1
|
Themas K, Zisis M, Kourek C, Konstantinou G, D’Anna L, Papanagiotou P, Ntaios G, Dimopoulos S, Korompoki E. Acute Ischemic Stroke during Extracorporeal Membrane Oxygenation (ECMO): A Narrative Review of the Literature. J Clin Med 2024; 13:6014. [PMID: 39408073 PMCID: PMC11477757 DOI: 10.3390/jcm13196014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Ischemic stroke (IS) is a severe complication and leading cause of mortality in patients under extracorporeal membrane oxygenation (ECMO). The aim of our narrative review is to summarize the existing evidence and provide a deep examination of the diagnosis and treatment of acute ischemic stroke patients undergoing ECMO support. The incidence rate of ISs is estimated to be between 1 and 8%, while the mortality rate ranges from 44 to 76%, depending on several factors, including ECMO type, duration of support and patient characteristics. Several mechanisms leading to ISs during ECMO have been identified, with thromboembolic events and cerebral hypoperfusion being the most common causes. However, considering that most of the ECMO patients are severely ill or under sedation, stroke symptoms are often underdiagnosed. Multimodal monitoring and daily clinical assessment could be useful preventive techniques. Early recognition of neurological deficits is of paramount importance for prompt therapeutic interventions. All ECMO patients with suspected strokes should immediately receive brain computed tomography (CT) and CT angiography (CTA) for the identification of large vessel occlusion (LVO) and assessment of collateral blood flow. CT perfusion (CTP) can further assist in the detection of viable tissue (penumbra), especially in cases of strokes of unknown onset. Catheter angiography is required to confirm LVO detected on CTA. Intravenous thrombolytic therapy is usually contraindicated in ECMO as most patients are on active anticoagulation treatment. Therefore, mechanical thrombectomy is the preferred treatment option in cases where there is evidence of LVO. The choice of the arterial vascular access used to perform mechanical thrombectomy should be discussed between interventional radiologists and an ECMO team. Anticoagulation management during the acute phase of IS should be individualized after the thromboembolic risk has been carefully balanced against hemorrhagic risk. A multidisciplinary approach is essential for the optimal management of ISs in patients treated with ECMO.
Collapse
Affiliation(s)
- Konstantinos Themas
- Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (K.T.); (M.Z.)
| | - Marios Zisis
- Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (K.T.); (M.Z.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
| | - Giorgos Konstantinou
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 117 45 Athens, Greece;
| | - Lucio D’Anna
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Panagiotis Papanagiotou
- First Department of Radiology, School of Medicine, National & Kapodistrian University of Athens, Areteion Hospital, 115 28 Athens, Greece;
- Department of Diagnostic and Interventional Neuroradiology, Hospital Bremen-Mitte/Bremen-Ost, 28205 Bremen, Germany
| | - George Ntaios
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, 413 34 Larissa, Greece;
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 157 72 Athens, Greece;
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 117 45 Athens, Greece;
| | - Eleni Korompoki
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK;
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| |
Collapse
|
2
|
Feiger B, Jensen CW, Bryner BS, Segars WP, Randles A. Modeling the effect of patient size on cerebral perfusion during veno-arterial extracorporeal membrane oxygenation. Perfusion 2024; 39:1295-1303. [PMID: 37395266 PMCID: PMC10786318 DOI: 10.1177/02676591231187962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
INTRODUCTION A well-known complication of veno-arterial extracorporeal membrane oxygenation (VA ECMO) is differential hypoxia, in which poorly-oxygenated blood ejected from the left ventricle mixes with and displaces well-oxygenated blood from the circuit, thereby causing cerebral hypoxia and ischemia. We sought to characterize the impact of patient size and anatomy on cerebral perfusion under a range of different VA ECMO flow conditions. METHODS We use one-dimensional (1D) flow simulations to investigate mixing zone location and cerebral perfusion across 10 different levels of VA ECMO support in eight semi-idealized patient geometries, for a total of 80 scenarios. Measured outcomes included mixing zone location and cerebral blood flow (CBF). RESULTS Depending on patient anatomy, we found that a VA ECMO support ranging between 67-97% of a patient's ideal cardiac output was needed to perfuse the brain. In some cases, VA ECMO flows exceeding 90% of the patient's ideal cardiac output are needed for adequate cerebral perfusion. CONCLUSIONS Individual patient anatomy markedly affects mixing zone location and cerebral perfusion in VA ECMO. Future fluid simulations of VA ECMO physiology should incorporate varied patient sizes and geometries in order to best provide insights toward reducing neurologic injury and improved outcomes in this patient population.
Collapse
Affiliation(s)
- Bradley Feiger
- Department of Bioengineering, School of Medicine, Duke University, Durham, NC, USA
| | - Christopher W Jensen
- Department of Bioengineering, School of Medicine, Duke University, Durham, NC, USA
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | - Benjamin S Bryner
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University, Durham, NC, USA
| | - William P Segars
- Department of Radiology, School of Medicine, Duke Medicine, Chicago, IL, USA
| | - Amanda Randles
- Department of Bioengineering, School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Antonogiannakis A, Antonopoulos M, Elaiopoulos D, Leontiadis E, Ieromonachos K, Adamopoulos S, Chamogeorgakis T, Dimopoulos S. Successful management of harlequin syndrome due to pulmonary hemorrhage and atelectasis with VAV- ECMO. Perfusion 2024; 39:1259-1264. [PMID: 37272740 DOI: 10.1177/02676591231181847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Pulmonary hemorrhage is a life-threatening complication of VA-ECMO occasionally presenting with Harlequin syndrome. CASE REPORT We present a case of a VA-ECMO patient complicated with pulmonary hemorrhage, complete right lung atelectasis and differential hypoxia refractory to conventional treatment including optimal mechanical ventilation and bronchoscopy interventions. Patient was successfully managed by conversion of VA to VAV-ECMO. DISCUSSION Pulmonary hemorrhage and atelectasis treatment in a VA-ECMO patient includes transfusion, hold and reversal of anticoagulation, bronchoscopy interventions and optimization of VA-ECMO and ventilator support. Differential hypoxia may ensue due to residual native cardiac function. If refractory to conservative treatment, a VAV-ECMO configuration may be utilized to improve upper body oxygenation by inserting an additional cannula to the superior vena cava. CONCLUSION VAV-ECMO is an ECMO configuration support in patients at risk of Harlequin syndrome presenting with pulmonary hemorrhage.
Collapse
|
4
|
Neidlin M, Amiri A, Hugenroth K, Steinseifer U. Investigations of Differential Hypoxemia During Venoarterial Membrane Oxygenation with and Without Impella Support. Cardiovasc Eng Technol 2024:10.1007/s13239-024-00739-w. [PMID: 38937386 DOI: 10.1007/s13239-024-00739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE Venoarterial extracorporeal membrane oxygenation (VA ECMO) is used in patients with refractory cardiac or cardio-pulmonary failure. Native ventricular output interacts with VA ECMO flow and may hinder sufficient oxygenation to the heart and the brain. Further on, VA ECMO leads to afterload increase requiring ventricular unloading. The aim of the study was to investigate aortic blood flow and oxygenation for various ECMO settings and cannula positions with a numerical model. METHODS Four different aortic cannula tip positions (ascending aorta, descending aorta, abdominal aorta, and iliac artery) were included in a model of a human aorta. Three degrees of cardiac dysfunction and VA ECMO support (50%, 75% and 90%) with a total blood flow of 6 l/min were investigated. Additionally, the Impella CP device was implemented under 50% support condition. Blood oxygen saturation at the aortic branches and the pressure acting on the aortic valve were calculated. RESULTS A more proximal tip orientation is necessary to increase oxygen supply to the supra-aortic and coronary arteries for 50% and 75% support. During the 90% support scenario, proper oxygenation can be achieved independently of tip position. The use of Impella reduces afterload by 8-17 mmHg and vessel oxygenation is similar to 50% VA ECMO support. Pressure load on the aortic valve increases with more proximal tip position and is decreased during Impella use. CONCLUSIONS We present a simulation model for the investigation of hemodynamics and blood oxygenation with various mechanical circulatory support systems. Our results underline the intricate and patient-specific relationship between extracorporeal support, cannula tip orientation and oxygenation capacity.
Collapse
Affiliation(s)
- Michael Neidlin
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
| | - Ali Amiri
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| | | | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
| |
Collapse
|
5
|
Salih F, Lambeck J, Günther A, Ferse C, Hoffmann O, Dimitriadis K, Finn A, Brandt SA, Hotter B, Masuhr F, Schreiber S, Weissinger F, Rocco A, Schneider H, Niesen WD. Brain death determination in patients with veno-arterial extracorporeal membrane oxygenation: A systematic study to address the Harlequin syndrome. J Crit Care 2024; 81:154545. [PMID: 38395004 DOI: 10.1016/j.jcrc.2024.154545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE The Harlequin syndrome may occur in patients treated with venoarterial extracorporal membrane oxygenation (VA-ECMO), in whom blood from the left ventricle and the ECMO system supply different parts of the body with different paCO2-levels. The purpose of this study was to compare two variants of paCO2-analysis to account for the Harlequin syndrome during apnea testing (AT) in brain death (BD) determination. MATERIALS AND METHODS Twenty-seven patients (median age 48 years, 26-76 years; male n = 19) with VA-ECMO treatment were included who underwent BD determination. In variant 1, simultaneous arterial blood gas (ABG) samples were drawn from the right and the left radial artery. In variant 2, simultaneous ABG samples were drawn from the right radial artery and the postoxygenator ECMO circuit. Differences in paCO2-levels were analysed for both variants. RESULTS At the start of AT, median paCO2-difference between right and left radial artery (variant 1) was 0.90 mmHg (95%-confidence intervall [CI]: 0.7-1.3 mmHg). Median paCO2-difference between right radial artery and postoxygenator ECMO circuit (variant 2) was 3.3 mmHg (95%-CI: 1.5-6.0 mmHg) and thereby significantly higher compared to variant 1 (p = 0.001). At the end of AT, paCO2-difference according to variant 1 remained unchanged with 1.1 mmHg (95%-CI: 0.9-1.8 mmHg). In contrast, paCO2-difference according to variant 2 increased to 9.9 mmHg (95%-CI: 3.5-19.2 mmHg; p = 0.002). CONCLUSIONS Simultaneous paCO2-analysis from right and left distal arterial lines is the method of choice to reduce the risk of adverse effects (e.g. severe respiratory acidosis) while performing AT in VA-ECMO patients during BD determination.
Collapse
Affiliation(s)
- Farid Salih
- Dept. of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 13353 Berlin, Germany.
| | - Johann Lambeck
- Dept. of Neurology and Clinical Neurophysiology, University Medical Center Freiburg, Breisacher Straße 64, 79106 Freiburg, Germany
| | - Albrecht Günther
- Dept. of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Caroline Ferse
- Dept. of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Olaf Hoffmann
- Dept. of Neurology, St. Josefs-Krankenhaus, Allee nach Sanssouci 7, 14471 Potsdam, Germany; Medizinische Hochschule Brandenburg Theodor Fontane, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
| | | | - Andre Finn
- Dept. of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stephan A Brandt
- Dept. of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 13353 Berlin, Germany
| | - Benjamin Hotter
- Dept. of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 13353 Berlin, Germany
| | - Florian Masuhr
- Dept. of Neurology, Bundeswehrkrankenhaus Berlin, Scharnhorststraße 13, 10115 Berlin, Germany
| | - Stephan Schreiber
- Dept. of Neurology, Asklepios Fachklinikum, Anton-Saefkow-Allee 2, 14772, Brandenburg, Germany
| | - Florian Weissinger
- Dept. of Neurology, Vivantes Humboldt-Klinikum, Am Nordgraben 2, 13509 Berlin, Germany
| | - Andrea Rocco
- Dept. of Neurology, Klinikum Ernst von Bergmann, Charlottenstraße 72, 14467 Potsdam, Germany
| | - Hauke Schneider
- Dept. of Neurology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Wolf-Dirk Niesen
- Dept. of Neurology and Clinical Neurophysiology, University Medical Center Freiburg, Breisacher Straße 64, 79106 Freiburg, Germany
| |
Collapse
|
6
|
Douflé G, Dragoi L, Morales Castro D, Sato K, Donker DW, Aissaoui N, Fan E, Schaubroeck H, Price S, Fraser JF, Combes A. Head-to-toe bedside ultrasound for adult patients on extracorporeal membrane oxygenation. Intensive Care Med 2024; 50:632-645. [PMID: 38598123 DOI: 10.1007/s00134-024-07333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/20/2024] [Indexed: 04/11/2024]
Abstract
Bedside ultrasound represents a well-suited diagnostic and monitoring tool for patients on extracorporeal membrane oxygenation (ECMO) who may be too unstable for transport to other hospital areas for diagnostic tests. The role of ultrasound, however, starts even before ECMO initiation. Every patient considered for ECMO should have a thorough ultrasonographic assessment of cardiac and valvular function, as well as vascular anatomy without delaying ECMO cannulation. The role of pre-ECMO ultrasound is to confirm the indication for ECMO, identify clinical situations for which ECMO is not indicated, rule out contraindications, and inform the choice of ECMO configuration. During ECMO cannulation, the use of vascular and cardiac ultrasound reduces the risk of complications and ensures adequate cannula positioning. Ultrasound remains key for monitoring during ECMO support and troubleshooting ECMO complications. For instance, ultrasound is helpful in the assessment of drainage insufficiency, hemodynamic instability, biventricular function, persistent hypoxemia, and recirculation on venovenous (VV) ECMO. Lung ultrasound can be used to monitor signs of recovery on VV ECMO. Brain ultrasound provides valuable diagnostic and prognostic information on ECMO. Echocardiography is essential in the assessment of readiness for liberation from venoarterial (VA) ECMO. Lastly, post decannulation ultrasound mainly aims at identifying post decannulation thrombosis and vascular complications. This review will cover the role of head-to-toe ultrasound for the management of adult ECMO patients from decision to initiate ECMO to the post decannulation phase.
Collapse
Affiliation(s)
- Ghislaine Douflé
- Interdepartmental Division of Critical Care Medicine of the University of Toronto, Toronto, ON, Canada.
- Department of Anesthesia and Pain Management, Toronto General Hospital, 585 University Avenue, Toronto, ON, M5G 2N2, Canada.
| | - Laura Dragoi
- Interdepartmental Division of Critical Care Medicine of the University of Toronto, Toronto, ON, Canada
| | - Diana Morales Castro
- Interdepartmental Division of Critical Care Medicine of the University of Toronto, Toronto, ON, Canada
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Level 3 Clinical Sciences Building, Chermside, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Dirk W Donker
- Intensive Care Center, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Nadia Aissaoui
- Service de Médecine intensive-réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine of the University of Toronto, Toronto, ON, Canada
| | - Hannah Schaubroeck
- Department of Intensive Care Medicine, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Susanna Price
- Departments of Cardiology and Intensive Care, Royal Brompton & Harefield NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Level 3 Clinical Sciences Building, Chermside, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Alain Combes
- Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Sorbonne Université, Hôpital Pitié Salpêtrière, Paris, France
- Institute of Cardiometabolism and Nutrition, Sorbonne Université, INSERM, UMRS_1166-ICAN, Paris, France
| |
Collapse
|
7
|
Winiszewski H, Vieille T, Guinot PG, Nesseler N, Le Berre M, Crognier L, Roche AC, Fellahi JL, D'Ostrevy N, Ltaief Z, Didier J, Arab OA, Meslin S, Scherrer V, Besch G, Monnier A, Piton G, Kimmoun A, Capellier G. Oxygenation management during veno-arterial ECMO support for cardiogenic shock: a multicentric retrospective cohort study. Ann Intensive Care 2024; 14:56. [PMID: 38597975 PMCID: PMC11006645 DOI: 10.1186/s13613-024-01286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGOUND Hyperoxemia is common and associated with poor outcome during veno-arterial extracorporeal membrane oxygenation (VA ECMO) support for cardiogenic shock. However, little is known about practical daily management of oxygenation. Then, we aim to describe sweep gas oxygen fraction (FSO2), postoxygenator oxygen partial pressure (PPOSTO2), inspired oxygen fraction (FIO2), and right radial arterial oxygen partial pressure (PaO2) between day 1 and day 7 of peripheral VA ECMO support. We also aim to evaluate the association between oxygenation parameters and outcome. In this retrospective multicentric study, each participating center had to report data on the last 10 eligible patients for whom the ICU stay was terminated. Patients with extracorporeal cardiopulmonary resuscitation were excluded. Primary endpoint was individual mean FSO2 during the seven first days of ECMO support (FSO2 mean (day 1-7)). RESULTS Between August 2019 and March 2022, 139 patients were enrolled in 14 ECMO centers in France, and one in Switzerland. Among them, the median value for FSO2 mean (day 1-7) was 70 [57; 79] % but varied according to center case volume. Compared to high volume centers, centers with less than 30 VA-ECMO runs per year were more likely to maintain FSO2 ≥ 70% (OR 5.04, CI 95% [1.39; 20.4], p = 0.017). Median value for right radial PaO2 mean (day 1-7) was 114 [92; 145] mmHg, and decreased from 125 [86; 207] mmHg at day 1, to 97 [81; 133] mmHg at day 3 (p < 0.01). Severe hyperoxemia (i.e. right radial PaO2 ≥ 300 mmHg) occurred in 16 patients (12%). PPOSTO2, a surrogate of the lower body oxygenation, was measured in only 39 patients (28%) among four centers. The median value of PPOSTO2 mean (day 1-7) value was 198 [169; 231] mmHg. By multivariate analysis, age (OR 1.07, CI95% [1.03-1.11], p < 0.001), FSO2 mean (day 1-3)(OR 1.03 [1.00-1.06], p = 0.039), and right radial PaO2 mean (day 1-3) (OR 1.03, CI95% [1.00-1.02], p = 0.023) were associated with in-ICU mortality. CONCLUSION In a multicentric cohort of cardiogenic shock supported by VA ECMO, the median value for FSO2 mean (day 1-7) was 70 [57; 79] %. PPOSTO2 monitoring was infrequent and revealed significant hyperoxemia. Higher FSO2 mean (day 1-3) and right radial PaO2 mean (day 1-3) were independently associated with in-ICU mortality.
Collapse
Affiliation(s)
- Hadrien Winiszewski
- Service de réanimation médicale, CHU Besançon, Besançon, France.
- Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France.
| | | | | | - Nicolas Nesseler
- Department of Anesthesia and Critical Care, University Hospital of Rennes, Pontchaillou, Rennes, France
| | - Mael Le Berre
- Service de réanimation médicale, CHU Besançon, Besançon, France
| | - Laure Crognier
- Intensive Care Unit, Anesthesia and Critical Care Department, Rangueil University Hospital, Toulouse, France
| | - Anne-Claude Roche
- Anesthesia, Intensive Care and Perioperative Medicine, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Jean-Luc Fellahi
- Service d'Anesthésie-Réanimation, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - Nicolas D'Ostrevy
- Cardiac Surgery Department, Montpied Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Zied Ltaief
- Department of Adult Intensive Care Medicine, Lausanne University Hospital and Lausanne University, Lausanne, 1011, Switzerland
| | - Juliette Didier
- Service de médecine intensive réanimation, CHU Pitié Salpêtrière, Paris, France
| | - Osama Abou Arab
- Department of Anaesthesia and Critical Care Medicine, Amiens University Medical Center, Amiens, France
| | - Simon Meslin
- Anesthesiology and Critical Care Medicine Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Vincent Scherrer
- Department of Anaesthesiology and Critical Care, CHU Rouen, Rouen, F-76000, France
| | - Guillaume Besch
- Département d'Anesthésie Réanimation Chirurgicale, Université de Franche-Comté, CHU Besançon, CIC Inserm 1431, Besançon, EA3920, F-25000, France
| | - Alexandra Monnier
- Service de Médecine Intensive-Réanimation Médicale, CHU Strasbourg, Nouvel Hôpital Civil, Université de Strasbourg, Strasbourg, 67000, France
| | - Gael Piton
- Service de réanimation médicale, CHU Besançon, Besançon, France
| | - Antoine Kimmoun
- Service de médecine intensive réanimation, CHU Nancy, Créteil, France
| | - Gilles Capellier
- Service de réanimation médicale, CHU Besançon, Besançon, France
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Clayton, Australia
| |
Collapse
|
8
|
Szuldrzynski K, Kowalewski M, Swol J. Mechanical ventilation during extracorporeal membrane oxygenation support - New trends and continuing challenges. Perfusion 2024; 39:107S-114S. [PMID: 38651573 DOI: 10.1177/02676591241232270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND The impact of mechanical ventilation on the survival of patients supported with veno-venous extracorporeal membrane oxygenation (V-V ECMO) due to severe acute respiratory distress syndrome (ARDS) remains still a focus of research. METHODS Recent guidelines, randomized trials, and registry data underscore the importance of lung-protective ventilation during respiratory and cardiac support on ECMO. RESULTS This approach includes decreasing mechanical power delivery by reducing tidal volume and driving pressure as much as possible, using low or very low respiratory rate, and a personalized approach to positive-end expiratory pressure (PEEP) setting. Notably, the use of ECMO in awake and spontaneously breathing patients is increasing, especially as a bridging strategy to lung transplantation. During respiratory support in V-V ECMO, native lung function is of highest importance and adjustments of blood flow on ECMO, or ventilator settings significantly impact the gas exchange. These interactions are more complex in veno-arterial (V-A) ECMO configuration and cardiac support. The fraction on delivered oxygen in the sweep gas and sweep gas flow rate, blood flow per minute, and oxygenator efficiency have an impact on gas exchange on device side. On the patient side, native cardiac output, native lung function, carbon dioxide production (VCO2), and oxygen consumption (VO2) play a role. Avoiding pulmonary oedema includes left ventricle (LV) distension monitoring and prevention, pulse pressure >10 mm Hg and aortic valve opening assessment, higher PEEP adjustment, use of vasodilators, ECMO flow adjustment according to the ejection fraction, moderate use of inotropes, diuretics, or venting strategies as indicated and according to local expertise and resources. CONCLUSION Understanding the physiological principles of gas exchange during cardiac support on femoro-femoral V-A ECMO configuration and the interactions with native gas exchange and haemodynamics are essential for the safe applications of these techniques in clinical practice. Proning during ECMO remains to be discussed until further data is available from prospective, randomized trials implementing individualized PEEP titration during proning.
Collapse
Affiliation(s)
- Konstanty Szuldrzynski
- Department of Anaesthesiology and Intensive Care, National Institute of Medicine of the Ministry of Interior and Administration in Warsaw, Warsaw, Poland
| | - Mariusz Kowalewski
- Department of Cardiac Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Thoracic Research Centre, Collegium Medicum Nicolaus Copernicus University, Innovative Medical Forum, Bydgoszcz, Poland
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT, Palermo, Italy
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Justyna Swol
- Department of Respiratory Medicine, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
9
|
Fresiello L, Hermens JAJ, Pladet L, Meuwese CL, Donker DW. The physiology of venoarterial extracorporeal membrane oxygenation - A comprehensive clinical perspective. Perfusion 2024; 39:5S-12S. [PMID: 38651580 DOI: 10.1177/02676591241237639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Venoarterial extracorporeal membrane oxygenation (VA ECMO) has become a standard of care for severe cardiogenic shock, refractory cardiac arrest and related impending multiorgan failure. The widespread clinical use of this complex temporary circulatory support modality is still contrasted by a lack of formal scientific evidence in the current literature. This might at least in part be attributable to VA ECMO related complications, which may significantly impact on clinical outcome. In order to limit adverse effects of VA ECMO as much as possible an indepth understanding of the complex physiology during extracorporeally supported cardiogenic shock states is critically important. This review covers all relevant physiological aspects of VA ECMO interacting with the human body in detail. This, to provide a solid basis for health care professionals involved in the daily management of patients supported with VA ECMO and suffering from cardiogenic shock or cardiac arrest and impending multiorgan failure for the best possible care.
Collapse
Affiliation(s)
- Libera Fresiello
- Cardiovascular and Respiratory Physiology, TechMed Center, University of Twente, Enschede, The Netherlands
| | - Jeannine A J Hermens
- Intensive Care Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lara Pladet
- Intensive Care Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christiaan L Meuwese
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Intensive Care Adults, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dirk W Donker
- Cardiovascular and Respiratory Physiology, TechMed Center, University of Twente, Enschede, The Netherlands
- Intensive Care Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Petty K, Daubenspeck D. Rescue ECMO for Isolated Right Ventricular Dysfunction in a Trauma Patient. J Cardiothorac Vasc Anesth 2024; 38:1031-1036. [PMID: 38105124 DOI: 10.1053/j.jvca.2023.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Affiliation(s)
- Kyle Petty
- University of Chicago, Department of Anesthesia and Critical Care, 5841 South Maryland Avenue, MC 4028, Chicago, IL 60637.
| | - Danisa Daubenspeck
- Assistant Professor of Anesthesia and Critical Care, University of Chicago, Department of Anesthesia and Critical Care, 5841 South Maryland Avenue, MC 4028, Chicago, IL 60637.
| |
Collapse
|
11
|
Premraj L, Brown A, Fraser JF, Pellegrino V, Pilcher D, Burrell A. Oxygenation During Venoarterial Extracorporeal Membrane Oxygenation: Physiology, Current Evidence, and a Pragmatic Approach to Oxygen Titration. Crit Care Med 2024; 52:637-648. [PMID: 38059745 DOI: 10.1097/ccm.0000000000006134] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
OBJECTIVES This review aims to: 1) identify the key circuit and patient factors affecting systemic oxygenation, 2) summarize the literature reporting the association between hyperoxia and patient outcomes, and 3) provide a pragmatic approach to oxygen titration, in patients undergoing peripheral venoarterial extracorporeal membrane oxygenation (ECMO). DATA SOURCES Searches were performed using PubMed, SCOPUS, Medline, and Google Scholar. STUDY SELECTION All observational and interventional studies investigating the association between hyperoxia, and clinical outcomes were included, as well as guidelines from the Extracorporeal Life Support Organization. DATA EXTRACTION Data from relevant literature was extracted, summarized, and integrated into a concise narrative review. For ease of reference a summary of relevant studies was also produced. DATA SYNTHESIS The extracorporeal circuit and the native cardiorespiratory circuit both contribute to systemic oxygenation during venoarterial ECMO. The ECMO circuit's contribution to systemic oxygenation is, in practice, largely determined by the ECMO blood flow, whereas the native component of systemic oxygenation derives from native cardiac output and residual respiratory function. Interactions between ECMO outflow and native cardiac output (as in differential hypoxia), the presence of respiratory support, and physiologic parameters affecting blood oxygen carriage also modulate overall oxygen exposure during venoarterial ECMO. Physiologically those requiring venoarterial ECMO are prone to hyperoxia. Hyperoxia has a variety of definitions, most commonly Pa o2 greater than 150 mm Hg. Severe hypoxia (Pa o2 > 300 mm Hg) is common, seen in 20%. Early severe hyperoxia, as well as cumulative hyperoxia exposure was associated with in-hospital mortality, even after adjustment for disease severity in both venoarterial ECMO and extracorporeal cardiopulmonary resuscitation. A pragmatic approach to oxygenation during peripheral venoarterial ECMO involves targeting a right radial oxygen saturation target of 94-98%, and in selected patients, titration of the fraction of oxygen in the mixture via the air-oxygen blender to target postoxygenator Pa o2 of 150-300 mm Hg. CONCLUSIONS Hyperoxia results from a range of ECMO circuit and patient-related factors. It is common during peripheral venoarterial ECMO, and its presence is associated with poor outcome. A pragmatic approach that avoids hyperoxia, while also preventing hypoxia has been described for patients receiving peripheral venoarterial ECMO.
Collapse
Affiliation(s)
- Lavienraj Premraj
- Griffith University School of Medicine and Dentistry, Brisbane, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
- Hopkins Education, Research, and Advancement in Life Support Devices (HERALD) Group, Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Intensive Care, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Critical Care Medicine, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health, Monash University, Melbourne, VIC, Australia
- The University of Queensland, Faculty of Medicine, Brisbane, QLD, Australia
- Australian Centre for Health Services Innovation (AusHSI) and Centre for Healthcare Transformation, School of Public Health & Social Work, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- St Andrew's War Memorial Hospital, UnitingCare, Brisbane, QLD, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- The Australian and New Zealand Intensive Care Society (ANZICS), Centre for Outcome and Resources Evaluation, Melbourne, VIC, Australia
| | - Alastair Brown
- Griffith University School of Medicine and Dentistry, Brisbane, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
- Hopkins Education, Research, and Advancement in Life Support Devices (HERALD) Group, Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Intensive Care, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Critical Care Medicine, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health, Monash University, Melbourne, VIC, Australia
- The University of Queensland, Faculty of Medicine, Brisbane, QLD, Australia
- Australian Centre for Health Services Innovation (AusHSI) and Centre for Healthcare Transformation, School of Public Health & Social Work, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- St Andrew's War Memorial Hospital, UnitingCare, Brisbane, QLD, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- The Australian and New Zealand Intensive Care Society (ANZICS), Centre for Outcome and Resources Evaluation, Melbourne, VIC, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Vincent Pellegrino
- Department of Intensive Care, The Alfred Hospital, Melbourne, VIC, Australia
| | - David Pilcher
- Department of Intensive Care, The Alfred Hospital, Melbourne, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health, Monash University, Melbourne, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
- The Australian and New Zealand Intensive Care Society (ANZICS), Centre for Outcome and Resources Evaluation, Melbourne, VIC, Australia
| | - Aidan Burrell
- Department of Intensive Care, The Alfred Hospital, Melbourne, VIC, Australia
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, School of Public Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Raina R, Nair N, Pelletier J, Nied M, Whitham T, Doshi K, Beck T, Dantes G, Sethi SK, Kim YH, Bunchman T, Alhasan K, Lima L, Guzzo I, Fuhrman D, Paden M. Concurrent use of continuous kidney replacement therapy during extracorporeal membrane oxygenation: what pediatric nephrologists need to know-PCRRT-ICONIC practice points. Pediatr Nephrol 2024:10.1007/s00467-024-06311-x. [PMID: 38386072 DOI: 10.1007/s00467-024-06311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Extracorporeal membrane oxygenation (ECMO) provides temporary cardiorespiratory support for neonatal, pediatric, and adult patients when traditional management has failed. This lifesaving therapy has intrinsic risks, including the development of a robust inflammatory response, acute kidney injury (AKI), fluid overload (FO), and blood loss via consumption and coagulopathy. Continuous kidney replacement therapy (CKRT) has been proposed to reduce these side effects by mitigating the host inflammatory response and controlling FO, improving outcomes in patients requiring ECMO. The Pediatric Continuous Renal Replacement Therapy (PCRRT) Workgroup and the International Collaboration of Nephrologists and Intensivists for Critical Care Children (ICONIC) met to highlight current practice standards for ECMO use within the pediatric population. This review discusses ECMO modalities, the pathophysiology of inflammation during an ECMO run, its adverse effects, various anticoagulation strategies, and the technical aspects and outcomes of implementing CKRT during ECMO in neonatal and pediatric populations. Consensus practice points and guidelines are summarized. ECMO should be utilized in patients with severe acute respiratory failure despite the use of conventional treatment modalities. The Extracorporeal Life Support Organization (ELSO) offers guidelines for ECMO initiation and management while maintaining a clinical registry of over 195,000 patients to assess outcomes and complications. Monitoring and preventing fluid overload during ECMO and CKRT are imperative to reduce mortality risk. Clinical evidence, resources, and experience of the nephrologist and healthcare team should guide the selection of ECMO circuit.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Nephrology, Akron Children's Hospital, Akron, OH, USA.
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA.
| | - Nikhil Nair
- Case Western University School of Medicine, Cleveland, OH, USA
| | - Jonathan Pelletier
- Division of Critical Care Medicine, Department of Pediatrics, Akron Children's Hospital, Akron, OH, USA
- Department of Pediatrics, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Matthew Nied
- Department of Internal Medicine, Case Western Reserve / University Hospitals, Cleveland, OH, USA
| | - Tarik Whitham
- Department of Pediatrics, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kush Doshi
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Tara Beck
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital, Pittsburgh, PA, USA
| | - Goeto Dantes
- Department of Surgery, Emory University, Atlanta, GA, USA
| | - Sidharth Kumar Sethi
- Pediatric Nephrology, Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Yap Hui Kim
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Timothy Bunchman
- Department of Pediatric Nephrology, Children's Hospital of Richmond, Richmond, VA, USA
| | - Kahild Alhasan
- Pediatric Nephrology, King Saud University, Riyadh, Saudi Arabia
| | - Lisa Lima
- Department of Pediatric Critical Care, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Isabella Guzzo
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Dana Fuhrman
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital, Pittsburgh, PA, USA
| | - Matthew Paden
- Department of Pediatric Critical Care, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
13
|
Rozencwajg S, Wu EL, Heinsar S, Stevens M, Chinchilla J, Fraser JF, Pauls JP. A mock circulation loop to evaluate differential hypoxemia during peripheral venoarterial extracorporeal membrane oxygenation. Perfusion 2024; 39:66-75. [PMID: 35038287 DOI: 10.1177/02676591211056567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Peripheral veno-arterial extracorporeal membrane oxygenation (VA ECMO) creates a retrograde flow along the aorta competing with the left ventricle (LV) in the so-called 'mixing zone' (MZ). Detecting it is essential to understand which of the LV or the ECMO flow perfuses the upper body - particularly the brain and the coronary arteries - in case of differential hypoxemia (DH). METHODS We described a mock circulation loop (MCL) that enabled experimental research on DH. We recreated the three clinical situations relevant to clinicians: where the brain is either totally perfused by the ECMO or the LV or both. In a second step, we used this model to investigate two scenarios to diagnose DH: (i) pulse pressure and (ii) thermodilution via injection of cold saline in the ECMO circuit. RESULTS The presented MCL was able to reproduce the three relevant mixing zones within the aortic arch, thus allowing to study DH. Pulse pressure was unable to detect location of the MZ. However, the thermodilution method was able to detect whether the brain was totally perfused by the ECMO or not. CONCLUSION We validated an in-vitro differential hypoxemia model of cardiogenic shock supported by VA ECMO. This MCL could be used as an alternative to animal studies for research scenarios.
Collapse
Affiliation(s)
- Sacha Rozencwajg
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, AU-QLD, Australia
- Sorbonne Université, INSERM, UMRS-1166, ICAN Institute of Cardiometabolism and Nutrition, Medical ICU, Pitié-Salpêtrière University Hospital, Paris, France
| | - Eric L Wu
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, AU-QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, AU-QLD, Australia
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, AU-QLD, Australia
| | - Michael Stevens
- Graduate School of Biomedical Engineering, UNSW Sydney, AU -NSW, Australia
| | - Josh Chinchilla
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, AU-QLD, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, AU-QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, AU-QLD, Australia
| | - Jo P Pauls
- Innovative Cardiovascular Engineering and Technology Laboratory, Critical Care Research Group, The Prince Charles Hospital, Brisbane, AU-QLD, Australia
- School of Engineering and Built Environment, Griffith University, Southport, AU-QLD, Australia
| |
Collapse
|
14
|
Chico JI, Gomez V, Freita S, Rivas MD, Mosquera D, Menor EM, Piñon MA. Successful implementation of prophylactic veno-venoarterial extracorporeal membrane oxygenation in high-risk trauma surgery: A case report. Perfusion 2023:2676591231220832. [PMID: 38051548 DOI: 10.1177/02676591231220832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Extracorporeal Membrane Oxygenation (ECMO) is increasingly utilized in trauma care, yet its elective use during high-risk surgeries remains unreported. CASE REPORT We report a successful instance of prophylactic ECMO support via a Veno-Venoarterial (V-VA) configuration during high-risk surgery in a patient with extensive trauma, including severe thoracic damage and a highly unstable thoracic spine fracture. V-VA ECMO prevented complications such as hemodynamic and respiratory collapse associated with chest compression during the surgical procedure, as the patient should be in a prone position. DISCUSSION The potential of ECMO as prophylactic support in high-risk surgery amongst trauma patients underscores a novel application of this technology. Complex configurations must be evaluated to avoid associated ECMO complications. CONCLUSION Our case highlights the potential of prophylactic ECMO hybrid modes, indicating their safe application during high-risk procedures in select trauma patients.
Collapse
Affiliation(s)
- Juan I Chico
- Critical Care Department, Alvaro Cunqueiro Hospital, Vigo, Spain
| | - Vanesa Gomez
- Critical Care Department, Alvaro Cunqueiro Hospital, Vigo, Spain
| | - Santiago Freita
- Critical Care Department, Alvaro Cunqueiro Hospital, Vigo, Spain
| | - María D Rivas
- Critical Care Department, Alvaro Cunqueiro Hospital, Vigo, Spain
| | - David Mosquera
- Critical Care Department, Alvaro Cunqueiro Hospital, Vigo, Spain
| | - Eva M Menor
- Critical Care Department, Alvaro Cunqueiro Hospital, Vigo, Spain
| | - Miguel A Piñon
- Cardiothoracic Surgery Department, Alvaro Cunqueiro Hospital, Vigo, Spain
| |
Collapse
|
15
|
Vandenbriele C, Baldetti L, Beneduce A, Belohlavek J, Hassager C, Pieri M, Polzin A, Scandroglio AM, Møller JE. Monitoring MCS patients on the intensive care unit: integrating haemodynamic assessment, laboratory data, and imaging techniques for timely detection of deterioration and recovery. Eur Heart J Suppl 2023; 25:I24-I31. [PMID: 38093766 PMCID: PMC10715942 DOI: 10.1093/eurheartjsupp/suad130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Monitoring of the patient supported with a temporary mechanical circulatory support (tMCS) is crucial in achieving the best possible outcome. Monitoring is a continuous and labour-intensive process, as cardiogenic shock (CS) patients can rapidly deteriorate and may require new interventions within a short time period. Echocardiography and invasive haemodynamic monitoring form the cornerstone of successful tMCS support. During monitoring, it is particularly important to ensure that adequate end-organ perfusion is achieved and maintained. Here, we provide a comprehensive overview of best practices for monitoring the CS patient supported by a micro-axial flow pump, veno-arterial extracorporeal membrane oxygenation, and both devices simultaneously (ECMELLA approach). It is a complex process that encompasses device control, haemodynamic control and stabilization, monitoring of interventions, and assessment of end-organ function. The combined, continuous, and preferably protocol-based approach of echocardiography, evaluation of biomarkers, end-organ assessment, and haemodynamic parameters is crucial in assessing this critically ill CS patient population.
Collapse
Affiliation(s)
- Christophe Vandenbriele
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Adult Intensive Care, Royal Brompton and Harefield Guy’s & St.Thomas’ NHS Foundation Trust, Sydney St, London SW3 6NP, UK
| | - Luca Baldetti
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Beneduce
- Groupe Cardio-Vasculaire Interventionnel, Clinique Pasteur, Toulouse, France
| | - Jan Belohlavek
- 2nd Department of Internal Medicine, Cardiovascular Medicine General Teaching Hospital and 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marina Pieri
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Pulmonology, and Vascular Medicine, Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany
| | - Anna Mara Scandroglio
- Department of Anaesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacob Eifer Møller
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
16
|
Zhao D, Shou BL, Caturegli G, Whitman GJR, Kim BS, Cho SM. Trends on Near-Infrared Spectroscopy Associated With Acute Brain Injury in Venoarterial Extracorporeal Membrane Oxygenation. ASAIO J 2023; 69:1083-1089. [PMID: 37556554 PMCID: PMC10843160 DOI: 10.1097/mat.0000000000002032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
We aimed to determine the association between cerebral regional oxygen saturation (rSO 2 ) trends from cerebral near-infrared spectroscopy (cNIRS) and acute brain injury (ABI) in adult venoarterial extracorporeal membrane oxygenation (VA-ECMO) patients. ABI was defined as intracranial hemorrhage, ischemic stroke, hypoxic ischemic brain injury, or brain death during ECMO. rSO 2 values were collected from left and right cerebral oximetry sensors every hour from ECMO cannulation. Cerebral desaturation was defined as consecutive hours of rSO 2 < 40%. rSO 2 asymmetry was determined by (a) averaging left/right rSO 2 difference over the entire ECMO run; (b) consecutive hours of rSO 2 asymmetry. Sixty-nine VA-ECMO patients (mean age 56 years, 65% male) underwent cNIRS. Eighteen (26%) experienced ABI. When the mean rSO 2 asymmetry was >8% there was significantly increased odds of ABI (aOR = 39.4; 95% CI = 4.1-381.4). Concurrent rSO 2 < 40% and rSO 2 asymmetry >10% for >10 consecutive hours (asymmetric desaturation) was also significantly associated with ABI (aOR = 5.2; 95% CI = 1.2-22.2), but neither criterion alone were. Mean rSO 2 asymmetry>8% exhibited 39% sensitivity and 98% specificity for detecting ABI, with an area under the curve (AUC) of 0.86, and asymmetric desaturation had 33% sensitivity and 88% specificity, with an AUC of 0.72. These trends on NIRS monitoring may help detect ABI in VA-ECMO patients.
Collapse
Affiliation(s)
- David Zhao
- From the Division of Neurosciences Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin L Shou
- Cardiovascular Surgery Intensive Care Unit, Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Giorgio Caturegli
- From the Division of Neurosciences Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Glenn J R Whitman
- Cardiovascular Surgery Intensive Care Unit, Department of Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Bo Soo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sung-Min Cho
- From the Division of Neurosciences Critical Care, Departments of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Ehrenberger R, Németh BT, Kulyassa P, Fülöp GA, Becker D, Kiss B, Zima E, Merkely B, Édes IF. Acute coronary syndrome associated cardiogenic shock in the catheterization laboratory: peripheral veno-arterial extracorporeal membrane oxygenator management and recommendations. Front Med (Lausanne) 2023; 10:1277504. [PMID: 38020166 PMCID: PMC10661940 DOI: 10.3389/fmed.2023.1277504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiogenic shock (CS) in acute coronary syndrome (ACS) is a critical disease with high mortality rates requiring complex treatment to maximize patient survival chances. Emergent coronary revascularization along with circulatory support are keys to saving lives. Mechanical circulatory support may be instigated in severe, yet still reversible instances. Of these, the peripheral veno-arterial extracorporeal membrane oxygenator (pVA-ECMO) is the most widely used system for both circulatory and respiratory support. The aim of our work is to provide a review of our current understanding of the pVA-ECMO when used in the catheterization laboratory in a CS ACS setting. We detail the workings of a Shock Team: pVA-ECMO specifics, circumstances, and timing of implantations and discuss possible complications. We place emphasis on how to select the appropriate patients for potential pVA-ECMO support and what characteristics and parameters need to be assessed. A detailed, stepwise implantation algorithm indicating crucial steps is also featured for practitioners in the catheter laboratory. To provide an overall aspect of pVA-ECMO use in CS ACS we further gave pointers including relevant human resource, infrastructure, and consumables management to build an effective Shock Team to treat CS ACS via the pVA-ECMO method.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - István F. Édes
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Broman LM, Dubrovskaja O, Balik M. Extracorporeal Membrane Oxygenation for Septic Shock in Adults and Children: A Narrative Review. J Clin Med 2023; 12:6661. [PMID: 37892799 PMCID: PMC10607553 DOI: 10.3390/jcm12206661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Refractory septic shock is associated with a high risk of death. Circulatory support in the form of veno-arterial extracorporeal membrane oxygenation (VA ECMO) may function as a bridge to recovery, allowing for the treatment of the source of the sepsis. Whilst VA ECMO has been accepted as the means of hemodynamic support for children, in adults, single center observational studies show survival rates of only 70-90% for hypodynamic septic shock. The use of VA ECMO for circulatory support in hyperdynamic septic shock with preserved cardiac output or when applied late during cardio-pulmonary resuscitation is not recommended. With unresolving septic shock and a loss of ventriculo-arterial coupling, stress cardiomyopathy often develops. If the cardiac index (CI) approaches subnormal levels (CI < 2.5 L/min m-2) that do not match low systemic vascular resistance with a resulting loss of vital systemic perfusion pressure, VA ECMO support should be considered. A further decrease to the level of cardiogenic shock (CI < 1.8 L/min m-2) should be regarded as an indication for VA ECMO insertion. For patients who maintain a normal-to-high CI as part of their refractory vasoparalysis, VA ECMO support is justified in children and possibly in patients with a low body mass index. Extracorporeal support for septic shock should be limited to high-volume ECMO centers.
Collapse
Affiliation(s)
- Lars Mikael Broman
- ECMO Centre Karolinska, Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17176 Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Olga Dubrovskaja
- Intensive Care Department II, North Estonia Medical Centre, 13419 Tallinn, Estonia;
| | - Martin Balik
- Department of Anesthesiology and Intensive Care, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, 12808 Prague, Czech Republic;
| |
Collapse
|
19
|
Ajouri J, Lepper PM, Spangenberg T, Schneider NRE, Muellenbach RM. [Extracorporeal Life Support in Critical Care Medicine]. Anasthesiol Intensivmed Notfallmed Schmerzther 2023; 58:292-303. [PMID: 37192638 DOI: 10.1055/a-1859-0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Veno-arterial extracorporeal life support (ECLS) may be indicated in patients with refractory heart failure. The list of conditions in which ECLS is successfully used is growing and includes cardiogenic shock following myocardial infarction, refractory cardiac arrest, septic shock with low cardiac output and severe intoxication. Femoral ECLS is the most common and often preferred ECLS-configuration in the emergency setting. Although femoral access is usually quick and easy to establish, it is also associated with specific adverse haemodynamic effects due to the direction of blood flow and access-site complications are inherent. Femoral ECLS provides adequate oxygen delivery and compensates for impaired cardiac output. However, retrograde blood flow into the aorta increases left ventricular afterload and may worsen left ventricular stroke work. Therefore, femoral ECLS is not equivalent to left ventricular unloading. Daily haemodynamic assessments are crucial and should include echocardiography and laboratory tests determining tissue oxygenation. Common complications include the harlequin-phenomenon, lower limb ischaemia or cerebral events and cannula site or intracranial bleeding. Despite a high incidence of complications and high mortality, ECLS is associated with survival benefits and better neurological outcomes in selected patient groups.
Collapse
|
20
|
Jentzer JC, Miller PE, Alviar C, Yalamuri S, Bohman JK, Tonna JE. Exposure to Arterial Hyperoxia During Extracorporeal Membrane Oxygenator Support and Mortality in Patients With Cardiogenic Shock. Circ Heart Fail 2023; 16:e010328. [PMID: 36871240 PMCID: PMC10121893 DOI: 10.1161/circheartfailure.122.010328] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Exposure to hyperoxia, a high arterial partial pressure of oxygen (PaO2), may be associated with worse outcomes in patients receiving extracorporeal membrane oxygenator (ECMO) support. We examined hyperoxia in the Extracorporeal Life Support Organization Registry among patients receiving venoarterial ECMO for cardiogenic shock. METHODS We included Extracorporeal Life Support Organization Registry patients from 2010 to 2020 who received venoarterial ECMO for cardiogenic shock, excluding extracorporeal CPR. Patients were grouped based on PaO2 after 24 hours of ECMO: normoxia (PaO2 60-150 mmHg), mild hyperoxia (PaO2 151-300 mmHg), and severe hyperoxia (PaO2 >300 mmHg). In-hospital mortality was evaluated using multivariable logistic regression. RESULTS Among 9959 patients, 3005 (30.2%) patients had mild hyperoxia and 1972 (19.8%) had severe hyperoxia. In-hospital mortality increased across groups: normoxia, 47.8%; mild hyperoxia, 55.6% (adjusted odds ratio, 1.37 [95% CI, 1.23-1.53]; P<0.001); severe hyperoxia, 65.4% (adjusted odds ratio, 2.20 [95% CI, 1.92-2.52]; P<0.001). A higher PaO2 was incrementally associated with increased in-hospital mortality (adjusted odds ratio, 1.14 per 50 mmHg higher [95% CI, 1.12-1.16]; P<0.001). Patients with a higher PaO2 had increased in-hospital mortality in each subgroup and when stratified by ventilator settings, airway pressures, acid-base status, and other clinical variables. In the random forest model, PaO2 was the second strongest predictor of in-hospital mortality, after older age. CONCLUSIONS Exposure to hyperoxia during venoarterial ECMO support for cardiogenic shock is strongly associated with increased in-hospital mortality, independent from hemodynamic and ventilatory status. Until clinical trial data are available, we suggest targeting a normal PaO2 and avoiding hyperoxia in CS patients receiving venoarterial ECMO.
Collapse
Affiliation(s)
- Jacob C. Jentzer
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - P. Elliott Miller
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Carlos Alviar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Suraj Yalamuri
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - J. Kyle Bohman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Joseph E. Tonna
- Divisions of Cardiothoracic Surgery and Emergency Medicine, University of Utah Health and School of Medicine, Salt Lake City, UT
| |
Collapse
|
21
|
Wickramarachchi A, Khamooshi M, Burrell A, Pellegrino VA, Kaye DM, Gregory SD. The effect of drainage cannula tip position on risk of thrombosis during venoarterial extracorporeal membrane oxygenation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107407. [PMID: 36764061 DOI: 10.1016/j.cmpb.2023.107407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Venoarterial extracorporeal membrane oxygenation (VA ECMO) is able to support critically ill patients undergoing refractory cardiopulmonary failure. It relies on drainage cannulae to extract venous blood from the patient, but cannula features and tip position may impact flow dynamics and thrombosis risk. Therefore, this study aimed to investigate the effect of tip position of single-stage (SS) and multi-stage (MS) VA ECMO drainage cannulae on the risk of thrombosis. METHODS Computational fluid dynamics was used to model flow dynamics within patient-specific geometry of the venous vasculature. The tip of the SS and MS cannula was placed in the superior vena cava (SVC), SVC-Right atrium (RA) junction, mid-RA, inferior vena cava (IVC)-RA junction, and IVC. The risk of thrombosis was assessed by measuring several factors. Blood residence time was measured via an Eulerian approach through the use of a scalar source term. Regions of stagnant volume were recognised by identifying regions of low fluid velocity and shear rate. Rate of blood washout was calculated by patching the domain with a scalar value and measuring the rate of fluid displacement. Lastly, wall shear stress values were determined to provide a qualitative understanding of potential blood trauma. RESULTS Thrombosis risk varied substantially with position changes of the SS cannula, which was less evident with the MS cannula. The SS cannula showed reduced thrombosis risk arising from stagnant regions when placed in the SVC or SVC-RA junction, whereas an MS cannula was predicted to create stagnant regions during all tip positions. When positioned in the IVC-RA junction or IVC, the risk of thrombosis was higher in the SS cannula than in the MS cannula due to both high and low shear flow. CONCLUSION Tip position of the drainage cannula impacts cannula flow dynamics and, subsequently, the risk of thrombosis. The use of MS cannulae can reduce high shear-related thrombosis, but SS cannulae can eliminate stagnant regions when advanced into the SVC. Therefore, the choice of cannula design and tip position should be carefully considered during cannulation.
Collapse
Affiliation(s)
- Avishka Wickramarachchi
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia.
| | - Mehrdad Khamooshi
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
| | - Aidan Burrell
- Intensive Care Unit, The Alfred Hospital, Melbourne, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, School of Public Health and Preventive Medicine, Melbourne, Australia
| | | | - David M Kaye
- The Department of Cardiology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Shaun D Gregory
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Rozencwajg S, Heinsar S, Wildi K, Jung JS, Colombo SM, Palmieri C, Sato K, Ainola C, Wang X, Abbate G, Sato N, Dyer WB, Livingstone S, Helms L, Bartnikowski N, Bouquet M, Passmore MR, Hyslop K, Vidal B, Reid JD, McGuire D, Wilson ES, Rätsep I, Lorusso R, Schmidt M, Suen JY, Bassi GL, Fraser JF. Effect of flow change on brain injury during an experimental model of differential hypoxaemia in cardiogenic shock supported by extracorporeal membrane oxygenation. Sci Rep 2023; 13:4002. [PMID: 36899029 PMCID: PMC10006234 DOI: 10.1038/s41598-023-30226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Differential hypoxaemia (DH) is common in patients supported by femoral veno-arterial extracorporeal membrane oxygenation (V-A ECMO) and can cause cerebral hypoxaemia. To date, no models have studied the direct impact of flow on cerebral damage. We investigated the impact of V-A ECMO flow on brain injury in an ovine model of DH. After inducing severe cardiorespiratory failure and providing ECMO support, we randomised six sheep into two groups: low flow (LF) in which ECMO was set at 2.5 L min-1 ensuring that the brain was entirely perfused by the native heart and lungs, and high flow (HF) in which ECMO was set at 4.5 L min-1 ensuring that the brain was at least partially perfused by ECMO. We used invasive (oxygenation tension-PbTO2, and cerebral microdialysis) and non-invasive (near infrared spectroscopy-NIRS) neuromonitoring, and euthanised animals after five hours for histological analysis. Cerebral oxygenation was significantly improved in the HF group as shown by higher PbTO2 levels (+ 215% vs - 58%, p = 0.043) and NIRS (67 ± 5% vs 49 ± 4%, p = 0.003). The HF group showed significantly less severe brain injury than the LF group in terms of neuronal shrinkage, congestion and perivascular oedema (p < 0.0001). Cerebral microdialysis values in the LF group all reached the pathological thresholds, even though no statistical difference was found between the two groups. Differential hypoxaemia can lead to cerebral damage after only a few hours and mandates a thorough neuromonitoring of patients. An increase in ECMO flow was an effective strategy to reduce such damages.
Collapse
Affiliation(s)
- Sacha Rozencwajg
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, 47, bd de l'Hôpital, 75651, Paris Cedex 13, France.
- UPMC Université Paris 06, INSERM, UMRS-1166, ICAN Institute of Cardiometabolism and Nutrition, Sorbonne Universités, Paris, France.
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, Australia.
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
- Intensive Care Unit, St Andrew's War Memorial Hospital, Brisbane, Australia
| | - Karin Wildi
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Jae-Seung Jung
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sebastiano Maria Colombo
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Lombardia, Italy
| | - Chiara Palmieri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Xiaomeng Wang
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Department of Anaesthesia and Intensive Care Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Lombardia, Italy
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
| | - Wayne B Dyer
- Australian Red Cross Lifeblood, Sydney, Australia
| | - Samantha Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
| | - Leticia Helms
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Columbia University, College of Physicians and Surgeons, New York, USA
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mahe Bouquet
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Bruno Vidal
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
| | - Janice D Reid
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Daniel McGuire
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
| | - Emily S Wilson
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Indrek Rätsep
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Matthieu Schmidt
- Service de Réanimation Médicale, Groupe Hospitalier Pitié-Salpêtrière, Institut de Cardiologie, Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, 47, bd de l'Hôpital, 75651, Paris Cedex 13, France
- UPMC Université Paris 06, INSERM, UMRS-1166, ICAN Institute of Cardiometabolism and Nutrition, Sorbonne Universités, Paris, France
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, Australia.
- Queensland University of Technology, Brisbane, Australia.
- Intensive Care Unit, St Andrew's War Memorial Hospital, Brisbane, Australia.
- Intensive Care Unit, The Wesley Hospital, Brisbane, Australia.
- Wesley Medical Research, The Wesley, Queensland, Auchenflower, Australia.
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Level 3, Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
- Intensive Care Unit, St Andrew's War Memorial Hospital, Brisbane, Australia
- Intensive Care Unit, The Wesley Hospital, Brisbane, Australia
| |
Collapse
|
23
|
Wickramarachchi A, Burrell AJC, Stephens AF, Šeman M, Vatani A, Khamooshi M, Raman J, Bellomo R, Gregory SD. The effect of arterial cannula tip position on differential hypoxemia during venoarterial extracorporeal membrane oxygenation. Phys Eng Sci Med 2023; 46:119-129. [PMID: 36459331 DOI: 10.1007/s13246-022-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Interaction between native ventricular output and venoarterial extracorporeal membrane oxygenation (VA ECMO) flow may hinder oxygenated blood flow to the aortic arch branches, resulting in differential hypoxemia. Typically, the arterial cannula tip is placed in the iliac artery or abdominal aorta. However, the hemodynamics of a more proximal arterial cannula tip have not been studied before. This study investigated the effect of arterial cannula tip position on VA ECMO blood flow to the upper extremities using computational fluid dynamics simulations. Four arterial cannula tip positions (P1. common iliac, P2. abdominal aorta, P3. descending aorta and P4. aortic arch) were compared with different degrees of cardiac dysfunction and VA ECMO support (50%, 80% and 90% support). P4 was able to supply oxygenated blood to the arch vessels at all support levels, while P1 to P3 only supplied the arch vessels during the highest level (90%) of VA ECMO support. Even during the highest level of support, P1 to P3 could only provide oxygenated VA-ECMO flow at 0.11 L/min to the brachiocephalic artery, compared with 0.5 L/min at P4. This study suggests that cerebral perfusion of VA ECMO flow can be increased by advancing the arterial cannula tip towards the aortic arch.
Collapse
Affiliation(s)
- Avishka Wickramarachchi
- Cardio-Respiratory Engineering and Technology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia.
| | - Aidan J C Burrell
- Intensive Care Unit, Alfred Hospital, Melbourne, Australia
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Andrew F Stephens
- Cardio-Respiratory Engineering and Technology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Michael Šeman
- Cardio-Respiratory Engineering and Technology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia
- Department of Cardiology, Alfred Health, Melbourne, Australia
| | - Ashkan Vatani
- Cardio-Respiratory Engineering and Technology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Mehrdad Khamooshi
- Cardio-Respiratory Engineering and Technology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Jaishankar Raman
- Cardiothoracic Surgery, Austin & St Vincent's Hospitals, University of Melbourne, Melbourne, Australia
| | - Rinaldo Bellomo
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Intensive Care Unit, Austin Hospital, Melbourne, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Australia
| | - Shaun D Gregory
- Cardio-Respiratory Engineering and Technology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| |
Collapse
|
24
|
Natalini JG, Clausen ES. Critical Care Management of the Lung Transplant Recipient. Clin Chest Med 2023; 44:105-119. [PMID: 36774158 DOI: 10.1016/j.ccm.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Lung transplantation is often the only treatment option for patients with severe irreversible lung disease. Improvements in donor and recipient selection, organ allocation, surgical techniques, and immunosuppression have all contributed to better survival outcomes after lung transplantation. Nonetheless, lung transplant recipients still experience frequent complications, often necessitating treatment in an intensive care setting. In addition, the use of extracorporeal life support as a means of bridging critically ill patients to lung transplantation has become more widespread. This review focuses on the critical care aspects of lung transplantation, both before and after surgery.
Collapse
Affiliation(s)
- Jake G Natalini
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, 530 First Avenue, HCC 4A, New York, NY 10016, USA.
| | - Emily S Clausen
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Hospital of the University of Pennsylvania, 3400 Spruce Street, 9036 Gates Building, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Linganna RE, Ibekwe SO, Faloye AO. Mechanical assist devices: A primer for the general anesthesiologist I: Extracorporeal membrane oxygenation. J Clin Anesth 2023; 84:110998. [PMID: 36371944 DOI: 10.1016/j.jclinane.2022.110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Regina E Linganna
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, 3400 Spruce Street, Dulles 680, Philadelphia, PA 19104, USA.
| | - Stephanie O Ibekwe
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77070, Houston, TX, USA, 77030.
| | - Abimbola O Faloye
- Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Emory University, 1364 Clifton Rd. Suite C220, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Berger DC, Zwicker L, Nettelbeck K, Casoni D, Heinisch PP, Jenni H, Haenggi M, Gattinoni L, Bachmann KF. Integral assessment of gas exchange during veno-arterial ECMO: accuracy and precision of a modified Fick principle in a porcine model. Am J Physiol Lung Cell Mol Physiol 2023; 324:L102-L113. [PMID: 36511508 PMCID: PMC9870575 DOI: 10.1152/ajplung.00045.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Assessment of native cardiac output during extracorporeal circulation is challenging. We assessed a modified Fick principle under conditions such as dead space and shunt in 13 anesthetized swine undergoing centrally cannulated veno-arterial extracorporeal membrane oxygenation (V-A ECMO, 308 measurement periods) therapy. We assumed that the ratio of carbon dioxide elimination (V̇co2) or oxygen uptake (V̇o2) between the membrane and native lung corresponds to the ratio of respective blood flows. Unequal ventilation/perfusion (V̇/Q̇) ratios were corrected towards unity. Pulmonary blood flow was calculated and compared to an ultrasonic flow probe on the pulmonary artery with a bias of 99 mL/min (limits of agreement -542 to 741 mL/min) with blood content V̇o2 and no-shunt, no-dead space conditions, which showed good trending ability (least significant change from 82 to 129 mL). Shunt conditions led to underestimation of native pulmonary blood flow (bias -395, limits of agreement -1,290 to 500 mL/min). Bias and trending further depended on the gas (O2, CO2) and measurement approach (blood content vs. gas phase). Measurements in the gas phase increased the bias (253 [LoA -1,357 to 1,863 mL/min] for expired V̇o2 bias 482 [LoA -760 to 1,724 mL/min] for expired V̇co2) and could be improved by correction of V̇/Q̇ inequalities. Our results show that common assumptions of the Fick principle in two competing circulations give results with adequate accuracy and may offer a clinically applicable tool. Precision depends on specific conditions. This highlights the complexity of gas exchange in membrane lungs and may further deepen the understanding of V-A ECMO.
Collapse
Affiliation(s)
- David C. Berger
- 1Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lena Zwicker
- 1Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kay Nettelbeck
- 1Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,2Experimental Surgery Facility (ESF), Department for BioMedical
Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Daniela Casoni
- 2Experimental Surgery Facility (ESF), Department for BioMedical
Research, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Paul Phillipp Heinisch
- 3Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Hansjörg Jenni
- 3Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, Technische Universität München, Munich, Germany
| | - Matthias Haenggi
- 1Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luciano Gattinoni
- 5Department of Anesthesiology, Medical University of Göttingen, University Medical Center Göttingen, Göttingen, Germany
| | - Kaspar F. Bachmann
- 1Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,4Department of Anesthesiology & Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Wieruszewski PM, Ortoleva JP, Cormican DS, Seelhammer TG. Extracorporeal Membrane Oxygenation in Acute Respiratory Failure. Pulm Ther 2023; 9:109-126. [PMID: 36670314 PMCID: PMC9859746 DOI: 10.1007/s41030-023-00214-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Venovenous (VV) extracorporeal membrane oxygenation (ECMO) is a form of mechanical life support that provides full respiratory bypass in patients with severe respiratory failure as a bridge to recovery or lung transplantation. The use of ECMO for respiratory failure and capable centers offering ECMO has expanded over the years, increasing its availability. As VV-ECMO provides an artificial mechanism for oxygenation and decarboxylation of native blood, it allows for an environment in which safer mechanical ventilatory care may be provided, allowing for treatment and resolution of underlying respiratory pathologies. Landmark clinical trials have provided a framework for better understanding patient selection criteria, resource utilization, and outcomes associated with ECMO when applied in settings of refractory respiratory failure. Maintaining close vigilance and management of complications during ECMO as well as identifying strategies post-ECMO (e.g., recovery, transplantation, etc.), are critical to successful ECMO support. In this review, we examine considerations for candidate selection for VV-ECMO, review the evidence of utilizing VV-ECMO in respiratory failure, and provide practical considerations for managing respiratory ECMO patients, including complication identification and management, as well as assessing for the ability to separate from ECMO support and the procedures for decannulation.
Collapse
Affiliation(s)
- Patrick M. Wieruszewski
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA ,Department of Pharmacy, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Jamel P. Ortoleva
- Department of Anesthesiology and Perioperative Medicine, Tufts Medical Center, Boston, MA USA
| | - Daniel S. Cormican
- Division of Cardiothoracic Anesthesiology, Allegheny General Hospital, Pittsburg, PA USA
| | - Troy G. Seelhammer
- Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
28
|
Gutierrez A, Kalra R, Elliott AM, Marquez A, Yannopoulos D, Bartos JA. Acute lung injury and recovery in patients with refractory VT/VF cardiac arrest treated with prolonged CPR and veno-arterial extracorporeal membrane oxygenation. Resuscitation 2023; 182:109651. [PMID: 36442595 DOI: 10.1016/j.resuscitation.2022.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
AIM Describe the lung injury patterns among patients presenting with refractory ventricular tachycardia/ventricular fibrillation out-of-hospital cardiac arrest (VT/VF OHCA) supported with veno-arterial extracorporeal membrane oxygenation (VA-ECMO) facilitated resuscitation. METHODS In this retrospective single-center cohort study including VT/VF OHCA patients supported with VA ECMO, we compared OHCA characteristics, post-arrest computed tomography (CT) scans, ventilator parameters, and other lung-related pathology between survivors, patients who developed brain death, and those with other causes of death. RESULTS Among 138 patients, 48/138 (34.8%) survived, 31/138 (22.4%) developed brain death, and 59/138 (42.7%) died of other causes. Successful extubation was achieved in 39/138 (28%) with a median time to extubation of 8.0 days (6.0, 11.0) in those who survived. Tracheostomy was required in 15/48 (31.3%) survivors. Chest CT obtained on all patients showed lung injury in at least one lung area in 124/135 (91.8%) patients, predominantly in the dependent posterior areas. There was no association between the number of affected areas and survival. Lung compliance was low on admission [26 (19,33) ml/cmH20], improved throughout hospitalization (p = 0.03), and recovered faster in survivors compared to those who died (p < 0.001). VA-ECMO allowed the use of lung-protective ventilation while maintaining normalized PaO2 and PaCO2. Patients treated with V-A ECMO and either IABP or Impella had lower pulmonary compliance and more affected areas on their CT compared to those treated with V-A ECMO alone. CONCLUSIONS Lung injury is common among patients with refractory VT/VF OHCA requiring V-A ECMO, but imaging severity is not associated with survival. Reductions in lung compliance accompany post-arrest lung injury while compliance recovery is associated with survival.
Collapse
Affiliation(s)
- Alejandra Gutierrez
- Division of Cardiology, Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States; Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States.
| | - Rajat Kalra
- Division of Cardiology, Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States; Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Andrea M Elliott
- Division of Cardiology, Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States; Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Alexandra Marquez
- Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States; Pediatric Cardiology Critical Care, Children's Hospital, University of Minnesota, United States
| | - Demetris Yannopoulos
- Division of Cardiology, Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States; Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Jason A Bartos
- Division of Cardiology, Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States; Center for Resuscitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
29
|
Complications Associated With Venovenous Extracorporeal Membrane Oxygenation-What Can Go Wrong? Crit Care Med 2022; 50:1809-1818. [PMID: 36094523 DOI: 10.1097/ccm.0000000000005673] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Despite increasing use and promising outcomes, venovenous extracorporeal membrane oxygenation (V-V ECMO) introduces the risk of a number of complications across the spectrum of ECMO care. This narrative review describes the variety of short- and long-term complications that can occur during treatment with ECMO and how patient selection and management decisions may influence the risk of these complications. DATA SOURCES English language articles were identified in PubMed using phrases related to V-V ECMO, acute respiratory distress syndrome, severe respiratory failure, and complications. STUDY SELECTION Original research, review articles, commentaries, and published guidelines from the Extracorporeal Life support Organization were considered. DATA EXTRACTION Data from relevant literature were identified, reviewed, and integrated into a concise narrative review. DATA SYNTHESIS Selecting patients for V-V ECMO exposes the patient to a number of complications. Adequate knowledge of these risks is needed to weigh them against the anticipated benefit of treatment. Timing of ECMO initiation and transfer to centers capable of providing ECMO affect patient outcomes. Choosing a configuration that insufficiently addresses the patient's physiologic deficit leads to consequences of inadequate physiologic support. Suboptimal mechanical ventilator management during ECMO may lead to worsening lung injury, delayed lung recovery, or ventilator-associated pneumonia. Premature decannulation from ECMO as lungs recover can lead to clinical worsening, and delayed decannulation can prolong exposure to complications unnecessarily. Short-term complications include bleeding, thrombosis, and hemolysis, renal and neurologic injury, concomitant infections, and technical and mechanical problems. Long-term complications reflect the physical, functional, and neurologic sequelae of critical illness. ECMO can introduce ethical and emotional challenges, particularly when bridging strategies fail. CONCLUSIONS V-V ECMO is associated with a number of complications. ECMO selection, timing of initiation, and management decisions impact the presence and severity of these potential harms.
Collapse
|
30
|
Winiszewski H, Guinot PG, Schmidt M, Besch G, Piton G, Perrotti A, Lorusso R, Kimmoun A, Capellier G. Optimizing PO 2 during peripheral veno-arterial ECMO: a narrative review. Crit Care 2022; 26:226. [PMID: 35883117 PMCID: PMC9316319 DOI: 10.1186/s13054-022-04102-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/13/2022] [Indexed: 01/01/2023] Open
Abstract
During refractory cardiogenic shock and cardiac arrest, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is used to restore a circulatory output. However, it also impacts significantly arterial oxygenation. Recent guidelines of the Extracorporeal Life Support Organization (ELSO) recommend targeting postoxygenator partial pressure of oxygen (PPOSTO2) around 150 mmHg. In this narrative review, we intend to summarize the rationale and evidence for this PPOSTO2 target recommendation. Because this is the most used configuration, we focus on peripheral VA-ECMO. To date, clinicians do not know how to set the sweep gas oxygen fraction (FSO2). Because of the oxygenator's performance, arterial hyperoxemia is common during VA-ECMO support. Interpretation of oxygenation is complex in this setting because of the dual circulation phenomenon, depending on both the native cardiac output and the VA-ECMO blood flow. Such dual circulation results in dual oxygenation, with heterogeneous oxygen partial pressure (PO2) along the aorta, and heterogeneous oxygenation between organs, depending on the mixing zone location. Data regarding oxygenation during VA-ECMO are scarce, but several observational studies have reported an association between hyperoxemia and mortality, especially after refractory cardiac arrest. While hyperoxemia should be avoided, there are also more and more studies in non-ECMO patients suggesting the harm of a too restrictive oxygenation strategy. Finally, setting FSO2 to target strict normoxemia is challenging because continuous monitoring of postoxygenator oxygen saturation is not widely available. The threshold of PPOSTO2 around 150 mmHg is supported by limited evidence but aims at respecting a safe margin, avoiding both hypoxemia and severe hyperoxemia.
Collapse
Affiliation(s)
- Hadrien Winiszewski
- Service de Réanimation Médicale, centre hospitalier universitaire de Besançon, Besançon, France. .,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France.
| | - Pierre-Grégoire Guinot
- Service d'Anesthésie-Réanimation Chirurgicale, centre hospitalier universitaire de Dijon, Dijon, France
| | - Matthieu Schmidt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, APHP Sorbonne Université Hôpital Pitié-Salpêtrière, Paris, France
| | - Guillaume Besch
- Service d'Anesthésie-Réanimation Chirurgicale, centre hospitalier universitaire de Besançon, Besançon, France.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| | - Gael Piton
- Service de Réanimation Médicale, centre hospitalier universitaire de Besançon, Besançon, France.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| | - Andrea Perrotti
- Service de Chirurgie Cardiaque, centre hospitalier universitaire de Besançon, Besançon, France.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Maastricht University Medical Centre (MUMC), Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Antoine Kimmoun
- Service de Médecine Intensive Réanimation, centre hospitalier universitaire de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | - Gilles Capellier
- Service de Réanimation Médicale, centre hospitalier universitaire de Besançon, Besançon, France.,Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Clayton, Australia.,Research Unit EA 3920 and SFR FED 4234, University of Franche Comté, Besancon, France
| |
Collapse
|
31
|
Falk L, Hultman J, Broman LM. Differential hypoxemia and the clinical significance of venous drainage position during extracorporeal membrane oxygenation. Perfusion 2022; 38:818-825. [PMID: 35543368 DOI: 10.1177/02676591221090667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Differential hypoxemia (DH) has been recognized as a clinical problem during veno-arterial extracorporeal membrane oxygenation (VA ECMO) although its features and consequences have not been fully elucidated. This single center retrospective study aimed to investigate the clinical characteristics of patients manifesting DH as well as the impact of repositioning the drainage point from the inferior vena cava (IVC) to the superior vena cava to alleviate DH. All patients (>15 years) commenced on VA ECMO at our center between 2009 and 2020 were screened. Of 472 eligible patients seven were identified with severe DH. All patients had the drainage cannula tip in the IVC or at the junction between the IVC and right atrium. The mean peripheral capillary saturation increased from 54 (±6.6) to 86 (±6.6) %, (p = <0.001) after repositioning of the cannula. Pre-oxygenator saturation increased from 62 (±8.9) % prior to adjustment to 74 (±3.7) %, (p = 0.016) after repositioning. Plasma lactate tended to decrease within 24 h after adjustment. Five patients (71%) survived ECMO treatment, to discharge from hospital, and were alive at 1-year follow-up. Although DH has been described in several studies, the condition has not been investigated in a clinical setting comparing the effect on upper body saturation before and after repositioning of the drainage cannula. This study shows that moving the drainage zone into the upper part of the body has a marked positive effect on upper body saturation in patients with DH.
Collapse
Affiliation(s)
- Lars Falk
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Hultman
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Lars M Broman
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Reconfiguration from veno-arterial to veno-arterio-venous extracorporeal membrane oxygenation for massive pulmonary embolism. J Artif Organs 2022; 25:368-372. [PMID: 35377031 DOI: 10.1007/s10047-022-01327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Differential hypoxia may occur after the initiation of femorofemoral veno-arterial extracorporeal membrane oxygenation (VA ECMO) if cardiac function improves while severe respiratory failure is still present, one of the most difficult problems encountered during VA ECMO. Reconfiguration to veno-arterio-venous ECMO (V-AV ECMO) is one of several methods of dealing with differential hypoxia. V-AV ECMO requires triple cannulation and careful management of the reinjection flow, but the risk of bleeding is lower than in a surgical procedure, such as central ECMO or a subclavian artery graft. Herein, we reported a patient with a massive pulmonary embolism who received VA ECMO, which was reconfigured to V-AV ECMO 3 days later when differential hypoxia occurred. A drainage cannula was newly inserted via the right internal jugular vein, and an existing drainage cannula was used for reinjection after repositioning it caudally. V-AV ECMO is an effective and feasible treatment for differential hypoxia despite the paucity of the procedure to date.
Collapse
|
33
|
Cai T, Li C, Xu B, Wang L, Du Z, Hao X, Guo D, Xing Z, Jiang C, Xin M, Wang P, Fan Q, Wang H, Hou X. Drainage From Superior Vena Cava Improves Upper Body Oxygenation in Patients on Femoral Veno-Arterial Extracorporeal Membrane Oxygenation. Front Cardiovasc Med 2022; 8:807663. [PMID: 35242819 PMCID: PMC8886363 DOI: 10.3389/fcvm.2021.807663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 01/20/2023] Open
Abstract
Objective To investigate the feasibility of drainage from the superior vena cava (SVC) to improve upper body oxygenation in patients with cardiogenic shock undergoing femoral veno-arterial extracorporeal membrane oxygenation (VA ECMO). Methods Seventeen adult patients receiving peripheral femoral VA ECMO for circulatory support were enrolled. The femoral drainage cannula was shifted three times (from the inferior vena cava (IVC) level to the SVC level and then the IVC level again), all under ultrasound guidance, at an interval of 15 minutes. The blood gas levels of the right radial artery (RA) and SVC and cerebral oxygen saturation (ScO2) were measured and compared. Results Fifteen patients (88.2%) were successfully weaned from ECMO, and 12 patients (70.6%) survived to discharge. The oxygen saturation (SO2) and oxygen partial pressure (PO2) of the RA (97.0 ± 3.5% to 98.3 ± 1.5%, P < 0.05, SO2; 127.4 ± 58.2 mmHg to 153.1 ± 67.8 mmHg, P < 0.05, PO2) and SVC (69.5 ± 9.0% to 75.7 ± 8.5%, P < 0.05, SO2; 38.5 ± 5.6 mmHg to 43.6 ± 6.4 mmHg, P < 0.05, PO2) were increased; ScO2 was also increased on both sides (left: 50.6 ± 8.6% to 55.0 ± 9.0%, P < 0.05; right: 48.7 ± 9.2% to 52.3 ± 9.8%, P < 0.05) when the femoral drainage cannula was shifted from the IVC level to the SVC level. When the femoral drainage cannula was shifted from SVC level to the IVC level again, the SO2 and PO2 of RA (98.3 ± 1.5% to 96.9 ± 3.2%, P <0.05, SO2; 153.1 ± 67.8 mmHg to 125.8 ± 63.3 mmHg, P <0.05, PO2) and SVC (75.7 ± 38.5% to 70.4 ± 7.6%, P <0.05, SO2; 43.6 ± 6.4 mmHg to 38.9 ± 4.5 mmHg, P <0.05, PO2) were decreased; ScO2 was also reduced on both sides (left: 55.0 ± 9.0% to 50.7 ± 8.2%, P < 0.05; right: 52.3 ± 9.8% to 48.7 ± 9.3%, P <0.05). Conclusion Drainage from the SVC by shifting the cannula upward could improve upper body oxygenation in patients with cardiogenic shock undergoing femoral VA ECMO. This cannulation strategy provides an alternative solution for differential hypoxia.
Collapse
Affiliation(s)
- Tong Cai
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chenglong Li
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bo Xu
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Liangshan Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhongtao Du
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xing Hao
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Dong Guo
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhichen Xing
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chunjing Jiang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meng Xin
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Pengcheng Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qiushi Fan
- School of Public Health, Capital Medical University, Beijing, China
| | - Hong Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaotong Hou
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Welker C, Huang J, Ramakrishna H. Analysis of the 2020 EACTS/ELSO/STS/AATS Expert Guidelines on the Management of Adult Postcardiotomy Extracorporeal Life Support. J Cardiothorac Vasc Anesth 2021; 36:2207-2219. [PMID: 34332842 DOI: 10.1053/j.jvca.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Extracorporeal life support (ECLS), also known as extracorporeal membrane oxygenation (ECMO), increasingly is used in postcardiotomy (PC) shock to facilitate a bridge to sustained recovery, long-term mechanical support, or heart transplantation. Given increasing prevalence and complexity of PC-ECLS, a joint expert consensus guideline was created in 2020 for management of adult PC-ECLS by the European Association for Cardio-Thoracic Surgery (EACTS), the Extracorporeal Life Support Organization (ELSO), the Society of Thoracic Surgeons (STS), and the American Association of Thoracic Surgery (AATS). The aim of this analysis was to comprehensively review the expert consensus guidelines, with particular emphasis on PC-ECLS candidacy, timing, cannula configuration, left ventricular distention, anticoagulation, ECLS weaning, and intensive care unit complications. This analysis finds the expert consensus guideline to be timely, pertinent, and clinically valuable, although there remains the need for larger clinical trials to codify best practices.
Collapse
Affiliation(s)
- Carson Welker
- Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Jeffrey Huang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Harish Ramakrishna
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
35
|
Wilson J, Fisher R, Caetano F, Soliman-Aboumarie H, Patel B, Ledot S, Price S, Vandenbriele C. Managing Harlequin Syndrome in VA-ECMO - do not forget the right ventricle. Perfusion 2021; 37:526-529. [PMID: 34053349 DOI: 10.1177/02676591211020895] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Harlequin Syndrome (also known as North-South Syndrome) is a complication of veno-arterial extracorporeal membrane oxygenation (V-A ECMO) that can occur when left ventricular function starts to recover. While most commonly due to continued impaired gas exchange in the lungs, we present a case caused by right ventricular dysfunction, successfully managed by conversion of the ECMO circuit to a veno-veno-arterial (VV-A) configuration.
Collapse
Affiliation(s)
- James Wilson
- Department of Adult Intensive Care, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Richard Fisher
- Department of Adult Intensive Care, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Francisca Caetano
- Department of Adult Intensive Care, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Hatem Soliman-Aboumarie
- Department of Adult Intensive Care, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Brijesh Patel
- Department of Adult Intensive Care, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Stephane Ledot
- Department of Adult Intensive Care, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Susanna Price
- Department of Adult Intensive Care, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Christophe Vandenbriele
- Department of Adult Intensive Care, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,Division of Cardiovascular Sciences, University Hospitals Leuven, Belgium
| |
Collapse
|
36
|
Falk L, Fletcher-Sandersjöö A, Hultman J, Broman LM. Conversion from Venovenous to Venoarterial Extracorporeal Membrane Oxygenation in Adults. MEMBRANES 2021; 11:membranes11030188. [PMID: 33803411 PMCID: PMC7999389 DOI: 10.3390/membranes11030188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
No major study has been performed on the conversion from venovenous (VV) to venoarterial (VA) extracorporeal membrane oxygenation (ECMO) in adults. This single-center retrospective cohort study aimed to investigate the incidence, indication, and outcome in patients who converted from VV to VA ECMO. All adult patients (≥18 years) who commenced VV ECMO at our center between 2005 and 2018 were screened. Of 219 VV ECMO patients, 21% (n = 46) were converted to VA ECMO. The indications for conversion were right ventricular failure (RVF) (65%), cardiogenic shock (26%), and other (9%). In the converted patients, there was a significant increase in Sequential Organ Failure Assessment (SOFA) scores between admission 12 (9-13) and conversion 15 (13-17, p < 0.001). Compared to non-converted patients, converted patients also had a higher mortality rate (62% vs. 16%, p < 0.001) and a lower admission Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score (p < 0.001). Outcomes were especially unfavorable in those converted due to RVF. These results indicate that VA ECMO, as opposed to VV ECMO, should be considered as the first mode of choice in patients with respiratory failure and signs of circulatory impairment, especially in those with impaired RV function. For the remaining patients, Pre-admission RESP score, daily echocardiography, and SOFA score trajectories may help in the early identification of those where conversion from VV to VA ECMO is warranted. Multi-centric studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Lars Falk
- ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17176 Stockholm, Sweden; (J.H.); (L.M.B.)
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 76 Stockholm, Sweden
- Correspondence: ; Tel.: +46-8-51774040; Fax: +46-8-51778060
| | - Alexander Fletcher-Sandersjöö
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden;
- Department of Neurosurgery, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jan Hultman
- ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17176 Stockholm, Sweden; (J.H.); (L.M.B.)
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Department of Pediatric Perioperative Medicine and Intensive Care, Karolinska University Hospital, 17176 Stockholm, Sweden; (J.H.); (L.M.B.)
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
37
|
Iacobelli R, Fletcher-Sandersjöö A, Lindblad C, Keselman B, Thelin EP, Broman LM. Predictors of brain infarction in adult patients on extracorporeal membrane oxygenation: an observational cohort study. Sci Rep 2021; 11:3809. [PMID: 33589664 PMCID: PMC7884423 DOI: 10.1038/s41598-021-83157-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Non-hemorrhagic brain infarction (BI) is a recognized complication in adults treated with extracorporeal membrane oxygenation (ECMO) and associated with increased mortality. However, predictors of BI in these patients are poorly understood. The aim of this study was to identify predictors of BI in ECMO-treated adult patients. We conducted an observational cohort study of all adult patients treated with venovenous or venoarterial (VA) ECMO at our center between 2010 and 2018. The primary endpoint was a computed tomography (CT) verified BI. Logistic regression models were employed to identify BI predictors. In total, 275 patients were included, of whom 41 (15%) developed a BI. Pre-ECMO Simplified Acute Physiology Score III, pre-ECMO cardiac arrest, VA ECMO and conversion between ECMO modes were identified as predictors of BI. In the multivariable analysis, VA ECMO demonstrated independent risk association. VA ECMO also remained the independent BI predictor in a sub-group analysis excluding patients who did not undergo a head CT scan during ECMO treatment. The incidence of BI in adult ECMO patients may be higher than previously believed and is independently associated with VA ECMO mode. Larger prospective trials are warranted to validate these findings and ascertain their clinical significance.
Collapse
Affiliation(s)
- Riccardo Iacobelli
- Department of Pediatric Perioperative Medicine and Intensive Care, ECMO Centre Karolinska, Astrid Lindgren Children's Hospital, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Boris Keselman
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Mikael Broman
- Department of Pediatric Perioperative Medicine and Intensive Care, ECMO Centre Karolinska, Astrid Lindgren Children's Hospital, Karolinska University Hospital, 171 76, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Early Findings after Implementation of Veno-Arteriovenous ECMO: A Multicenter European Experience. MEMBRANES 2021; 11:membranes11020081. [PMID: 33499236 PMCID: PMC7912524 DOI: 10.3390/membranes11020081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is increasingly used to treat cardiopulmonary failure in critically ill patients. Peripheral cannulation may be complicated by a persistent low cardiac output in case of veno-venous cannulation (VV-ECMO) or by differential hypoxia (e.g., lower PaO2 in the upper than in the lower body) in case of veno-arterial cannulation (VA-ECMO) and severe impairment of pulmonary function associated with cardiac recovery. The treatment of such complications remains challenging. We report the early effects of the use of veno-arterial-venous (V-AV) ECMO in this setting. Methods: Retrospective analysis including patients from five different European ECMO centers (January 2013 to December 2016) who required V-AV ECMO. We collected demographic data as well as comorbidities and ECMO characteristics, hemodynamics, and arterial blood gas values before and immediately after (i.e., within 2 h) V-AV implementation. Results: A total of 32 patients (age 53 (interquartiles, IQRs: 31–59) years) were identified: 16 were initially supported with VA-ECMO and 16 with VV-ECMO. The median time to V-AV conversion was 2 (1–5) days. After V-AV implantation, heart rate and norepinephrine dose significantly decreased, while PaO2 and SaO2 significantly increased compared to baseline values. Lactate levels significantly decreased from 3.9 (2.3–7.1) to 2.8 (1.4–4.4) mmol/L (p = 0.048). A significant increase in the overall ECMO blood flow (from 4.5 (3.8–5.0) to 4.9 (4.3–5.9) L/min; p < 0.01) was observed, with 3.0 (2.5–3.2) L/min for the arterial and 2.8 (2.1–3.6) L/min for the venous return flows. Conclusions: In ECMO patients with differential hypoxia or persistently low cardiac output syndrome, V-AV conversion was associated with improvement in some hemodynamic and respiratory parameters. A significant increase in the overall ECMO blood flow was also observed, with similar flow distributed into the arterial and venous return cannulas.
Collapse
|
39
|
Khan IR, Gu Y, George BP, Malone L, Conway KS, Francois F, Donlon J, Quazi N, Reddi A, Ho CY, Herr DL, Johnson MD, Parikh GY. Brain Histopathology of Adult Decedents After Extracorporeal Membrane Oxygenation. Neurology 2021; 96:e1278-e1289. [PMID: 33472914 DOI: 10.1212/wnl.0000000000011525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To test the hypothesis that brain injury is more common and varied in patients receiving extracorporeal membrane oxygenation (ECMO) than radiographically observed, we described neuropathology findings of ECMO decedents and associated clinical factors from 3 institutions. METHODS We conducted a retrospective multicenter observational study of brain autopsies from adult ECMO recipients. Pathology findings were examined for correlation with demographics, clinical data, ECMO characteristics, and outcomes. RESULTS Forty-three decedents (n = 13 female, median age 47 years) received autopsies after undergoing ECMO for acute respiratory distress syndrome (n = 14), cardiogenic shock (n = 14), and cardiac arrest (n = 15). Median duration of ECMO was 140 hours, most decedents (n = 40) received anticoagulants; 60% (n = 26) underwent venoarterial ECMO, and 40% (n = 17) underwent venovenous ECMO. Neuropathology was found in 35 decedents (81%), including microhemorrhages (37%), macrohemorrhages (35%), infarctions (47%), and hypoxic-ischemic brain injury (n = 17, 40%). Most pathology occurred in frontal neocortices (n = 43 occurrences), basal ganglia (n = 33), and cerebellum (n = 26). Decedents with hemorrhage were older (median age 57 vs 38 years, p = 0.01); those with hypoxic brain injury had higher Sequential Organ Failure Assessment scores (8.0 vs 2.0, p = 0.04); and those with infarction had lower peak Paco2 (53 vs 61 mm Hg, p = 0.04). Six of 9 patients with normal neuroimaging results were found to have pathology on autopsy. The majority underwent withdrawal of life-sustaining therapy (n = 32, 74%), and 2 of 8 patients with normal brain autopsy underwent withdrawal of life-sustaining therapy for suspected neurologic injury. CONCLUSION Neuropathological findings after ECMO are common, varied, and associated with various clinical factors. Further study on underlying mechanisms is warranted and may guide ECMO management.
Collapse
Affiliation(s)
- Imad R Khan
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY.
| | - Yang Gu
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Benjamin P George
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Laura Malone
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Kyle S Conway
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Fabienne Francois
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Jack Donlon
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Nadim Quazi
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Ashwin Reddi
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Cheng-Ying Ho
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Daniel L Herr
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Mahlon D Johnson
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| | - Gunjan Y Parikh
- From the Department of Neurology (I.R.K., B.P.G.), Division of Neurocritical Care, and Department of Anesthesiology and Perioperative Medicine (Y.G.), University of Rochester Medical Center, NY; Department of Pathology (L.M., C.-Y.H.), University of Maryland Medical Center, Baltimore; Department of Pathology (K.S.C.), University of Michigan School of Medicine, Ann Arbor; Cardiac Surgery Research (F.F.), University of Maryland School of Medicine, Baltimore; College of Arts & Sciences (J.D., N.Q.), University of Rochester, NY; University of Maryland School of Medicine (A.R.); Program in Trauma and Critical Care (D.L.H.), Department of Medicine, and Program in Trauma (G.Y.P.), Division of Neurocritical Care and Emergency Neurology, Department of Neurology, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore; and Department of Pathology and Laboratory Medicine (M.D.J.), University of Rochester School of Medicine & Dentistry, NY
| |
Collapse
|
40
|
Lo Coco V, Swol J, De Piero ME, Massimi G, Chiarini G, Broman LM, Lorusso R. Dynamic extracorporeal life support: A novel management modality in temporary cardio-circulatory assistance. Artif Organs 2020; 45:427-434. [PMID: 33190316 DOI: 10.1111/aor.13869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Extracorporeal life support (ECLS) is a temporary mechanical assistance method employed in acute respiratory, cardiocirculatory, and cardio-respiratory failure, refractory to conventional treatments. Patient's hemodynamic, respiratory and metabolic condition, or situations related to ECLS support or performance, may change during ECLS treatment. Provision of an additional drainage or perfusion cannula, or even of an additional associated device, for example, transaortic suction device or intra-aortic balloon pump (IABP), may be required to improve the ECLS/patient interaction and effects. Besides such a modified ECLS mode, however, a potential asset is represented by the "dynamic ECLS," which is the change of the flow direction (drainage or perfusion) in the already implanted cannula during the ECLS run. This particular management may be achieved in venous femoral or jugular cannulation, but it finds an even more appealing potential with the pulmonary artery (PA) cannulation. The PA allows the institution of a multitasking ECLS circuit, ranging from enhanced left ventricle (LV) unloading (drainage from the PA) to a right ventricular support or "central" veno-venous ECLS (perfusing the PA), tailored according to the patient hemodynamic, gas exchange, metabolic state, underlying cardiac involvement, and ECLS performance. Dynamic ECLS may, therefore, represent an additional option in ECLS management, particularly including the PA cannulation. Based on this new dynamic management of ECLS mode, we propose the Extracorporeal Life Support Organization nomenclature update.
Collapse
Affiliation(s)
- Valeria Lo Coco
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands
| | - Justyna Swol
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University Nuremberg, Nuremberg, Germany
| | - Maria Elena De Piero
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands.,Department of Anesthesia/Intensive Care, San Giovanni, Turin, Italy
| | - Giulio Massimi
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands.,Department of Cardiac Surgery, Circolo Hospital, University of Insurbia, Varese, Italy
| | - Giovanni Chiarini
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands.,Division of Anesthesiology, Intensive Care and Emergency medicine, Spedali Civili University, Brescia, Italy
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart and Vascular Centre, Maastricht University Medical Centre (MUMC), Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| |
Collapse
|
41
|
Gu M, Mei XL, Zhao YN. A review on extracorporeal membrane oxygenation and kidney injury. J Biochem Mol Toxicol 2020; 35:e22679. [PMID: 33325616 DOI: 10.1002/jbt.22679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/04/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is inevitable external life support in case of cardiac and respiratory failure since the 1970s. Acute kidney injury (AKI) and the requirement of renal replacement therapy (RRT) is a potential risk among these patients. This review aims to give an overview of the risk of AKI, RRT, and associated mortality among the patients who received ECMO for any of its indications. PubMed database was searched to find the relevant literature and the reference list of included studies was also searched for additional studies. The incidence of AKI ranged from 30% to 78% and RRT from 47% to 60% in ECMO patients. The pathophysiology of AKI in ECMO is multifactorial, and includes ischaemia, RBCs breakdown, comorbidity, conversion of zymogen form of pro-inflammatory mediators, structural alteration of the kidney, coadministration of nephrotoxic drugs, coagulation abnormality, and oxidative stress. ECMO was associated with the higher incidence of renal abnormalities, AKI, requirement of RRT, and associated mortality. Patients who underwent RRT had improved renal function and reduced overall mortality compared to the non-RRT group among the ECMO patients. Currently, there is no consensus evidence to support the superior use of the inline hemofilter system over continuous renal replacement therapy among patients who had AKI during ECMO.
Collapse
Affiliation(s)
- Ming Gu
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiang-Lin Mei
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ya-Nan Zhao
- Neurology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
42
|
Taran S, Steel A, Healey A, Fan E, Singh JM. Organ donation in patients on extracorporeal membrane oxygenation: considerations for determination of death and withdrawal of life support. Can J Anaesth 2020; 67:1035-1043. [PMID: 32440908 DOI: 10.1007/s12630-020-01714-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/23/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
The use of extracorporeal membrane oxygenation (ECMO) is increasing globally, although mortality in this setting remains high. Patients on ECMO may be potential organ donors in the context of withdrawal of life-sustaining measures (WLSM) or neurologic determination of death (NDD). Nevertheless, there are currently no Canadian standards to guide clinicians on NDD or WLSM for the purposes of organ donation in this patient population. Apnea testing remains fundamental to determining NDD and is an area where ECMO may alter routine procedures. In this review, we outline protocols for the performance of apnea testing and WLSM for patients supported with ECMO, highlighting important technical and physiologic considerations that may affect the determination of death. In addition, we review important considerations for NDD in ECMO, including management of potential confounders, strategies for controlling oxygen and carbon dioxide levels during apnea testing, and the appropriate use of ancillary tests to support NDD. In the context of ECMO support, there is limited evidence to guide NDD and WLSM for the purposes of organ donation. Drawing upon extensive clinical experience, we provide protocols for these processes and review other important considerations in an effort to maximize donor potential in this growing patient population.
Collapse
Affiliation(s)
- Shaurya Taran
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care, Li Ka Shing Knowledge Institute, University of Toronto, 204 Victoria Street, 4th Floor, Room 411, Toronto, ON, M5B 1T8, Canada.
| | - Andrew Steel
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesiology, University Health Network, Toronto, ON, Canada
- Trillium Gift of Life Network, Toronto, ON, Canada
| | - Andrew Healey
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Trillium Gift of Life Network, Toronto, ON, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University Health Network, Toronto, ON, Canada
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Jeffrey M Singh
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University Health Network, Toronto, ON, Canada
- Trillium Gift of Life Network, Toronto, ON, Canada
| |
Collapse
|