in the renal medulla, thyroid gland, and adrenal gland, hyaline droplets in glomeruli, and fibrillar inclusions in neurons. Arterial sclerosing changes (intimal thickening, intimal proliferation, and medial mineralization) and proliferative lesions (hyperplasia of hepatocytes, follicular cells, Leydig cells, and uterine endometrial glands) were present at 4 years of age and beyond. Renal adenoma, uterine leiomyoma, and Leydig cell tumor were observed in several microminipigs. Moreover, glomerulosclerosis, renal interstitial fibrosis, thymic involution, and adrenocortical cell vacuolation were common in aging microminipigs. Since knowledge of age-related changes is helpful for pathologists, the basic information obtained in this study will be a useful reference for all future toxicity evaluations in microminipigs.
Collapse
Affiliation(s)
- Akihisa Kangawa
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Shizuoka, Japan
| | | | | | - Masayoshi Otake
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Shizuoka, Japan
| | - Satoko Enya
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Shizuoka, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masatoshi Shibata
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center, Shizuoka, Japan
| |
Collapse
|
41
|
Abstract
Pig intestinal epithelium undergoes a complete renewal every 2 to 3 days that is driven by intestinal stem cells (ISCs) located at the crypt base in their niche. Intestinal stem cells generate a pool of highly proliferative transit-amplifying cells, which either migrate up the villus and differentiate into enterocytes and secretory cells or migrate towards the base of the crypt where they differentiate into Paneth cells that secrete antimicrobial peptides. The balance between ISCs' self-renewal and differentiation controls intestinal epithelial homeostasis; therefore, ISCs are essential for ensuring intestinal epithelial integrity. Detailed knowledge of these mechanisms in pig and other domestic species is very limited. Therefore, the aim of this work was to characterize ISC from birth to weaning. We analysed the duodenum, jejunum and colon of six piglets at birth, 6-day-old nursing piglets and 28-day-old weanlings, one week after weaning. We immunolocalized homeobox only protein+ (HOPX) and sex-determining region Y-box 9+ (SOX9) cells that identify quiescent and active ISC, respectively. The volume of ISCs was quantified with stereological methods and was compared to that of mitotic cells expressing proliferating cell nuclear antigen and apoptotic cells identified by the presence of cleaved caspase-3. Furthermore, we compared all these values with crypts and villi measurements and their ratio. Our results indicated that both quiescent and active ISCs are present in pig intestine from birth to weaning and are localized in the crypts of the small and large intestine. However, both markers were also observed along the villi and on the colon luminal epithelium, suggesting that at these stages, pig mucosa is still immature. Weaning induced a dramatic reduction of both HOPX+ and SOX9+ cells, but SOX9+ cells underwent a significantly greater reduction in the small intestine than in the colon. This suggests that the two ISC types are differentially regulated along the intestinal tracts. Overall, the pig ISC complex has many similarities with its murine counterpart, but also has some differences. These include active ISC not showing the typical columnar base morphology as well as the absence of bona fide Paneth cells. This is the first description of ISC dynamics during pig's early life and provides useful reference data for future studies, aimed at targeting ISC for the development of efficient alternatives to in-feed antibiotics for preserving intestinal integrity.
Collapse
|
42
|
Howroyd PC. Dissection of the Trigeminal Ganglion of Nonrodent Species Used in Toxicology Studies. Toxicol Pathol 2019; 48:30-36. [PMID: 31181996 DOI: 10.1177/0192623319854338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ganglion of the trigeminal (V cranial) nerve is generally sampled at necropsy in nonrodent toxicology studies only when somatic or autonomic peripheral nervous system toxicity is suspected. The ganglion is far more difficult to locate in nonrodents than in rats and mice, and suitable methods to dissect it have been described only for swine. The trigeminal nerve caudal to the ganglion passes through a canal, roofed by bone in dogs and rabbits and by a tough layer of dura mater in swine and nonhuman primates. The ganglion is partly or wholly obscured by overlying dura mater. Of the 3 intracranial branches of the nerve, the ophthalmic is delicate and the maxillary and mandibular have extremely short courses within the cranial cavity. Methods that are practical in routine toxicologic pathology for the dissection of the ganglion in nonrodent laboratory species are illustrated and relevant species differences in the anatomy of the intracranial part of the trigeminal nerve are highlighted.
Collapse
Affiliation(s)
- Paul C Howroyd
- Charles River Laboratories Edinburgh, Tranent, United Kingdom
| |
Collapse
|
43
|
Backman M, Flenkenthaler F, Blutke A, Dahlhoff M, Ländström E, Renner S, Philippou-Massier J, Krebs S, Rathkolb B, Prehn C, Grzybek M, Coskun Ü, Rothe M, Adamski J, de Angelis MH, Wanke R, Fröhlich T, Arnold GJ, Blum H, Wolf E. Multi-omics insights into functional alterations of the liver in insulin-deficient diabetes mellitus. Mol Metab 2019; 26:30-44. [PMID: 31221621 PMCID: PMC6667734 DOI: 10.1016/j.molmet.2019.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE The liver regulates the availability of insulin to other tissues and is the first line insulin response organ physiologically exposed to higher insulin concentrations than the periphery. Basal insulin during fasting inhibits hepatic gluconeogenesis and glycogenolysis, whereas postprandial insulin peaks stimulate glycogen synthesis. The molecular consequences of chronic insulin deficiency for the liver have not been studied systematically. METHODS We analyzed liver samples of a genetically diabetic pig model (MIDY) and of wild-type (WT) littermate controls by RNA sequencing, proteomics, and targeted metabolomics/lipidomics. RESULTS Cross-omics analyses revealed increased activities in amino acid metabolism, oxidation of fatty acids, ketogenesis, and gluconeogenesis in the MIDY samples. In particular, the concentrations of the ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) and of retinol dehydrogenase 16 (RDH16), which catalyzes the first step in retinoic acid biogenesis, were highly increased. Accordingly, elevated levels of retinoic acid, which stimulates the expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK1), were measured in the MIDY samples. In contrast, pathways related to extracellular matrix and inflammation/pathogen defense response were less active than in the WT samples. CONCLUSIONS The first multi-omics study of a clinically relevant diabetic large animal model revealed molecular signatures and key drivers of functional alterations of the liver in insulin-deficient diabetes mellitus. The multi-omics data set provides a valuable resource for comparative analyses with other experimental or clinical data sets.
Collapse
Affiliation(s)
- Mattias Backman
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; Graduate School of Quantitative Biosciences Munich (QBM), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Maik Dahlhoff
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Erik Ländström
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; Graduate School of Quantitative Biosciences Munich (QBM), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Julia Philippou-Massier
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Birgit Rathkolb
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, 85764 Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit of Molecular Endocrinology and Metabolism (MEM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michal Grzybek
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Ünal Coskun
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | | | - Jerzy Adamski
- Research Unit of Molecular Endocrinology and Metabolism (MEM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85764 Neuherberg, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany.
| |
Collapse
|
44
|
Everitt JI, Treuting PM, Scudamore C, Sellers R, Turner PV, Ward JM, Zeiss CJ. Pathology Study Design, Conduct, and Reporting to Achieve Rigor and Reproducibility in Translational Research Using Animal Models. ILAR J 2019; 59:4-12. [DOI: 10.1093/ilar/ily020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
AbstractIn translational research, animal models are an important tool to aid in decision-making when taking potential therapies into human clinical trials. Recently, there have been a number of papers that have suggested limited concordance of preclinical animal experiments with subsequent human clinical experience. Assessments of preclinical animal studies have led to concerns about the reproducibility of data and have highlighted the need for an emphasis on rigor and quality in the planning, conduct, analysis, and reporting of such studies. The incorporation of a wider role for the comparative pathologist using pathology best practices in the planning and conduct of animal model-based research is one way to increase the quality and reproducibility of data. The use of optimal design and planning of tissue collection, incorporation of pathology methods into written protocols, conduct of pathology procedures using accepted best practices, and the use of optimal pathology analysis and reporting methods enhance the quality of the data acquired from many types of preclinical animal models and studies. Many of these pathology practices are well established in the discipline of toxicologic pathology and have a proven and useful track record in enhancing the data from animal-based studies used in safety assessment of human therapeutics. Some of this experience can be adopted by the wider community of preclinical investigators to increase the reproducibility of animal study data.
Collapse
Affiliation(s)
| | | | | | | | - Patricia V Turner
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
45
|
Burns EN, Bordbari MH, Mienaltowski MJ, Affolter VK, Barro MV, Gianino F, Gianino G, Giulotto E, Kalbfleisch TS, Katzman SA, Lassaline M, Leeb T, Mack M, Müller EJ, MacLeod JN, Ming-Whitfield B, Alanis CR, Raudsepp T, Scott E, Vig S, Zhou H, Petersen JL, Bellone RR, Finno CJ. Generation of an equine biobank to be used for Functional Annotation of Animal Genomes project. Anim Genet 2018; 49:564-570. [PMID: 30311254 DOI: 10.1111/age.12717] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
The Functional Annotation of Animal Genomes (FAANG) project aims to identify genomic regulatory elements in both sexes across multiple stages of development in domesticated animals. This study represents the first stage of the FAANG project for the horse, Equus caballus. A biobank of 80 tissue samples, two cell lines and six body fluids was created from two adult Thoroughbred mares. Ante-mortem assessments included full physical examinations, lameness, ophthalmologic and neurologic evaluations. Complete blood counts and serum biochemistries were also performed. At necropsy, in addition to tissue samples, aliquots of serum, ethylenediaminetetraacetic acid (EDTA) plasma, heparinized plasma, cerebrospinal fluid, synovial fluid, urine and microbiome samples from all regions of the gastrointestinal and urogenital tracts were collected. Epidermal keratinocytes and dermal fibroblasts were cultured from skin samples. All tissues were grossly and histologically evaluated by a board-certified veterinary pathologist. The results of the clinical and pathological evaluations identified subclinical eosinophilic and lymphocytic infiltration throughout the length of the gastrointestinal tract as well as a mild clinical lameness in both animals. Each sample was cryo-preserved in multiple ways, and nuclei were extracted from selected tissues. These samples represent the first published systemically healthy equine-specific biobank with extensive clinical phenotyping ante- and post-mortem. The tissues in the biobank are intended for community-wide use in the functional annotation of the equine genome. The use of the biobank will improve the quality of the reference annotation and allow all equine researchers to elucidate unknown genomic and epigenomic causes of disease.
Collapse
Affiliation(s)
- E N Burns
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - M H Bordbari
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - M J Mienaltowski
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - V K Affolter
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - M V Barro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - F Gianino
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - G Gianino
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - E Giulotto
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 1, Pavia, I-27100, Italy
| | - T S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40292, USA
| | - S A Katzman
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - M Lassaline
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95618, USA
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - M Mack
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - E J Müller
- Department of Biomedical Research, Molecular Dermatology and Stem Cell Research, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, 3001, Switzerland
| | - J N MacLeod
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - B Ming-Whitfield
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - C R Alanis
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77845, USA
| | - E Scott
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - S Vig
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - H Zhou
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE, 68583, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
46
|
Li DP, Zhang WH, Yang ML, Liu CB, Zhang X, Cai C, Li JJ. An Improved Urethral Catheterization in Female Pigs: A Pilot Study. Chin Med J (Engl) 2018; 130:1880-1881. [PMID: 28748864 PMCID: PMC5547843 DOI: 10.4103/0366-6999.211540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Da-Peng Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068; Department of Spinal and Neural Function Reconstruction, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
| | - Wen-Hao Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068; Department of Spinal and Neural Function Reconstruction, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
| | - Ming-Liang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068; Department of Spinal and Neural Function Reconstruction, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
| | - Chang-Bin Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068; Department of Spinal and Neural Function Reconstruction, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
| | - Xin Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068; Department of Spinal and Neural Function Reconstruction, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
| | - Chang Cai
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068; Department of Spinal and Neural Function Reconstruction, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
| | - Jian-Jun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068; Department of Spinal and Neural Function Reconstruction, Beijing Boai Hospital, China Rehabilitation Research Center, Beijing 100068; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
| |
Collapse
|
47
|
Renner S, Blutke A, Dobenecker B, Dhom G, Müller TD, Finan B, Clemmensen C, Bernau M, Novak I, Rathkolb B, Senf S, Zöls S, Roth M, Götz A, Hofmann SM, Hrabĕ de Angelis M, Wanke R, Kienzle E, Scholz AM, DiMarchi R, Ritzmann M, Tschöp MH, Wolf E. Metabolic syndrome and extensive adipose tissue inflammation in morbidly obese Göttingen minipigs. Mol Metab 2018; 16:180-190. [PMID: 30017782 PMCID: PMC6157610 DOI: 10.1016/j.molmet.2018.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The worldwide prevalence of obesity has increased to 10% in men and 15% in women and is associated with severe comorbidities such as diabetes, cancer, and cardiovascular disease. Animal models of obesity are central to experimental studies of disease mechanisms and therapeutic strategies. Diet-induced obesity (DIO) models in rodents have provided important insights into the pathophysiology of obesity and, in most instances, are the first in line for exploratory pharmacology studies. To deepen the relevance towards translation to human patients, we established a corresponding DIO model in Göttingen minipigs (GM). METHODS Young adult female ovariectomized GM were fed a high-fat/high-energy diet for a period of 70 weeks. The ration was calculated to meet the requirements and maintain body weight (BW) of lean adult minipigs (L-GM group) or increased stepwise to achieve an obese state (DIO-GM group). Body composition, blood parameters and intravenous glucose tolerance were determined at regular intervals. A pilot chronic treatment trial with a GLP1 receptor agonist was conducted in DIO-GM. At the end of the study, the animals were necropsied and a biobank of selected tissues was established. RESULTS DIO-GM developed severe subcutaneous and visceral adiposity (body fat >50% of body mass vs. 22% in L-GM), increased plasma cholesterol, triglyceride, and free fatty acid levels, insulin resistance (HOMA-IR >5 vs. 2 in L-GM), impaired glucose tolerance and increased heart rate when resting and active. However, fasting glucose concentrations stayed within normal range throughout the study. Treatment with a long-acting GLP1 receptor agonist revealed substantial reduction of food intake and body weight within four weeks, with increased drug sensitivity relative to observations in other DIO animal models. Extensive adipose tissue inflammation and adipocyte necrosis was observed in visceral, but not subcutaneous, adipose tissue of DIO-GM. CONCLUSIONS The Munich DIO-GM model resembles hallmarks of the human metabolic syndrome with extensive adipose tissue inflammation and adipocyte necrosis reported for the first time. DIO-GM may be used for evaluating novel treatments of obesity and associated comorbidities. They may help to identify triggers and mechanisms of fat tissue inflammation and mechanisms preventing complete metabolic decompensation despite morbid obesity.
Collapse
Affiliation(s)
- Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - Britta Dobenecker
- Chair of Animal Nutrition and Dietetics, Department of Veterinary Sciences, LMU Munich, Schönleutnerstr. 8, 85764, Oberschleißheim, Germany
| | - Georg Dhom
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Timo D Müller
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Ismaninger Str. 22, 81675, Munich, Germany
| | - Brian Finan
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christoffer Clemmensen
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Ismaninger Str. 22, 81675, Munich, Germany
| | - Maren Bernau
- Livestock Center of the Veterinary Faculty, LMU Munich, St.-Hubertus-Str. 12, 85764, Oberschleißheim, Germany
| | - Istvan Novak
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Steffanie Senf
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Sonnenstr. 16, 85764, Oberschleißheim, Germany
| | - Susanne Zöls
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Sonnenstr. 16, 85764, Oberschleißheim, Germany
| | - Mirjam Roth
- Animal aspects, 88400, Biberach an der Riss, Germany
| | - Anna Götz
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Department of Internal Medicine I, University Hospital RWTH Aachen, Pauwelstr. 30, 52074, Aachen, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Institute of Diabetes and Regeneration Research (IDR), Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der LMU, Ziemssenstr, 180336, Munich, Germany
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Genome Analysis Center (GAC), Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health and Chair of Experimental Genetics, Technische Universität, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539, Munich, Germany
| | - Ellen Kienzle
- Chair of Animal Nutrition and Dietetics, Department of Veterinary Sciences, LMU Munich, Schönleutnerstr. 8, 85764, Oberschleißheim, Germany
| | - Armin M Scholz
- Livestock Center of the Veterinary Faculty, LMU Munich, St.-Hubertus-Str. 12, 85764, Oberschleißheim, Germany
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, 5225 Exploration Drive, Indianapolis, IN, 46241, USA; Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405-7102, USA
| | - Mathias Ritzmann
- Clinic for Swine, Center for Clinical Veterinary Medicine, LMU Munich, Sonnenstr. 16, 85764, Oberschleißheim, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Ismaninger Str. 22, 81675, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764, Oberschleißheim, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| |
Collapse
|
48
|
Hinrichs A, Kessler B, Kurome M, Blutke A, Kemter E, Bernau M, Scholz AM, Rathkolb B, Renner S, Bultmann S, Leonhardt H, de Angelis MH, Nagashima H, Hoeflich A, Blum WF, Bidlingmaier M, Wanke R, Dahlhoff M, Wolf E. Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver. Mol Metab 2018; 11:113-128. [PMID: 29678421 PMCID: PMC6001387 DOI: 10.1016/j.molmet.2018.03.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/09/2018] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Laron syndrome (LS) is a rare, autosomal recessive disorder in humans caused by loss-of-function mutations of the growth hormone receptor (GHR) gene. To establish a large animal model for LS, pigs with GHR knockout (KO) mutations were generated and characterized. METHODS CRISPR/Cas9 technology was applied to mutate exon 3 of the GHR gene in porcine zygotes. Two heterozygous founder sows with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous F1 offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild-type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of liver, kidneys, and heart were disproportionately reduced, while the relative brain weight was almost doubled. GHR-KO pigs had a markedly increased percentage of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRS1 and PI3K. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased mTOR phosphorylation was observed in GHR-KO liver samples, and phosphorylation studies of downstream substrates suggested the activation of mainly mTOR complex 2. CONCLUSION GHR-KO pigs resemble the pathophysiology of LS and are an interesting model for mechanistic studies and treatment trials.
Collapse
Affiliation(s)
- Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764 Oberschleißheim, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764 Oberschleißheim, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764 Oberschleißheim, Germany; Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama, Kawasaki, 214-8571, Japan
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764 Oberschleißheim, Germany
| | - Maren Bernau
- Livestock Center of the Veterinary Faculty, LMU Munich, St.-Hubertus-Str. 12, 85764 Oberschleißheim, Germany
| | - Armin M Scholz
- Livestock Center of the Veterinary Faculty, LMU Munich, St.-Hubertus-Str. 12, 85764 Oberschleißheim, Germany
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany; German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764 Oberschleißheim, Germany; German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sebastian Bultmann
- Human Biology and Bioimaging, Faculty of Biology, Biocenter, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Human Biology and Bioimaging, Faculty of Biology, Biocenter, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, and Chair of Experimental Genetics, Technical University of Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama, Kawasaki, 214-8571, Japan
| | - Andreas Hoeflich
- Cell Signaling Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Werner F Blum
- University Children`s Hospital, University of Giessen, Feulgenstr.12, 35392 Gießen, Germany
| | - Martin Bidlingmaier
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ziemssenstr. 1, 80336 Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - Maik Dahlhoff
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764 Oberschleißheim, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, Hackerstr. 27, 85764 Oberschleißheim, Germany; Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama, Kawasaki, 214-8571, Japan; German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| |
Collapse
|
49
|
Blutke A, Wanke R. Sampling Strategies and Processing of Biobank Tissue Samples from Porcine Biomedical Models. J Vis Exp 2018:57276. [PMID: 29578524 PMCID: PMC5931442 DOI: 10.3791/57276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In translational medical research, porcine models have steadily become more popular. Considering the high value of individual animals, particularly of genetically modified pig models, and the often-limited number of available animals of these models, establishment of (biobank) collections of adequately processed tissue samples suited for a broad spectrum of subsequent analyses methods, including analyses not specified at the time point of sampling, represent meaningful approaches to take full advantage of the translational value of the model. With respect to the peculiarities of porcine anatomy, comprehensive guidelines have recently been established for standardized generation of representative, high-quality samples from different porcine organs and tissues. These guidelines are essential prerequisites for the reproducibility of results and their comparability between different studies and investigators. The recording of basic data, such as organ weights and volumes, the determination of the sampling locations and of the numbers of tissue samples to be generated, as well as their orientation, size, processing and trimming directions, are relevant factors determining the generalizability and usability of the specimen for molecular, qualitative, and quantitative morphological analyses. Here, an illustrative, practical, step-by-step demonstration of the most important techniques for generation of representative, multi-purpose biobank specimen from porcine tissues is presented. The methods described here include determination of organ/tissue volumes and densities, the application of a volume-weighted systematic random sampling procedure for parenchymal organs by point-counting, determination of the extent of tissue shrinkage related to histological embedding of samples, and generation of randomly oriented samples for quantitative stereological analyses, such as isotropic uniform random (IUR) sections generated by the "Orientator" and "Isector" methods, and vertical uniform random (VUR) sections.
Collapse
Affiliation(s)
- Andreas Blutke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich;
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich
| |
Collapse
|
50
|
Matenaers C, Popper B, Rieger A, Wanke R, Blutke A. Practicable methods for histological section thickness measurement in quantitative stereological analyses. PLoS One 2018; 13:e0192879. [PMID: 29444158 PMCID: PMC5812658 DOI: 10.1371/journal.pone.0192879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/31/2018] [Indexed: 11/19/2022] Open
Abstract
The accuracy of quantitative stereological analysis tools such as the (physical) disector method substantially depends on the precise determination of the thickness of the analyzed histological sections. One conventional method for measurement of histological section thickness is to re-embed the section of interest vertically to its original section plane. The section thickness is then measured in a subsequently prepared histological section of this orthogonally re-embedded sample. However, the orthogonal re-embedding (ORE) technique is quite work- and time-intensive and may produce inaccurate section thickness measurement values due to unintentional slightly oblique (non-orthogonal) positioning of the re-embedded sample-section. Here, an improved ORE method is presented, allowing for determination of the factual section plane angle of the re-embedded section, and correction of measured section thickness values for oblique (non-orthogonal) sectioning. For this, the analyzed section is mounted flat on a foil of known thickness (calibration foil) and both the section and the calibration foil are then vertically (re-)embedded. The section angle of the re-embedded section is then calculated from the deviation of the measured section thickness of the calibration foil and its factual thickness, using basic geometry. To find a practicable, fast, and accurate alternative to ORE, the suitability of spectral reflectance (SR) measurement for determination of plastic section thicknesses was evaluated. Using a commercially available optical reflectometer (F20, Filmetrics®, USA), the thicknesses of 0.5 μm thick semi-thin Epon (glycid ether)-sections and of 1–3 μm thick plastic sections (glycolmethacrylate/ methylmethacrylate, GMA/MMA), as regularly used in physical disector analyses, could precisely be measured within few seconds. Compared to the measured section thicknesses determined by ORE, SR measures displayed less than 1% deviation. Our results prove the applicability of SR to efficiently provide accurate section thickness measurements as a prerequisite for reliable estimates of dependent quantitative stereological parameters.
Collapse
Affiliation(s)
- Cyrill Matenaers
- Institute for Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Alexandra Rieger
- Institute for Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rüdiger Wanke
- Institute for Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Institute for Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|