1
|
Decker KP, Sanjana F, Rizzi N, Kramer MK, Cerjanic AM, Johnson CL, Martens CR. Comparing single- and multi-post labeling delays for the measurements of resting cerebral and hippocampal blood flow for cerebrovascular testing in midlife adults. Front Physiol 2024; 15:1437973. [PMID: 39416381 PMCID: PMC11480070 DOI: 10.3389/fphys.2024.1437973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives To assess the reliability and validity of measuring resting cerebral blood flow (CBF) and hippocampal CBF using a single-post-labeling delay (PLD) and a multi-PLD pseudo-continuous arterial spin labeling (pCASL) protocol for cerebrovascular reactivity (CVR) testing. Methods 25 healthy, midlife adults (57 ± 4 years old) were imaged in a Siemens Prisma 3T magnetic resonance imaging (MRI) scanner. Resting CBF and hippocampal CBF were assessed using two pCASL protocols, our modified single-PLD protocol (pCASL-MOD) to accommodate the needs for CVR testing and the multi-PLD Human Connectome Project (HCP) Lifespan protocol to serve as the reference control (pCASL-HCP). During pCASL-MOD, CVR was calculated as the change in CBF from rest to hypercapnia (+9 mmHg increase in end-tidal partial pressure of carbon dioxide [PETCO2]) and then normalized for PETCO2. The reliability and validity in resting gray matter (GM) CBF, white matter (WM) CBF, and hippocampal CBF between pCASL-MOD and pCASL-HCP protocols were examined using correlation analyses, paired t-tests, and Bland Altman plots. Results The pCASL-MOD and pCASL-HCP protocols were significantly correlated for resting GM CBF [r = 0.72; F (1, 23) = 25.24, p < 0.0001], WM CBF [r = 0.57; F (1, 23) = 10.83, p = 0.003], and hippocampal CBF [r = 0.77; F (1, 23) = 32.65, p < 0.0001]. However, pCASL-MOD underestimated resting GM CBF (pCASL-MOD: 53.7 ± 11.1 v. pCASL-HCP: 69.1 ± 13.1 mL/100 g/min; p < 0.0001), WM CBF (pCASL-MOD: 32.4 ± 4.8 v. pCASL-HCP: 35.5 ± 6.9 mL/100 g/min; p = 0.01), and hippocampal CBF (pCASL-MOD: 50.5 ± 9.0 v. pCASL-HCP: 68.1 ± 12.5 mL/100 g/min; p < 0.0001). PETCO2 increased by 8.0 ± 0.7 mmHg to induce CVR (GM CBF: 4.8% ± 2.6%; WM CBF 2.9% ± 2.5%; and hippocampal CBF: 3.4% ± 3.8%). Conclusion Our single-PLD pCASL-MOD protocol reliably measured CBF and hippocampal CBF at rest given the significant correlation with the multi-PLD pCASL-HCP protocol. Despite the lower magnitude relative to pCASL-HCP, we recommend using our pCASL-MOD protocol for CVR testing in which an exact estimate of CBF is not required such as the assessment of relative change in CBF to hypercapnia.
Collapse
Affiliation(s)
- Kevin P. Decker
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Nick Rizzi
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Mary K. Kramer
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alexander M. Cerjanic
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Christopher R. Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| |
Collapse
|
2
|
van der Horn HJ, Vakhtin AA, Julio K, Nitschke S, Shaff N, Dodd AB, Erhardt E, Phillips JP, Pirio Richardson S, Deligtisch A, Stewart M, Suarez Cedeno G, Meles SK, Mayer AR, Ryman SG. Parkinson's disease cerebrovascular reactivity pattern: A feasibility study. J Cereb Blood Flow Metab 2024; 44:1774-1786. [PMID: 38578669 PMCID: PMC11494834 DOI: 10.1177/0271678x241241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
A mounting body of research points to cerebrovascular dysfunction as a fundamental element in the pathophysiology of Parkinson's disease (PD). In the current feasibility study, blood-oxygen-level-dependent (BOLD) MRI was used to measure cerebrovascular reactivity (CVR) in response to hypercapnia in 26 PD patients and 16 healthy controls (HC), and aimed to find a multivariate pattern specific to PD. Whole-brain maps of CVR amplitude (i.e., magnitude of response to CO2) and latency (i.e., time to reach maximum amplitude) were computed, which were further analyzed using scaled sub-profile model principal component analysis (SSM-PCA) with leave-one-out cross-validation. A meaningful pattern based on CVR latency was identified, which was named the PD CVR pattern (PD-CVRP). This pattern was characterized by relatively increased latency in basal ganglia, sensorimotor cortex, supplementary motor area, thalamus and visual cortex, as well as decreased latency in the cerebral white matter, relative to HC. There were no significant associations with clinical measures, though sample size may have limited our ability to detect significant associations. In summary, the PD-CVRP highlights the importance of cerebrovascular dysfunction in PD, and may be a potential biomarker for future clinical research and practice.
Collapse
Affiliation(s)
- Harm Jan van der Horn
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Andrei A Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Kayla Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Stephanie Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Nicholas Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Andrew B Dodd
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - John P Phillips
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
- New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Amanda Deligtisch
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Melanie Stewart
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Gerson Suarez Cedeno
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew R Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
3
|
Caldwell HG, Hoiland RL, Bain AR, Howe CA, Carr JMJR, Gibbons TD, Durrer CG, Tymko MM, Stacey BS, Bailey DM, Sekhon MS, MacLeod DB, Ainslie PN. Evidence for direct CO 2 -mediated alterations in cerebral oxidative metabolism in humans. Acta Physiol (Oxf) 2024; 240:e14197. [PMID: 38958262 DOI: 10.1111/apha.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
AIM How the cerebral metabolic rates of oxygen and glucose utilization (CMRO2 and CMRGlc, respectively) are affected by alterations in arterial PCO2 (PaCO2) is equivocal and therefore was the primary question of this study. METHODS This retrospective analysis involved pooled data from four separate studies, involving 41 healthy adults (35 males/6 females). Participants completed stepwise steady-state alterations in PaCO2 ranging between 30 and 60 mmHg. The CMRO2 and CMRGlc were assessed via the Fick approach (CBF × arterial-internal jugular venous difference of oxygen or glucose content, respectively) utilizing duplex ultrasound of the internal carotid artery and vertebral artery to calculate cerebral blood flow (CBF). RESULTS The CMRO2 was altered by 0.5 mL × min-1 (95% CI: -0.6 to -0.3) per mmHg change in PaCO2 (p < 0.001) which corresponded to a 9.8% (95% CI: -13.2 to -6.5) change in CMRO2 with a 9 mmHg change in PaCO2 (inclusive of hypo- and hypercapnia). The CMRGlc was reduced by 7.7% (95% CI: -15.4 to -0.08, p = 0.045; i.e., reduction in net glucose uptake) and the oxidative glucose index (ratio of oxygen to glucose uptake) was reduced by 5.6% (95% CI: -11.2 to 0.06, p = 0.049) with a + 9 mmHg increase in PaCO2. CONCLUSION Collectively, the CMRO2 is altered by approximately 1% per mmHg change in PaCO2. Further, glucose is incompletely oxidized during hypercapnia, indicating reductions in CMRO2 are either met by compensatory increases in nonoxidative glucose metabolism or explained by a reduction in total energy production.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Michael M Tymko
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Human Cerebrovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Mypinder S Sekhon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
4
|
Duffin J, Sayin ES, Sobczyk O, Poublanc J, Mikulis DJ, Fisher JA. Cerebral perfusion metrics calculated directly from a hypoxia-induced step change in deoxyhemoglobin. Sci Rep 2024; 14:17121. [PMID: 39054379 PMCID: PMC11272773 DOI: 10.1038/s41598-024-68047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Resting cerebral perfusion metrics can be calculated from the MRI ΔR2* signal during the first passage of an intravascular bolus of a Gadolinium-based contrast agent (GBCA), or more recently, a transient hypoxia-induced change in the concentration of deoxyhemoglobin ([dOHb]). Conventional analysis follows a proxy process that includes deconvolution of an arterial input function (AIF) in a tracer kinetic model. We hypothesized that the step reduction in magnetic susceptibility accompanying a step decrease in [dOHb] that occurs when a single breath of oxygen terminates a brief episode of lung hypoxia permits direct calculation of relative perfusion metrics. The time course of the ΔR2* signal response enables both the discrimination of blood arrival times and the time course of voxel filling. We calculated the perfusion metrics implied by this step signal change in seven healthy volunteers and compared them to those from conventional analyses of GBCA and dOHb using their AIF and indicator dilution theory. Voxel-wise maps of relative cerebral blood flow and relative cerebral blood volume had a high spatial and magnitude congruence for all three analyses (r > 0.9) and were similar in appearance to published maps. The mean (SD) transit times (s) in grey and white matter respectively for the step response (7.4 (1.1), 8.05 (1.71)) were greater than those for GBCA (2.6 (0.45), 3.54 (0.83)) attributable to the nature of their respective calculation models. In conclusion we believe these calculations of perfusion metrics derived directly from ΔR2* have superior merit to calculations via AIF by virtue of being calculated from a direct signal rather than through a proxy model which encompasses errors inherent in designating an AIF and performing deconvolution calculations.
Collapse
Affiliation(s)
- James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.
| | - Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Neill MG, Burma JS, Miutz LN, Kennedy CM, Penner LC, Newel KT, Smirl JD. Transcranial Doppler Ultrasound and Concussion-Supplemental Symptoms with Physiology: A Systematic Review. J Neurotrauma 2024; 41:1509-1523. [PMID: 38468559 DOI: 10.1089/neu.2023.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Sport-related concussion (SRC) can impair the cerebrovasculature both acutely and chronically. Transcranial Doppler (TCD) ultrasound assessment has the potential to illuminate the mechanisms of impairment and provide an objective evaluation of SRC. The current systematic review investigated studies employing TCD ultrasound assessment of intracranial arteries across three broad categories of cerebrovascular regulation: neurovascular coupling (NVC), cerebrovascular reactivity (CVR), and dynamic cerebral autoregulation (dCA). The current review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42021275627). The search strategy was applied to PubMed, as this database indexes all biomedical journals. Original articles on TCD for athletes with medically diagnosed SRC were included. Title/abstract and full-text screening were completed by three authors. Two authors completed data extraction and risk of bias using the Methodological Index for Non-Randomized Studies and Scottish Intercollegiate Guideline Network checklists. Of the 141 articles identified, 14 met the eligibility criteria. One article used an NVC challenge, eight assessed CVR, and six investigated dCA. Methodologies varied widely among studies, and results were heterogeneous. There was evidence of cerebrovascular impairment in all three domains roughly 2 days post-SRC, but the magnitude and recovery of these impairments were not clear. There was evidence that clinical symptom resolution occurred before cerebrovascular function, indicating that physiological deficits may persist despite clinical recovery and return to play. Collectively, this emphasizes an opportunity for the use of TCD to illuminate the cerebrovascular deficits caused by SRC. It also highlights that there is need for consistent methodological rigor when employing TCD in a SRC population.
Collapse
Affiliation(s)
- Matthew G Neill
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Sport Science, University of Dayton, Dayton, Ohio, USA
| | - Courtney M Kennedy
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Linden C Penner
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kailey T Newel
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Plitman E, Venkatraghavan L, Agrawal S, Raghavan V, Chowdhury T, Sobczyk O, Sayin ES, Poublanc J, Duffin J, Mikulis D, Fisher J. Variability of Resting Carbon Dioxide Tension in Patients with Intracranial Steno-occlusive Disease. Asian J Neurosurg 2024; 19:235-241. [PMID: 38974441 PMCID: PMC11226286 DOI: 10.1055/s-0044-1786699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Introduction Controlling the partial pressure of carbon dioxide (PaCO 2 ) is an important consideration in patients with intracranial steno-occlusive disease to avoid reductions in critical perfusion from vasoconstriction due to hypocapnia, or reductions in blood flow due to steal physiology during hypercapnia. However, the normal range for resting PCO 2 in this patient population is not known. Therefore, we investigated the variability in resting end-tidal PCO 2 (P ET CO 2 ) in patients with intracranial steno-occlusive disease and the impact of revascularization on resting P ET CO 2 in these patients. Setting and Design Tertiary care center, retrospective chart review Materials and Methods We collected resting P ET CO 2 values in adult patients with intracranial steno-occlusive disease who presented to our institution between January 2010 and June 2021. We also explored postrevascularization changes in resting P ET CO 2 in a subset of patients. Results Two hundred and twenty-seven patients were included [moyamoya vasculopathy ( n = 98) and intracranial atherosclerotic disease ( n = 129)]. In the whole cohort, mean ± standard deviation resting P ET CO 2 was 37.8 ± 3.9 mm Hg (range: 26-47). In patients with moyamoya vasculopathy and intracranial atherosclerotic disease, resting P ET CO 2 was 38.4 ± 3.6 mm Hg (range: 28-47) and 37.4 ± 4.1 mm Hg (range: 26-46), respectively. A trend was identified suggesting increasing resting P ET CO 2 after revascularization in patients with low preoperative resting P ET CO 2 (<38 mm Hg) and decreasing resting P ET CO 2 after revascularization in patients with high preoperative resting P ET CO 2 (>38 mm Hg). Conclusion This study demonstrates that resting P ET CO 2 in patients with intracranial steno-occlusive disease is highly variable. In some patients, there was a change in resting P ET CO 2 after a revascularization procedure.
Collapse
Affiliation(s)
- Eric Plitman
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sanket Agrawal
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vishvak Raghavan
- Department of Computer Science, Faculty of Science, McGill University, Montreal, Quebec, Canada
| | - Tumul Chowdhury
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ece Su Sayin
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - David Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Joseph Fisher
- Department of Anesthesia and Pain Management, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Weber AM, Nightingale TE, Jarrett M, Lee AHX, Campbell OL, Walter M, Lucas SJE, Phillips A, Rauscher A, Krassioukov AV. Cerebrovascular Reactivity Following Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2024; 30:78-95. [PMID: 38799609 PMCID: PMC11123610 DOI: 10.46292/sci23-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Spinal cord injuries (SCI) often result in cardiovascular issues, increasing the risk of stroke and cognitive deficits. Objectives This study assessed cerebrovascular reactivity (CVR) using functional magnetic resonance imaging (fMRI) during a hypercapnic challenge in SCI participants compared to noninjured controls. Methods Fourteen participants were analyzed (n = 8 with SCI [unless otherwise noted], median age = 44 years; n = 6 controls, median age = 33 years). CVR was calculated through fMRI signal changes. Results The results showed a longer CVR component (tau) in the grey matter of SCI participants (n = 7) compared to controls (median difference = 3.0 s; p < .05). Time since injury (TSI) correlated negatively with steady-state CVR in the grey matter and brainstem of SCI participants (RS = -0.81, p = .014; RS = -0.84, p = .009, respectively). Lower steady-state CVR in the brainstem of the SCI group (n = 7) correlated with lower diastolic blood pressure (RS = 0.76, p = .046). Higher frequency of hypotensive episodes (n = 7) was linked to lower CVR outcomes in the grey matter (RS = -0.86, p = .014) and brainstem (RS = -0.89, p = .007). Conclusion Preliminary findings suggest a difference in the dynamic CVR component, tau, between the SCI and noninjured control groups, potentially explaining the higher cerebrovascular health burden in SCI individuals. Exploratory associations indicate that longer TSI, lower diastolic blood pressure, and more hypotensive episodes may lead to poorer CVR outcomes. However, further research is necessary to establish causality and support these observations.
Collapse
Affiliation(s)
- Alexander Mark Weber
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, British Columbia, Canada
- Department of Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Tom E. Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, UK
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Michael Jarrett
- MRI Research Centre, University of British Columbia, Vancouver, Canada
| | - Amanda H. X. Lee
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
| | - Olivia Lauren Campbell
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, British Columbia, Canada
| | - Matthias Walter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, UK
| | - Aaron Phillips
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- RestoreNetwork, Hotchkiss Brain Institute, Libin Cardiovascular Institute, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alexander Rauscher
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- MRI Research Centre, University of British Columbia, Vancouver, Canada
- Department of Astronomy and Physics, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- G.F. Strong Rehabilitation Centre, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Woodward OB, Driver I, Hart E, Wise R. In search of a marker of altered cerebrovascular function in hypertension: Analysis of the fractional amplitude of low-frequency fluctuations in UK Biobank resting state fMRI data. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 6:100196. [PMID: 38179182 PMCID: PMC10765253 DOI: 10.1016/j.cccb.2023.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
The selfish brain mechanism proposes that in some patients with impaired cerebral blood flow (CBF) or cerebrovascular function, hypertension may develop as a compensatory mechanism that aims to maintain CBF by increasing systemic blood pressure through an increase in cardiovascular sympathetic tone. The amplitude of low frequency fluctuations (ALFF) in the resting state blood oxygenation level dependent (BOLD) functional MRI signal has been previously posited as an index of cerebrovascular reactivity. We investigated whether regional fractional ALFF (fALFF) differs between 2054 hypertensives and 1724 normotensives using data from the UK Biobank dataset. Our primary hypothesis was that cerebrovascular function in the medulla and other regions involved in sympathetic regulation differs between hypertensives and normotensives, and that this is reflected by regional variations in fALFF. There is a significant regional variation in fALFF (F(14) =1126.17, p < 2 × 10-16, partial η2 = 0.22), but this regional variation does not differ between hypertensives and normotensives (F(14) = 0.23, p = 0.99, partial η2 = 8 × 10-5). Prospective longitudinal studies of cerebral haemodynamics in hypertensives and normotensives are required to further investigate the selfish brain mechanism.
Collapse
Affiliation(s)
| | - Ian Driver
- Cardiff University Brain Research Imaging Centre, Cardiff, Wales, United Kingdom
| | - Emma Hart
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, United Kingdom
| | - Richard Wise
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
9
|
Talbot JS, Perkins DR, Tallon CM, Dawkins TG, Douglas AJM, Beckerleg R, Crofts A, Wright ME, Davies S, Steventon JJ, Murphy K, Lord RN, Pugh CJA, Oliver JL, Lloyd RS, Ainslie PN, McManus AM, Stembridge M. Cerebral blood flow and cerebrovascular reactivity are modified by maturational stage and exercise training status during youth. Exp Physiol 2023; 108:1500-1515. [PMID: 37742137 PMCID: PMC10988468 DOI: 10.1113/ep091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
NEW FINDINGS What is the central question of this study? Gonadal hormones modulate cerebrovascular function while insulin-like growth factor 1 (IGF-1) facilitates exercise-mediated cerebral angiogenesis; puberty is a critical period of neurodevelopment alongside elevated gonadal hormone and IGF-1 activity: but whether exercise training across puberty enhances cerebrovascular function is unkown. What is the main finding and its importance? Cerebral blood flow is elevated in endurance trained adolescent males when compared to untrained counterparts. However, cerebrovascular reactivity to hypercapnia is faster in trained vs. untrained children, but not adolescents. Exercise-induced improvements in cerebrovascular function are attainable as early as the first decade of life. ABSTRACT Global cerebral blood flow (gCBF) and cerebrovascular reactivity to hypercapnia (CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) are modulated by gonadal hormone activity, while insulin-like growth factor 1 facilitates exercise-mediated cerebral angiogenesis in adults. Whether critical periods of heightened hormonal and neural development during puberty represent an opportunity to further enhance gCBF andCV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ is currently unknown. Therefore, we used duplex ultrasound to assess gCBF andCV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ in n = 128 adolescents characterised as endurance-exercise trained (males: n = 30, females: n = 36) or untrained (males: n = 29, females: n = 33). Participants were further categorised as pre- (males: n = 35, females: n = 33) or post- (males: n = 24, females: n = 36) peak height velocity (PHV) to determine pubertal or 'maturity' status. Three-factor ANOVA was used to identify main and interaction effects of maturity status, biological sex and training status on gCBF andCV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Data are reported as group means (SD). Pre-PHV youth demonstrated elevated gCBF and slowerCV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response times than post-PHV counterparts (both: P ≤ 0.001). gCBF was only elevated in post-PHV trained males when compared to untrained counterparts (634 (43) vs. 578 (46) ml min-1 ; P = 0.007). However,CV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response time was faster in pre- (72 (20) vs. 95 (29) s; P ≤ 0.001), but not post-PHV (P = 0.721) trained youth when compared to untrained counterparts. Cardiorespiratory fitness was associated with gCBF in post-PHV youth (r2 = 0.19; P ≤ 0.001) andCV R C O 2 ${\mathrm{CV}}{{\mathrm{R}}_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ mean response time in pre-PHV youth (r2 = 0.13; P = 0.014). Higher cardiorespiratory fitness during adolescence can elevate gCBF while exercise training during childhood primes the development of cerebrovascular function, highlighting the importance of exercise training during the early stages of life in shaping the cerebrovascular phenotype.
Collapse
Affiliation(s)
- Jack S. Talbot
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Centre for Health, Activity and Wellbeing ResearchCardiff Metropolitan UniversityCardiffUK
| | - Dean R. Perkins
- Department of Sport ScienceUniversity of InnsbruckInnsbruckAustria
| | - Christine M. Tallon
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaCanada
| | - Tony G. Dawkins
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaCanada
| | - Andrew J. M. Douglas
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Centre for Health, Activity and Wellbeing ResearchCardiff Metropolitan UniversityCardiffUK
| | - Ryan Beckerleg
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Andrew Crofts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Melissa E. Wright
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Saajan Davies
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Jessica J. Steventon
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and AstronomyCardiff UniversityCardiffUK
| | - Rachel N. Lord
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Centre for Health, Activity and Wellbeing ResearchCardiff Metropolitan UniversityCardiffUK
| | - Christopher J. A. Pugh
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Centre for Health, Activity and Wellbeing ResearchCardiff Metropolitan UniversityCardiffUK
| | - Jon L. Oliver
- Youth Physical Development CentreCardiff Metropolitan UniversityCardiffUK
- Sports Performance Research Institute New ZealandAUT UniversityAucklandNew Zealand
| | - Rhodri S. Lloyd
- Youth Physical Development CentreCardiff Metropolitan UniversityCardiffUK
- Sports Performance Research Institute New ZealandAUT UniversityAucklandNew Zealand
- Centre for Sport Science and Human PerformanceWaikato Institute of TechnologyWaikatoNew Zealand
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaCanada
| | - Ali M. McManus
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaCanada
| | - Mike Stembridge
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Centre for Health, Activity and Wellbeing ResearchCardiff Metropolitan UniversityCardiffUK
- Youth Physical Development CentreCardiff Metropolitan UniversityCardiffUK
| |
Collapse
|
10
|
Woodward OB, Driver I, Schwarz ST, Hart E, Wise R. Assessment of brainstem function and haemodynamics by MRI: challenges and clinical prospects. Br J Radiol 2023; 96:20220940. [PMID: 37721043 PMCID: PMC10607409 DOI: 10.1259/bjr.20220940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/25/2023] [Accepted: 05/24/2023] [Indexed: 09/19/2023] Open
Abstract
MRI offers techniques for non-invasively measuring a range of aspects of brain tissue function. Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is widely used to assess neural activity, based on the brain's haemodynamic response, while arterial spin labelling (ASL) MRI is a non-invasive method of quantitatively mapping cerebral perfusion. Both techniques can be applied to measure cerebrovascular reactivity (CVR), an important marker of the health of the cerebrovascular system. BOLD, ASL and CVR have been applied to study a variety of disease processes and are already used in certain clinical circumstances. The brainstem is a critical component of the central nervous system and is implicated in a variety of disease processes. However, its function is difficult to study using MRI because of its small size and susceptibility to physiological noise. In this article, we review the physical and biological underpinnings of BOLD and ASL and their application to measure CVR, discuss the challenges associated with applying them to the brainstem and the opportunities for brainstem MRI in the research and clinical settings. With further optimisation, functional MRI techniques could feasibly be used to assess brainstem haemodynamics and neural activity in the clinical setting.
Collapse
Affiliation(s)
- Owen Bleddyn Woodward
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Ian Driver
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | | | - Emma Hart
- University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
11
|
Agarwal S, Welker KM, Black DF, Little JT, DeLone DR, Messina SA, Passe TJ, Bettegowda C, Pillai JJ. Detection and Mitigation of Neurovascular Uncoupling in Brain Gliomas. Cancers (Basel) 2023; 15:4473. [PMID: 37760443 PMCID: PMC10527022 DOI: 10.3390/cancers15184473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks. Although fMRI is a powerful tool that can be used as an adjunct for brain tumor surgery planning, it has some constraints that should be taken into consideration for proper clinical interpretation. BOLD fMRI interpretation may be limited by neurovascular uncoupling (NVU) induced by brain tumors. Cerebrovascular reactivity (CVR) mapping obtained using breath-hold methods is an effective method for evaluating NVU potential.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Kirk M. Welker
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David F. Black
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Jason T. Little
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David R. DeLone
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Steven A. Messina
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Theodore J. Passe
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Jay J. Pillai
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
12
|
Ryman SG, Shaff N, Dodd A, Nitschke S, Wertz C, Julio K, Suarez Cedeno G, Deligtisch A, Erhardt E, Lin H, Vakhtin A, Poston KL, Tarawneh R, Pirio Richardson S, Mayer A. Reduced and Delayed Cerebrovascular Reactivity in Patients with Parkinson's Disease. Mov Disord 2023; 38:1262-1272. [PMID: 37157056 PMCID: PMC10524339 DOI: 10.1002/mds.29429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Cerebrovascular dysfunction in Parkinson's disease (PD) is heterogeneous and may contribute to disease pathophysiology or progression. There is a need to understand the mechanisms by which cerebrovascular dysfunction is altered in participants with PD. OBJECTIVES The objective of this study is to test the hypothesis that participants with PD exhibit a significant reduction in the ability of the cerebral vessels to dilate in response to vasoactive challenges relative to healthy controls (HC). METHODS The current study uses a vasodilatory challenge while participants undergo functional magnetic resonance imaging to quantify the amplitude and delay of cerebrovascular reactivity in participants with PD relative to age and sex-matched HC. An analysis of covariance was used to evaluate differences in cerebrovascular reactivity amplitude and latency between PD participants and HC. RESULTS A significant main effect of group was observed for whole-brain cerebrovascular reactivity amplitude (F(1, 28) = 4.38, p = 0.046, Hedge's g = 0.73) and latency (F(1, 28) = 16.35, p < 0.001, Hedge's g = 1.42). Participants with PD exhibited reduced whole-brain amplitude and increased latencies in cerebrovascular reactivity relative to HC. The evaluation of regional effects indicates that the largest effects were observed in the cuneus, precuneus, and parietal regions. CONCLUSIONS PD participants exhibited reduced and delayed cerebrovascular reactivity. This dysfunction may play an important role in chronic hypoxia, neuroinflammation, and protein aggregation, mechanisms that could lead to disease progression. Cerebrovascular reactivity may serve as an important biomarker and target for future interventions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Nicholas Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Andrew Dodd
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Stephanie Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Christopher Wertz
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Kayla Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Gerson Suarez Cedeno
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Amanda Deligtisch
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, USA
| | - Henry Lin
- Department of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
- Neurology|Medicine, New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Andrei Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Kathleen L Poston
- Movement Disorders Division in the Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Rawan Tarawneh
- Memory and Aging Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA
- Neurology|Medicine, New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Andrew Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| |
Collapse
|
13
|
Fitzgerald B, Yao JF, Hocke LM, Frederick BD, van Niftrik CHB, Tong Y. Using carpet plots to analyze blood transit times in the brain during hypercapnic challenge magnetic resonance imaging. Front Physiol 2023; 14:1134804. [PMID: 36875021 PMCID: PMC9975721 DOI: 10.3389/fphys.2023.1134804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Blood arrival time and blood transit time are useful metrics in characterizing hemodynamic behaviors in the brain. Functional magnetic resonance imaging in combination with a hypercapnic challenge has been proposed as a non-invasive imaging tool to determine blood arrival time and replace dynamic susceptibility contrast (DSC) magnetic resonance imaging, a current gold-standard imaging tool with the downsides of invasiveness and limited repeatability. Using a hypercapnic challenge, blood arrival times can be computed by cross-correlating the administered CO2 signal with the fMRI signal, which increases during elevated CO2 due to vasodilation. However, whole-brain transit times derived from this method can be significantly longer than the known cerebral transit time for healthy subjects (nearing 20 s vs. the expected 5-6 s). To address this unrealistic measurement, we here propose a novel carpet plot-based method to compute improved blood transit times derived from hypercapnic blood oxygen level dependent fMRI, demonstrating that the method reduces estimated blood transit times to an average of 5.32 s. We also investigate the use of hypercapnic fMRI with cross-correlation to compute the venous blood arrival times in healthy subjects and compare the computed delay maps with DSC-MRI time to peak maps using the structural similarity index measure (SSIM). The strongest delay differences between the two methods, indicated by low structural similarity index measure, were found in areas of deep white matter and the periventricular region. SSIM measures throughout the remainder of the brain reflected a similar arrival sequence derived from the two methods despite the exaggerated spread of voxel delays computed using CO2 fMRI.
Collapse
Affiliation(s)
- Bradley Fitzgerald
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States
| | - Jinxia Fiona Yao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Lia M Hocke
- McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, , United States
| | - Blaise deB Frederick
- McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, , United States
| | | | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
Carr JMJR, Howe CA, Gibbons TD, Tymko MM, Steele AR, Vizcardo-Galindo GA, Tremblay JC, Ainslie PN. Cerebral endothelium-dependent function and reactivity to hypercapnia: the role of α 1-adrenoreceptors. J Appl Physiol (1985) 2022; 133:1356-1367. [PMID: 36326471 DOI: 10.1152/japplphysiol.00400.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We assessed hypercapnic cerebrovascular reactivity (CVR) and endothelium-dependent function [cerebral shear-mediated dilation (cSMD)] in the internal carotid artery (ICA) with and without systemic α1-adrenoreceptor blockade via Prazosin. We hypothesized that CVR would be reduced, whereas cSMD would remain unchanged, after Prazosin administration when compared with placebo. In 15 healthy adults (3 female, 26 ± 4 years), we conducted ICA duplex ultrasound during CVR [target +10 mmHg partial pressure of end-tidal carbon dioxide ([Formula: see text]) above baseline, 5 min] and cSMD (+9 mmHg [Formula: see text] above baseline, 30 s) using dynamic end-tidal forcing with and without α1-adrenergic blockade (Prazosin; 0.05 mg/kg) in a placebo-controlled, double-blind, and randomized design. The CVR in the ICA was not different between placebo and Prazosin (P = 0.578). During CVR, the reactivities of mean arterial pressure and cerebrovascular conductance to hypercapnia were also not different between conditions (P = 0.921 and P = 0.664, respectively). During Prazosin, cSMD was lower (1.1 ± 2.0% vs 3.8 ± 3.0%; P = 0.032); however, these data should be interpreted with caution due to the elevated baseline diameter (+1.3 ± 3.6%; condition: P = 0.0498) and lower shear rate (-14.5 ± 23.0%; condition: P < 0.001). Therefore, lower cSMD post α1-adrenoreceptor blockade might not indicate a reduction in cerebral endothelial function per se, but rather, that α1-adrenoreceptors contribute to resting cerebral vascular restraint at the level of the ICA.NEW & NOTEWORTHY We assessed steady-state hypercapnic cerebrovascular reactivity and cerebral endothelium-dependent function, with and without α1-adrenergic blockade (Prazosin), in a placebo-controlled, double-blind, and randomized study, to assess the contribution of α1-adrenergic receptors to cerebrovascular CO2 regulation. After administration of Prazosin, cerebrovascular reactivity to CO2 was not different compared with placebo despite lower blood flow, whereas cerebral endothelium-dependent function was reduced, likely due to elevated baseline internal carotid arterial diameter. These findings suggest that α1-adrenoreceptor activity does not influence cerebral blood flow regulation to CO2 and cerebral endothelial function.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew R Steele
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
15
|
Carr JMJR, Ainslie PN, Howe CA, Gibbons TD, Tymko MM, Steele AR, Hoiland RL, Vizcardo-Galindo GA, Patrician A, Brown CV, Caldwell HG, Tremblay JC. Brachial artery responses to acute hypercapnia: The roles of shear stress and adrenergic tone. Exp Physiol 2022; 107:1440-1453. [PMID: 36114662 DOI: 10.1113/ep090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the contributions of shear stress and adrenergic tone to brachial artery vasodilatation during hypercapnia? What is the main finding and its importance? In healthy young adults, shear-mediated vasodilatation does not occur in the brachial artery during hypercapnia, as elevated α₁-adrenergic activity typically maintains vascular tone and offsets distal vasodilatation controlling flow. ABSTRACT We aimed to assess the shear stress dependency of brachial artery (BA) responses to hypercapnia, and the α₁-adrenergic restraint of these responses. We hypothesized that elevated shear stress during hypercapnia would cause BA vasodilatation, but where shear stress was prohibited (via arterial compression), the BA would not vasodilate (study 1); and, in the absence of α₁-adrenergic activity, blood flow, shear stress and BA vasodilatation would increase (study 2). In study 1, 14 healthy adults (7/7 male/female, 27 ± 4 years) underwent bilateral BA duplex ultrasound during hypercapnia (partial pressure of end-tidal carbon dioxide, +10.2 ± 0.3 mmHg above baseline, 12 min) via dynamic end-tidal forcing, and shear stress was reduced in one BA using manual compression (compression vs. control arm). Neither diameter nor blood flow was different between baseline and the last minute of hypercapnia (P = 0.423, P = 0.363, respectively) in either arm. The change values from baseline to the last minute, in diameter (%; P = 0.201), flow (ml/min; P = 0.234) and conductance (ml/min/mmHg; P = 0.503) were not different between arms. In study 2, 12 healthy adults (9/3 male/female, 26 ± 4 years) underwent the same design with and without α₁-adrenergic receptor blockade (prazosin; 0.05 mg/kg) in a placebo-controlled, double-blind and randomized design. BA flow, conductance and shear rate increased during hypercapnia in the prazosin control arm (interaction, P < 0.001), but in neither arm during placebo. Even in the absence of α₁-adrenergic restraint, downstream vasodilatation in the microvasculature during hypercapnia is insufficient to cause shear-mediated vasodilatation in the BA.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada.,Faculty of Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrew R Steele
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Gustavo A Vizcardo-Galindo
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Alex Patrician
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Courtney V Brown
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, BC, Canada
| |
Collapse
|
16
|
Sayin ES, Schulman J, Poublanc J, Levine HT, Raghavan LV, Uludag K, Duffin J, Fisher JA, Mikulis DJ, Sobczyk O. Investigations of hypoxia-induced deoxyhemoglobin as a contrast agent for cerebral perfusion imaging. Hum Brain Mapp 2022; 44:1019-1029. [PMID: 36308389 PMCID: PMC9875930 DOI: 10.1002/hbm.26131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 10/09/2022] [Indexed: 01/28/2023] Open
Abstract
The assessment of resting perfusion measures (mean transit time, cerebral blood flow, and cerebral blood volume) with magnetic resonance imaging currently requires the presence of a susceptibility contrast agent such as gadolinium. Here, we present an initial comparison between perfusion measures obtained using hypoxia-induced deoxyhemoglobin and gadolinium in healthy study participants. We hypothesize that resting cerebral perfusion measures obtained using precise changes of deoxyhemoglobin concentration will generate images comparable to those obtained using a clinical standard, gadolinium. Eight healthy study participants were recruited (6F; age 23-60). The study was performed using a 3-Tesla scanner with an eight-channel head coil. The experimental protocol consisted of a high-resolution T1-weighted scan followed by two BOLD sequence scans in which each participant underwent a controlled bolus of transient pulmonary hypoxia, and subsequently received an intravenous bolus of gadolinium. The resting perfusion measures calculated using hypoxia-induced deoxyhemoglobin and gadolinium yielded maps that looked spatially comparable. There was no statistical difference between methods in the average voxel-wise measures of mean transit time, relative cerebral blood flow and relative cerebral blood volume, in the gray matter or white matter within each participant. We conclude that perfusion measures generated with hypoxia-induced deoxyhemoglobin are spatially and quantitatively comparable to those generated from a gadolinium injection in the same healthy participant.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada,Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada
| | - Jacob Schulman
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada,Techna Institute, University Health NetworkTorontoCanada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging LabUniversity Health NetworkTorontoOntarioCanada
| | - Harrison T. Levine
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada,Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada
| | - Lakshmikumar Venkat Raghavan
- Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada
| | - Kamil Uludag
- Techna Institute, University Health NetworkTorontoCanada,Joint Department of Medical Imaging and the Functional Neuroimaging LabUniversity Health NetworkTorontoOntarioCanada,Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - James Duffin
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada,Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada
| | - Joseph A. Fisher
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada,Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada
| | - David J. Mikulis
- Techna Institute, University Health NetworkTorontoCanada,Joint Department of Medical Imaging and the Functional Neuroimaging LabUniversity Health NetworkTorontoOntarioCanada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain ManagementUniversity Health Network, University of TorontoTorontoOntarioCanada,Joint Department of Medical Imaging and the Functional Neuroimaging LabUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
17
|
Glodzik L, Rusinek H, Butler T, Li Y, Storey P, Sweeney E, Osorio RS, Biskaduros A, Tanzi E, Harvey P, Woldstad C, Maloney T, de Leon MJ. Higher body mass index is associated with worse hippocampal vasoreactivity to carbon dioxide. Front Aging Neurosci 2022; 14:948470. [PMID: 36158536 PMCID: PMC9491849 DOI: 10.3389/fnagi.2022.948470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background and objectives Obesity is a risk factor for cognitive decline. Probable mechanisms involve inflammation and cerebrovascular dysfunction, leading to diminished cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). The hippocampus, crucially involved in memory processing and thus relevant to many types of dementia, poses a challenge in studies of perfusion and CVR, due to its location, small size, and complex shape. We examined the relationships between body mass index (BMI) and hippocampal resting CBF and CVR to carbon dioxide (CVRCO2) in a group of cognitively normal middle-aged and older adults. Methods Our study was a retrospective analysis of prospectively collected data. Subjects were enrolled for studies assessing the role of hippocampal hemodynamics as a biomarker for AD among cognitively healthy elderly individuals (age > 50). Participants without cognitive impairment, stroke, and active substance abuse were recruited between January 2008 and November 2017 at the NYU Grossman School of Medicine, former Center for Brain Health. All subjects underwent medical, psychiatric, and neurological assessments, blood tests, and MRI examinations. To estimate CVR, we increased their carbon dioxide levels using a rebreathing protocol. Relationships between BMI and brain measures were tested using linear regression. Results Our group (n = 331) consisted of 60.4% women (age 68.8 ± 7.5 years; education 16.8 ± 2.2 years) and 39.6% men (age 70.4 ± 6.4 years; education 16.9 ± 2.4 years). Approximately 22% of them (n = 73) were obese. BMI was inversely associated with CVRCO2 (β = -0.12, unstandardized B = -0.06, 95% CI -0.11, -0.004). A similar relationship was observed after excluding subjects with diabetes and insulin resistance (β = -0.15, unstandardized B = -0.08, 95% CI -0.16, -0.000). In the entire group, BMI was more strongly related to hippocampal CVRCO2 in women (β = -0.20, unstandardized B = -0.08, 95% CI -0.13, -0.02). Discussion These findings lend support to the notion that obesity is a risk factor for hippocampal hemodynamic impairment and suggest targeting obesity as an important prevention strategy. Prospective studies assessing the effects of weight loss on brain hemodynamic measures and inflammation are warranted.
Collapse
Affiliation(s)
- Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Henry Rusinek
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Pippa Storey
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Elizabeth Sweeney
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
| | - Adrienne Biskaduros
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Patrick Harvey
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Christopher Woldstad
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Mony J. de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
18
|
Hampson JP, Lacuey N, Rani MRS, Hampson JS, Simeone KA, Simeone TA, Narayana PA, Lemieux L, Lhatoo SD. Functional MRI Correlates of Carbon Dioxide Chemosensing in Persons With Epilepsy. Front Neurol 2022; 13:896204. [PMID: 35873766 PMCID: PMC9301231 DOI: 10.3389/fneur.2022.896204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives Sudden unexpected death in epilepsy (SUDEP) is a catastrophic epilepsy outcome for which there are no reliable premortem imaging biomarkers of risk. Percival respiratory depression is seen in monitored SUDEP and near SUDEP cases, and abnormal chemosensing of raised blood carbon dioxide (CO2) is thought to contribute. Damage to brainstem respiratory control and chemosensing structures has been demonstrated in structural imaging and neuropathological studies of SUDEP. We hypothesized that functional MRI (fMRI) correlates of abnormal chemosensing are detectable in brainstems of persons with epilepsy (PWE) and are different from healthy controls (HC). Methods We analyzed fMRI BOLD activation and brain connectivity in 10 PWE and 10 age- and sex-matched HCs during precisely metered iso-oxic, hypercapnic breathing challenges. Segmented brainstem responses were of particular interest, along with characterization of functional connectivity metrics between these structures. Regional BOLD activations during hypercapnic challenges were convolved with hemodynamic responses, and the resulting activation maps were passed on to group-level analyses. For the functional connectivity analysis, significant clusters from BOLD results were used as seeds. Each individual seed time-series activation map was extracted for bivariate correlation coefficient analyses to study changes in brain connectivity between PWE and HCs. Results (1) Greater brainstem BOLD activations in PWE were observed compared to HC during hypercapnic challenges in several structures with respiratory/chemosensing properties. Group comparison between PWE vs. HC showed significantly greater activation in the dorsal raphe among PWE (p < 0.05) compared to HCs. (2) PWE had significantly greater seed-seed connectivity and recruited more structures during hypercapnia compared to HC. Significance The results of this study show that BOLD responses to hypercapnia in human brainstem are detectable and different in PWE compared to HC. Increased dorsal raphe BOLD activation in PWE and increased seed-seed connectivity between brainstem and adjacent subcortical areas may indicate abnormal chemosensing in these individuals. Imaging investigation of brainstem respiratory centers involved in respiratory regulation in PWE is an important step toward identifying suspected dysfunction of brainstem breathing control that culminates in SUDEP and deserve further study as potential imaging SUDEP biomarkers.
Collapse
Affiliation(s)
- Johnson P. Hampson
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nuria Lacuey
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - MR Sandhya Rani
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jaison S. Hampson
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kristina A. Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Timothy A. Simeone
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, United States
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louis Lemieux
- Department of Clinical and Experimental Epilepsy, University College London (UCL) Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Samden D. Lhatoo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
19
|
Weston ME, Koep JL, Lester AB, Barker AR, Bond B. The acute effect of exercise intensity on peripheral and cerebral vascular function in healthy adults. J Appl Physiol (1985) 2022; 133:461-470. [PMID: 35796612 PMCID: PMC9377787 DOI: 10.1152/japplphysiol.00772.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The acute effect of exercise intensity on cerebrovascular reactivity and whether this mirrors changes in peripheral vascular function have not been investigated. The aim of this study was to explore the acute effect of exercise intensity on cerebrovascular reactivity (CVR) and peripheral vascular function in healthy young adults (n = 10, 6 females, 22.7 ± 3.5 yr). Participants completed four experimental conditions on separate days: high-intensity interval exercise (HIIE) with intervals performed at 75% maximal oxygen uptake (V̇o2max; HIIE1), HIIE with intervals performed at 90% V̇o2max (HIIE2), continuous moderate-intensity exercise (MIE) at 60% V̇o2max and a sedentary control condition (CON). All exercise conditions were completed on a cycle ergometer and matched for time (30 min) and average intensity (60% V̇o2max). Brachial artery flow-mediated dilation (FMD) and CVR of the middle cerebral artery were measured before exercise, and 1- and 3-h after exercise. CVR was assessed using transcranial Doppler ultrasonography to both hypercapnia (6% carbon dioxide breathing) and hypocapnia (hyperventilation). FMD was significantly elevated above baseline 1 and 3 h following both HIIE conditions (P < 0.05), but FMD was unchanged following the MIE and CON trials (P > 0.33). CVR to both hypercapnia and hypocapnia, and when expressed across the end-tidal CO2 range, was unchanged in all conditions, at all time points (all P > 0.14). In conclusion, these novel findings show that the acute increases in peripheral vascular function following HIIE, compared with MIE, were not mirrored by changes in cerebrovascular reactivity, which was unaltered following all exercise conditions in healthy young adults. NEW & NOTEWORTHY This is the first study to identify that acute improvements in peripheral vascular function following high-intensity interval exercise are not mirrored by improvements in cerebrovascular reactivity in healthy young adults. High-intensity interval exercise completed at both 75% and 90% V̇o2max increased brachial artery flow-mediated dilation 1 and 3 h following exercise, compared with continuous moderate-intensity exercise and a sedentary control condition. By contrast, cerebrovascular reactivity was unchanged following all four conditions.
Collapse
Affiliation(s)
- Max Edwin Weston
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Jodie L Koep
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Alice B Lester
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Bert Bond
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
20
|
Koep JL, Weston ME, Barker AR, Bailey TG, Coombes JS, Lester A, Bond B. The within- and between-day reliability of cerebrovascular reactivity using traditional and novel analytical approaches. Exp Physiol 2021; 107:29-41. [PMID: 34806238 DOI: 10.1113/ep090031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of the study? What is the reliability of middle cerebral artery velocity cerebrovascular reactivity (CVR) when using traditional and novel outcomes, as measured by transcranial Doppler? What is the main finding and its importance? Traditional CVR approaches presented acceptable reproducibility but should be expressed as an absolute CVR. Large within- and between-individual differences in the middle cerebral artery velocity response profile support using a dynamic peak, rather than a set time point, for the most reliable interpretation. The study highlights the utility of novel kinetic CVR outcomes, but due to increased variability in time-based metrics, this analysis requires larger sample sizes than traditional methods. ABSTRACT Cerebrovascular reactivity (CVR) of middle cerebral artery velocity (MCAv) to CO2 is a common method to assess cerebrovascular function. Yet, the approaches used to calculate CVR outcomes vary. The aim of this study was to explore the within- and between-day reliability of traditional CVR outcomes. The second aim was to explore the reliability of novel kinetic-based analyses. Healthy adults (n = 10, 22.3 ± 3.4 years) completed assessments of CVR over 4 min using a fixed fraction of inspired CO2 (6%). This was repeated across four separate visits (between-day), and on one visit measures were repeated 2.5 h later (within-day). No mean biases were present between assessments for traditional CVR metrics, expressed as absolute (cm/s/mmHg) or relative (%/mmHg) outcomes (minute 3, minute 4, peak 1 s, peak 30 s) (between-day: P > 0.14, ηp 2 < 0.20; within-day: P > 0.22, d > 0.27). Absolute, rather than relative, CVR yielded the most reproducible parameters (coefficient of variation: 8.1-13.2% vs. 14-83%, respectively). There were significant differences between CVR outcomes (P < 0.001, ηp 2 > 0.89) dependent on the time point used to determine CVR, as a steady state MCAv response was rarely observed. Furthermore, the MCAv response was not reproducible within an individual (κ = 0.15, P = 0.09). No mean differences were present for novel kinetic outcomes (amplitude, time-delay, time constant) (between-day: P > 0.05, d < 0.33; within-day: P > 0.38, d < 0.25). The results support the need for standardisation and indicate CVR should be defined as a dynamic peak, rather than a set time point for increased reliability. For novel kinetic outcomes variability was greater (CV: 8.7-120.9%) due to the nature of time-based metrics.
Collapse
Affiliation(s)
- Jodie L Koep
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Max E Weston
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia.,School of Nursing Midwifery and Social Work, University of Queensland, Brisbane, Queensland, Australia
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Alice Lester
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Bert Bond
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
21
|
Wang R, Poublanc J, Crawley AP, Sobczyk O, Kneepkens S, Mcketton L, Tator C, Wu R, Mikulis DJ. Cerebrovascular reactivity changes in acute concussion: a controlled cohort study. Quant Imaging Med Surg 2021; 11:4530-4542. [PMID: 34737921 DOI: 10.21037/qims-20-1296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
Background Evidence suggests that cerebrovascular reactivity (CVR) increases within the first week after the incidence of concussion, indicating a disruption of normal autoregulation. We sought to extend these findings by investigating the effects of acute concussion on the speed of CVR response and by visualizing global and regional impairments in individual patients with acute concussion. Methods Twelve patients aged 18-40 years who experienced concussion less than a week before this prospective study were included. Twelve age and sex-matched healthy subjects constituted the control group. In all subjects, CVR was assessed using blood oxygenation level-dependent (BOLD) echo-planar imaging with a 3.0T MRI scanner, in combination with changes in end-tidal partial pressure of CO2 (PETCO2). In each subject, we calculated the CVR amplitude and CVR response time in the gray and white matter using a step and ramp PETCO2 challenge. In addition, a separate group of 39 healthy controls who underwent the same evaluation was used to create atlases with voxel-wise mean and standard deviation of CVR amplitude and CVR response time. This allowed us to convert each metric of the 12 patients with concussion and the 12 healthy controls into z-score maps. These maps were then used to generate and compare z-scores for each of the two groups. Group differences were calculated using an unpaired t-test. Results All studies were well tolerated without any serious adverse events. Anatomical MRI was normal in all study subjects. No differences in CO2 stimulus and O2 targeting were observed between the two participant groups during BOLD MRI. With regard to the gray matter, the CVR magnitude step (P=0.117) and ramp + 10 (P=0.085) were not significantly different between patients with concussion and healthy controls. However, the tau value was significantly lower in patients with concussion than in the healthy controls (P=0.04). With regard to the white matter, the CVR magnitude step (P=0.003) and ramp + 10 (P=0.031) were significantly higher and the tau value (P=0.024) was significantly shorter in patients with concussion than in healthy controls. After z-score transformation, the z tau value was significantly lower in patients with concussion than in healthy controls (Grey matter P=0.021, White matter P=0.003). Comparison of the three parameters, z ramp + 10, z step, and z tau, between the two groups showed that z step (Grey matter P=0.035, White matter P=0.005) was the most sensitive parameter and that z ramp + 10 (Grey matter P=0.073, White matter P=0.126) was the least sensitive parameter. Conclusions Concussion is associated with patient-specific abnormalities in BOLD cerebrovascular responsiveness that occur in the setting of normal global CVR. This study demonstrates that the measurement of CVR using BOLD MRI and precise CO2 control is a safe, reliable, reproducible, and clinically useful method for evaluating the state of patients with concussion. It has the potential to be an important tool for assessing the severity and duration of symptoms after concussion.
Collapse
Affiliation(s)
- Runrun Wang
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China.,Department of Medical Imaging, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Julien Poublanc
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Sander Kneepkens
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Larissa Mcketton
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Charles Tator
- Department of Surgery, Division of Neurosurgery, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Renhua Wu
- Department of Medical Imaging, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - David J Mikulis
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Carr JMJR, Caldwell HG, Carter H, Smith K, Tymko MM, Green DJ, Ainslie PN, Hoiland RL. The stability of cerebrovascular CO 2 reactivity following attainment of physiological steady-state. Exp Physiol 2021; 106:2542-2555. [PMID: 34730862 DOI: 10.1113/ep089982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? During a steady-state cerebrovascular CO2 reactivity test, do different data extraction time points change the outcome for cerebrovascular CO2 reactivity? What is the main finding and its importance? Once steady-state end-tidal pressure of CO2 and haemodynamics were achieved, cerebral blood flow was stable, and so cerebrovascular CO2 reactivity values remained unchanged regardless of data extraction length (30 vs. 60 s) and time point (at 2-5 min). ABSTRACT This study assessed cerebrovascular CO2 reactivity (CVR) and examined data extraction time points and durations with the hypotheses that: (1) there would be no difference in CVR values when calculated with cerebral blood flow (CBF) measures at different time points following the attainment of physiological steady-state, (2) once steady-state was achieved there would be no difference in CVR values derived from 60 to 30 s extracted means, and (3) that changes in V ̇ E would not be associated with any changes in CVR. We conducted a single step iso-oxic hypercapnic CVR test using dynamic end-tidal forcing (end-tidal P C O 2 , +9.4 ± 0.7 mmHg), and transcranial Doppler and Duplex ultrasound of middle cerebral artery (MCA) and internal carotid artery (ICA), respectively. From the second minute of hypercapnia onwards, physiological steady-state was apparent, with no subsequent changes in end-tidal P C O 2 , P O 2 or mean arterial pressure. Therefore, CVR measured in the ICA and MCA was stable following the second minute of hypercapnia onwards. Data extraction durations of 30 or 60 s did not give statistically different CVR values. No differences in CVR were detected following the second minute of hypercapnia after accounting for mean arterial pressure via calculated conductance or covariation of mean arterial pressure. These findings demonstrate that, provided the P C O 2 stimulus remains in a steady-state, data extracted from any minute of a CVR test during physiological steady-state conditions produce equivalent CVR values; any change in the CVR value would represent a failure of CVR mechanisms, a change in the magnitude of the stimulus, or measurement error.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Howard Carter
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Kurt Smith
- Cerebrovascular Health, Exercise, and Environmental Research Sciences Laboratory (CHEERS), School of Exercise Science and Physical Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Canada
| | - Daniel J Green
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaborations on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Mishra AK, Schiavon S, Wargocki P, Tham KW. Respiratory performance of humans exposed to moderate levels of carbon dioxide. INDOOR AIR 2021; 31:1540-1552. [PMID: 33991134 DOI: 10.1111/ina.12823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
In a business as usual scenario, atmospheric carbon dioxide concentration (CO2 ) could reach 950 parts per million (ppm) by 2100. Indoor CO2 concentrations will rise consequently, given its dependence on atmospheric CO2 levels. If buildings are ventilated following current standards in 2100, indoor CO2 concentration could be over 1300 ppm, depending on specific ventilation codes. Such exposure to CO2 could have physiological and psychological effects on building occupants. We conducted a randomized, within-subject study, examining the physiological effects on the respiratory functions of 15 persons. We examined three exposures, each 150 min long, with CO2 of: 900 ppm (reference), 1450 ppm (decreased ventilation), and 1450 ppm (reference condition with added pure CO2 ). We measured respiratory parameters with capnometry and forced vital capacity (FVC) tests. End-tidal CO2 and respiration rates did not significantly differ across the three exposures. Parameters measured using FVC decreased significantly from the start to the end of exposure only at the reduced ventilation condition (p < 0.04, large effect size). Hence, poor ventilation likely affects respiratory parameters. This effect is probably not caused by increased CO2 alone and rather by other pollutants-predominantly human bioeffluents in this work-whose concentrations increased as a result.
Collapse
Affiliation(s)
- Asit Kumar Mishra
- SinBerBEST, Berkeley Education Alliance for Research in Singapore, Singapore, Singapore
| | - Stefano Schiavon
- Center for the Built Environment, University of California, Berkeley, CA, USA
| | - Pawel Wargocki
- Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Kwok Wai Tham
- Department of Building, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Abdolahi F, Zhou X, Ashimatey BS, Chu Z, Jiang X, Wang RK, Kashani AH. Optical Coherence Tomography Angiography-Derived Flux As a Measure of Physiological Changes in Retinal Capillary Blood Flow. Transl Vis Sci Technol 2021; 10:5. [PMID: 34342607 PMCID: PMC8340668 DOI: 10.1167/tvst.10.9.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To compare optical coherence tomography angiography (OCTA)–derived flux with conventional OCTA measures of retinal vascular density in assessment of physiological changes in retinal blood flow. Methods Healthy subjects were recruited, and 3 × 3-mm2 fovea-centered scans were acquired using commercially available swept-source OCTA (SS-OCTA) while participants were breathing room air, 100% O2, or 5% CO2. Retinal perfusion was quantified using vessel area density (VAD) and vessel skeleton density (VSD), as well as novel measures of retinal perfusion, vessel area flux (VAF) and vessel skeleton flux (VSF). Flux is proportional to the number of red blood cells moving through a vessel segment per unit time. The percentage change in each measure was compared between the O2 and CO2 gas conditions for images of all vessels (arterioles, venules, and capillaries) and capillary-only images. Statistical significance was determined using paired t-tests and a linear mixed-effects model. Results Eighty-four OCTA scans from 29 subjects were included (age, 45.9 ± 19.5 years; 14 male, 48.3%). In capillary-only images, the change under the CO2 condition was 168% greater in VAF than in VAD (P = 0.002) and 124% greater in VSF than in VSD (P = 0.004). Similarly, under the O2 condition, the change was 94% greater in VAF than in VAD (P = 0.004) and 57% greater in VSF than in VSD (P = 0.01). Flux measures showed significantly greater change in capillary-only images compared with all-vessels images. Conclusions OCTA-derived flux measures quantify physiological changes in retinal blood flow at the capillary level with a greater effect size than conventional vessel density measures. Translational Relevance OCTA-derived flux is a useful measure of subclinical changes in retinal capillary perfusion.
Collapse
Affiliation(s)
- Farzan Abdolahi
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Xiao Zhou
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Bright S Ashimatey
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zhongdi Chu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Xuejuan Jiang
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Department of Ophthalmology, University of Washington Seattle, WA, USA
| | - Amir H Kashani
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Yao JF, Yang HCS, Wang JH, Liang Z, Talavage TM, Tamer GG, Jang I, Tong Y. A novel method of quantifying hemodynamic delays to improve hemodynamic response, and CVR estimates in CO2 challenge fMRI. J Cereb Blood Flow Metab 2021; 41:1886-1898. [PMID: 33444087 PMCID: PMC8327112 DOI: 10.1177/0271678x20978582] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevated carbon dioxide (CO2) in breathing air is widely used as a vasoactive stimulus to assess cerebrovascular functions under hypercapnia (i.e., "stress test" for the brain). Blood-oxygen-level-dependent (BOLD) is a contrast mechanism used in functional magnetic resonance imaging (fMRI). BOLD is used to study CO2-induced cerebrovascular reactivity (CVR), which is defined as the voxel-wise percentage BOLD signal change per mmHg change in the arterial partial pressure of CO2 (PaCO2). Besides the CVR, two additional important parameters reflecting the cerebrovascular functions are the arrival time of arterial CO2 at each voxel, and the waveform of the local BOLD signal. In this study, we developed a novel analytical method to accurately calculate the arrival time of elevated CO2 at each voxel using the systemic low frequency oscillations (sLFO: 0.01-0.1 Hz) extracted from the CO2 challenge data. In addition, 26 candidate hemodynamic response functions (HRF) were used to quantitatively describe the temporal brain reactions to a CO2 stimulus. We demonstrated that our approach improved the traditional method by allowing us to accurately map three perfusion-related parameters: the relative arrival time of blood, the hemodynamic response function, and CVR during a CO2 challenge.
Collapse
Affiliation(s)
- Jinxia Fiona Yao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Ho-Ching Shawn Yang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - James H Wang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Zhenhu Liang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,School of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Thomas M Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Gregory G Tamer
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Ikbeom Jang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
26
|
Intraoperative BOLD-fMRI Cerebrovascular Reactivity Assessment. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021. [PMID: 33973041 DOI: 10.1007/978-3-030-63453-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Blood oxygenation-level dependent cerebrovascular reactivity (BOLD-CVR) has gained attention in recent years as an effective way to investigate CVR, a measure of the hemodynamic state of the brain, with high spatial and temporal resolution. An association between impaired CVR and diverse pathologies has been observed, especially in ischemic cerebrovascular diseases and brain gliomas. The ability to obtain this information intraoperatively is novel and has not been widely tested. We report our first experience with this intraoperative technique in vascular and oncologic neurosurgical patients, discuss the results of its feasibility, and the possible developments of the intraoperative employment of BOLD-CVR.
Collapse
|
27
|
Sobczyk O, Fierstra J, Venkatraghavan L, Poublanc J, Duffin J, Fisher JA, Mikulis DJ. Measuring Cerebrovascular Reactivity: Sixteen Avoidable Pitfalls. Front Physiol 2021; 12:665049. [PMID: 34305634 PMCID: PMC8294324 DOI: 10.3389/fphys.2021.665049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 12/04/2022] Open
Abstract
An increase in arterial PCO2 is the most common stressor used to increase cerebral blood flow for assessing cerebral vascular reactivity (CVR). That CO2 is readily obtained, inexpensive, easy to administer, and safe to inhale belies the difficulties in extracting scientifically and clinically relevant information from the resulting flow responses. Over the past two decades, we have studied more than 2,000 individuals, most with cervical and cerebral vascular pathology using CO2 as the vasoactive agent and blood oxygen-level-dependent magnetic resonance imaging signal as the flow surrogate. The ability to deliver different forms of precise hypercapnic stimuli enabled systematic exploration of the blood flow-related signal changes. We learned the effect on CVR of particular aspects of the stimulus such as the arterial partial pressure of oxygen, the baseline PCO2, and the magnitude, rate, and pattern of its change. Similarly, we learned to interpret aspects of the flow response such as its magnitude, and the speed and direction of change. Finally, we were able to test whether the response falls into a normal range. Here, we present a review of our accumulated insight as 16 “lessons learned.” We hope many of these insights are sufficiently general to apply to a range of types of CO2-based vasoactive stimuli and perfusion metrics used for CVR.
Collapse
Affiliation(s)
- Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, Zürich, Switzerland
| | - Lakshmikumar Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Caldwell HG, Smith KJ, Lewis NCS, Hoiland RL, Willie CK, Lucas SJE, Stembridge M, Burgess KR, MacLeod DB, Ainslie PN. Regulation of cerebral blood flow by arterial PCO 2 independent of metabolic acidosis at 5050 m. J Physiol 2021; 599:3513-3530. [PMID: 34047356 DOI: 10.1113/jp281446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS We investigated the influence of arterial PCO2 (PaCO2 ) with and without experimentally altered pH on cerebral blood flow (CBF) regulation at sea level and with acclimatization to 5050 m. At sea level and high altitude, we assessed stepwise alterations in PaCO2 following metabolic acidosis (via 2 days of oral acetazolamide; ACZ) with and without acute restoration of pH (via intravenous sodium bicarbonate; ACZ+HCO3 - ). Total resting CBF was unchanged between trials at each altitude even though arterial pH and [HCO3 - ] (i.e. buffering capacity) were effectively altered. The cerebrovascular responses to changes in arterial [H+ ]/pH were consistent with the altered relationship between PaCO2 and [H+ ]/pH following ACZ at high altitude (i.e. leftward x-intercept shifts). Absolute cerebral blood velocity (CBV) and the sensitivity of CBV to PaCO2 was unchanged between trials at high altitude, indicating that CBF is acutely regulated by PaCO2 rather than arterial pH. ABSTRACT Alterations in acid-base balance with progressive acclimatization to high altitude have been well-established. However, how respiratory alkalosis and the resultant metabolic compensation interact to regulate cerebral blood flow (CBF) is uncertain. We addressed this via three separate experimental trials at sea level and following partial acclimatization (14 to 20 days) at 5050 m; involving: (1) resting acid-base balance (control); (2) following metabolic acidosis via 2 days of oral acetazolamide at 250 mg every 8 h (ACZ; pH: Δ -0.07 ± 0.04 and base excess: Δ -5.7 ± 1.9 mEq⋅l-1 , trial effects: P < 0.001 and P < 0.001, respectively); and (3) after acute normalization of arterial acidosis via intravenous sodium bicarbonate (ACZ + HCO3 - ; pH: Δ -0.01 ± 0.04 and base excess: Δ -1.5 ± 2.1 mEq⋅l-1 , trial effects: P = 1.000 and P = 0.052, respectively). Within each trial, we utilized transcranial Doppler ultrasound to assess the cerebral blood velocity (CBV) response to stepwise alterations in arterial PCO2 (PaCO2 ), i.e. cerebrovascular CO2 reactivity. Resting CBF (via Duplex ultrasound) was unaltered between trials within each altitude, indicating that respiratory compensation (i.e. Δ -3.4 ± 2.3 mmHg PaCO2 , trial effect: P < 0.001) was sufficient to offset any elevations in CBF induced via the ACZ-mediated metabolic acidosis. Between trials at high altitude, we observed consistent leftward shifts in both the PaCO2 -pH and CBV-pH responses across the CO2 reactivity tests with experimentally reduced arterial pH via ACZ. When indexed against PaCO2 - rather than pH - the absolute CBV and sensitivity of CBV-PaCO2 was unchanged between trials at high altitude. Taken together, following acclimatization, CO2 -mediated changes in cerebrovascular tone rather than arterial [H+ ]/pH is integral to CBF regulation at high altitude.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Kurt J Smith
- Integrative Physiology Laboratory, Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, USA
| | - Nia C S Lewis
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher K Willie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Samuel J E Lucas
- Department of Physiology, University of Otago, Dunedin, New Zealand.,School of Sport, Exercise and Rehabilitation Sciences & Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Michael Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Keith R Burgess
- Peninsula Sleep Clinic, Sydney, New South Wales, Australia.,Department of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
29
|
Slowed Temporal and Parietal Cerebrovascular Response in Patients with Alzheimer's Disease. Can J Neurol Sci 2021; 47:366-373. [PMID: 32051047 DOI: 10.1017/cjn.2020.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Recent investigations now suggest that cerebrovascular reactivity (CVR) is impaired in Alzheimer's disease (AD) and may underpin part of the disease's neurovascular component. However, our understanding of the relationship between the magnitude of CVR, the speed of cerebrovascular response, and the progression of AD is still limited. This is especially true in patients with mild cognitive impairment (MCI), which is recognized as an intermediate stage between normal aging and dementia. The purpose of this study was to investigate AD and MCI patients by mapping repeatable and accurate measures of cerebrovascular function, namely the magnitude and speed of cerebrovascular response (τ) to a vasoactive stimulus in key predilection sites for vascular dysfunction in AD. METHODS Thirty-three subjects (age range: 52-83 years, 20 males) were prospectively recruited. CVR and τ were assessed using blood oxygen level-dependent MRI during a standardized carbon dioxide stimulus. Temporal and parietal cortical regions of interest (ROIs) were generated from anatomical images using the FreeSurfer image analysis suite. RESULTS Of 33 subjects recruited, 3 individuals were excluded, leaving 30 subjects for analysis, consisting of 6 individuals with early AD, 11 individuals with MCI, and 13 older healthy controls (HCs). τ was found to be significantly higher in the AD group compared to the HC group in both the temporal (p = 0.03) and parietal cortex (p = 0.01) following a one-way ANCOVA correcting for age and microangiopathy scoring and a Bonferroni post-hoc correction. CONCLUSION The study findings suggest that AD is associated with a slowing of the cerebrovascular response in the temporal and parietal cortices.
Collapse
|
30
|
Carr JMJR, Caldwell HG, Ainslie PN. Cerebral blood flow, cerebrovascular reactivity and their influence on ventilatory sensitivity. Exp Physiol 2021; 106:1425-1448. [PMID: 33932955 DOI: 10.1113/ep089446] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Cerebrovascular reactivity to CO2 , which is a principal factor in determining ventilatory responses to CO2 through the role reactivity plays in determining cerebral extra- and intracellular pH. What advances does it highlight? Recent animal evidence suggests central chemoreceptor vasculature may demonstrate regionally heterogeneous cerebrovascular reactivity to CO2 , potentially as a protective mechanism against excessive CO2 washout from the central chemoreceptors, thereby allowing ventilation to reflect the systemic acid-base balance needs (respiratory changes in P aC O 2 ) rather than solely the cerebral needs. Ventilation per se does not influence cerebrovascular reactivity independent of changes in P aC O 2 . ABSTRACT Alveolar ventilation and cerebral blood flow are both predominantly regulated by arterial blood gases, especially arterial P C O 2 , and so are intricately entwined. In this review, the fundamental mechanisms underlying cerebrovascular reactivity and central chemoreceptor control of breathing are covered. We discuss the interaction of cerebral blood flow and its reactivity with the control of ventilation and ventilatory responsiveness to changes in P C O 2 , as well as the lack of influence of ventilation itself on cerebrovascular reactivity. We briefly summarize the effects of arterial hypoxaemia on the relationship between ventilatory and cerebrovascular response to both P C O 2 and P O 2 . We then highlight key methodological considerations regarding the interaction of reactivity and ventilatory sensitivity, including the following: regional heterogeneity of cerebrovascular reactivity; a pharmacological approach for the reduction of cerebral blood flow; reactivity assessment techniques; the influence of mean arterial blood pressure; and sex-related differences. Finally, we discuss ventilatory and cerebrovascular control in the context of high altitude and congestive heart failure. Future research directions and pertinent questions of interest are highlighted throughout.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, British Columbia, Canada
| |
Collapse
|
31
|
McKetton L, Sam K, Poublanc J, Crawley AP, Sobczyk O, Venkatraghavan L, Duffin J, Fisher JA, Mikulis DJ. The Effect of CO 2 on Resting-State Functional Connectivity: Isocapnia vs. Poikilocapnia. Front Physiol 2021; 12:639782. [PMID: 34054565 PMCID: PMC8155504 DOI: 10.3389/fphys.2021.639782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
The normal variability in breath size and frequency results in breath-to-breath variability of end-tidal PCO2 (PETCO2), the measured variable, and arterial partial pressure of carbon dioxide (PaCO2), the independent variable affecting cerebral blood flow (CBF). This study examines the effect of variability in PaCO2 on the pattern of resting-state functional MRI (rs-fMRI) connectivity. A region of interest (ROI)-to-ROI and Seed-to-Voxel first-level bivariate correlation, hemodynamic response function (hrf)-weighted analysis for measuring rs-fMRI connectivity was performed during two resting-state conditions: (a) normal breathing associated with breath-to-breath variation in PaCO2 (poikilocapnia), and (b) normal breathing with breath-to-breath variability of PETCO2 dampened using sequential rebreathing (isocapnia). End-tidal PCO2 (PETCO2) was used as a measurable surrogate for fluctuations of PaCO2. During poikilocapnia, enhanced functional connections were found between the cerebellum and inferior frontal and supramarginal gyrus (SG), visual cortex and occipital fusiform gyrus; and between the primary visual network (PVN) and the hippocampal formation. During isocapnia, these associations were not seen, rather enhanced functional connections were identified in the corticostriatal pathway between the putamen and intracalacarine cortex, supracalcarine cortex (SCC), and precuneus cortex. We conclude that vascular responses to variations in PETCO2, account for at least some of the observed resting state synchronization of blood oxygenation level-dependent (BOLD) signals.
Collapse
Affiliation(s)
- Larissa McKetton
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Kevin Sam
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.,The Russell H. Morgan Department of Radiology & Radiological Science, The John Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julien Poublanc
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Adrian P Crawley
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada
| | | | - James Duffin
- Department of Physiology, The University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Management, University Health Network, Toronto, ON, Canada.,Department of Physiology, The University of Toronto, Toronto, ON, Canada
| | - David J Mikulis
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Sobczyk O, Sayin ES, Sam K, Poublanc J, Duffin J, Fisher JA, Mikulis DJ. The Reproducibility of Cerebrovascular Reactivity Across MRI Scanners. Front Physiol 2021; 12:668662. [PMID: 34025455 PMCID: PMC8134667 DOI: 10.3389/fphys.2021.668662] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebrovascular reactivity (CVR) is defined as the ratio of the cerebral blood flow (CBF) response to an increase in a vasoactive stimulus. We used changes in blood oxygenation level-dependent (BOLD) MRI as surrogates for changes of CBF, and standardized quantitative changes in arterial partial pressure of carbon dioxide as the stimulus. Despite uniform stimulus and test conditions, differences in voxel-wise BOLD changes between testing sites may remain, attributable to physiologic and machine variability. We generated a reference atlas of normal CVR metrics (voxel-wise mean and SD) for each of two sites. We hypothesized that there would be no significant differences in CVR between the two atlases enabling each atlas to be used at any site. A total of 69 healthy subjects were tested to create site-specific atlases, with 20 of those individuals tested at both sites. 38 subjects were scanned at Site 1 (17F, 37.5 ± 16.8 y) and 51 subjects were tested at Site 2 (22F, 40.9 ± 17.4 y). MRI platforms were: Site 1, 3T Magnetom Skyra Siemens scanner with 20-channel head and neck coil; and Site 2, 3T HDx Signa GE scanner with 8-channel head coil. To construct the atlases, test results of individual subjects were co-registered into a standard space and voxel-wise mean and SD CVR metrics were calculated. Map comparisons of z scores found no significant differences between white matter or gray matter in the 20 subjects scanned at both sites when analyzed with either atlas. We conclude that individual CVR testing, and atlas generation are compatible across sites provided that standardized respiratory stimuli and BOLD MRI scan parameters are used. This enables the use of a single atlas to score the normality of CVR metrics across multiple sites.
Collapse
Affiliation(s)
- Olivia Sobczyk
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada.,Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
| | - Ece Su Sayin
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Kevin Sam
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Fisher JA, Mikulis DJ. Cerebrovascular Reactivity: Purpose, Optimizing Methods, and Limitations to Interpretation - A Personal 20-Year Odyssey of (Re)searching. Front Physiol 2021; 12:629651. [PMID: 33868001 PMCID: PMC8047146 DOI: 10.3389/fphys.2021.629651] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
The brain is a neurovascular organ. A stimulus-response approach is effective in interrogating the physiology of its vasculature. Ideally, the stimulus is standardized across patients, and in a single patient over time. We developed a standard stimulus and attempted to measure, classify, and interpret the many forms of responses. Over the past 20 years, our work has delivered nuanced insights into normal cerebral vascular physiology, as well as adaptive physiological responses in the presence of disease. The trajectory of our understanding did not follow a logical linear progression; rather, it emerged as a coalescence of new, old, and previously dismissed, ideas that had accumulated over time. In this essay, we review what we believe were our most valuable - and sometimes controversial insights during our two decades-long journey.
Collapse
Affiliation(s)
- Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
- The Joint Department of Medical Imaging, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
- Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, ON, Canada
| |
Collapse
|
34
|
Fitzgerald B, Yao JF, Talavage TM, Hocke LM, Frederick BD, Tong Y. Using carpet plots to analyze transit times of low frequency oscillations in resting state fMRI. Sci Rep 2021; 11:7011. [PMID: 33772060 PMCID: PMC7998022 DOI: 10.1038/s41598-021-86402-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/09/2021] [Indexed: 01/05/2023] Open
Abstract
A "carpet plot" is a 2-dimensional plot (time vs. voxel) of scaled fMRI voxel intensity values. Low frequency oscillations (LFOs) can be successfully identified from BOLD fMRI and used to study characteristics of neuronal and physiological activity. Here, we evaluate the use of carpet plots paired with a developed slope-detection algorithm as a means to study LFOs in resting state fMRI (rs-fMRI) data with the help of dynamic susceptibility contrast (DSC) MRI data. Carpet plots were constructed by ordering voxels according to signal delay time for each voxel. The slope-detection algorithm was used to identify and calculate propagation times, or "transit times", of tilted vertical edges across which a sudden signal change was observed. We aim to show that this metric has applications in understanding LFOs in fMRI data, possibly reflecting changes in blood flow speed during the scan, and for evaluating alternative blood-tracking contrast agents such as inhaled CO2. We demonstrate that the propagations of LFOs can be visualized and automatically identified in a carpet plot as tilted lines of sudden intensity change. Resting state carpet plots produce edges with transit times similar to those of DSC carpet plots. Additionally, resting state carpet plots indicate that edge transit times vary at different time points during the scan.
Collapse
Affiliation(s)
- Bradley Fitzgerald
- grid.169077.e0000 0004 1937 2197School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Jinxia Fiona Yao
- grid.169077.e0000 0004 1937 2197Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907-2032 USA
| | - Thomas M. Talavage
- grid.169077.e0000 0004 1937 2197Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907-2032 USA ,grid.169077.e0000 0004 1937 2197School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Lia M. Hocke
- grid.38142.3c000000041936754XMclean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | - Blaise deB Frederick
- grid.38142.3c000000041936754XMclean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN, 47907-2032, USA.
| |
Collapse
|
35
|
Krishnamurthy V, Sprick JD, Krishnamurthy LC, Barter JD, Turabi A, Hajjar IM, Nocera JR. The Utility of Cerebrovascular Reactivity MRI in Brain Rehabilitation: A Mechanistic Perspective. Front Physiol 2021; 12:642850. [PMID: 33815146 PMCID: PMC8009989 DOI: 10.3389/fphys.2021.642850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 01/06/2023] Open
Abstract
Cerebrovascular control and its integration with other physiological systems play a key role in the effective maintenance of homeostasis in brain functioning. Maintenance, restoration, and promotion of such a balance are one of the paramount goals of brain rehabilitation and intervention programs. Cerebrovascular reactivity (CVR), an index of cerebrovascular reserve, plays an important role in chemo-regulation of cerebral blood flow. Improved vascular reactivity and cerebral blood flow are important factors in brain rehabilitation to facilitate desired cognitive and functional outcomes. It is widely accepted that CVR is impaired in aging, hypertension, and cerebrovascular diseases and possibly in neurodegenerative syndromes. However, a multitude of physiological factors influence CVR, and thus a comprehensive understanding of underlying mechanisms are needed. We are currently underinformed on which rehabilitation method will improve CVR, and how this information can inform on a patient's prognosis and diagnosis. Implementation of targeted rehabilitation regimes would be the first step to elucidate whether such regimes can modulate CVR and in the process may assist in improving our understanding for the underlying vascular pathophysiology. As such, the high spatial resolution along with whole brain coverage offered by MRI has opened the door to exciting recent developments in CVR MRI. Yet, several challenges currently preclude its potential as an effective diagnostic and prognostic tool in treatment planning and guidance. Understanding these knowledge gaps will ultimately facilitate a deeper understanding for cerebrovascular physiology and its role in brain function and rehabilitation. Based on the lessons learned from our group's past and ongoing neurorehabilitation studies, we present a systematic review of physiological mechanisms that lead to impaired CVR in aging and disease, and how CVR imaging and its further development in the context of brain rehabilitation can add value to the clinical settings.
Collapse
Affiliation(s)
- Venkatagiri Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Division of Geriatrics and Gerontology, Department of Medicine, Emory University, Atlanta, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Justin D. Sprick
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Lisa C. Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Department of Physics & Astronomy, Georgia State University, Atlanta, GA, United States
| | - Jolie D. Barter
- Division of Geriatrics and Gerontology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Aaminah Turabi
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Ihab M. Hajjar
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Joe R. Nocera
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
36
|
Champagne AA, Bhogal AA. Insights Into Cerebral Tissue-Specific Response to Respiratory Challenges at 7T: Evidence for Combined Blood Flow and CO 2-Mediated Effects. Front Physiol 2021; 12:601369. [PMID: 33584344 PMCID: PMC7876301 DOI: 10.3389/fphys.2021.601369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebrovascular reactivity (CVR) mapping is finding increasing clinical applications as a non-invasive probe for vascular health. Further analysis extracting temporal delay information from the CVR response provide additional insight that reflect arterial transit time, blood redistribution, and vascular response speed. Untangling these factors can help better understand the (patho)physiology and improve diagnosis/prognosis associated with vascular impairments. Here, we use hypercapnic (HC) and hyperoxic (HO) challenges to gather insight about factors driving temporal delays between gray-matter (GM) and white-matter (WM). Blood Oxygen Level Dependent (BOLD) datasets were acquired at 7T in nine healthy subjects throughout BLOCK- and RAMP-HC paradigms. In a subset of seven participants, a combined HC+HO block, referred as the “BOOST” protocol, was also acquired. Tissue-based differences in Rapid Interpolation at Progressive Time Delays (RIPTiDe) were compared across stimulus to explore dynamic (BLOCK-HC) versus progressive (RAMP-HC) changes in CO2, as well as the effect of bolus arrival time on CVR delays (BLOCK-HC versus BOOST). While GM delays were similar between the BLOCK- (21.80 ± 10.17 s) and RAMP-HC (24.29 ± 14.64 s), longer WM lag times were observed during the RAMP-HC (42.66 ± 17.79 s), compared to the BLOCK-HC (34.15 ± 10.72 s), suggesting that the progressive stimulus may predispose WM vasculature to longer delays due to the smaller arterial content of CO2 delivered to WM tissues, which in turn, decreases intravascular CO2 gradients modulating CO2 diffusion into WM tissues. This was supported by a maintained ∼10 s offset in GM (11.66 ± 9.54 s) versus WM (21.40 ± 11.17 s) BOOST-delays with respect to the BLOCK-HC, suggesting that the vasoactive effect of CO2 remains constant and that shortening of BOOST delays was be driven by blood arrival reflected through the non-vasodilatory HO contrast. These findings support that differences in temporal and magnitude aspects of CVR between vascular networks reflect a component of CO2 sensitivity, in addition to redistribution and steal blood flow effects. Moreover, these results emphasize that the addition of a BOOST paradigm may provide clinical insights into whether vascular diseases causing changes in CVR do so by way of severe blood flow redistribution effects, alterations in vascular properties associated with CO2 diffusion, or changes in blood arrival time.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,School of Medicine, Queen's University, Kingston, ON, Canada
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
37
|
Caldwell HG, Howe CA, Chalifoux CJ, Hoiland RL, Carr JMJR, Brown CV, Patrician A, Tremblay JC, Panerai RB, Robinson TG, Minhas JS, Ainslie PN. Arterial carbon dioxide and bicarbonate rather than pH regulate cerebral blood flow in the setting of acute experimental metabolic alkalosis. J Physiol 2021; 599:1439-1457. [DOI: 10.1113/jp280682] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hannah G. Caldwell
- Centre for Heart, Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Connor A. Howe
- Centre for Heart, Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Carter J. Chalifoux
- Centre for Heart, Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Ryan L. Hoiland
- Department of Anesthesiology Pharmacology and Therapeutics Vancouver General Hospital University of British Columbia Vancouver BC Canada
- Department of Cellular and Physiological Sciences University of British Columbia Vancouver BC Canada
| | - Jay M. J. R. Carr
- Centre for Heart, Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Courtney V. Brown
- Centre for Heart, Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Joshua C. Tremblay
- Centre for Heart, Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| | - Ronney B. Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group Leicester Biomedical Research Centre University of Leicester Leicester UK
| | - Thompson G. Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group Leicester Biomedical Research Centre University of Leicester Leicester UK
| | - Jatinder S. Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHIASM) Research Group Leicester Biomedical Research Centre University of Leicester Leicester UK
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia Okanagan Kelowna BC Canada
| |
Collapse
|
38
|
Aebi MR, Bourdillon N, Kunz A, Bron D, Millet GP. Specific effect of hypobaria on cerebrovascular hypercapnic responses in hypoxia. Physiol Rep 2021; 8:e14372. [PMID: 32097541 PMCID: PMC7058173 DOI: 10.14814/phy2.14372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
It remains unknown whether hypobaria plays a role on cerebrovascular reactivity to CO2 (CVR). The present study evaluated the putative effect of hypobaria on CVR and its influence on cerebral oxygen delivery (cDO2) in five randomized conditions (i.e., normobaric normoxia, NN, altitude level of 440 m; hypobaric hypoxia, HH at altitude levels of 3,000 m and 5,500 m; normobaric hypoxia, NH, altitude simulation of 5,500 m; and hypobaric normoxia, HN). CVR was assessed in nine healthy participants (either students in aviation or pilots) during a hypercapnic test (i.e., 5% CO2). We obtained CVR by plotting middle cerebral artery velocity versus end‐tidal CO2 pressure (PETCO2) using a sigmoid model. Hypobaria induced an increased slope in HH (0.66 ± 0.33) compared to NH (0.35 ± 0.19) with a trend in HN (0.46 ± 0.12) compared to NN (0.23 ± 0.12, p = .069). PETCO2 was decreased (22.3 ± 2.4 vs. 34.5 ± 2.8 mmHg and 19.9 ± 1.3 vs. 30.8 ± 2.2 mmHg, for HN vs. NN and HH vs. NH, respectively, p < .05) in hypobaric conditions when compared to normobaric conditions with comparable inspired oxygen pressure (141 ± 1 vs. 133 ± 3 mmHg and 74 ± 1 vs. 70 ± 2 mmHg, for NN vs. HN and NH vs. HH, respectively) During hypercapnia, cDO2 was decreased in 5,500 m HH (p = .046), but maintained in NH when compared to NN. To conclude, CVR seems more sensitive (i.e., slope increase) in hypobaric than in normobaric conditions. Moreover, hypobaria potentially affected vasodilation reserve (i.e., MCAv autoregulation) and brain oxygen delivery during hypercapnia. These results are relevant for populations (i.e., aviation pilots; high‐altitude residents as miners; mountaineers) occasionally exposed to hypobaric normoxia.
Collapse
Affiliation(s)
- Mathias R Aebi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Becare SA, Renens, Switzerland
| | - Andres Kunz
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Denis Bron
- Aeromedical Center (AeMC), Swiss Air Force, Dübendorf, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Nyquist PA. Editorial for "Crossed Cerebellar Diaschisis in Patients With Symptomatic Unilateral Anterior Circulation Stroke Is Associated With Hemodynamic Impairment in the Ipsilateral MCA Territory". J Magn Reson Imaging 2020; 53:1198-1199. [PMID: 33128418 DOI: 10.1002/jmri.27418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- Paul A Nyquist
- Department of Neurology, Anesthesia/Critical Care Medicine, Neurosurgery, and General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Abstract
Neurovascular uncoupling (NVU) is one of the most important confounds of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMR imaging) in the setting of focal brain lesions such as brain tumors. This article reviews the assessment of NVU related to focal brain lesions with emphasis on the use of cerebrovascular reactivity mapping measurement methods and resting state BOLD fMR imaging metrics in the detection of NVU, as well as the use of amplitude of low-frequency fluctuation metrics to mitigate the effects of NVU on clinical fMR imaging activation.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA.
| |
Collapse
|
41
|
Carr JMJR, Hoiland RL, Caldwell HG, Coombs GB, Howe CA, Tremblay JC, Green DJ, Ainslie PN. Internal carotid and brachial artery shear‐dependent vasodilator function in young healthy humans. J Physiol 2020; 598:5333-5350. [DOI: 10.1113/jp280369] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jay M. J. R. Carr
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Ryan L. Hoiland
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
- Department of Anesthesiology Pharmacology and Therapeutics Vancouver General Hospital University of British Columbia Vancouver British Columbia Canada
| | - Hannah G. Caldwell
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Geoff B. Coombs
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Connor A. Howe
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Joshua C. Tremblay
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| | - Daniel J. Green
- School of Human Sciences (Sport and Exercise Sciences) The University of Western Australia Crawley Western Australia Australia
| | - Philip N. Ainslie
- Centre for Heart Lung and Vascular Health School of Health and Exercise Sciences University of British Columbia – Okanagan Campus Kelowna British Columbia Canada
| |
Collapse
|
42
|
Junejo RT, Lip GYH, Fisher JP. Cerebrovascular Dysfunction in Atrial Fibrillation. Front Physiol 2020; 11:1066. [PMID: 33013456 PMCID: PMC7509200 DOI: 10.3389/fphys.2020.01066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 01/13/2023] Open
Abstract
It is now well established that besides being the most common sustained arrhythmia, atrial fibrillation (AF) is a major healthcare burden. Risk of debilitating stroke is increased in AF patients, but even in the absence of stroke, this population is at heightened risk of cognitive decline, depression, and dementia. The reasons for this are complex, multifactorial, and incompletely understood. One potential contributing mechanism is cerebrovascular dysfunction. Cerebral blood flow is regulated by chemical, metabolic, autoregulatory, neurogenic, and systemic factors. The dysfunction in one or more of these mechanisms may contribute to the elevated risk of cognitive decline and cerebrovascular events in AF. This short review presents the evidence for diminished cerebral blood flow, cerebrovascular carbon dioxide reactivity (i.e., cerebrovascular vasodilatory reserve), cerebral autoregulation, and neurovascular coupling in AF patients when compared to control participants in sinus rhythm. Further work is needed to understand the physiological mechanisms underpinning these observations and their clinical significance in atrial fibrillation patients.
Collapse
Affiliation(s)
- Rehan T. Junejo
- Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, University of Liverpool, Liverpool, United Kingdom
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, University of Liverpool, Liverpool, United Kingdom
| | - James P. Fisher
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Tallon CM, Barker AR, Nowak-Flück D, Ainslie PN, McManus AM. The influence of age and sex on cerebrovascular reactivity and ventilatory response to hypercapnia in children and adults. Exp Physiol 2020; 105:1090-1101. [PMID: 32333697 DOI: 10.1113/ep088293] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? In this study, we investigated intracranial cerebrovascular and ventilatory reactivity to 6% CO2 in children and adults and explored dynamic ventilatory and cerebrovascular onset responses. What is the main finding and its importance? We showed that cerebrovascular reactivity was similar in children and adults, but the intracranial blood velocity onset response was markedly attenuated in children. Sex differences were apparent, with greater increases in intracranial blood velocity in females and lower ventilatory reactivity in adult females. Our study confirms the importance of investigating dynamic onset responses when assessing the influence of development on cerebrovascular regulation. ABSTRACT The purpose of this study was to compare the integrated intracranial cerebrovascular reactivity (CVR) and hypercapnic ventilatory response between children and adults and to explore the dynamic response of the middle cerebral artery mean velocity (MCAV ). Children (n = 20; 9.9 ± 0.7 years of age) and adults (n = 21; 24.4 ± 2.0 years of age) completed assessment of CVR over 240 s using a fixed fraction of inspired CO2 (0.06). Baseline MCAV was higher in the adult females compared with the males (P ≤ 0.05). The MCAV was greater in female children compared with male children (P ≤ 0.05) and in female adults compared with male adults (P ≤ 0.05) with hypercapnia. Relative CVR was similar in children and adults (3.71 ± 1.06 versus 4.12 ± 1.32% mmHg-1 ; P = 0.098), with absolute CVR being higher in adult females than males (3.27 ± 0.86 versus 2.53 ± 0.70 cm s-1 mmHg-1 ; P ≤ 0.001). Likewise, the hypercapnic ventilatory response did not differ between the children and adults (1.89 ± 1.00 versus 1.77 ± 1.34 l min-1 mmHg-1 ; P = 0.597), but was lower in adult females than males (1.815 ± 0.37 versus 2.33 ± 1.66 l min-1 mmHg-1 ; P ≤ 0.05). The heart rate response to hypercapnia was greater in children than in adults (P = 0.001). A monoexponential regression model was used to characterize the dynamic onset, consisting of a delay term, amplitude and time constant (τ). The results revealed that MCAV τ was faster in adults than in children (34 ± 18 versus 74 ± 28 s; P = 0.001). Our study provides new insight into the impact of age and sex on CVR and the dynamic response of the MCAV to hypercapnia.
Collapse
Affiliation(s)
- Christine M Tallon
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Daniela Nowak-Flück
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ali M McManus
- Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
44
|
Turkheimer FE, Selvaggi P, Mehta MA, Veronese M, Zelaya F, Dazzan P, Vernon AC. Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope? Schizophr Bull 2020; 46:484-495. [PMID: 31755955 PMCID: PMC7147598 DOI: 10.1093/schbul/sbz119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of antipsychotic medication to manage psychosis, principally in those with a diagnosis of schizophrenia or bipolar disorder, is well established. Antipsychotics are effective in normalizing positive symptoms of psychosis in the short term (delusions, hallucinations and disordered thought). Their long-term use is, however, associated with side effects, including several types of movement (extrapyramidal syndrome, dyskinesia, akathisia), metabolic and cardiac disorders. Furthermore, higher lifetime antipsychotic dose-years may be associated with poorer cognitive performance and blunted affect, although the mechanisms driving the latter associations are not well understood. In this article, we propose a novel model of the long-term effects of antipsychotic administration focusing on the changes in brain metabolic homeostasis induced by the medication. We propose here that the brain metabolic normalization, that occurs in parallel to the normalization of psychotic symptoms following antipsychotic treatment, may not ultimately be sustainable by the cerebral tissue of some patients; these patients may be characterized by already reduced oxidative metabolic capacity and this may push the brain into an unsustainable metabolic envelope resulting in tissue remodeling. To support this perspective, we will review the existing data on the brain metabolic trajectories of patients with a diagnosis of schizophrenia as indexed using available neuroimaging tools before and after use of medication. We will also consider data from pre-clinical studies to provide mechanistic support for our model.
Collapse
Affiliation(s)
- Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
45
|
Howe CA, Caldwell HG, Carr J, Nowak‐Flück D, Ainslie PN, Hoiland RL. Cerebrovascular reactivity to carbon dioxide is not influenced by variability in the ventilatory sensitivity to carbon dioxide. Exp Physiol 2020; 105:904-915. [DOI: 10.1113/ep088192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/20/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Connor A. Howe
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
| | - Hannah G. Caldwell
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
| | - Jay Carr
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
| | - Daniela Nowak‐Flück
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
| | - Philip N. Ainslie
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
| | - Ryan L. Hoiland
- Centre for HeartLung and Vascular HealthUniversity of British Columbia – Okanagan CampusSchool of Health and Exercise Sciences 3333 University Way Kelowna BC Canada V1V 1V7
- Department of Anesthesiology, Pharmacology, and TherapeuticsVancouver General HospitalWest 12th Avenue, University of British Columbia Vancouver BC Canada V5Z 1M9
| |
Collapse
|
46
|
Hlavati M, Buljan K, Tomić S, Horvat M, Butković-Soldo S. Impaired cerebrovascular reactivity in chronic obstructive pulmonary disease. Acta Neurol Belg 2019; 119:567-575. [PMID: 31215005 DOI: 10.1007/s13760-019-01170-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/11/2019] [Indexed: 11/27/2022]
Abstract
Impaired cerebrovascular reactivity (CVR) is associated with stroke. Cerebrovascular diseases are common comorbidity in chronic obstructive pulmonary disease (COPD) patients. The aim of our study was to quantify CVR in the anterior and posterior cerebral circulation during voluntary breath-holding in COPD patients according to airflow limitation severity. In this cross-sectional study, we compared 90 COPD patients without previous cerebrovascular disease and 30 age- and sex-matched healthy volunteers (mean age 67 ± 7.9, 87 males). Using transcranial Doppler ultrasound and breath-holding index (BHI), we analysed baseline mean flow velocities (MFV) and CVR of middle cerebral artery (MCA) and basilar artery (BA). Our results demonstrated that COPD patients had lower baseline MFV of both MCA and BA than controls. COPD patients had significantly lower BHImMCA and BHImBA than controls (0.8 and 0.7 versus 1.24 and 1.07, respectively; p < 0.001). With the severity of airflow obstruction, there were significant declines of BHImMCA and BHImBA in mild (0.94 and 0.83), moderate (0.8 and 0.7) and severe to very severe COPD (0.7 and 0.6), respectively (p < 0.001). For all participants, we found a significant and positive correlation between forced expiratory volume in one second (FEV1) and BHImMCA (Rho = 0.761, p < 0.001) and between FEV1 and BHImBA (Rho = 0.409, p < 0.001). COPD patients have impaired CVR in anterior and posterior cerebral circulation. Impairment of CVR increase with the airflow limitation severity. CVR is an appropriate marker to identify vulnerable COPD subjects at high risk to develop cerebrovascular disease. Prospective studies are needed for further evaluation.
Collapse
Affiliation(s)
- Marina Hlavati
- Department for Diagnostic and Therapeutical Procedures, Neurology Unit, General Hospital Našice, Bana Jelačića 10, 31500, Našice, Croatia.
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia.
| | - Krunoslav Buljan
- Neurology Clinic, Clinic Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Svetlana Tomić
- Neurology Clinic, Clinic Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| | - Mirjana Horvat
- Department of Internal Medicine, Pulmonology Unit, General Hospital Našice, Bana Jelačića 10, 31500, Našice, Croatia
| | - Silva Butković-Soldo
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
- Neurology Clinic, Clinic Hospital Centre Osijek, Josipa Huttlera 4, 31000, Osijek, Croatia
| |
Collapse
|
47
|
The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO 2 in healthy subjects. Neuroimage 2019; 207:116365. [PMID: 31734432 PMCID: PMC8080082 DOI: 10.1016/j.neuroimage.2019.116365] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 01/22/2023] Open
Abstract
Cerebrovascular reactivity (CVR) mapping using CO2-inhalation can provide important insight into vascular health. At present, blood-oxygenation-level-dependent (BOLD) MRI acquisition is the most commonly used CVR method due to its high sensitivity, high spatial resolution, and relatively straightforward processing. However, large variations in CVR across subjects and across different sessions of the same subject are often observed, which can cloud the ability of this promising measure in detecting diseases or monitoring treatment responses. The present work aims to identify the physiological components underlying the observed variability in CVR data. When studying the association between CVR value and the subject’s CO2 levels in a total of N = 253 healthy participants, we found that CVR was lower in individuals with a higher basal end-tidal CO2, EtCO2 (slope = −0.0036 ± 0.0008%/mmHg2, p < 0.001), or with a greater EtCO2 change (ΔEtCO2) with hypercapnic condition (slope = −0.0072 ± 0.0018%/mmHg2, p < 0.001). In a within-subject setting, when studying the CVR difference between two repeated scans (with repositioning) in relation to the corresponding differences in basal EtCO2 and ΔEtCO2 (n = 11), it was found that CVR values were lower if the basal EtCO2 or ΔEtCO2 during that particular scan session was greater. The present work suggests that basal physiological state and the level of hypercapnic stimulus intensity should be considered in application studies of CVR in order to reduce inter-subject and intra-subject variations in the data. Potential approaches to use these findings to reduce noise and augment sensitivity are proposed.
Collapse
|
48
|
Al-Khazraji BK, Shoemaker LN, Gati JS, Szekeres T, Shoemaker JK. Reactivity of larger intracranial arteries using 7 T MRI in young adults. J Cereb Blood Flow Metab 2019. [PMID: 29513623 PMCID: PMC6668520 DOI: 10.1177/0271678x18762880] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The larger intracranial conduit vessels contribute to the total cerebral vascular resistance, and understanding their vasoreactivity to physiological stimuli is required when attempting to understand regional brain perfusion. Reactivity of the larger cerebral conduit arteries remains understudied due to a need for improved imaging methods to simultaneously assess these vessels in a single stimulus. We characterized reactivity of basal intracranial conduit arteries (basilar, right and left posterior, middle and anterior cerebral arteries) and the right and left internal carotid arteries, to manipulations in end-tidal CO2 (PetCO2). Cross-sectional area changes (%CSA) were evaluated from high-resolution (0.5 mm isotropic) images collected at 7 T using a T1-weighted 3D SPACE pulse sequence, providing high contrast between vessel lumen and surrounding tissue. Cerebrovascular reactivity was calculated as %CSA/ΔPetCO2 in eight healthy individuals (18-23 years) during normocapnia (41 ± 4 mmHg), hypercapnia (48 ± 4 mmHg; breathing 5% CO2, balance oxygen), and hypocapnia (31 ± 8 mmHg; via hyperventilation). Reactivity to hypercapnia ranged from 0.8%/mmHg in the right internal carotid artery to 2.7%/mmHg in the left anterior cerebral artery. During hypocapnia, vasoconstriction ranged from 0.9%/mmHg in the basilar artery to 2.6%/mmHg in the right posterior cerebral artery. Heterogeneous cerebrovascular reactivity to hypercapnia and hypocapnia was characterized across basal intracranial conduit and internal carotid arteries.
Collapse
Affiliation(s)
- Baraa K Al-Khazraji
- 1 School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Leena N Shoemaker
- 1 School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Joseph S Gati
- 2 Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Trevor Szekeres
- 2 Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - J Kevin Shoemaker
- 1 School of Kinesiology, The University of Western Ontario, London, ON, Canada.,3 Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
49
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
McKetton L, Cohn M, Tang-Wai DF, Sobczyk O, Duffin J, Holmes KR, Poublanc J, Sam K, Crawley AP, Venkatraghavan L, Fisher JA, Mikulis DJ. Cerebrovascular Resistance in Healthy Aging and Mild Cognitive Impairment. Front Aging Neurosci 2019; 11:79. [PMID: 31031616 PMCID: PMC6474328 DOI: 10.3389/fnagi.2019.00079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/19/2019] [Indexed: 12/04/2022] Open
Abstract
Measures of cerebrovascular reactivity (CVR) are used to judge the health of the brain vasculature. In this study, we report the use of several different analyses of blood oxygen dependent (BOLD) fMRI responses to CO2 to provide a number of metrics of CVR based on the sigmoidal resistance response to CO2. To assess possible differences in these metrics with age, we compiled atlases reflecting voxel-wise means and standard deviations for four different age ranges and for a group of patients with mild cognitive impairment (MCI) and compared them. Sixty-seven subjects were recruited for this study and scanned at 3T field strength. Of those, 51 healthy control volunteers between the ages of 18–83 were recruited, and 16 (MCI) subjects between the ages of 61–83 were recruited. Testing was carried out using an automated computer-controlled gas blender to induce hypercapnia in a step and ramp paradigm while monitoring end-tidal partial pressures of CO2. Surprisingly, some resistance sigmoid parameters in the oldest control group were increased compared to the youngest control group. Resistance amplitude maps showed increases in clusters within the temporal cortex, thalamus, corpus callosum and brainstem, and resistance reserve maps showed increases in clusters within the cingulate cortex, frontal gyrus, and corpus callosum. These findings suggest that some aspects of vascular reactivity in parts of the brain are initially maintained with age but then may increase in later years. We found significant reductions in all resistance sigmoid parameters (amplitude, reserve, sensitivity, midpoint, and range) when comparing MCI patients to controls. Additionally, in controls and in MCI patients, amplitude, range, reserve, and sensitivity in white matter (WM) was significantly reduced compared to gray matter (GM). WM midpoints were significantly above those of GM. Our general conclusion is that vascular regulation in terms of cerebral blood flow (CBF) responsiveness to CO2 is not significantly affected by age, but is reduced in MCI. These changes in cerebrovascular regulation demonstrate the value of resistance metrics for mapping areas of dysregulated blood flow in individuals with MCI. They may also be of value in the investigation of patients with vascular risk factors at risk for developing vascular dementia.
Collapse
Affiliation(s)
- Larissa McKetton
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| | - Melanie Cohn
- Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - David F Tang-Wai
- Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada.,Department of Medicine, Division of Neurology, University of Toronto and the University Health Network Memory Clinic, Toronto, ON, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Kenneth R Holmes
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| | - Kevin Sam
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| | - Lashmi Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network (UHN), Toronto, ON, Canada
| | - Joseph A Fisher
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Anaesthesia and Pain Management, University Health Network (UHN), Toronto, ON, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada.,Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|