1
|
Corton JC, Ledbetter V, Cohen SM, Atlas E, Yauk CL, Liu J. A transcriptomic biomarker predictive of cell proliferation for use in adverse outcome pathway-informed testing and assessment. Toxicol Sci 2024; 201:174-189. [PMID: 39137154 DOI: 10.1093/toxsci/kfae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
High-throughput transcriptomics (HTTr) is increasingly being used to identify molecular targets of chemicals that can be linked to adverse outcomes. Cell proliferation (CP) is an important key event in chemical carcinogenesis. Here, we describe the construction and characterization of a gene expression biomarker that is predictive of the CP status in human and rodent tissues. The biomarker was constructed from 30 genes known to be increased in expression in prostate cancers relative to surrounding tissues and in cycling human MCF-7 cells after estrogen receptor (ER) agonist exposure. Using a large compendium of gene expression profiles to test utility, the biomarker could identify increases in CP in (i) 308 out of 367 tumor vs. normal surrounding tissue comparisons from 6 human organs, (ii) MCF-7 cells after activation of ER, (iii) after partial hepatectomy in mice and rats, and (iv) the livers of mice and rats after exposure to nongenotoxic hepatocarcinogens. The biomarker identified suppression of CP (i) under conditions of p53 activation by DNA damaging agents in human cells, (ii) in human A549 lung cells exposed to therapeutic anticancer kinase inhibitors (dasatinib, nilotnib), and (iii) in the mouse liver when comparing high levels of CP at birth to the low background levels in the adult. The responses using the biomarker were similar to those observed using conventional markers of CP including PCNA, Ki67, and BrdU labeling. The CP biomarker will be a useful tool for interpretation of HTTr data streams to identify CP status after exposure to chemicals in human cells or in rodent tissues.
Collapse
Affiliation(s)
- J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Victoria Ledbetter
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Samuel M Cohen
- Department of Pathology and Microbiology and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198-3135, United States
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB) Health Canada, Ottawa, ON K2K 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jie Liu
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| |
Collapse
|
2
|
Ruz-Maldonado I, Gonzalez JT, Zhang H, Sun J, Bort A, Kabir I, Kibbey RG, Suárez Y, Greif DM, Fernández-Hernando C. Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage. Nat Commun 2024; 15:1247. [PMID: 38341404 PMCID: PMC10858916 DOI: 10.1038/s41467-024-45439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John T Gonzalez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Richard G Kibbey
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
3
|
Cohen SM, Bevan C, Gollapudi B, Klaunig JE. Evaluation of the carcinogenicity of carbon tetrachloride. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:342-370. [PMID: 37282619 DOI: 10.1080/10937404.2023.2220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon tetrachloride (CCl4) has been extensively used and reported to produce toxicity, most notably involving the liver. Carbon tetrachloride metabolism involves CYP450-mediated bioactivation to trichloromethyl and trichloromethyl peroxy radicals, which are capable of macromolecular interaction with cell components including lipids and proteins. Radical interaction with lipids produces lipid peroxidation which can mediate cellular damage leading to cell death. Chronic exposure with CCl4 a rodent hepatic carcinogen with a mode of action (MOA) exhibits the following key events: 1) metabolic activation; 2) hepatocellular toxicity and cell death; 3) consequent regenerative increased cell proliferation; and 4) hepatocellular proliferative lesions (foci, adenomas, carcinomas). The induction of rodent hepatic tumors is dependent upon the dose (concentration and exposure duration) of CCl4, with tumors only occurring at cytotoxic exposure levels. Adrenal benign pheochromocytomas were also increased in mice at high CCl4 exposures; however, these tumors are not of relevant importance to human cancer risk. Few epidemiology studies that have been performed on CCl4, do not provide credible evidence of enhanced risk of occurrence of liver or adrenal cancers, but these studies have serious flaws limiting their usefulness for risk assessment. This manuscript summarizes the toxicity and carcinogenicity attributed to CCl4, specifically addressing MOA, dose-response, and human relevance.
Collapse
Affiliation(s)
- Samuel M Cohen
- Department of Pathology and Microbiology and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, US
| | | | | | - James E Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN, US
| |
Collapse
|
4
|
Andrade A, Poth T, Brobeil A, Merle U, Chamulitrat W. iPLA2β-Null Mice Show HCC Protection by an Induction of Cell-Cycle Arrest after Diethylnitrosamine Treatment. Int J Mol Sci 2022; 23:ijms232213760. [PMID: 36430237 PMCID: PMC9697657 DOI: 10.3390/ijms232213760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Group VIA phospholipase A2 (iPLA2β) play diverse biological functions in epithelial cells and macrophages. Global deletion in iPLA2β-null (KO) mice leads to protection against hepatic steatosis in non-alcoholic fatty liver disease, in part, due to the replenishment of the loss of hepatocellular phospholipids. As the loss of phospholipids also occurs in hepatocellular carcinoma (HCC), we hypothesized that global deletion in KO mice may lead to protection against HCC. Here, HCC induced by diethylnitrosamine (DEN) was chosen because DEN causes direct injury to the hepatocytes. Male wild-type (WT) and KO mice at 3-5 weeks of age (12-13 mice/group) were subjected to a single intraperitoneal treatment with 10 mg/kg DEN, and mice were killed 12 months later. Analyses of histology, plasma cytokines, and gene expression were performed. Due to the low-dose DEN used, we observed a liver nodule in 3 of 13 WT and 2 of 12 KO mice. Only one DEN-treated WT mouse was confirmed to have HCC. DEN-treated KO mice did not show any HCC but showed suppressed hepatic expression of cell-cycle cyclinD2 and BCL2 as well as inflammatory markers IL-1β, IL-10, and VCAM-1. Notably, DEN-treated KO mice showed increased hepatic necrosis and elevated levels of plasma lactate dehydrogenase suggesting an exacerbation of liver injury. Thus, global iPLA2β deficiency in DEN-treated mice rendered HCC protection by an induction of cell-cycle arrest. Our results suggest the role of iPLA2β inhibition in HCC treatment.
Collapse
Affiliation(s)
- Adriana Andrade
- Department of Internal Medicine IV (Gastroenterology and Infectious Disease), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Brobeil
- Tissuebank of the NCT, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV (Gastroenterology and Infectious Disease), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV (Gastroenterology and Infectious Disease), University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
5
|
Panday R, Monckton CP, Khetani SR. The Role of Liver Zonation in Physiology, Regeneration, and Disease. Semin Liver Dis 2022; 42:1-16. [PMID: 35120381 DOI: 10.1055/s-0041-1742279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As blood flows from the portal triad to the central vein, cell-mediated depletion establishes gradients of soluble factors such as oxygen, nutrients, and hormones, which act through molecular pathways (e.g., Wnt/β-catenin, hedgehog) to spatially regulate hepatocyte functions along the sinusoid. Such "zonation" can lead to the compartmentalized initiation of several liver diseases, including alcoholic/non-alcoholic fatty liver diseases, chemical/drug-induced toxicity, and hepatocellular carcinoma, and can also modulate liver regeneration. Transgenic rodent models provide valuable information on the key molecular regulators of zonation, while in vitro models allow for subjecting cells to precisely controlled factor gradients and elucidating species-specific differences in zonation. Here, we discuss the latest advances in both in vivo and in vitro models of liver zonation and pending questions to be addressed moving forward. Ultimately, obtaining a deeper understanding of zonation can lead to the development of more effective therapeutics for liver diseases, microphysiological systems, and scalable cell-based therapies.
Collapse
Affiliation(s)
- Regeant Panday
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Chase P Monckton
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Cunningham RP, Porat-Shliom N. Liver Zonation - Revisiting Old Questions With New Technologies. Front Physiol 2021; 12:732929. [PMID: 34566696 PMCID: PMC8458816 DOI: 10.3389/fphys.2021.732929] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the ever-increasing prevalence of non-alcoholic fatty liver disease (NAFLD), the etiology and pathogenesis remain poorly understood. This is due, in part, to the liver's complex physiology and architecture. The liver maintains glucose and lipid homeostasis by coordinating numerous metabolic processes with great efficiency. This is made possible by the spatial compartmentalization of metabolic pathways a phenomenon known as liver zonation. Despite the importance of zonation to normal liver function, it is unresolved if and how perturbations to liver zonation can drive hepatic pathophysiology and NAFLD development. While hepatocyte heterogeneity has been identified over a century ago, its examination had been severely hindered due to technological limitations. Recent advances in single cell analysis and imaging technologies now permit further characterization of cells across the liver lobule. This review summarizes the advances in examining liver zonation and elucidating its regulatory role in liver physiology and pathology. Understanding the spatial organization of metabolism is vital to further our knowledge of liver disease and to provide targeted therapeutic avenues.
Collapse
Affiliation(s)
- Rory P Cunningham
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Natalie Porat-Shliom
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
7
|
Zhu D, Rostami MR, Zuo WL, Leopold PL, Crystal RG. Single-Cell Transcriptome Analysis of Mouse Liver Cell-Specific Tropism and Transcriptional Dysregulation Following Intravenous Administration of AAVrh.10 Vectors. Hum Gene Ther 2020; 31:590-604. [PMID: 32143547 PMCID: PMC7232697 DOI: 10.1089/hum.2019.366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/16/2020] [Indexed: 01/20/2023] Open
Abstract
Capitalizing on liver tropism of adeno-associated viral (AAV) vectors, intravenous vector administration is commonly used to genetically modify hepatocytes, a strategy currently in clinical trials for a number of liver-based hereditary disorders. Although hepatocytes are known to exhibit extensive phenotypic heterogeneity influenced by liver zonation and dietary cycle, there is little data available for the tropism capacity, as well as the potential transcriptional dysregulation, of AAV vectors for specific liver cell types. To assess these issues, we employed single-cell RNA sequencing of the mouse liver after intravenous administration of the liver tropic AAVrh.10 vector to characterize cell-specific AAV-mediated transgene expression and transcriptome dysregulation. Wild-type 8-week-old male C57Bl/6 mice under normal feed cycle were randomly divided into three groups and intravenously administered phosphate-buffered saline (PBS), AAVrh.10Null (no transgene), or AAVrh.10mCherry (marker gene). Overall, a total of 46,500 liver cells were sequenced. The single-cell transcriptomic profiles were grouped into three separate clusters of hepatocytes (Ttr-enriched "Hep1," Tat-enriched "Hep2," and Alb-enriched "Hep3") and multiple other cell types. The hepatocyte diversity was driven by glucose and lipid homeostasis signaling. Assessment of the transgene expression demonstrated that AAVrh.10 is primarily Hep1-tropic, with a 10-gene signature positively correlated with AAVrh.10-mediated transgene expression. The transgene expression was less in Hep2 and Hep3 cells with a high receptor tyrosine kinase phenotype. Importantly, AAVrh.10 vector interactions with the liver markedly altered the transcriptional patterns of all cell types, with modified genes enriched in pathways of complement and coagulation cascade, cytochrome P450, peroxisome, antigen processing and presentation, and endoplasmic reticulum protein processing. These observations provide insights into the liver cell-specific consequences of AAV-mediated liver gene transfer, far beyond the well-known organ-specific expression of the vector-delivered transgene.
Collapse
Affiliation(s)
- Detu Zhu
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Mahboubeh R. Rostami
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Wu-lin Zuo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Philip L. Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
8
|
Manco R, Leclercq IA, Clerbaux LA. Liver Regeneration: Different Sub-Populations of Parenchymal Cells at Play Choreographed by an Injury-Specific Microenvironment. Int J Mol Sci 2018; 19:E4115. [PMID: 30567401 PMCID: PMC6321497 DOI: 10.3390/ijms19124115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration is crucial for the maintenance of liver functional mass during homeostasis and diseases. In a disease context-dependent manner, liver regeneration is contributed to by hepatocytes or progenitor cells. As long as they are replicatively competent, hepatocytes are the main cell type responsible for supporting liver size homeostasisand regeneration. The concept that all hepatocytes within the lobule have the same proliferative capacity but are differentially recruited according to the localization of the wound, or whether a yet to be defined sub-population of hepatocytes supports regeneration is still debated. In a chronically or severely injured liver, hepatocytes may enter a state of replicative senescence. In such conditions, small biliary cells activate and expand, a process called ductular reaction (DR). Work in the last few decades has demonstrated that DR cells can differentiate into hepatocytes and thereby contribute to parenchymal reconstitution. In this study we will review the molecular mechanisms supporting these two processes to determine potential targets that would be amenable for therapeutic manipulation to enhance liver regeneration.
Collapse
Affiliation(s)
- Rita Manco
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| | - Laure-Alix Clerbaux
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
9
|
Abstract
Inbred mice are the most popular animals used for in vivo liver research. These mice are genetically defined, readily available, less expensive to maintain than larger animals, and enjoy a broad array of commercial reagents for scientific characterization. C57BL/6 mice are the most commonly used strain. However, other strains discussed, including BALB/c, C3H, A/J, and FVB/N, may be better suited to a particular disease model or line of investigation. Understanding the phenotypes of different inbred mouse strains facilitates informed decision making during experimental design. Model systems influenced by strain-dependent phenotype include tissue regeneration, drug-induced liver injury (DILI; e.g., acetaminophen), fibrosis (e.g., carbon tetrachloride, CCl₄), Fas-induced apoptosis, cholestasis, alcohol-induced liver disease and cirrhosis, nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH), and hepatocellular carcinoma (HCC). Thoughtful consideration of the strengths and weaknesses of each inbred strain in a given model system will lead to more robust data and a clearer understanding of translational relevance to human liver disease.
Collapse
Affiliation(s)
- Arlin B. Rogers
- Department of Early Development, Alnylam Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
10
|
MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J, Linares I, Gupta R, Cheng ML, Liu LY, Camat D, Chung SW, Seliga RK, Shao Z, Lee E, Ogawa S, Ogawa M, Wilson MD, Fish JE, Selzner M, Ghanekar A, Grant D, Greig P, Sapisochin G, Selzner N, Winegarden N, Adeyi O, Keller G, Bader GD, McGilvray ID. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun 2018; 9:4383. [PMID: 30348985 PMCID: PMC6197289 DOI: 10.1038/s41467-018-06318-7] [Citation(s) in RCA: 862] [Impact Index Per Article: 143.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/24/2018] [Indexed: 12/02/2022] Open
Abstract
The liver is the largest solid organ in the body and is critical for metabolic and immune functions. However, little is known about the cells that make up the human liver and its immune microenvironment. Here we report a map of the cellular landscape of the human liver using single-cell RNA sequencing. We provide the transcriptional profiles of 8444 parenchymal and non-parenchymal cells obtained from the fractionation of fresh hepatic tissue from five human livers. Using gene expression patterns, flow cytometry, and immunohistochemical examinations, we identify 20 discrete cell populations of hepatocytes, endothelial cells, cholangiocytes, hepatic stellate cells, B cells, conventional and non-conventional T cells, NK-like cells, and distinct intrahepatic monocyte/macrophage populations. Together, our study presents a comprehensive view of the human liver at single-cell resolution that outlines the characteristics of resident cells in the liver, and in particular provides a map of the human hepatic immune microenvironment. The development of single cell RNA sequencing technologies has been instrumental in advancing our understanding of tissue biology. Here, MacParland et al. performed single cell RNA sequencing of human liver samples, and identify distinct populations of intrahepatic macrophages that may play specific roles in liver disease.
Collapse
Affiliation(s)
- Sonya A MacParland
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada. .,Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5G 1L7, Canada.
| | - Jeff C Liu
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Xue-Zhong Ma
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Brendan T Innes
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, M5G 1A8, Canada
| | - Agata M Bartczak
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Blair K Gage
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Justin Manuel
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Nicholas Khuu
- Princess Margaret Genomics Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Juan Echeverri
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Ivan Linares
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Rahul Gupta
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Michael L Cheng
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5G 1L7, Canada
| | - Lewis Y Liu
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Damra Camat
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Sai W Chung
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rebecca K Seliga
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Zigong Shao
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Elizabeth Lee
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Shinichiro Ogawa
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Mina Ogawa
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, M5G 1A8, Canada.,Genetics and Genome Biology, Hospital for Sick Children, Toronto, M5G 0A4, Canada
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5G 1L7, Canada.,Division of Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Markus Selzner
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Anand Ghanekar
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - David Grant
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Paul Greig
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Gonzalo Sapisochin
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Nazia Selzner
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada
| | - Neil Winegarden
- Princess Margaret Genomics Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Oyedele Adeyi
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5G 1L7, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, M5G 1A8, Canada.
| | - Ian D McGilvray
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
11
|
Go KL, Lee S, Behrns KE, Kim JS. Mitochondrial Damage and Mitophagy in Ischemia/Reperfusion-Induced Liver Injury. MOLECULES, SYSTEMS AND SIGNALING IN LIVER INJURY 2017:183-219. [DOI: 10.1007/978-3-319-58106-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
12
|
Thompson RA, Isin EM, Ogese MO, Mettetal JT, Williams DP. Reactive Metabolites: Current and Emerging Risk and Hazard Assessments. Chem Res Toxicol 2016; 29:505-33. [DOI: 10.1021/acs.chemrestox.5b00410] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Richard A. Thompson
- DMPK, Respiratory, Inflammation & Autoimmunity iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Emre M. Isin
- DMPK, Cardiovascular & Metabolic Diseases iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Monday O. Ogese
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, United Kingdom
| | - Jerome T. Mettetal
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, 35 Gatehouse Dr, Waltham, Massachusetts 02451, United States
| | - Dominic P. Williams
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, United Kingdom
| |
Collapse
|
13
|
Stock P, Brückner S, Winkler S, Dollinger MM, Christ B. Human bone marrow mesenchymal stem cell-derived hepatocytes improve the mouse liver after acute acetaminophen intoxication by preventing progress of injury. Int J Mol Sci 2014; 15:7004-28. [PMID: 24758938 PMCID: PMC4013675 DOI: 10.3390/ijms15047004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells from human bone marrow (hMSC) have the potential to differentiate into hepatocyte-like cells in vitro and continue to maintain important hepatocyte functions in vivo after transplantation into host mouse livers. Here, hMSC were differentiated into hepatocyte-like cells in vitro (hMSC-HC) and transplanted into livers of immunodeficient Pfp/Rag2⁻/⁻ mice treated with a sublethal dose of acetaminophen (APAP) to induce acute liver injury. APAP induced a time- and dose-dependent damage of perivenous areas of the liver lobule. Serum levels of aspartate aminotransferase (AST) increased to similar levels irrespective of hMSC-HC transplantation. Yet, hMSC-HC resided in the damaged perivenous areas of the liver lobules short-term preventing apoptosis and thus progress of organ destruction. Disturbance of metabolic protein expression was lower in the livers receiving hMSC-HC. Seven weeks after APAP treatment, hepatic injury had completely recovered in groups both with and without hMSC-HC. Clusters of transplanted cells appeared predominantly in the periportal portion of the liver lobule and secreted human albumin featuring a prominent quality of differentiated hepatocytes. Thus, hMSC-HC attenuated the inflammatory response and supported liver regeneration after acute injury induced by acetaminophen. They hence may serve as a novel source of hepatocyte-like cells suitable for cell therapy of acute liver diseases.
Collapse
Affiliation(s)
- Peggy Stock
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig, Germany.
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig, Germany.
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig, Germany.
| | - Matthias M Dollinger
- Clinics for Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | - Bruno Christ
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig, Germany.
| |
Collapse
|
14
|
Wang K, Yuan Y, Li H, Cho JH, Huang D, Gray L, Qin S, Galas DJ. The spectrum of circulating RNA: a window into systems toxicology. Toxicol Sci 2013; 132:478-92. [PMID: 23358195 DOI: 10.1093/toxsci/kft014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adverse effects caused by therapeutic drugs are a serious and costly health concern. Despite the body's systemic responses to therapeutics, the liver is often the focus of damage and is usually the focus of studies of toxic effects due to its active roles in the metabolism of xenobiotics. It is extremely difficult, however, to assess systemic responses with currently available methods. Comprehensive cataloging of cell-free circulating RNAs using next-generation sequencing technology may open a window to assess drug-associated adverse effects at the systems level. To explore this potential, we conducted an RNA profiling study using the well-characterized acetaminophen overdose mouse model on liver and plasma with microarray and next-generation sequencing platforms, respectively. After drug treatment, the levels of a number of transcripts, both endogenous and exogenous RNAs, showed significant changes in plasma, reflecting not only the classical liver injury induced by acetaminophen overdose but also damage in tissues other than the liver. The changes in exogenous RNAs also reflect alteration on dieting behavior after acetaminophen overdose. Besides reporting an extensive list of circulating RNA-based biomarker candidates, this study illustrates the possibility of using circulating RNAs to assess global effects of therapeutics. This could also lead to a new approach for a more comprehensive assessment of the efficacy and safety of therapeutics.
Collapse
Affiliation(s)
- Kai Wang
- Institute for Systems Biology, Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Williams DP, Shipley R, Ellis MJ, Webb S, Ward J, Gardner I, Creton S. Novel in vitro and mathematical models for the prediction of chemical toxicity. Toxicol Res (Camb) 2013; 2:40-59. [PMID: 26966512 PMCID: PMC4765367 DOI: 10.1039/c2tx20031g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/24/2012] [Indexed: 01/17/2023] Open
Abstract
The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science.
Collapse
Affiliation(s)
- Dominic P Williams
- MRC Centre for Drug Safety Science , Department of Molecular and Clinical Pharmacology , Institute of Translational Medicine , The University of Liverpool , Sherrington Building , Ashton St. , Liverpool , L69 3GE , UK . ; ; Tel: +44 (0)151 794 5791
| | - Rebecca Shipley
- Department of Mechanical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Marianne J Ellis
- Department of Chemical Engineering , University of Bath , Claverton Down , Bath , BA2 7AY , UK
| | - Steve Webb
- Department of Mathematics and Statistics , University of Strathclyde , Livingstone Tower , 26 Richmond Street , Glasgow , G1 1XH , UK
| | - John Ward
- School of Mathematical Sciences , Loughborough University , Loughborough , LE11 3TU , UK
| | - Iain Gardner
- Simcyp Limited , Blades Enterprise Centre , John Street , Sheffield S2 4SU , UK
| | - Stuart Creton
- NC3Rs Gibbs Building , 215 Euston Road , London , NW1 2BE , UK
| |
Collapse
|
16
|
A Complex Interplay between Wnt/β-Catenin Signalling and the Cell Cycle in the Adult Liver. Int J Hepatol 2012; 2012:816125. [PMID: 22973520 PMCID: PMC3438741 DOI: 10.1155/2012/816125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/02/2012] [Indexed: 12/19/2022] Open
Abstract
Canonical Wnt signalling, governed by its effector β-catenin, is known for a long time as playing an important role in development, tissue homeostasis, and cancer. In the liver, it was unravelled as both an oncogenic pathway involved in a subset of liver cancers and a physiological signalling identified as the "zonation-keeper" of the quiescent liver lobule. This duality has encouraged to explore the role of canonical Wnt in liver regeneration and liver-cell proliferation mainly using murine genetic models of β-catenin overactivation or inactivation. These studies definitely integrate Wnt signalling within the hepatic network driving regeneration and proliferation. We will review here the current knowledge concerning the mitogenic effect of Wnt, to switch on its specific role in the liver, which is quiescent but with a great capacity to regenerate. The duality of β-catenin signalling, associated both with liver quiescence and liver-cell proliferation, will be brought forward.
Collapse
|
17
|
Torre C, Perret C, Colnot S. Molecular determinants of liver zonation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 97:127-50. [PMID: 21074732 DOI: 10.1016/b978-0-12-385233-5.00005-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The phenomenon of "liver zonation" is a remarkable process by which the liver fulfills its metabolic functions, involving highly dynamic transcriptional mechanisms. Its understanding is therefore a challenging issue. Zonation is reflected in heterogeneity of hepatocytes along the porto-central axis of the liver: periportal hepatocytes, located in the vicinity of the afferent portal vein, do not express the same metabolic enzymes than pericentral hepatocytes located near the efferent central vein. This is mainly dictated at the transcriptional level by specific pericentral versus periportal genetic programs. The mechanisms by which zonation is established have been extensively investigated since its initial discovery 40 years ago. The discovery in 2006 that Wnt/β-catenin pericentral signaling was a master regulator of this complex liver topology has been a major breakthrough. A major current priority in the field is the integration of the β-catenin pathway with other determinants that govern zonation of the liver.
Collapse
Affiliation(s)
- Cyril Torre
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | |
Collapse
|
18
|
Torre C, Benhamouche S, Mitchell C, Godard C, Veber P, Letourneur F, Cagnard N, Jacques S, Finzi L, Perret C, Colnot S. The transforming growth factor-α and cyclin D1 genes are direct targets of β-catenin signaling in hepatocyte proliferation. J Hepatol 2011; 55:86-95. [PMID: 21145869 DOI: 10.1016/j.jhep.2010.10.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 10/11/2010] [Accepted: 10/18/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS β-Catenin is an oncogene frequently mutated in hepatocellular carcinoma. In this study, we investigated target genes of β-catenin signaling in hepatocyte proliferation. METHODS We studied transgenic mice displaying either inactivation or activation of the β-catenin pathway, focusing on analysis of liver proliferation due to aberrant β-catenin activation, and on the regeneration process during which β-catenin signaling is transiently activated. We localized in situ the various partners involved in proliferation or identified as targets of β-catenin in these transgenic and regenerating livers. We also performed comparative transcriptome analyses, using microarrays. Finally, we extracted, from deep-sequencing data, both the DNA regulatory elements bound to the β-catenin/Tcf nuclear complex and the expression levels of critical targets identified in microarrays. RESULTS β-Catenin activation during liver regeneration occurred during G1/S cell cycle progression and allowed zonal extension of the normal territory of active β-catenin and panlobular proliferation. We found that β-catenin controlled both cell-autonomous and non-cell-autonomous hepatocyte proliferation, through direct transcriptional and complex control of cyclin D1 gene expression and of the expression of a new target gene, Tgfα. CONCLUSIONS We propose that β-catenin controls panlobular hepatocyte proliferation partly by controlling, together with its Tcf4 nuclear partner, expression of the pro-proliferation cyclin D1 and Tgfα genes. This study constitutes a first step toward understanding the oncogenic properties of this prominent signaling pathway in the liver.
Collapse
Affiliation(s)
- Cyril Torre
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Protective effect of Indian honey on acetaminophen induced oxidative stress and liver toxicity in rat. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0205-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
|
22
|
Borkham-Kamphorst E, Kovalenko E, van Roeyen CRC, Gassler N, Bomble M, Ostendorf T, Floege J, Gressner AM, Weiskirchen R. Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. J Transl Med 2008; 88:1090-100. [PMID: 18663351 DOI: 10.1038/labinvest.2008.71] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Platelet-derived growth factor (PDGF) has an essential role in liver fibrogenesis, as PDGF-B and -D both act as potent mitogens on culture-activated hepatic stellate cells (HSCs). Induction of PDGF receptor type-beta (PDGFR beta) in HSC is well documented in single-dose carbon tetrachloride (CCl(4))-induced acute liver injury. Of the newly discovered isoforms PDGF-C and -D, only PDGF-D shows significant upregulation in bile duct ligation (BDL) models. We have now investigated the expression of PDGF isoforms and receptors in chronic liver injury in vivo after long-term CCl(4) treatment and demonstrated that isolated hepatocytes have the requisite PDGF signaling pathways, both in the naive state and when isolated from CCl(4)-treated rats. In vivo, PDGF gene expression showed upregulation of all PDGF isoforms and receptors, with values peaking at 4 weeks and decreasing to near basal levels by 8 and 12 weeks. Interestingly, PDGF-C increased significantly when compared to BDL-models. PDGF-A, PDGF-C and PDGF receptor type-alpha (PDGFR alpha) correlated closely with inflammation and steatosis. Immunohistochemistry revealed expression of PDGF-B, -C and -D in areas corresponding to centrilobular necrosis, inflammation and fibrosis, whereas PDGF-A localized in regenerative hepatocytes. PDGFR beta was identified along the fibrotic septa, whereas PDGFR alpha showed positive staining in fibrotic septa and regenerative hepatocytes. Despite a significant decline of PDGF isoforms, hepatocyte regeneration peaked at 8 weeks. A marked difference in the degree of fibrosis was observed amongst the individual animals. In summary, PDGF expression in liver damage primarily parallels mesenchymal cell proliferation and extracellular matrix production, rather than hepatocyte regeneration. We conclude that PDGF levels in chronic liver injury peak at 4 weeks after onset of injury, and that the outcome of chronic toxic liver injury strongly depends on the individual capacity for tissue regeneration in the weeks following the peak of PDGF expression.
Collapse
Affiliation(s)
- Erawan Borkham-Kamphorst
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tanaka E, Yamazaki K, Misawa S. Update: the clinical importance of acetaminophen hepatotoxicity in non-alcoholic and alcoholic subjects. J Clin Pharm Ther 2008. [DOI: 10.1111/j.1365-2710.2000.00301.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Ohtomi M, Nagai H, Ohtake H, Uchida T, Suzuki K. Dynamic change in expression of LECT2 during liver regeneration after partial hepatectomy in mice. ACTA ACUST UNITED AC 2008; 28:247-53. [PMID: 18000337 DOI: 10.2220/biomedres.28.247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leukocyte-cell-derived chemotaxin 2 (LECT2) was first isolated from the culture fluid of phytohemagglutinin-activated human T-cell leukemia SKW-3 cells and was found to be expressed in the human, bovine and murine livers. To further analyze the role of LECT2 in the liver, we investigated the expression of mouse LECT2 (mLECT2) during liver regeneration after partial hepatectomy (PHx) using immunohistochemical and in situ hybridization techniques. Mouse LECT2 protein and mRNA were detected in most hepatocytes in normal mouse; however, at 30 min after PHx, they were not detected in liver tissue. At 2 h after PHx, expression of mLECT2 protein was seen in hepatocytes surrounding the central vein, although mRNA expression levels were still low. At 6 h after PHx, a marked number of hepatocytes expressing mLECT2 protein and mRNA were seen throughout the liver, and at 12 h after PHx, hepatocytes expressing mLECT2 protein and mRNA further increased in number. However, expression levels of mLECT2 protein and mRNA at 24 h after PHx were significantly lower when compared with levels after 12 h. These results indicate that LECT2 triggers the early events of regeneration with concomitant suppression of hepatocyte proliferation.
Collapse
Affiliation(s)
- Michiko Ohtomi
- Department of Biomolecular Science, Faculty of Science, Toho University.
| | | | | | | | | |
Collapse
|
25
|
Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2. Toxicol Appl Pharmacol 2007; 226:74-83. [PMID: 17935745 DOI: 10.1016/j.taap.2007.08.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 08/23/2007] [Accepted: 08/24/2007] [Indexed: 12/11/2022]
Abstract
The transcription factor NFE2-related factor 2 (Nrf2) mediates detoxification and antioxidant gene transcription following electrophile exposure and oxidative stress. Mice deficient in Nrf2 (Nrf2-null) are highly susceptible to acetaminophen (APAP) hepatotoxicity and exhibit lower basal and inducible expression of cytoprotective genes, including NADPH quinone oxidoreductase 1 (Nqo1) and glutamate cysteine ligase (catalytic subunit, or Gclc). Administration of toxic APAP doses to C57BL/6J mice generates electrophilic stress and subsequently increases levels of hepatic Nqo1, Gclc and the efflux multidrug resistance-associated protein transporters 1-4 (Mrp1-4). It was hypothesized that induction of hepatic Mrp1-4 expression following APAP is Nrf2 dependent. Plasma and livers from wild-type (WT) and Nrf2-null mice were collected 4, 24 and 48 h after APAP. As expected, hepatotoxicity was greater in Nrf2-null compared to WT mice. Gene and protein expression of Mrp1-4 and the Nrf2 targets, Nqo1 and Gclc, was measured. Induction of Nqo1 and Gclc mRNA and protein after APAP was dependent on Nrf2 expression. Similarly, APAP treatment increased hepatic Mrp3 and Mrp4 mRNA and protein in WT, but not Nrf2-null mice. Mrp1 was induced in both genotypes after APAP, suggesting that elevated expression of this transporter was independent of Nrf2. Mrp2 was not induced in either genotype at the mRNA or protein levels. These results show that Nrf2 mediates induction of Mrp3 and Mrp4 after APAP but does not affect Mrp1 or Mrp2. Thus coordinated regulation of detoxification enzymes and transporters by Nrf2 during APAP hepatotoxicity is a mechanism by which hepatocytes may limit intracellular accumulation of potentially toxic chemicals.
Collapse
|
26
|
Manibusan MK, Odin M, Eastmond DA. Postulated carbon tetrachloride mode of action: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2007; 25:185-209. [PMID: 17763046 DOI: 10.1080/10590500701569398] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Under the 2005 U.S. EPA Guidelines for Carcinogen Risk Assessment (1), evaluations of carcinogens rely on mode of action data to better inform dose response assessments. A reassessment of carbon tetrachloride, a model hepatotoxicant and carcinogen, provides an opportunity to incorporate into the assessment biologically relevant mode of action data on its carcinogenesis. Mechanistic studies provide evidence that metabolism of carbon tetrachloride via CYP2E1 to highly reactive free radical metabolites plays a critical role in the postulated mode of action. The primary metabolites, trichloromethyl and trichloromethyl peroxy free radicals, are highly reactive and are capable of covalently binding locally to cellular macromolecules, with preference for fatty acids from membrane phospholipids. The free radicals initiate lipid peroxidation by attacking polyunsaturated fatty acids in membranes, setting off a free radical chain reaction sequence. Lipid peroxidation is known to cause membrane disruption, resulting in the loss of membrane integrity and leakage of microsomal enzymes. By-products of lipid peroxidation include reactive aldehydes that can form protein and DNA adducts and may contribute to hepatotoxicity and carcinogenicity, respectively. Natural antioxidants, including glutathione, are capable of quenching the lipid peroxidation reaction. When glutathione and other antioxidants are depleted, however, opportunities for lipid peroxidation are enhanced. Weakened cellular membranes allow sufficient leakage of calcium into the cytosol to disrupt intracellular calcium homeostasis. High calcium levels in the cytosol activate calcium-dependent proteases and phospholipases that further increase the breakdown of the membranes. Similarly, the increase in intracellular calcium can activate endonucleases that can cause chromosomal damage and also contribute to cell death. Sustained cell regeneration and proliferation following cell death may increase the likelihood of unrepaired spontaneous, lipid peroxidation- or endonuclease-derived mutations that can lead to cancer. Based on this body of scientific evidence, doses that do not cause sustained cytotoxicity and regenerative cell proliferation would subsequently be protective of liver tumors if this is the primary mode of action. To fulfill the mode of action framework, additional research may be necessary to determine alternative mode(s) of action for liver tumors formed via carbon tetrachloride exposure.
Collapse
Affiliation(s)
- Mary K Manibusan
- Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC 20460, United States.
| | | | | |
Collapse
|
27
|
Santoni-Rugiu E, Jelnes P, Thorgeirsson SS, Bisgaard HC. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion. APMIS 2006; 113:876-902. [PMID: 16480456 DOI: 10.1111/j.1600-0463.2005.apm_386.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although normally quiescent, the adult mammalian liver possesses a great capacity to regenerate after different types of injuries in order to restore the lost liver mass and ensure maintenance of the multiple liver functions. Major players in the regeneration process are mature residual cells, including hepatocytes, cholangiocytes and stromal cells. However, if the regenerative capacity of mature cells is impaired by liver-damaging agents, hepatic progenitor cells are activated and expand into the liver parenchyma. Upon transit amplification, the progenitor cells may generate new hepatocytes and biliary cells to restore liver homeostasis. In recent years, hepatic progenitor cells have been the subject of increasing interest due to their therapeutic potential in numerous liver diseases as alternative or supportive/complementary tools to liver transplantation. While the first investigations on hepatic progenitor cells have focused on their origin and phenotypic characterization, recent attention has focused on the influence of the hepatic microenvironment on their activation and proliferation. This microenvironment comprises the extracellular matrix, epithelial and non-epithelial resident liver cells, and recruited inflammatory cells as well as the variety of growth-modulating molecules produced and/or harboured by these elements. The cellular and molecular responses to different regenerative stimuli seem to depend on the injury inflicted and consequently on the molecular microenvironment created in the liver by a certain insult. This review will focus on molecular responses controlling activation and expansion of the hepatic progenitor cell niche, emphasizing similarities and differences in the microenvironments orchestrating regeneration by recruitment of progenitor cell populations or by replication of mature cells.
Collapse
|
28
|
Jin DK, Anderson EC, Gilbert E, Feuerman MH. AFP gene expression after acute diethylnitrosamine intoxication is not Afr2 regulated. Cancer Lett 2005; 220:211-20. [PMID: 15766596 DOI: 10.1016/j.canlet.2004.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 07/24/2004] [Accepted: 07/26/2004] [Indexed: 11/23/2022]
Abstract
The level of alpha-fetoprotein (AFP) gene expression during liver regeneration in mice is regulated by the Afr2 gene. C3H/HeJ mice express 10-fold higher levels of AFP than C57BL/6J mice. We show that AFP gene expression is not Afr2 regulated after intoxication with the carcinogen diethylnitrosamine (DEN). Peak levels of AFP gene expression of the 2 strains were identical, although reached at different times following treatment. Analysis of the expression of AFP derived transgenes not subject to Afr2 regulation and genetic analyses showed that the difference in timing of peak AFP gene expression after DEN intoxication was independent of Afr2 regulation.
Collapse
Affiliation(s)
- David K Jin
- Department of Biochemistry, Box 8 SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
29
|
Taniai H, Hines IN, Bharwani S, Maloney RE, Nimura Y, Gao B, Flores SC, McCord JM, Grisham MB, Aw TY. Susceptibility of murine periportal hepatocytes to hypoxia-reoxygenation: role for NO and Kupffer cell-derived oxidants. Hepatology 2004; 39:1544-52. [PMID: 15185295 DOI: 10.1002/hep.20217] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemia/reperfusion (I/R) is an important problem in liver resection and transplantation that is associated with hepatocellular dysfunction and injury. This study was designed to investigate whether a difference in hepatocyte susceptibility occurs in the periportal (PP) and/or perivenous (PV) zones in response to hypoxia/reoxygenation (H/R), and to delineate the mechanisms underlying this susceptibility. H/R was induced in an in situ perfused mouse liver model with deoxygenated Krebs-Henseleit buffer followed by oxygenated buffer. Selective destruction of PP or PV sites was achieved by digitonin perfusion into the portal or inferior vena cava, and was confirmed by histological evaluations and zone-specific enzymes. Hepatocellular injury was assessed by alanine aminotransferase (ALT) release. In whole liver, H/R significantly increased perfusate ALT. H/R of PP-enriched zones caused ALT release that was similar to that of whole liver (80 + 10 vs. 70 + 12 U/mg protein), consistent with significant PP hepatocyte injury. Minimal ALT release occurred in PV zones (10 + 5 U/mg protein). Administration of N-acetyl L-cysteine or a chimeric superoxide dismutase (SOD)-SOD2/3, a genetically engineered SOD-abrogated ALT release in H/R-perfused PP zones, implicating a role for superoxide (O(2) (-)). This elevated ALT release was attenuated by gadolinium chloride pretreatment, indicating that Kupffer cells are the O(2) (-) source. Enzymatic inhibition of cellular nitric oxide synthase (NOS) or genetic depletion of endothelial nitric oxide synthase (eNOS) aggravated hypoxia injury while exogenous NO and inducible nitric oxide synthase (iNOS) deficiency abolished reoxygenation injury. In conclusion, PP hepatocytes are more vulnerable to H/R; this injury is mediated directly or indirectly by Kupffer cell derived O(2) (-) and is limited by eNOS-derived NO.
Collapse
Affiliation(s)
- Hisashi Taniai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The liver develops from progenitor cells into a well-differentiated organ in which bile secretion can be observed by 12 weeks' gestation. Full maturity takes up to two years after birth to be achieved, and involves the normal expression of signalling pathways such as that responsible for the JAG1 genes (aberrations occur in Alagille's syndrome), amino acid transport and insulin growth factors. At birth, hepatocytes are already specialized and have two surfaces: the sinusoidal side receives and absorbs a mixture of oxygenated blood and nutrients from the portal vein; the other surface delivers bile and other products of conjugation and metabolism (including drugs) to the canalicular network which joins up to the bile ductules. There is a rapid induction of functions such as transamination, glutamyl transferase, synthesis of coagulation factors, bile production and transport as soon as the umbilical supply is interrupted. Anatomical specialization can be observed across the hepatic acinus which has three distinct zones. Zone 1 borders the portal tracts (also known as periportal hepatocytes) and is noted for hepatocyte regeneration, bile duct proliferation and gluconeogenesis. Zone 3 borders the central vein and is associated with detoxification (e.g. paracetamol), aerobic metabolism, glycolysis and hydrolysis and zone 2 is an area of mixed function between the two zones. Preterm infants are at special risk of hepatic decompensation because their immaturity results in a delay in achieving normal detoxifying and synthetic function. Hypoxia and sepsis are also frequent and serious causes of liver dysfunction in neonates. Stem cell research has produced many answers to the questions about liver development and regeneration, and genetic studies including studies of susceptibility genes may yield further insights. The possibility that fatty liver (increasingly recognized as non-alcoholic steatohepatitis or NASH) may have roots in the neonatal period is a concept which may have important long-term implications.
Collapse
Affiliation(s)
- S V Beath
- The Liver Unit, Birmingham Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| |
Collapse
|
31
|
Okamura M, Sakai H, Takahashi N, Inagami A, Tsukamoto T, Yamamoto M, Shirai N, Iidaka T, Yanai T, Masegi T, Tatematsu M. The Effects of Allyl Alcohol-induced Cell Proliferation for Detection of Initiation Activities of Chemicals in Rat Liver. J Toxicol Pathol 2002. [DOI: 10.1293/tox.15.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Miwa Okamura
- Department of Veterinary Pathology, Gifu University
| | - Hiroki Sakai
- Department of Veterinary Pathology, Gifu University
- Laboratory of Oncological Pathology, Aichi Cancer Center Research Institute
| | | | - Atsushi Inagami
- Developmental Safety Assessment Research Drug & Disposition Research Laboratories Eisai Co., Ltd
| | - Tetsuya Tsukamoto
- Laboratory of Oncological Pathology, Aichi Cancer Center Research Institute
| | - Masami Yamamoto
- Laboratory of Oncological Pathology, Aichi Cancer Center Research Institute
| | - Norimitsu Shirai
- Laboratory of Oncological Pathology, Aichi Cancer Center Research Institute
| | - Takashi Iidaka
- Laboratory of Oncological Pathology, Aichi Cancer Center Research Institute
| | - Tokuma Yanai
- Department of Veterinary Pathology, Gifu University
| | | | - Masae Tatematsu
- Laboratory of Oncological Pathology, Aichi Cancer Center Research Institute
| |
Collapse
|
32
|
Sakai H, Tsukamoto T, Yamamoto M, Shirai N, Iidaka T, Yanai T, Masegi T, Tatematsu M. Differential effects of partial hepatectomy and carbon tetrachloride administration on induction of liver cell foci in a model for detection of initiation activity. Jpn J Cancer Res 2001; 92:1018-25. [PMID: 11676851 PMCID: PMC5926621 DOI: 10.1111/j.1349-7006.2001.tb01055.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Differential effects of partial hepatectomy (PH) and carbon tetrachloride (CCl(4)) administration on induction of glutathione S-transferase placental form (GST-P)-positive foci were investigated in a model for detection of initiation activity. Firstly, we surveyed cell proliferation kinetics and fluctuation in cytochrome P450 (CYP) mRNA levels by means of relative-quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and CYP 2E1 apoprotein amount by immunoblotting (experiment I) after PH or CCl(4) administration. Next, to assess the interrelationships among cell proliferation, fluctuation of CYPs after PH or CCl(4) administration and induction of liver cell foci, the non-hepatocarcinogen, 1,2-dimethylhydrazine (DMH) was administered to 7-week-old male F344 rats and initiated populations were selected using the resistant hepatocyte model (experiment II). In experiment I, the values of all CYP isozyme mRNAs after PH or CCl(4) administration were drastically decreased at the 12-h time point. From 72 h, mRNAs for all CYP isozymes began increasing, with complete recovery after 7 days. The CYP 2E1 apoprotein content in the PH group fluctuated weakly, whereas in the CCl(4) group it had decreased rapidly after 12 h and was still low at the 48 h point. In experiment II, induction of GST-P-positive foci was related to cell kinetics in the PH group, with about a 6-h time lag between time for carcinogen administration giving greatest induction of GST-P-positive foci and peaks in bromodeoxyuridine (BrdU) labeling, presumably due to the necessity for bioactivation of DMH. With CCl(4) administration, induction of foci appeared dependent on the recovery of CYP 2E1. In conclusion, PH was able to induce cell proliferation with maintenance of CYP 2E1, therefore being advantageous for induction of liver cell foci in models to detect initiation activity.
Collapse
Affiliation(s)
- H Sakai
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Cytokines are critical controllers of cell, and hence tissue, growth, migration, development and differentiation. The family includes the inflammatory cytokines such as the interleukins and interferons, growth factors such as epidermal and hepatocyte growth factor and chemokines such as the macrophage inflammatory proteins, MIP-1alpha and MIP-1beta. They do not include the peptide and steroid hormones of the endocrine system. Cytokines have important roles in chemically induced tissue damage repair, in cancer development and progression, in the control of cell replication and apoptosis, and in the modulation of immune reactions such as sensitization. They have the potential for being sensitive markers of chemically induced perturbations in function but from a toxicological point of view, the detection of cytokine changes in the whole animal is limited by the fact that they are locally released, with plasma measures being generally unreliable or irrelevant, and they have short half lives which require precise timing to detect. Even where methodology is adequate the interpretation of the downstream effects of high, local concentrations of a particular cytokine is problematic because of their interdependence and the pleiotropism of their action. A range of techniques exist for their measurement including those dependent upon antibodies specific for the respective cytokines, but with the introduction of genomic and proteomic technology, a more complete study of cytokine changes occurring under the influence of chemical toxicity should be possible. Their further study, as markers of chemical toxicity, will undoubtedly lead to a greater understanding of how synthetic molecules perturb normal cell biology and if, and how, this can be avoided by more intuitive molecular design in the future.
Collapse
Affiliation(s)
- J R Foster
- Safety Assessment, AstraZeneca plc, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK.
| |
Collapse
|
34
|
Tanaka E, Yamazaki K, Misawa S. Update: the clinical importance of acetaminophen hepatotoxicity in non-alcoholic and alcoholic subjects. J Clin Pharm Ther 2000; 25:325-32. [PMID: 11123483 DOI: 10.1046/j.1365-2710.2000.00301.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acetaminophen (paracetamol) is one of the most commonly used over-the-counter medications. Taken in doses greater than 150 mg/kg/day (>10 g), it usually causes acute liver failure. The authors review mainly the management of acetaminophen toxicity in both users and nonusers of alcohol. Chronic alcoholics are a special subgroup, who risk serious toxicity when taking acetaminophen, even in therapeutic doses. The acetaminophen-alcohol interaction is complex, because acute and chronic ethanol have opposite effects. This review also considers physiological and clinical changes, as well as the diagnosis and treatment of acetaminophen poisoning.
Collapse
Affiliation(s)
- E Tanaka
- Institute of Community Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki-ken 305-8575, Japan.
| | | | | |
Collapse
|