1
|
Seemiller LR, Goldberg LR, Sebastian A, Siegel SR, Praul C, Zeid D, Albert I, Beierle J, Bryant CD, Gould TJ. Alcohol and fear conditioning produce strain-specific changes in the dorsal hippocampal transcriptome of adolescent C57BL/6J and DBA/2J mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:2022-2034. [PMID: 39279663 DOI: 10.1111/acer.15440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Adolescent sensitivity to alcohol is influenced by genetic background. Data from our laboratory suggested that adolescent C57BL/6J and DBA/2J inbred mice differed in susceptibility to alcohol-induced deficits in dorsal hippocampus-dependent contextual fear learning. METHODS To investigate the biological underpinnings of this strain difference, we examined dorsal hippocampus gene expression using RNA-sequencing after alcohol or saline administration followed by Pavlovian fear conditioning across male and female C57BL/6J and DBA/2J adolescents. RESULTS Strains exhibited dramatic differences in dorsal hippocampus gene expression. Specifically, C57BL/6J and DBA/2J strains differed by 3526 transcripts in males and 2675 transcripts in females. We identified pathways likely to be involved in mediating alcohol's effects on learning, including networks associated with Chrna7, a gene encoding the nicotinic cholinergic receptor alpha 7 subunit, and Fmr1, a gene encoding the fragile X messenger ribonucleoprotein. CONCLUSIONS These findings provide insight into the mechanisms underlying strain differences in alcohol's effects on learning and suggest that different biological networks are recruited for learning based on genetics, sex, and alcohol exposure.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Aswathy Sebastian
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Sue Rutherford Siegel
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Craig Praul
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Dana Zeid
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Jacob Beierle
- Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Camron D Bryant
- Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Steiner NL, Purohit DC, Tiefenthaler CM, Mandyam CD. Abstinence and Fear Experienced during This Period Produce Distinct Cortical and Hippocampal Adaptations in Alcohol-Dependent Rats. Brain Sci 2024; 14:431. [PMID: 38790410 PMCID: PMC11118749 DOI: 10.3390/brainsci14050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence produces significant gray matter damage via myelin dysfunction in the rodent medial prefrontal cortex (mPFC) and alterations in neuronal excitability in the mPFC and the dentate gyrus (DG) of the hippocampus. Specifically, abstinence-induced neuroadaptations have been associated with persistent elevated relapse to drinking. The current study evaluated the effects of forced abstinence for 1 day (d), 7 d, 21 d, and 42 d following seven weeks of CIE on synaptic plasticity proteins in the mPFC and DG. Immunoblotting revealed reduced expression of CaMKII in the mPFC and enhanced expression of GABAA and CaMKII in the DG at the 21 d time point, and the expression of the ratio of GluN2A/2B subunits did not change at any of the time points studied. Furthermore, cognitive performance via Pavlovian trace fear conditioning (TFC) was evaluated in 3 d abstinent rats, as this time point is associated with negative affect. In addition, the expression of the ratio of GluN2A/2B subunits and a 3D structural analysis of neurons in the mPFC and DG were evaluated in 3 d abstinent rats. Behavioral analysis revealed faster acquisition of fear responses and reduced retrieval of fear memories in CIE rats compared to controls. TFC produced hyperplasticity of pyramidal neurons in the mPFC under control conditions and this effect was not evident or blunted in abstinent rats. Neurons in the DG were unaltered. TFC enhanced the GluN2A/2B ratio in the mPFC and reduced the ratio in the DG and was not altered by abstinence. These findings indicate that forced abstinence from CIE produces distinct and divergent alterations in plasticity proteins in the mPFC and DG. Fear learning-induced changes in structural plasticity and proteins contributing to it were more profound in the mPFC during forced abstinence.
Collapse
Affiliation(s)
- Noah L. Steiner
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
| | | | - Casey M. Tiefenthaler
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; (N.L.S.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA 92093, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
3
|
Lonnberg A, Logrip ML, Kuznetsov A. Mechanisms of alcohol influence on fear conditioning: a computational model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573310. [PMID: 38260700 PMCID: PMC10802259 DOI: 10.1101/2023.12.30.573310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A connection between stress-related illnesses and alcohol use disorders is extensively documented. Fear conditioning is a standard procedure used to study stress learning and links it to the activation of amygdala circuitry. However, the connection between the changes in amygdala circuit and function induced by alcohol and fear conditioning is not well established. We introduce a computational model to test the mechanistic relationship between amygdala functional and circuit adaptations during fear conditioning and the impact of acute vs. repeated alcohol exposure. In accordance with experiments, both acute and prior repeated alcohol decreases speed and robustness of fear extinction in our simulations. The model predicts that, first, the delay in fear extinction in alcohol is mostly induced by greater activation of the basolateral amygdala (BLA) after fear acquisition due to alcohol-induced modulation of synaptic weights. Second, both acute and prior repeated alcohol shifts the amygdala network away from the robust extinction regime by inhibiting the activity in the central amygdala (CeA). Third, our model predicts that fear memories formed in acute or after chronic alcohol are more connected to the context. Thus, the model suggests how circuit changes induced by alcohol may affect fear behaviors and provides a framework for investigating the involvement of multiple neuromodulators in this neuroadaptive process.
Collapse
Affiliation(s)
- Adam Lonnberg
- University of Evansville, Department of Mathematics, Indianapolis, Indiana, USA
| | - Marian L. Logrip
- Indiana University-Purdue University, Department of Psychology, Indianapolis, Indiana, USA
| | - Alexey Kuznetsov
- Indiana University-Purdue University, Department of Mathematical Sciences, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Seemiller LR, Garcia-Trevizo P, Novoa C, Goldberg LR, Murray S, Gould TJ. Adolescent intermittent alcohol exposure produces strain-specific cross-sensitization to nicotine and other behavioral adaptations in adulthood in C57BL/6J and DBA/2J mice. Pharmacol Biochem Behav 2023; 232:173655. [PMID: 37802393 PMCID: PMC10995114 DOI: 10.1016/j.pbb.2023.173655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Adolescent alcohol exposure is associated with lasting behavioral changes in humans and in mice. Prior work from our laboratory and others have demonstrated that C57BL/6J and DBA/2J mice differ in sensitivity to some effects of acute alcohol exposure during adolescence and adulthood. However, it is unknown if these strains differ in cognitive, anxiety-related, and addiction-related long-term consequences of adolescent intermittent alcohol exposure. This study examined the impact of a previously validated adolescent alcohol exposure paradigm (2-3 g/kg, i.p., every other day PND 30-44) in C57BL/6J and DBA/2J male and female mice on adult fear conditioning, anxiety-related behavior (elevated plus maze), and addiction-related phenotypes including nicotine sensitivity (hypothermia and locomotor depression) and alcohol sensitivity (loss of righting reflex; LORR). Both shared and strain-specific long-term consequences of adolescent alcohol exposure were found. Most notably, we found a strain-specific alcohol-induced increase in sensitivity to nicotine's hypothermic effects during adulthood in the DBA/2J strain but not in the C57BL/6J strain. Conversely, both strains demonstrated a robust increased latency to LORR during adulthood after adolescent alcohol exposure. Thus, we observed strain-dependent cross-sensitization to nicotine and strain-independent tolerance to alcohol due to adolescent alcohol exposure. Several strain and sex differences independent of adolescent alcohol treatment were also observed. These include increased sensitivity to nicotine-induced hypothermia in the C57BL/6J strain relative to the DBA/2J strain, in addition to DBA/2J mice showing more anxiety-like behaviors in the elevated plus maze relative to the C57BL/6J strain. Overall, these results suggest that adolescent alcohol exposure results in altered adult sensitivity to nicotine and alcohol with some phenotypes mediated by genetic background.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | | | - Carlos Novoa
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Samantha Murray
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
5
|
Sircar R. Behavioral changes and dendritic remodeling of hippocampal neurons in adolescent alcohol-treated rats. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11158. [PMID: 38389817 PMCID: PMC10880782 DOI: 10.3389/adar.2023.11158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/18/2023] [Indexed: 02/24/2024]
Abstract
Objective: Earlier, we and others have reported that alcohol exposure in adolescent rat impaired performance of a spatial memory task in the Morris water maze. The goal of the present study was to investigate the effects of acute adolescent alcohol treatment on the hippocampus-dependent (contextual fear conditioning) and hippocampus-independent (cued fear) memories. The study also looked at the structural changes in anterior CA1 hippocampal neurons in adolescent alcohol-treated rats. Methods: Adolescent female rats were administered with a single dose of alcohol (1.0, 1.5, or 2.0 g/kg) or vehicle either before training (pre-training) or after training (pre-testing). Experimental and control rats were trained in the fear conditioning paradigm, and 24 h later tested for both contextual fear conditioning as well as cued fear memory. Separate groups of rats were treated with either alcohol (2 g/kg) or vehicle and sacrificed 24 h later. Their brains were harvested and processed for rapid Golgi staining. Randomly selected CA1 pyramidal neurons were analyzed for dendritic branching and dendritic spine density. Results: Pre-training alcohol dose-dependently attenuated acquisition of hippocampus-dependent contextual fear conditioning but had no effect on the acquisition of amygdala-associated cued fear. When administered following training (pre-testing), alcohol did not alter either contextual conditioning or cued fear memory. Golgi stained CA1 pyramidal neurons in alcohol treated female rats had reduced basilar tree branching and less complex dendritic arborization. Conclusion: Alcohol specifically impaired hippocampal learning in adolescent rats but not amygdala-associated cued fear memory. Compared to vehicle-treated rats, CA1 hippocampal pyramidal neurons in alcohol-treated rats had less complex dendritic morphology. Together, these data suggest that adolescent alcohol exposure produces changes in the neuronal organization of the hippocampus, and these changes may be related to impairments in hippocampus-dependent memory formation.
Collapse
Affiliation(s)
- Ratna Sircar
- Department of Psychology, The City College of New York, City University of New York, New York, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
6
|
Li QN, Hou GM, Sun SM, Liu WB, Meng TG, Hou Y, Schatten H, Sun QY, Ou XH. Insights into the adverse effects of prepubertal chronic ethanol exposure on adult female reproduction. Aging (Albany NY) 2023; 15:6292-6301. [PMID: 37413994 PMCID: PMC10373985 DOI: 10.18632/aging.204851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Heavy drinking in women is known to adversely affect pregnancy and fertility. However, pregnancy is a complex process, and the adverse effects of ethanol on pregnancy does not mean that ethanol will have adverse effects on all stages from gamete to fetal formation. Similarly, the adverse effects of ethanol before and after adolescence cannot be generalized. To focus on the effects of prepubertal ethanol on female reproductive ability, we established a mouse model of prepubertal ethanol exposure by changing drinking water to 20% v/v ethanol. Some routine detections were performed on the model mice, and details such as mating, fertility, reproductive organ and fetal weights were recorded day by day after discontinuation of ethanol exposure. Prepubertal ethanol exposure resulted in decreased ovarian weight and significantly reduced oocyte maturation and ovulation after sexual maturation, however, normal morphology oocytes with discharged polar body showed normal chromosomes and spindle morphology. Strikingly, oocytes with normal morphology from ethanol exposed mice showed reduced fertilization rate, but once fertilized they had the ability to develop to blastocysts. RNA-seq analysis showed that the gene expression of the ethanol exposed oocytes with normal morphology had been altered. These results show the adverse effects of prepubertal alcohol exposure on adult female reproductive health.
Collapse
Affiliation(s)
- Qian-Nan Li
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guan-Mei Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tie-Gang Meng
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| |
Collapse
|
7
|
Jung JH, Wang Y, Mocle AJ, Zhang T, Köhler S, Frankland PW, Josselyn SA. Examining the engram encoding specificity hypothesis in mice. Neuron 2023; 111:1830-1845.e5. [PMID: 36990091 DOI: 10.1016/j.neuron.2023.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
According to the encoding specificity hypothesis, memory is best recalled by retrieval cues that overlap with training cues. Human studies generally support this hypothesis. However, memories are thought to be stored in neuronal ensembles (engrams), and retrieval cues are thought to reactivate neurons in an engram to induce memory recall. Here, we visualized engrams in mice to test whether retrieval cues that overlap with training cues produce maximal memory recall via high engram reactivation (engram encoding specificity hypothesis). Using variations of cued threat conditioning (pairing conditioned stimulus [CS] with footshock), we manipulated encoding and retrieval conditions along multiple domains, including pharmacological state, external sensory cue, and internal optogenetic cue. Maximal engram reactivation and memory recall occurred when retrieval conditions closely matched training conditions. These findings provide a biological basis for the encoding specificity hypothesis and highlight the important interaction between stored information (engram) and cues available at memory retrieval (ecphory).
Collapse
Affiliation(s)
- Jung Hoon Jung
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Ying Wang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrew J Mocle
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tao Zhang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Stefan Köhler
- Department of Psychology, University of Western Ontario, London, ON N6A 5C2, Canada; The Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Paul W Frankland
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Sheena A Josselyn
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada.
| |
Collapse
|
8
|
Seemiller LR, Goldberg LR, Garcia-Trevizo P, Gould TJ. Interstrain differences in adolescent fear conditioning after acute alcohol exposure. Brain Res Bull 2023; 194:35-44. [PMID: 36681252 PMCID: PMC10921434 DOI: 10.1016/j.brainresbull.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Adolescent sensitivity to alcohol is a predictor of continued alcohol use and misuse later in life. Thus, it is important to understand the many factors that can impact alcohol sensitivity. Data from our laboratory suggested that susceptibility to alcohol-associated contextual fear learning deficits varied among adolescent and adult mice from two mouse strains. To investigate the extent of genetic background's influences on adolescent learning after alcohol exposure, we examined how 9 inbred mouse strains differed in vulnerability to alcohol-induced contextual and cued fear conditioning deficits. We demonstrated significant strain- and sex-dependent effects of acute alcohol exposure on adolescent fear learning, with alcohol having most pronounced effects on contextual fear learning. Female adolescents were more susceptible than males to alcohol-induced impairments in contextual, but not cued, fear learning, independent of genetic background. Heritability for contextual and cued fear learning after alcohol exposure was estimated to be 31 % and 18 %, respectively. Learning data were compared to Blood Ethanol Concentrations (BEC) to assess whether strain differences in alcohol metabolism contributed to strain differences in learning after alcohol exposure. There were no clear relationships between BEC and learning outcomes, suggesting that strains differed in learning outcomes for reasons other than strain differences in alcohol metabolism. Genetic analyses revealed polymorphisms across strains in notable genes, such as Chrna7, a promising genetic candidate for susceptibility to alcohol-induced fear conditioning deficits. These results are the first to demonstrate the impact of genetic background on alcohol-associated fear learning deficits during adolescence and suggest that the mechanisms underlying this sensitivity are distinct from alcohol metabolism.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | | | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
9
|
Seemiller LR, Logue SF, Gould TJ. Inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes from adolescence to adulthood. Pharmacol Biochem Behav 2022; 218:173429. [PMID: 35820468 PMCID: PMC11524176 DOI: 10.1016/j.pbb.2022.173429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/18/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Understanding the genetic basis of a predisposition for nicotine and alcohol use across the lifespan is important for public health efforts because genetic contributions may change with age. However, parsing apart subtle genetic contributions to complex human behaviors is a challenge. Animal models provide the opportunity to study the effects of genetic background and age on drug-related phenotypes, while controlling important experimental variables such as amount and timing of drug exposure. Addiction research in inbred, or isogenic, mouse lines has demonstrated genetic contributions to nicotine and alcohol abuse- and addiction-related behaviors. This review summarizes inbred mouse strain differences in alcohol and nicotine addiction-related phenotypes including voluntary consumption/self-administration, initial sensitivity to the drug as measured by sedative, hypothermic, and ataxic effects, locomotor effects, conditioned place preference or place aversion, drug metabolism, and severity of withdrawal symptoms. This review also discusses how these alcohol and nicotine addiction-related phenotypes change from adolescence to adulthood.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Sheree F Logue
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA.
| |
Collapse
|
10
|
Staples MC, Herman MA, Lockner JW, Avchalumov Y, Kharidia KM, Janda KD, Roberto M, Mandyam CD. Isoxazole-9 reduces enhanced fear responses and retrieval in ethanol-dependent male rats. J Neurosci Res 2021; 99:3047-3065. [PMID: 34496069 PMCID: PMC10112848 DOI: 10.1002/jnr.24932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Plasticity in the dentate gyrus (DG) is strongly influenced by ethanol, and ethanol experience alters long-term memory consolidation dependent on the DG. However, it is unclear if DG plasticity plays a role in dysregulation of long-term memory consolidation during abstinence from chronic ethanol experience. Outbred male Wistar rats experienced 7 weeks of chronic intermittent ethanol vapor exposure (CIE). Seventy-two hours after CIE cessation, CIE and age-matched ethanol-naïve Air controls experienced auditory trace fear conditioning (TFC). Rats were tested for cue-mediated retrieval in the fear context either twenty-four hours (24 hr), ten days (10 days), or twenty-one days (21 days) later. CIE rats showed enhanced freezing behavior during TFC acquisition compared to Air rats. Air rats showed significant fear retrieval, and this behavior did not differ at the three time points. In CIE rats, fear retrieval increased over time during abstinence, indicating an incubation in fear responses. Enhanced retrieval at 21 days was associated with reduced structural and functional plasticity of ventral granule cell neurons (GCNs) and reduced expression of synaptic proteins important for neuronal plasticity. Systemic treatment with the drug Isoxazole-9 (Isx-9; small molecule that stimulates DG plasticity) during the last week and a half of CIE blocked altered acquisition and retrieval of fear memories in CIE rats during abstinence. Concurrently, Isx-9 modulated the structural and functional plasticity of ventral GCNs and the expression of synaptic proteins in the ventral DG. These findings identify that abstinence-induced disruption of fear memory consolidation occurs via altered plasticity within the ventral DG, and that Isx-9 prevented these effects.
Collapse
Affiliation(s)
| | - Melissa A. Herman
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jonathan W. Lockner
- Departments of Chemistry and Immunology, Scripps Research, La Jolla, CA, USA
| | | | | | - Kim D. Janda
- Departments of Chemistry and Immunology, Scripps Research, La Jolla, CA, USA
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, Scripps Research, La Jolla, CA, USA
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
11
|
Seemiller LR, Gould TJ. Adult and adolescent C57BL/6J and DBA/2J mice are differentially susceptible to fear learning deficits after acute ethanol or MK-801 treatment. Behav Brain Res 2021; 410:113351. [PMID: 33974921 PMCID: PMC8403488 DOI: 10.1016/j.bbr.2021.113351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Ethanol and other drugs of abuse disrupt learning and memory processes, creating problems associated with drug use and addiction. Understanding individual factors that determine susceptibility to drug-induced cognitive deficits, such as genetic background, age, and sex, is important for prevention and treatment. Comparison of adolescent and adult mice of both sexes across inbred mouse strains can reveal age, sex, and genetic contributions to phenotypes. We treated adolescent and adult, male and female, C57BL/6J and DBA/2J inbred mice with ethanol (1 g/kg or 1.5 g/kg) or MK-801 (0.05 mg/kg or 0.1 mg/kg), an NMDA receptor antagonist, prior to fear conditioning training. Contextual and cued fear retention were tested one day and eight or nine days after training. After ethanol exposure, adult C57BL/6J mice experienced greater deficits in contextual learning than adult DBA/2J mice. C57BL/6 J adolescents were less susceptible to ethanol-induced contextual learning disruptions than C57BL/6J adults, and adolescent males of both strains exhibited greater ethanol-induced contextual learning deficits than adolescent females. After MK-801 exposure, adolescent C57BL/6J mice experienced more severe contextual learning deficits than adolescent DBA/2J mice. Both ethanol and MK-801 had greater effects on contextual learning than cued learning. Collectively, we demonstrate that genetic background contributes to contextual and cued learning outcomes after ethanol or MK-801 exposure. Further, we report age-dependent drug sensitivities that are strain-, sex-, and drug-specific, suggesting that age, sex, and genetic background interact to determine contextual and cued learning impairments after ethanol or MK-801 exposure.
Collapse
Affiliation(s)
- L R Seemiller
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, United States
| | - T J Gould
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, United States.
| |
Collapse
|
12
|
Somkuwar SS, Villalpando EG, Quach LW, Head BP, McKenna BS, Scadeng M, Mandyam CD. Abstinence from ethanol dependence produces concomitant cortical gray matter abnormalities, microstructural deficits and cognitive dysfunction. Eur Neuropsychopharmacol 2021; 42:22-34. [PMID: 33279357 PMCID: PMC7797163 DOI: 10.1016/j.euroneuro.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/12/2020] [Accepted: 11/07/2020] [Indexed: 12/20/2022]
Abstract
Previous studies demonstrate that ethanol dependence induced by repeating cycles of chronic intermittent ethanol vapor exposure (CIE) followed by protracted abstinence (CIE-PA) produces significant alterations in oligodendrogenesis in the rodent medial prefrontal cortex (mPFC). Specifically, CIE-PA produced an unprecedented increase in premyelinating oligodendroglial progenitor cells and myelin, which have been associated with persistent elevated drinking behaviors during abstinence. The current study used neuroimaging and electron microscopy to evaluate the integrity of enhanced myelin and microstructural deficits underlying enhanced myelination in the mPFC in male rats experiencing forced abstinence for 1 day (D), 7D, 21D and 42D following seven weeks of CIE. In vivo diffusion tensor imaging (DTI) detected altered microstructural integrity in the mPFC and corpus callosum (CC). Altered integrity was characterized as reduced fractional anisotropy (FA) in the CC, and enhanced mean diffusivity (MD) in the mPFC in 7D abstinent rats. Increased MD occurred concomitantly with increases in myelin associated proteins, flayed myelin and enhanced mitochondrial stress in the mPFC in 7D abstinent rats, suggesting that the increases in myelination during abstinence was aberrant. Evaluation of cognitive performance via Pavlovian conditioning in 7D abstinent rats revealed reduced retrieval and recall of fear memories dependent on the mPFC. These findings indicate that forced abstinence from moderate to severe alcohol use disorder produces gray matter damage via myelin dysfunction in the mPFC and that these microstructural changes were associated with deficits in PFC dependent behaviors.
Collapse
Affiliation(s)
| | | | - Leon W Quach
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Brian P Head
- VA San Diego Healthcare System, San Diego, CA 92161, USA; Departments of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Benjamin S McKenna
- Departments of Psychiatry, University of California San Diego, San Diego, CA 92161, USA
| | - Miriam Scadeng
- Departments of Radiology, University of California San Diego, San Diego, CA 92161, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA; Departments of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA.
| |
Collapse
|
13
|
Macrì S, Karakaya M, Spinello C, Porfiri M. Zebrafish exhibit associative learning for an aversive robotic stimulus. Lab Anim (NY) 2020; 49:259-264. [PMID: 32778807 DOI: 10.1038/s41684-020-0599-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Zebrafish have quickly emerged as a species of choice in preclinical research, holding promise to advance the field of behavioral pharmacology through high-throughput experiments. Besides biological and heuristic considerations, zebrafish also constitute a fundamental tool that fosters the replacement of mammals with less sentient experimental subjects. Notwithstanding these features, experimental paradigms to investigate emotional and cognitive domains in zebrafish are still limited. Studies on emotional memories have provided sound methodologies to investigate fear conditioning in zebrafish, but these protocols may still benefit from a reconsideration of the independent variables adopted to elicit aversion. Here, we designed a fear-conditioning paradigm in which wild-type zebrafish were familiarized over six training sessions with an empty compartment and a fear-eliciting one. The fearful stimulus was represented by three zebrafish replicas exhibiting a fully synchronized and polarized motion as they were maneuvered along 3D trajectories by a robotic platform. When allowed to freely swim between the two compartments in the absence of the robotic stimulus (test session), zebrafish displayed a marked avoidance of the stimulus-paired one. To investigate whether fear conditioning was modulated by psychoactive compounds, two groups of zebrafish were administered ethanol (0.25% and 1.00%, ethanol/water, by volume) a few minutes before the test session. We observed that ethanol administration abolished the conditioned avoidance of the stimulus-paired compartment. Ultimately, this study confirms that robotic stimuli may be used in the design of fear-conditioning paradigms, which are sensitive to pharmacological manipulations.
Collapse
Affiliation(s)
- Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.,Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mert Karakaya
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Chiara Spinello
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA. .,Department of Biomedical Engineering, New York University, Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
14
|
Seemiller LR, Gould TJ. The effects of adolescent alcohol exposure on learning and related neurobiology in humans and rodents. Neurobiol Learn Mem 2020; 172:107234. [PMID: 32428585 DOI: 10.1016/j.nlm.2020.107234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/11/2022]
Abstract
Adolescent alcohol use is a widespread problem in the United States. In both humans and rodents, alcohol can impair learning and memory processes mediated by forebrain areas such as the prefrontal cortex (PFC) and hippocampus (HC). Adolescence is a period in which alcohol use often begins, and it is also a time that can be uniquely sensitive to the detrimental effects of alcohol. Exposure to alcohol during adolescence can cause persisting alterations in PFC and HC neurobiology that are linked to cognitive impairments, including changes in neurogenesis, inflammation, and various neurotransmitter systems in rodent models. Consistent with this, chronic adolescent alcohol exposure can cause PFC-dependent learning impairments that persist into adulthood. Deficits in adult HC-dependent learning after adolescent alcohol exposure have also been reported, but these findings are less consistent. Overall, evidence summarized in this review indicates that adolescent exposure to alcohol can produce long-term detrimental effects on forebrain-dependent cognitive processes.
Collapse
Affiliation(s)
- Laurel R Seemiller
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
15
|
Jacob A, Wang P. Alcohol Intoxication and Cognition: Implications on Mechanisms and Therapeutic Strategies. Front Neurosci 2020; 14:102. [PMID: 32116535 PMCID: PMC7029710 DOI: 10.3389/fnins.2020.00102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/27/2020] [Indexed: 12/23/2022] Open
Abstract
Binge alcohol drinking is highly prevalent in young adults and results in 30% deaths per year in young males. Binge alcohol drinking or acute alcohol intoxication is a risk factor for developing alcohol use disorder (AUD). Three FDA approved drugs are currently in use as therapy for AUD; however, all of them have contra-indications and limitations. Structural brain imaging studies in alcoholics have shown defects in the brain regions involved in memory, cognition and emotional processing. Positron emission tomography (PET) using radiotracers (e.g., 18FDG) and measuring brain glucose metabolism have demonstrated diagnostic and prognostic utility in evaluating patients with cognitive impairment. Using PET imaging, only a few exclusive human studies have addressed the relationship between alcohol intoxication and cognition. Those studies indicate that alcohol intoxication causes reduction in brain activity. Consistent with prior findings, a recent study by us showed that acute alcohol intoxication reduced brain activity in the cortical and subcortical regions including the temporal lobe consisting the hippocampus. Additionally, we have observed a strong correlation between reduction in metabolic activity and spatial cognition impairment in the hippocampus after binge alcohol exposure. We have also demonstrated the involvement of a stress response protein, cold inducible RNA binding protein (CIRP), as a potential mechanistic mediator in acute alcohol intoxication. In this review, we will first discuss in detail prior human PET imaging studies on alcohol intoxication as well as our recent study on acute alcohol intoxication, and review the existing literature on potential mechanisms of acute alcohol intoxication-induced cognitive impairment and therapeutic strategies to mitigate these impairments. Finally, we will highlight the importance of studying brain regions as part of a brain network in delineating the mechanism of acute alcohol intoxication-induced cognitive impairment to aid in the development of therapeutics for such indication.
Collapse
Affiliation(s)
- Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
16
|
Van Skike CE, Goodlett C, Matthews DB. Acute alcohol and cognition: Remembering what it causes us to forget. Alcohol 2019; 79:105-125. [PMID: 30981807 DOI: 10.1016/j.alcohol.2019.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
Addiction has been conceptualized as a specific form of memory that appropriates typically adaptive neural mechanisms of learning to produce the progressive spiral of drug-seeking and drug-taking behavior, perpetuating the path to addiction through aberrant processes of drug-related learning and memory. From that perspective, to understand the development of alcohol use disorders, it is critical to identify how a single exposure to alcohol enters into or alters the processes of learning and memory, so that involvement of and changes in neuroplasticity processes responsible for learning and memory can be identified early. This review characterizes the effects produced by acute alcohol intoxication as a function of brain region and memory neurocircuitry. In general, exposure to ethanol doses that produce intoxicating effects causes consistent impairments in learning and memory processes mediated by specific brain circuitry, whereas lower doses either have no effect or produce a facilitation of memory under certain task conditions. Therefore, acute ethanol does not produce a global impairment of learning and memory, and can actually facilitate particular types of memory, perhaps particular types of memory that facilitate the development of excessive alcohol use. In addition, the effects on cognition are dependent on brain region, task demands, dose received, pharmacokinetics, and tolerance. Additionally, we explore the underlying alterations in neurophysiology produced by acute alcohol exposure that help to explain these changes in cognition and highlight future directions for research. Through understanding the impact that acute alcohol intoxication has on cognition, the preliminary changes potentially causing a problematic addiction memory can better be identified.
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78245, United States
| | - Charles Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| | - Douglas B Matthews
- Division of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, 54702, United States.
| |
Collapse
|
17
|
Barney TM, Vore AS, Gano A, Mondello JE, Deak T. The influence of central interleukin-6 on behavioral changes associated with acute alcohol intoxication in adult male rats. Alcohol 2019; 79:37-45. [PMID: 30472309 DOI: 10.1016/j.alcohol.2018.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Recent studies have demonstrated brain cytokine fluctuations associated with acute ethanol intoxication (increased IL-6) and withdrawal (increased IL-1β and TNFα). The purpose of the present studies was to examine the potential functional role of increased central interleukin-6 (IL-6). We utilized two tests of ethanol sensitivity to establish a potential role for IL-6 after high (3.5-4.0 g/kg, intraperitoneally [i.p.]) or moderate (2.0 g/kg, i.p.) doses of ethanol: loss of righting reflex (LORR) and conditioned taste aversion (CTA), respectively. Briefly, guide cannulae were implanted into the third ventricle of adult male Sprague-Dawley rats. In the first experiments, rats were infused with 25, 50, 100, or 200 ng of IL-6; or 0.3, 3.0, or 9.0 μg of the JAK/STAT inhibitor AG490 30 min prior to a high-dose ethanol challenge. Although sleep time was not affected by exogenous IL-6, infusion of AG490 increased latency to lose the righting reflex relative to vehicle-infused rats. Next, we assessed whether IL-6 was sufficient to produce a CTA. Moderately water-deprived rats received intracerebroventricular (i.c.v.) infusions of 25, 50, or 100 ng IL-6 immediately after 60-min access to 5% sucrose solution. Forty-eight hours later, rats were returned to the context and given 60-min access to sucrose solution. IL-6 infusion had no significant effect on sucrose intake when all rats were considered together. However, a median split revealed that low sucrose-consuming rats significantly increased their drinking on test day, an effect that was not seen in rats that received 50 or 100 ng of IL-6. In the last study, AG490 had no effect on ethanol-induced CTA (2 g/kg). Overall, these studies suggest that IL-6 had only a minor influence on ethanol-induced behavioral changes, yet phenotypic differences in sensitivity to IL-6 were apparent. These studies are among the first to examine a potential functional role for IL-6 in ethanol-related behaviors, and may have important implications for understanding the relationship between acute ethanol intoxication and its associated behavioral alterations.
Collapse
|
18
|
Scarlata MJ, Lee SH, Lee D, Kandigian SE, Hiller AJ, Dishart JG, Mintz GE, Wang Z, Coste GI, Mousley AL, Soler I, Lawson K, Ng AJ, Bezek JL, Bergstrom HC. Chemogenetic stimulation of the infralimbic cortex reverses alcohol-induced fear memory overgeneralization. Sci Rep 2019; 9:6730. [PMID: 31040357 PMCID: PMC6491487 DOI: 10.1038/s41598-019-43159-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/16/2019] [Indexed: 01/28/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are often comorbid. Drinking tends to increase following trauma, which may exacerbate PTSD-related symptoms. Despite a clear relationship between excessive alcohol use and PTSD, how alcohol impacts the expression of traumatic fear remains unclear. This study aims to determine the neurobehavioral impact of chronic alcohol (ethanol; EtOH) on the expression of established fear memories in C57BL/6 N mice. We show that chronic EtOH selectively augments cued fear memory generalization and impairs fear extinction retrieval, leaving the expression of the original cued response intact. Immunohistochemistry for Arc/arg3.1 (Arc) revealed EtOH-induced decreases in Arc expression in the infralimbic cortex (IL) and basolateral amygdala complex (BLA) that were associated with cued fear memory overgeneralization. Chemogenetic stimulation of IL pyramidal neurons reversed EtOH-driven fear memory overgeneralization, identifying a role for the IL in cued fear memory precision. Considering the modulatory influence of the IL over conditioned fear expression, these data suggest a model whereby chronic EtOH-driven neuroadaptations in the IL promote fear memory overgeneralization. These findings provide new mechanistic insight into how excessive alcohol use, following exposure to a traumatic event, can exacerbate symptoms of traumatic fear.
Collapse
Affiliation(s)
- M J Scarlata
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - S H Lee
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - D Lee
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - S E Kandigian
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - A J Hiller
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - J G Dishart
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - G E Mintz
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - Z Wang
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - G I Coste
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - A L Mousley
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - I Soler
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - K Lawson
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - A J Ng
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - J L Bezek
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA
| | - H C Bergstrom
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, NY, 12604, USA.
| |
Collapse
|
19
|
Williams AR, Lattal KM. Rapid reacquisition of contextual fear following extinction in mice: effects of amount of extinction, acute ethanol withdrawal, and ethanol intoxication. Psychopharmacology (Berl) 2019; 236:491-506. [PMID: 30338488 PMCID: PMC6374192 DOI: 10.1007/s00213-018-5057-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
RATIONALE Many studies have found that ethanol intoxication and withdrawal impair initial acquisition or extinction of learned behaviors. Rapid reconditioning following extinction is a form of post-extinction re-emergence of conditioned behavior that has not been studied for its interaction with ethanol intoxication or withdrawal. OBJECTIVES The goals of this paper were to define the parameters that allow rapid post-extinction reacquisition of fear in mice and investigate the effect of acute ethanol withdrawal and intoxication on acquisition, extinction, and post-extinction reconditioning. METHODS We examined acquisition, extinction, and post-extinction reconditioning of contextual fear in male C57BL/6 mice. Acute ethanol withdrawal occurred 6 h following a 4 g/kg injection of 20% ethanol and acute ethanol intoxication occurred 5 min following a 1.5 g/kg injection of 20% ethanol. RESULTS A weak context-shock pairing caused rapid reacquisition of conditioned freezing following moderate, but not extensive extinction. Acute ethanol intoxication impaired initial conditioning and acute ethanol withdrawal impaired rapid reacquisition after extinction, but not reconditioning or extinction itself. CONCLUSIONS These findings show that rapid reconditioning occurs following moderate but not extensive extinction in C57BL/6J mice. Additionally, acute ethanol withdrawal and intoxication may differentially affect different phases of conditioning. Results are discussed in terms of current ideas about post-extinction behavior and ethanol's effects on memory.
Collapse
Affiliation(s)
- Amy R Williams
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97210, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97210, USA.
| |
Collapse
|
20
|
Sun W, Li X, Tang C, An L. Acute Low Alcohol Disrupts Hippocampus-Striatum Neural Correlate of Learning Strategy by Inhibition of PKA/CREB Pathway in Rats. Front Pharmacol 2018; 9:1439. [PMID: 30574089 PMCID: PMC6291496 DOI: 10.3389/fphar.2018.01439] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
The hippocampus and striatum guide place-strategy and response-strategy learning, respectively, and they have dissociable roles in memory systems, which could compensate in case of temporary or permanent damage. Although acute alcohol (AA) treatment had been shown to have adverse effects on hippocampal function, whether it causes the functional compensation and the underlying mechanisms is unknown. In this study, rats treated with a low dose of AA avoided a hippocampus-dependent spatial strategy, instead preferring a striatum-dependent response strategy. Consistently, the learning-induced increase in hippocampal, but not striatal, pCREB was rendered less pronounced due to diminished activity of pPKA, but not pERK or pCaMKII. As rats approached the turn-decision area, Sp-cAMP, a PKA activator, was found to mitigate the inhibitory effect of AA on intra- and cross-structure synchronized neuronal oscillations, and rescue response-strategy bias and spatial learning deficits. Our study provides strong evidence of the critical link between neural couplings and strategy selection. Moreover, the PKA/CREB-signaling pathway is involved in the suppressive effect of AA on neural correlates of place-learning strategy. The novel important evidence provided here shows the functional couplings between the hippocampus and striatum in spatial learning processing and suggests possible avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Sun
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,College of Acupuncture-Moxibustion and Orthopedics, Guiyang University of Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Hippocampal neural progenitor cells play a distinct role in fear memory retrieval in male and female CIE rats. Neuropharmacology 2018; 143:239-249. [PMID: 30273595 DOI: 10.1016/j.neuropharm.2018.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
Adult male and female GFAP-TK transgenic rats experienced six weeks of chronic intermittent ethanol vapor inhalation (CIE). During the last week of CIE, a subset of male and female TK rats were fed with Valcyte to ablate neural progenitor cells (NPCs). Seventy-two hours after CIE cessation, all CIE and age-matched ethanol naïve controls experienced auditory trace fear conditioning (TFC). Twenty-four hours later all animals were tested for cue-mediated retrieval in the fear context. Adult male CIE rats showed a significant burst in NPCs paralleled by reduction in fear retrieval compared to naïve controls and Valcyte treated CIE rats. Adult female CIE rats did not show a burst in NPCs and showed similar fear retrieval compared to naïve controls and Valcyte treated CIE rats, indicating that CIE-mediated impairment in fear memory and its regulation by NPCs was sex dependent. Valcyte significantly reduced Ki-67 and NeuroD labeled cells in the dentate gyrus (DG) in both sexes, demonstrating a role for NPCs in reduced fear retrieval in males. Valcyte prevented adaptations in GluN2A receptor expression and synaptoporin density in the DG in males, indicating that NPCs contributed to alterations in plasticity-related proteins and mossy fiber projections that were associated with reduced fear retrieval. These data suggest that DG NPCs born during withdrawal and early abstinence from CIE are aberrant, and could play a role in weakening long-term memory consolidation dependent on the hippocampus.
Collapse
|
22
|
Mooney-Leber SM, Gould TJ. The long-term cognitive consequences of adolescent exposure to recreational drugs of abuse. ACTA ACUST UNITED AC 2018; 25:481-491. [PMID: 30115770 PMCID: PMC6097759 DOI: 10.1101/lm.046672.117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
During adolescence, the brain continues to undergo vital developmental processes. In turn, complex behavioral and cognitive skills emerge. Unfortunately, neurobiological development during adolescence can be influenced by environmental factors such as drug exposure. Engaging in drug use during adolescence has been a long-standing health concern, especially how it predicts or relates to drug using behavior later in life. However, recent findings suggest that other behavioral domains, such as learning and memory, are also vulnerable to adolescent drug use. Moreover, it is becoming increasingly apparent that deficits in learning and memory following adolescent drug use endure into adulthood, well after drug exposure has subsided. Although persistent effects suggest an interaction between drug exposure and ongoing development during adolescence, the exact acute and long-term consequences of adolescent drug exposure on substrates of learning and memory are not fully understood. Thus, this review will summarize human and animal findings on the enduring cognitive deficits due to adolescent drug exposure. Moreover, due to the fact that adolescents are more likely to consume drugs of abuse legally available to adults, this review will focus on alcohol, nicotine, and marijuana. Further, given the critical role of the frontal cortex and hippocampus in various learning and memory domains, the impact adolescent use of the previous listed drugs on the neurobiology within these regions will also be discussed.
Collapse
Affiliation(s)
- Sean M Mooney-Leber
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
23
|
Bray JG, Roberts AJ, Gruol DL. Transgenic mice with increased astrocyte expression of CCL2 show altered behavioral effects of alcohol. Neuroscience 2017; 354:88-100. [PMID: 28431906 DOI: 10.1016/j.neuroscience.2017.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/10/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022]
Abstract
Emerging research provides strong evidence that activation of CNS glial cells occurs in neurological diseases and brain injury and results in elevated production of neuroimmune factors. These factors can contribute to pathophysiological processes that lead to altered CNS function. Recently, studies have also shown that both acute and chronic alcohol consumption can produce activation of CNS glial cells and the production of neuroimmune factors, particularly the chemokine ligand 2 (CCL2). The consequences of alcohol-induced increases in CCL2 levels in the CNS have yet to be fully elucidated. Our studies focus on the hypothesis that increased levels of CCL2 in the CNS produce neuroadaptive changes that modify the actions of alcohol on the CNS. We utilized behavioral testing in transgenic mice that express elevated levels of CCL2 to test this hypothesis. The increased level of CCL2 in the transgenic mice involves increased astrocyte expression. Transgenic mice and their non-transgenic littermate controls were subjected to one of two alcohol exposure paradigms, a two-bottle choice alcohol drinking procedure that does not produce alcohol dependence or a chronic intermittent alcohol procedure that produces alcohol dependence. Several behavioral tests were carried out including the Barnes maze, Y-maze, cued and contextual conditioned fear test, light-dark transfer, and forced swim test. Comparisons between alcohol naïve, non-dependent, and alcohol-dependent CCL2 transgenic and non-transgenic mice show that elevated levels of CCL2 in the CNS interact with alcohol in tests for alcohol drinking, spatial learning, and associative learning.
Collapse
Affiliation(s)
- Jennifer G Bray
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 2016; 23:515-33. [PMID: 27634143 PMCID: PMC5026208 DOI: 10.1101/lm.042192.116] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
Abstract
It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
25
|
Stragier E, Martin V, Davenas E, Poilbout C, Mongeau R, Corradetti R, Lanfumey L. Brain plasticity and cognitive functions after ethanol consumption in C57BL/6J mice. Transl Psychiatry 2015; 5:e696. [PMID: 26670281 PMCID: PMC5068583 DOI: 10.1038/tp.2015.183] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
Acute or chronic administrations of high doses of ethanol in mice are known to produce severe cognitive deficits linked to hippocampal damage. However, we recently reported that chronic and moderate ethanol intake in C57BL/6J mice induced chromatin remodeling within the Bdnf promoters, leading to both enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal neurogenesis under free-choice protocol. We performed here a series of cellular and behavioral studies to analyze the consequences of these modifications. We showed that a 3-week chronic free-choice ethanol consumption in C57BL/6J mice led to a decrease in DNA methylation of the Bdnf gene within the CA1 and CA3 subfields of the hippocampus, and upregulated hippocampal BDNF signaling pathways mediated by ERK, AKT and CREB. However, this activation did not affect long-term potentiation in the CA1. Conversely, ethanol intake impaired learning and memory capacities analyzed in the contextual fear conditioning test and the novel object recognition task. In addition, ethanol increased behavioral perseveration in the Barnes maze test but did not alter the mouse overall spatial capacities. These data suggested that in conditions of chronic and moderate ethanol intake, the chromatin remodeling leading to BDNF signaling upregulation is probably an adaptive process, engaged via epigenetic regulations, to counteract the cognitive deficits induced by ethanol.
Collapse
Affiliation(s)
- E Stragier
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
- Université Paris Descartes, UMR S894, Paris, France
| | - V Martin
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
- Université Paris Descartes, UMR S894, Paris, France
| | - E Davenas
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
- Université Paris Descartes, UMR S894, Paris, France
| | - C Poilbout
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
- Université Paris Descartes, UMR S894, Paris, France
| | - R Mongeau
- Université Paris Descartes, UMR S894, Paris, France
- Pharmacologie de la circulation cérébrale EA 4475, Faculté de pharmacie Université Paris Descartes, Paris, France
| | - R Corradetti
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - L Lanfumey
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Paris, France
- Université Paris Descartes, UMR S894, Paris, France
| |
Collapse
|
26
|
Bisby JA, King JA, Sulpizio V, Degeilh F, Valerie Curran H, Burgess N. Extinction learning is slower, weaker and less context specific after alcohol. Neurobiol Learn Mem 2015; 125:55-62. [PMID: 26234587 PMCID: PMC4655873 DOI: 10.1016/j.nlm.2015.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/24/2015] [Indexed: 11/29/2022]
Abstract
Alcohol is frequently involved in psychological trauma and often used by individuals to reduce fear and anxiety. We examined the effects of alcohol on fear acquisition and extinction within a virtual environment. Healthy volunteers were administered alcohol (0.4 g/kg) or placebo and underwent acquisition and extinction from different viewpoints of a virtual courtyard, in which the conditioned stimulus, paired with a mild electric shock, was centrally located. Participants returned the following day to test fear recall from both viewpoints of the courtyard. Skin conductance responses were recorded as an index of conditioned fear. Successful fear acquisition under alcohol contrasted with impaired extinction learning evidenced by persistent conditioned responses (Experiment 1). Participants’ impairments in extinction under alcohol correlated with impairments in remembering object-locations in the courtyard seen from one viewpoint when tested from the other viewpoint. Alcohol-induced extinction impairments were overcome by increasing the number of extinction trials (Experiment 2). However, a test of fear recall the next day showed persistent fear in the alcohol group across both viewpoints. Thus, alcohol impaired extinction rather than acquisition of fear, suggesting that extinction is more dependent than acquisition on alcohol-sensitive representations of spatial context. Overall, extinction learning under alcohol was slower, weaker and less context-specific, resulting in persistent fear at test that generalized to the extinction viewpoint. The selective effect on extinction suggests an effect of alcohol on prefrontal involvement, while the reduced context-specificity implicates the hippocampus. These findings have important implications for the use of alcohol by individuals with clinical anxiety disorders.
Collapse
Affiliation(s)
- James A Bisby
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK; Institute of Neurology, University College London, Queen Square, London, WC1 3BG, UK.
| | - John A King
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK; Clinical, Education and Health Psychology, University College London, London, UK
| | - Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy; Laboratory of Neuropsychology, Fondazione Santa Lucia IRCCS, Roma, Italy
| | - Fanny Degeilh
- Inserm-EPHE-UCBN, Unité U1077, Boulevard Becquerel, 14000 Caen, France
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, University College London, London, UK; Clinical, Education and Health Psychology, University College London, London, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AR, UK; Institute of Neurology, University College London, Queen Square, London, WC1 3BG, UK.
| |
Collapse
|
27
|
Hunt PS, Barnet RC. Adolescent and adult rats differ in the amnesic effects of acute ethanol in two hippocampus-dependent tasks: Trace and contextual fear conditioning. Behav Brain Res 2015; 298:78-87. [PMID: 26192910 DOI: 10.1016/j.bbr.2015.06.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/11/2022]
Abstract
Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiment 2a and b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed.
Collapse
Affiliation(s)
- Pamela S Hunt
- Department of Psychology, College of William & Mary, United States.
| | - Robert C Barnet
- Department of Psychology, College of William & Mary, United States
| |
Collapse
|
28
|
Tipps ME, Raybuck JD, Buck KJ, Lattal KM. Acute ethanol withdrawal impairs contextual learning and enhances cued learning. Alcohol Clin Exp Res 2015; 39:282-90. [PMID: 25684050 PMCID: PMC4331355 DOI: 10.1111/acer.12614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alcohol affects many of the brain regions and neural processes that support learning and memory, and these effects are thought to underlie, at least in part, the development of addiction. Although much work has been done regarding the effects of alcohol intoxication on learning and memory, little is known about the effects of acute withdrawal from a single alcohol exposure. METHODS We assess the effects of acute ethanol withdrawal (6 hours postinjection with 4 g/kg ethanol) on 2 forms of fear conditioning (delay and trace fear conditioning) in C57BL/6J and DBA/2J mice. The influence of a number of experimental parameters (pre- and post training withdrawal exposure; foreground/background processing; training strength; and nonassociative effects) is also investigated. RESULTS Acute ethanol withdrawal during training had a bidirectional effect on fear-conditioned responses, decreasing contextual responses and increasing cued responses. These effects were apparent for both trace and delay conditioning in DBA/2J mice and for trace conditioning in C57BL/6J mice; however, C57BL/6J mice were selectively resistant to the effects of acute withdrawal on delay cued responses. CONCLUSIONS Our results show that acute withdrawal from a single, initial ethanol exposure is sufficient to alter long-term learning in mice. In addition, the differences between the strains and conditioning paradigms used suggest that specific learning processes can be differentially affected by acute withdrawal in a manner that is distinct from the reported effects of both alcohol intoxication and withdrawal following chronic alcohol exposure. Thus, our results suggest a unique effect of acute alcohol withdrawal on learning and memory processes.
Collapse
Affiliation(s)
- Megan E. Tipps
- Portland Alcohol Research Center; Portland VA Medical Center 3710 SW US Veterans Hospital Rd., Bld 104 Portland, OR 97239-3098, USA
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| | - Jonathan D. Raybuck
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| | - Kari J. Buck
- Portland Alcohol Research Center; Portland VA Medical Center 3710 SW US Veterans Hospital Rd., Bld 104 Portland, OR 97239-3098, USA
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| | - K. Matthew Lattal
- Department of Behavioral Neuroscience; Oregon Health & Science University 3181 SW Sam Jackson Park Rd. Portland, OR 97239-3098, USA
| |
Collapse
|
29
|
Broadwater M, Spear LP. Consequences of adolescent or adult ethanol exposure on tone and context fear retention: effects of an acute ethanol challenge during conditioning. Alcohol Clin Exp Res 2014; 38:1454-60. [PMID: 24588350 DOI: 10.1111/acer.12382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/08/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND An acute ethanol (EtOH) challenge prior to fear conditioning typically disrupts fear retention to contextual cues to a greater degree than fear retention to a discrete tone cue, and adolescent rats are less sensitive than adults to these EtOH-induced disruptions of context fear memory. Given that some research suggests that repeated EtOH exposure during adolescence may "lock-in" adolescent-typical EtOH sensitivity into adulthood, the purpose of this study was to determine whether adults exposed to EtOH as adolescents would be less sensitive to EtOH-induced disruptions of context fear. METHODS Male Sprague-Dawley rats were given 4 g/kg intragastric EtOH (25% v/v) or water every 48 hours for a total of 11 exposures during adolescence (postnatal day [P] 28 to 48) or adulthood (P70-90). After a 22-day non-EtOH period, animals were acutely challenged with 1 g/kg intraperitoneal EtOH or saline 10 minutes prior to tone or context (noncued) fear conditioning. Tone and context fear retention was subsequently examined. RESULTS Regardless of age or exposure history, typical deficits in context fear retention were evident after EtOH challenge during conditioning. Similarly, tone fear retention was disrupted in all animals that were trained in the presence of EtOH, which was somewhat surprising given the relative resistance of tone fear retention to an acute EtOH challenge. CONCLUSIONS These results do not support the notion of a "lock-in" of adolescent-typical EtOH sensitivity as there was no influence of exposure age on sensitivity to the disruptive effects of an acute EtOH challenge. Thus, it appears that not all adolescent-like EtOH sensitivities persist into adulthood after prior EtOH exposure during adolescence.
Collapse
Affiliation(s)
- Margaret Broadwater
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
30
|
Tipps ME, Raybuck JD, Lattal KM. Substance abuse, memory, and post-traumatic stress disorder. Neurobiol Learn Mem 2013; 112:87-100. [PMID: 24345414 DOI: 10.1016/j.nlm.2013.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/23/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
A large body of literature demonstrates the effects of abused substances on memory. These effects differ depending on the drug, the pattern of delivery (acute or chronic), and the drug state at the time of learning or assessment. Substance use disorders involving these drugs are often comorbid with anxiety disorders, such as post-traumatic stress disorder (PTSD). When the cognitive effects of these drugs are considered in the context of the treatment of these disorders, it becomes clear that these drugs may play a deleterious role in the development, maintenance, and treatment of PTSD. In this review, we examine the literature evaluating the cognitive effects of three commonly abused drugs: nicotine, cocaine, and alcohol. These three drugs operate through both common and distinct neurobiological mechanisms and alter learning and memory in multiple ways. We consider how the cognitive and affective effects of these drugs interact with the acquisition, consolidation, and extinction of learned fear, and we discuss the potential impediments that substance abuse creates for the treatment of PTSD.
Collapse
Affiliation(s)
- Megan E Tipps
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - Jonathan D Raybuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
31
|
Abstract
Microinfarcts are a common clinical feature of the aging brain, particularly in patients with cognitive decline or vascular or Alzheimer's dementia. However, the natural history of these lesions remains largely unexplored. Here we describe a mouse (C57BL/6J) model of multiple diffuse microinfarcts induced by unilateral internal carotid artery injection of cholesterol crystals (40-70 μm). Microinfarcts were spread throughout the deep cortex, subcortical tissue, and hippocampus and were comprised of a core positive for CD68 (a marker for reactive microglia and macrophages), surrounded by large regions of glial fibrillary acidic protein-positive reactive astrogliosis. Widespread reactive gliosis, including mislocalization of the astrocytic water channel aquaporin 4 persisted long after injury, recovering only after 1 month after stroke. Within the cortex, neuronal cell death progressed gradually over the first month, from ∼35% at 3 d to 60% at 28 d after stroke. Delayed demyelination was also observed in lesions, beginning 28 d after stroke. These findings demonstrate that microinfarct development follows a distinct course compared to larger regional infarcts such as those induced by middle cerebral artery occlusion. The long-lasting gliosis, delayed neuronal loss, and demyelination suggest that the therapeutic window for microinfarcts may be much wider (perhaps days to weeks) than for larger strokes.
Collapse
|
32
|
Bray JG, Reyes KC, Roberts AJ, Ransohoff RM, Gruol DL. Synaptic plasticity in the hippocampus shows resistance to acute ethanol exposure in transgenic mice with astrocyte-targeted enhanced CCL2 expression. Neuropharmacology 2012; 67:115-25. [PMID: 23164616 DOI: 10.1016/j.neuropharm.2012.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 01/22/2023]
Abstract
It has been shown that ethanol exposure can activate astrocytes and microglia resulting in the production of neuroimmune factors, including the chemokine CCL2. The role of these neuroimmune factors in the effects of ethanol on the central nervous system has yet to be elucidated. To address this question, we investigated the effects of ethanol on synaptic transmission and plasticity in the hippocampus from mice that express elevated levels of CCL2 in the brain and their non-transgenic littermate controls. The brains of the transgenic mice simulate one aspect of the alcoholic brain, chronically increased levels of CCL2. We used extracellular field potential recordings in acutely isolated hippocampal slices to identify neuroadaptive changes produced by elevated levels of CCL2 and how these neuroadaptive changes affect the actions of acute ethanol. Results showed that synaptic transmission and the effects of ethanol on synaptic transmission were similar in the CCL2-transgenic and non-transgenic hippocampus. However, long-term potentiation (LTP), a cellular mechanism thought to underlie learning and memory, in the CCL2-transgenic hippocampus was resistant to the ethanol-induced depression of LTP observed in the non-transgenic hippocampus. Consistent with these results, ethanol pretreatment significantly impaired cued and contextual fear conditioning in non-transgenic mice, but had no effect in CCL2-transgenic mice. These data show that chronically elevated levels of CCL2 in the hippocampus produce neuroadaptive changes that block the depressing effects of ethanol on hippocampal synaptic plasticity and support the hypothesis that CCL2 may provide a neuroprotective effect against the devastating actions of ethanol on hippocampal function.
Collapse
Affiliation(s)
- Jennifer G Bray
- Molecular and Integrative Neuroscience Department, SP30-1522, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
33
|
RETRACTED: Acute ethanol administration affects memory reactivation: A look at the neuronal density and apoptosis in the rat hippocampus. Pharmacol Biochem Behav 2012; 102:321-8. [DOI: 10.1016/j.pbb.2012.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 04/10/2012] [Accepted: 04/21/2012] [Indexed: 11/16/2022]
|
34
|
McClain JA, Hayes DM, Morris SA, Nixon K. Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics. J Comp Neurol 2011; 519:2697-710. [PMID: 21484803 DOI: 10.1002/cne.22647] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromodeoxyuridine incorporation, and phosphohistone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromodeoxyuridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis and also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure.
Collapse
Affiliation(s)
- Justin A McClain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
35
|
Barrenha GD, Coon LE, Chester JA. Effects of alcohol on the acquisition and expression of fear-potentiated startle in mouse lines selectively bred for high and low alcohol preference. Psychopharmacology (Berl) 2011; 218:191-201. [PMID: 21487654 PMCID: PMC3160503 DOI: 10.1007/s00213-011-2285-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/25/2011] [Indexed: 11/26/2022]
Abstract
RATIONALE Anxiety disorders and alcohol use disorders frequently co-occur in humans perhaps because alcohol relieves anxiety. Studies in humans and rats indicate that alcohol may have greater anxiolytic effects in organisms with increased genetic propensity for high alcohol consumption. OBJECTIVES AND METHODS The purpose of this study was to investigate the effects of moderate doses of alcohol (0.5, 1.0, 1.5 g/kg) on the acquisition and expression of anxiety-related behavior using a fear-potentiated startle (FPS) procedure. Experiments were conducted in two replicate pairs of mouse lines selectively bred for high- (HAP1 and HAP2) and low- (LAP1 and LAP2) alcohol preference; these lines have previously shown a genetic correlation between alcohol preference and FPS (HAP > LAP; Barrenha and Chester, Alcohol Clin Exp Res 31:1081-1088, 2007). In a control experiment, the effect of diazepam (4.0 mg/kg) on the expression of FPS was tested in HAP2 and LAP2 mice. RESULTS The 1.5 g/kg alcohol dose moderately decreased the expression of FPS in both HAP lines but not LAP lines. Alcohol had no effect on the acquisition of FPS in any line. Diazepam reduced FPS to a similar extent in both HAP2 and LAP2 mice. CONCLUSIONS HAP mice may be more sensitive to the anxiolytic effects of alcohol than LAP mice when alcohol is given prior to the expression of FPS. These data collected in two pairs of HAP/LAP mouse lines suggest that the anxiolytic response to alcohol in HAP mice may be genetically correlated with their propensity toward high alcohol preference and robust FPS.
Collapse
Affiliation(s)
- Gustavo D Barrenha
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2081, USA
| | | | | |
Collapse
|
36
|
Cushman JD, Moore MD, Jacobs NS, Olsen RW, Fanselow MS. Behavioral pharmacogenetic analysis on the role of the α4 GABA(A) receptor subunit in the ethanol-mediated impairment of hippocampus-dependent contextual learning. Alcohol Clin Exp Res 2011; 35:1948-59. [PMID: 21943327 DOI: 10.1111/j.1530-0277.2011.01546.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND A major effect of low-dose ethanol is impairment of hippocampus-dependent cognitive function. α4/δ -containing GABA(A) Rs are highly expressed within the dentate gyrus region of the hippocampus where they mediate a tonic inhibitory current that is sensitive to the enhancement by low ethanol concentrations. These receptors are also powerful modulators of learning and memory, suggesting that they could play an important role in ethanol's cognitive impairing effects. The goal of this study was to develop a high-throughput cognitive ethanol assay, amenable to use in genetically modified mice that could be used to test this hypothesis. METHODS We developed a procedure where preexposure to a conditioning chamber is used to rescue the "immediate shock deficit." Using this task, ethanol can be specifically targeted at the hippocampus-dependent process of contextual learning without interfering with pain sensitivity or behavioral performance. RESULTS Validation of this task in C57BL/6 mice indicated that 1.0 g/kg ethanol and 10 mg/kg allopregnanolone disrupt contextual learning. Ro15-4513 reversed the effects of ethanol but not allopregnanolone, whereas it produced an impairment when given alone. The high-throughput nature of this task allowed for its application in a large cohort of α4 GABA(A) R KO mice. Loss of the α4 GABA(A) R subunit produced an enhanced sensitivity to the cognitive impairing effects of ethanol. This is consistent with the enhanced ethanol sensitivity of synaptic GABA(A) Rs that has been previously observed in the dentate gyrus in these mice, but inconsistent with the reduced ethanol sensitivity of extrasynaptic GABA(A) Rs observed in the same cells. CONCLUSIONS Overall, these findings are consistent with our hypothesis that ethanol acts directly at GABA(A) receptors to impair hippocampus-dependent cognitive function. Furthermore, validation of this high-throughput assay will allow for future studies to use anatomically and temporally restricted genetic manipulations to probe more deeply into the neural mechanisms of ethanol action on learning and memory circuits.
Collapse
Affiliation(s)
- Jesse D Cushman
- Department of Psychology and Brain Research Institute, University of California, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
37
|
Hicklin TR, Wu PH, Radcliffe RA, Freund RK, Goebel-Goody SM, Correa PR, Proctor WR, Lombroso PJ, Browning MD. Alcohol inhibition of the NMDA receptor function, long-term potentiation, and fear learning requires striatal-enriched protein tyrosine phosphatase. Proc Natl Acad Sci U S A 2011; 108:6650-5. [PMID: 21464302 PMCID: PMC3081035 DOI: 10.1073/pnas.1017856108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alcohol's deleterious effects on memory are well known. Acute alcohol-induced memory loss is thought to occur via inhibition of NMDA receptor (NMDAR)-dependent long-term potentiation in the hippocampus. We reported previously that ethanol inhibition of NMDAR function and long-term potentiation is correlated with a reduction in the phosphorylation of Tyr(1472) on the NR2B subunit and ethanol's inhibition of the NMDAR field excitatory postsynaptic potential was attenuated by a broad spectrum tyrosine phosphatase inhibitor. These data suggested that ethanol's inhibitory effect may involve protein tyrosine phosphatases. Here we demonstrate that the loss of striatal-enriched protein tyrosine phosphatase (STEP) renders NMDAR function, phosphorylation, and long-term potentiation, as well as fear conditioning, less sensitive to ethanol inhibition. Moreover, the ethanol inhibition was "rescued" when the active STEP protein was reintroduced into the cells. Taken together, our data suggest that STEP contributes to ethanol inhibition of NMDAR function via dephosphorylation of tyrosine sites on NR2B receptors and lend support to the hypothesis that STEP may be required for ethanol's amnesic effects.
Collapse
Affiliation(s)
| | - Peter H. Wu
- Department of Psychiatry
- Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, CO 80220; and
| | | | - Ronald K. Freund
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Susan M. Goebel-Goody
- Program in Neuroscience
- Child Study Center, Department of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Paulo R. Correa
- Child Study Center, Department of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT 06520
| | - William R. Proctor
- Department of Psychiatry
- Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, CO 80220; and
| | - Paul J. Lombroso
- Child Study Center, Department of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Michael D. Browning
- Program in Neuroscience
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
38
|
The sedative but not the memory-blocking properties of ethanol are modulated by α5-subunit-containing γ-aminobutyric acid type A receptors. Behav Brain Res 2011; 217:379-85. [DOI: 10.1016/j.bbr.2010.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/29/2010] [Accepted: 11/01/2010] [Indexed: 12/26/2022]
|
39
|
Treweek JB, Roberts AJ, Janda KD. Superadditive effects of ethanol and flunitrazepam: implications of using immunopharmacotherapy as a therapeutic. Mol Pharm 2010; 7:2056-68. [PMID: 20849117 DOI: 10.1021/mp900293a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While benzodiazepine intoxication alone may elicit sedative and antianxiety effects, alcohol coingestion greatly amplifies this central nervous system depression. As a result, this drug combination gained notoriety for its role in cases of facilitated sexual assault and fatal overdose. We previously validated the ability of the novel antiflunitrazepam monoclonal antibody (mAb) RCA3A3 to bind flunitrazepam (FLU) in vivo and block FLU-induced impairment of locomotion and memory. A therapeutically relevant application of this high affinity mAb (K(d,app) = 200 nM), however, is to the more tenuous indication of flunitrazepam (FLU) and alcohol cointoxication. Employing a murine behavioral model, passive immunization with mAb RCA3A3 before injection of ethanol (EtOH: low-dose, 1 g/kg, or high-dose, 1.5 g/kg), FLU (0.06 mg/kg), or a cocktail of both drugs offered partial to full restoration of motor activity levels in co-drug treated and FLU-treated mouse groups (n = 12), respectively. Whereas all drug treatments left contextual learning intact, auditory cued learning was severely disrupted. Prophylactic administration of mAb RCA3A3 prevented this deficit in cued learning in FLU-treated mice but not in the FLU- and EtOH-treated mice, in which co-drug exposure exacerbated the impairment in cued fear conditioning. To substantiate this finding, a dose-response study was performed, and the changes in locomotor activity incurred by different FLU (low-dose, 0.06 mg/kg, or high-dose, 0.09 mg/kg), EtOH (1.0 g/kg, 1.5 g/kg), and mAb RCA3A3 (14.5 mg/kg, 21.8 mg/kg) dose combinations illustrated the potentiation in motor effects by concomitant exposure to FLU and EtOH. Thus, motor activity and fear conditioning results demonstrated that both the amount of FLU left unbound by antibody and the pharmacological additivity between FLU and EtOH, a GABA mimetic, were limiting factors in the therapeutic efficacy of mAb RCA3A3. In sum, our study highlights the complex nature of psychomotor impairment upon co-drug versus singular drug exposure, which may pose a unique challenge to therapeutic treatment.
Collapse
Affiliation(s)
- Jennifer B Treweek
- Department of Chemistry and Immunology of The Skaggs Institute for Chemical Biology, and Worm Institute for Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
40
|
Gulick D, Gould TJ. Effects of ethanol and caffeine on behavior in C57BL/6 mice in the plus-maze discriminative avoidance task. Behav Neurosci 2010; 123:1271-8. [PMID: 20001110 DOI: 10.1037/a0017610] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Caffeine is frequently consumed concurrent to or immediately following ethanol consumption. Identifying how caffeine and ethanol interact to modulate behavior is essential to understanding the co-use of these drugs. The plus-maze discriminative avoidance task (PMDAT) allows within-subject measurement of learning, anxiety, and locomotion. METHODS For training, each mouse was placed in the center of the plus-maze for 5 min, and each time that the mouse entered the aversive enclosed arm, a light and white noise were turned on. At testing, each mouse was returned to the center of the maze for 3 min. No cues were turned on during testing. RESULTS Ethanol (1.0-1.4 g/kg) dose-dependently decreased anxiety and learning, and increased locomotion. Caffeine (5.0-40.0 mg/kg) dose-dependently increased anxiety and decreased locomotion and learning. Caffeine failed to reverse ethanol-induced learning deficits. However, 1.4 g/kg ethanol blocked the anxiogenic effect of caffeine. DISCUSSION Although caffeine and ethanol interact to modulate behavior in the PMDAT, caffeine does not reverse ethanol-induced learning deficits. Ethanol-induced anxiolysis may contribute to alcohol consumption, while ethanol's blockade of caffeine-induced anxiogenesis may contribute to co-use.
Collapse
Affiliation(s)
- Danielle Gulick
- Department of Psychology, Neuroscience Program, Center for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | |
Collapse
|
41
|
McCool BA, Christian DT, Diaz MR, Läck AK. Glutamate plasticity in the drunken amygdala: the making of an anxious synapse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:205-33. [PMID: 20813244 DOI: 10.1016/s0074-7742(10)91007-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Plasticity at glutamatergic synapses is believed to be the cellular correlate of learning and memory. Classic fear conditioning, for example, is dependent upon NMDA-type glutamate receptor activation in the lateral/basolateral amygdala followed by increased synaptic expression of AMPA-type glutamate receptors. This review provides an extensive comparison between the initiation and expression of glutamatergic plasticity during learning/memory and glutamatergic alterations associated with chronic ethanol exposure and withdrawal. The parallels between these neuro-adaptive processes suggest that long-term ethanol exposure might "chemically condition" amygdala-dependent fear/anxiety via the increased function of pre- and post-synaptic glutamate signaling.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmcology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
42
|
The hippocampus and cingulate cortex differentially mediate the effects of nicotine on learning versus on ethanol-induced learning deficits through different effects at nicotinic receptors. Neuropsychopharmacology 2009; 34:2167-79. [PMID: 19404242 PMCID: PMC2770339 DOI: 10.1038/npp.2009.45] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The current study examined the effects of nicotine infusion into the dorsal hippocampus or anterior cingulate on fear conditioning and on ethanol-induced deficits in fear conditioning, and whether these effects involved receptor activation or inactivation. Conditioning consisted of two white noise (30 s, 85 dB)-foot-shock (2 s, 0.57 mA) pairings. Saline or ethanol was administered to C57BL/6 mice 15 min before training and saline or nicotine was administered 5 min before training or before training and testing. The ability of the high-affinity nicotinic acetylcholinergic receptor (nAChR) antagonist dihydro-beta-erythroidine (DHbetaE) to modulate the effects of ethanol and nicotine was also tested; saline or DHbetaE was administered 25 (injection) or 15 (infusion) minutes before training or before training and testing. Infusion of nicotine into the hippocampus enhanced contextual fear conditioning but had no effect on ethanol-induced learning deficits. Infusion of nicotine into the anterior cingulate ameliorated ethanol-induced deficits in contextual and cued fear conditioning but had no effect on learning in ethanol-naive mice. DHbetaE blocked the effects of nicotine on ethanol-induced deficits; interestingly, DHbetaE alone and co-administration of subthreshold doses of DHbetaE and nicotine also ameliorated ethanol-induced deficits but failed to enhance learning. Finally, DHbetaE failed to ameliorate ethanol-induced deficits in beta2 nAChR subunit knockout mice. These results suggest that nicotine acts in the hippocampus to enhance contextual learning, but acts in the cingulate to ameliorate ethanol-induced learning deficits through inactivation of high-affinity beta2 subunit-containing nAChRs.
Collapse
|
43
|
Gulick D, Gould TJ. Interactive effects of ethanol and nicotine on learning, anxiety, and locomotion in C57BL/6 mice in the plus-maze discriminative avoidance task. Neuropharmacology 2009; 57:302-10. [PMID: 19500603 DOI: 10.1016/j.neuropharm.2009.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/21/2009] [Accepted: 05/21/2009] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Alcohol and nicotine both alter learning, locomotion, and anxiety, yet no study has directly examined the interactive effects of these drugs across these behaviors within subjects. Such a comparison would determine if the drugs produce independent effects on each behavior. The plus-maze discriminative avoidance task (PMDAT) allows within-subject measurement of these behaviors. METHODS For training, each mouse explored the elevated plus-maze for 5 min and each time a mouse entered the aversive enclosed arm, a light and white noise were turned on. For testing, each mouse was returned to the center of the maze and, for 3 min, the time in each arm or in the center area was recorded. No cues were turned on during testing. The effects of ethanol (0.6-2.6 g/kg 15 min before training) and nicotine (0.045-0.18 mg/kg 5 min before training), alone or in combination, on behavior were examined. RESULTS Ethanol dose-dependently decreased anxiety, increased locomotion, and decreased learning but different doses altered each behavior. Nicotine dose-dependently increased anxiety and locomotion and decreased learning but different doses altered each behavior. Nicotine (0.09 mg/kg) reversed ethanol-associated changes in learning (1.0 and 1.4 g/kg), locomotion (1.4 g/kg), and anxiety (1.4 g/kg). CONCLUSIONS The effects of nicotine or ethanol on learning occurred at different doses than those that altered anxiety or locomotion, suggesting that the drug effects on learning are independent of the effects on anxiety and locomotion. With combined administration, nicotine reduced ethanol-associated deficits in learning and changes in anxiety and locomotion.
Collapse
Affiliation(s)
- Danielle Gulick
- Department of Psychology, Neuroscience Program, Center for Substance Abuse Research, Temple University, Philadelphia, PA 19122, USA.
| | | |
Collapse
|
44
|
Extinction learning of stimulus reward contingencies: The acute effects of alcohol. Drug Alcohol Depend 2009; 102:56-62. [PMID: 19278796 DOI: 10.1016/j.drugalcdep.2009.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent theories suggest that extinction is, at least partly, new learning suppressing original associations between a conditioned stimulus and a conditioned response without severing those associations. During extinction alcohol via its effects on inhibitory control may reduce the ability to suppress the original associations between a conditioned stimulus and a conditioned response leading to an impairment of extinction learning. Thus, the present study is set out to examine the effects of alcohol on extinction learning to enhance current knowledge on mechanisms of extinction and conditions that might hamper extinction, which is an important aspect for the treatment of alcohol-dependent patients. METHODS Light to moderate social drinkers (N=32) acquired an instrumental reward seeking response. Extinction training of the reward seeking response was performed after administration of a dose of 0.8 g/kg alcohol resulting in a peak blood alcohol concentration ranging from 112 to 184 mg/dL. In addition, we assessed subjective alcohol effects and administered a Stop-Signal task which measures the ability to inhibit a pre-potent motor response. RESULTS Alcohol influenced subjective ratings of light-headedness and increased the Stop-Signal reaction time indicating disinhibiting effects. However, our results did not show any impairment of learning of extinction after the administration of alcohol. Behavioural as well as attentional responses indicated extinction of conditioned responses for both experimental groups. CONCLUSIONS These findings suggest that alcohol at a dose that impairs performance in a task of inhibitory control does not impair learning of extinction.
Collapse
|
45
|
Hunt PS, Levillain ME, Spector BM, Kostelnik LA. Post-training ethanol disrupts trace conditioned fear in rats: effects of timing of ethanol, dose and trace interval duration. Neurobiol Learn Mem 2008; 91:73-80. [PMID: 18952186 DOI: 10.1016/j.nlm.2008.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/27/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
Ethanol has complex effects on memory performance, although hippocampus-dependent memory may be especially vulnerable to disruption by acute ethanol intoxication occurring during or shortly after a training episode. In the present experiments, the effects of post-training ethanol on delay and trace fear conditioning were examined in adolescent rats. In Experiment 1, 30-day-old Sprague-Dawley rats were given delay or trace conditioning trials in which a 10s flashing light CS was paired with a 0.5 mA shock US. For trace groups, the trace interval was 10 s. On days 31-33, animals were administered ethanol once daily (0.0 or 2.5 g/kg via intragastric intubation), and on day 34 animals were tested for CS-elicited freezing. Results showed that post-training ethanol affected the expression of trace, but had no effect on delay conditioned fear. Experiment 2 revealed that this effect was dose-dependent; doses lower than 2.5 g/kg were without effect. Experiment 3 evaluated whether proximity of ethanol to the time of training or testing was critical. Results show that ethanol administration beginning 24h after training was more detrimental to trace conditioned freezing than administration that was delayed by 48 h. Finally, in Experiment 4 animals were trained with one of three different trace intervals: 1, 3 or 10s. Results indicate that post-training administration of 2.5 g/kg ethanol disrupted trace conditioned fear in subjects trained with a 10s, but not with a 1 or 3s, trace interval. Collectively the results suggest that ethanol administration impairs post-acquisition memory processing of hippocampus-dependent trace fear conditioning.
Collapse
Affiliation(s)
- Pamela S Hunt
- Department of Psychology, College of William and Mary, Williamsburg, VA 23187-8795, USA.
| | | | | | | |
Collapse
|
46
|
Crabbe JC, Cameron AJ, Munn E, Bunning M, Wahlsten D. Overview of mouse assays of ethanol intoxication. ACTA ACUST UNITED AC 2008; Chapter 9:Unit 9.26. [PMID: 18428672 DOI: 10.1002/0471142301.ns0926s42] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are many behavioral assays to assess sensitivity to ethanol intoxication in mice. Most are simple to implement, and are sensitive to a particular dose range of ethanol. Most reflect genetic influences, and each test appears to reflect the contribution of a relatively distinct collection of genes. This genetic heterogeneity implies that no single test can claim to capture the construct "ethanol intoxication" completely. Depending on the test, and when measurements are made, acute functional tolerance to even a single dose of ethanol must be considered as a contributing factor. Whether or not a test is conducted in naïve mice or as part of a test battery can influence sensitivity, and do so in a strain-dependent manner. This unit reviews existing tests and recommends several.
Collapse
|
47
|
Gulick D, Gould TJ. Varenicline ameliorates ethanol-induced deficits in learning in C57BL/6 mice. Neurobiol Learn Mem 2008; 90:230-6. [PMID: 18411066 DOI: 10.1016/j.nlm.2008.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 11/29/2022]
Abstract
Ethanol is a frequently abused drug that impairs cognitive processes such as learning. Varenicline, an alpha4beta2 nicotinic receptor partial agonist and alpha7 nicotinic receptor full agonist prescribed for smoking cessation, has been shown to decrease ethanol consumption. The current study investigated whether varenicline could ameliorate ethanol-induced deficits in learning and whether varenicline alters blood alcohol concentration in C57BL/6 mice. Conditioning consisted of two auditory conditioned stimulus (CS; 30s, 85dB white noise)-foot shock unconditioned stimulus (US; 2s, 0.57mA) pairings. For all studies, saline or ethanol (1.0, 1.5, 2.0g/kg i.p.) was administered 15min before training, and saline or varenicline (0.05, 0.1, 0.2mg/kg i.p.) was administered 60min before either training or testing. For blood alcohol analysis, saline or varenicline (0.1mg/kg) was administered 60min before collection, and saline or ethanol (1.0, 1.5, 2.0g/kg) was administered 15min before collection. Varenicline dose-dependently ameliorated ethanol-induced conditioning deficits for all three doses of ethanol when administered before training but not when administered 24h later, before testing. In addition, varenicline did not alter blood alcohol concentration. The smoking cessation aid varenicline may have therapeutic uses for treating ethanol-associated disruptions in cognitive processes.
Collapse
Affiliation(s)
- Danielle Gulick
- Department of Psychology, Neuroscience Program, Temple University, Weiss Hall, Rm 865, 1701 N. 13th Street, Philadelphia, PA 19122, USA
| | | |
Collapse
|
48
|
Interactive effects of ethanol and nicotine on learning in C57BL/6J mice depend on both dose and duration of treatment. Psychopharmacology (Berl) 2008; 196:483-95. [PMID: 17968532 PMCID: PMC2722442 DOI: 10.1007/s00213-007-0982-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/11/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE AND RATIONALE Alcohol and nicotine are commonly co-abused; one possible explanation for co-abuse is that each drug ameliorates the aversive effects of the other. Both drugs have dose-dependent effects on learning and memory. Thus, this study examined the interactive effects of acute ethanol and acute, chronic, or withdrawal from chronic nicotine on fear conditioning in C57BL/6J mice. MATERIALS AND METHODS Conditioning consisted of auditory conditioned stimulus-foot-shock unconditioned stimulus pairings. For acute studies, saline or ethanol, then saline or nicotine was administered before training, and saline or nicotine was also administered before testing. For chronic and withdrawal studies, saline or nicotine was administered chronically, and ethanol or saline was administered before training. RESULTS Acute nicotine (0.09 mg/kg) reversed ethanol-induced deficits (1.0 and 1.5 g/kg) in contextual and cued fear conditioning, whereas a low dose of ethanol (0.25 g/kg) reversed nicotine (6.3 mg kg(-1) day(-1)) withdrawal-induced deficits in contextual conditioning. Tolerance developed for the effects of nicotine on ethanol-induced deficits in conditioning and cross-tolerance between chronic nicotine and acute ethanol was seen for the enhancing effects of ethanol on conditioning. CONCLUSIONS The complex and sometimes polar actions of ethanol and nicotine on behavior may contribute to co-abuse of these drugs. Specifically, smoking may initially reduce the aversive effects of ethanol, but tolerance develops for this effect. In addition, low doses of alcohol may lessen nicotine withdrawal symptoms.
Collapse
|
49
|
Lattal KM. Effects of ethanol on encoding, consolidation, and expression of extinction following contextual fear conditioning. Behav Neurosci 2007; 121:1280-92. [PMID: 18085881 PMCID: PMC7247427 DOI: 10.1037/0735-7044.121.6.1280] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Studies of contextual fear conditioning have found that ethanol administered prior to a conditioning session impairs the conditioned freezing response during a test session the next day. The present experiments examined the effects of ethanol on extinction, the loss of conditioned responding that occurs as the animal learns that a previously conditioned context no longer signals shock. Ethanol (1.5 g/kg) administered prior to single (Experiment 1) or multiple (Experiment 2) extinction sessions impaired extinction. Ethanol administered prior to a test session disrupted the expression of freezing after extinction (Experiments 3-5). There was some evidence that ethanol served as an internal stimulus signaling the operation of conditioning or extinction contingencies (Experiments 4-5). In Experiment 6, postsession injections of 1.5 g/kg ethanol had no effect on extinction with brief (3 min) or long (24 min) exposures to the context, but injections of 3 g/kg after long exposures impaired extinction. Together, these results indicate that ethanol affects extinction by acting on multiple learning and performance processes, including attention, memory encoding, and memory expression.
Collapse
Affiliation(s)
- K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
50
|
Gulick D, Gould TJ. Acute ethanol has biphasic effects on short- and long-term memory in both foreground and background contextual fear conditioning in C57BL/6 mice. Alcohol Clin Exp Res 2007; 31:1528-37. [PMID: 17760787 PMCID: PMC2744497 DOI: 10.1111/j.1530-0277.2007.00458.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Ethanol is a frequently abused, addictive drug that impairs cognitive function. Ethanol may disrupt cognitive processes by altering attention, short-term memory, and/or long-term memory. Interestingly, some research suggests that ethanol may enhance cognitive processes at lower doses. The current research examined the dose-dependent effects of ethanol on contextual and cued fear conditioning. In addition, the present studies assessed the importance of stimulus salience in the effects of ethanol and directly compared the effects of ethanol on short-term and long-term memory. METHODS This study employed both foreground and background fear conditioning, which differ in the salience of contextual stimuli, and tested conditioning at 4 hours, 24 hours, and 1 week in order to assess the effects of ethanol on short-term and long-term memory. Foreground conditioning consisted of 2 presentations of a foot shock unconditioned stimulus (US) (2 seconds, 0.57 mA). Background conditioning consisted of 2 auditory conditioned stimulus (30 seconds, 85 dB white noise)-foot shock (US; 2 seconds, 0.57 mA) pairings. RESULTS For both foreground and background conditioning, ethanol enhanced short-term and long-term memory for contextual and cued conditioning at a low dose (0.25 g/kg) and impaired short-term and long-term memory for contextual and cued conditioning at a high dose (1.0 g/kg). CONCLUSIONS These results suggest that ethanol has long-lasting, biphasic effects on short-term and long-term memory for contextual and cued conditioning. Furthermore, the effects of ethanol on contextual fear conditioning are independent of the salience of the context.
Collapse
Affiliation(s)
- Danielle Gulick
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|