1
|
Chang Y, Chen L, Zhang M, Zhang S, Liu R, Feng S. Pharmacologic activation of activating transcription factor 6 contributes to neuronal survival after spinal cord injury in mice. J Neurochem 2024; 168:3221-3234. [PMID: 39114965 DOI: 10.1111/jnc.16092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 10/04/2024]
Abstract
The impact of primary and secondary injuries of spinal cord injury (SCI) results in the demise of numerous neurons, and there is still no efficacious pharmacological intervention for it. Recently, studies have shown that endoplasmic reticulum stress (ERS) plays a pivotal role in recovery of neurological function after spinal cord injury. As a process to cope with intracellular accumulation of misfolded and unfolded proteins which triggers ERS, the unfolded protein response (UPR) plays an important role in maintaining protein homeostasis. And, a recently disclosed small molecule AA147, which selectively activates activating transcription factor 6 (ATF6), has shown promising pharmacological effects in several disease models. Thus, it seems feasible to protect the neurons after spinal cord injury by modulating UPR. In this study, primary neurons were isolated from E17-19 C57BL/6J mouse embryos and we observed that AA147 effectively promoted the survival of neurons and alleviated neuronal apoptosis after oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. This was evident through a decrease in the proportion of PI-positive and TUNEL-positive cells, an increase in BCL-2 expression, and a decrease in the expression of BAX and C-caspase3. In in-vivo experiments, these findings were corroborated by TUNEL staining and immunohistochemistry. It was also found that AA147 enhanced three arms of the unfolded protein response with reduced CHOP expression. Besides, AA147 mitigated the accumulation of ROS in neurons probably by upregulating catalase expression. Furthermore, spinal cord injury models of C57BL/6J mice were established and behavioral experiments revealed that AA147 facilitated the recovery of motor function following SCI. Thus, pharmacologic activation of ATF6 represents a promise therapeutic approach to ameliorate the prognosis of SCI.
Collapse
Affiliation(s)
- Yong Chang
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lu Chen
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingzhe Zhang
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shiji Zhang
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Renshuai Liu
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shiqing Feng
- Orthopaedic Research Center of Shandong University, Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Pecoraro M, Serra A, Pascale M, Franceschelli S. The ER Stress Induced in Human Neuroblastoma Cells Can Be Reverted by Lumacaftor, a CFTR Corrector. Curr Issues Mol Biol 2024; 46:9342-9358. [PMID: 39329905 PMCID: PMC11430679 DOI: 10.3390/cimb46090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Most neurodegenerative diseases share a common etiopathogenesis, the accumulation of protein aggregates. An imbalance in homeostasis brought on by the buildup of misfolded proteins within the endoplasmic reticulum (ER) results in ER stress in the cell. Three distinct proteins found in the ER membrane-IRE1α, PERK, and ATF6-control the unfolded protein response (UPR), a signal transduction pathway that is triggered to restore normal physiological conditions. Buildup of misfolded proteins in ER lumen leads to a shunting of GRP78/BiP, thus triggering the UPR. PERK autophosphorylation leads to activation of ATF4, the transcription factor; finally, ATF6 activates the UPR's target genes, including GRP78/Bip. Accordingly, the UPR is a cellular reaction to an ER stress state that, if left unchecked for an extended period, results in apoptosis and irreversible damage. The identification of caspase 4, which is in the ER and is selectively activated by apoptotic stimuli caused by reticular stress, further demonstrated the connection between reticular stress and programed cell death. Moreover, oxidative stress and ER stress are linked. Oxidative stress is brought on by elevated quantities of radical oxygen species, both mitochondrial and cytosolic, that are not under the enzymatic regulation of superoxide dismutases, whose levels fall with increasing stress. Here, we evaluated the activity of Vx-809 (Lumacaftor), a drug used in cystic fibrosis, in SH-SY5Y neuronal cells, in which an ER stress condition was induced by Thapsigargin, to verify whether the drug could improve protein folding, suggesting its possible therapeutic use in proteinopathies, such as neurodegenerative diseases (NDs). Our data show that Vx-809 is involved in the significant reduction in protein produced under ER stress, particularly in the levels of Bip, ATF4, and ATF6 by Western blotting analysis, the reduction in ROS in the cytosol and mitochondria, and the reduction in the activation of the apoptotic pathway, measured by flow cytofluorimetry analysis and in restoring calcium homeostasis.
Collapse
Affiliation(s)
- Michela Pecoraro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| | - Adele Serra
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Salerno, Italy
| | - Maria Pascale
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| | - Silvia Franceschelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
3
|
Benedetti R, Romeo MA, Arena A, Gilardini Montani MS, D’Orazi G, Cirone M. ATF6 supports lysosomal function in tumor cells to enable ER stress-activated macroautophagy and CMA: impact on mutant TP53 expression. Autophagy 2024; 20:1854-1867. [PMID: 38566314 PMCID: PMC11262222 DOI: 10.1080/15548627.2024.2338577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/31/2024] [Indexed: 04/04/2024] Open
Abstract
The inhibition of the unfolded protein response (UPR), which usually protects cancer cells from stress, may be exploited to potentiate the cytotoxic effect of drugs inducing ER stress. However, in this study, we found that ER stress and UPR activation by thapsigargin or tunicamycin promoted the lysosomal degradation of mutant (MUT) TP53 and that the inhibition of the UPR sensor ATF6, but not of ERN1/IRE1 or EIF2AK3/PERK, counteracted such an effect. ATF6 activation was indeed required to sustain the function of lysosomes, enabling the execution of chaperone-mediated autophagy (CMA) as well as of macroautophagy, processes involved in the degradation of MUT TP53 in stressed cancer cells. At the molecular level, by pharmacological and genetic approaches, we demonstrated that the inhibition of ATF6 correlated with the activation of MTOR and with TFEB and LAMP1 downregulation in thapsigargin-treated MUT TP53 carrying cells. We hypothesize that the rescue of MUT TP53 expression by ATF6 inhibition, could further activate MTOR and maintain lysosomal dysfunction, further inhibiting MUT TP53 degradation, in a vicious circle. The findings of this study suggest that the presence of MUT TP53, which often exerts oncogenic properties, should be considered before approaching treatments combining ER stressors with ATF6 inhibitors against cancer cells, while it could represent a promising strategy against cancer cells that harbor WT TP53.
Collapse
Affiliation(s)
- Rossella Benedetti
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Maria Anele Romeo
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Arena
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | | | - Gabriella D’Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
4
|
Niesman IR. Stress and the domestic cat: have humans accidentally created an animal mimic of neurodegeneration? Front Neurol 2024; 15:1429184. [PMID: 39099784 PMCID: PMC11294998 DOI: 10.3389/fneur.2024.1429184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Many neurodegenerative diseases (NDD) appear to share commonality of origin, chronic ER stress. The endoplasmic reticulum (ER) is a dynamic organelle, functioning as a major site of protein synthesis and protein posttranslational modifications, required for proper folding. ER stress can occur because of external stimuli, such as oxidative stress or neuroinflammatory cytokines, creating the ER luminal environment permissive for the accumulation of aggregated and misfolded proteins. Unresolvable ER stress upregulates a highly conserved pathway, the unfolded protein response (UPR). Maladaptive chronic activation of UPR components leads to apoptotic neuronal death. In addition to other factors, physiological responses to stressors are emerging as a significant risk factor in the etiology and pathogenesis of NDD. Owned cats share a common environment with people, being exposed to many of the same stressors as people and additional pressures due to their "quasi" domesticated status. Feline Cognitive Dysfunction Syndrome (fCDS) presents many of the same disease hallmarks as human NDD. The prevalence of fCDS is rapidly increasing as more people welcome cats as companions. Barely recognized 20 years ago, veterinarians and scientists are in infancy stages in understanding what is a very complex disease. This review will describe how cats may represent an unexplored animal mimetic phenotype for human NDD with stressors as potential triggering mechanisms. We will consider how multiple variations of stressful events over the short-life span of a cat could affect neuronal loss or glial dysfunction and ultimately tip the balance towards dementia.
Collapse
Affiliation(s)
- Ingrid R. Niesman
- Department of Biology, SDSU Electron Microscopy Facility, San Diego State University, San Diego, CA, United States
| |
Collapse
|
5
|
Wójcik P, Jastrzębski MK, Zięba A, Matosiuk D, Kaczor AA. Caspases in Alzheimer's Disease: Mechanism of Activation, Role, and Potential Treatment. Mol Neurobiol 2024; 61:4834-4853. [PMID: 38135855 PMCID: PMC11236938 DOI: 10.1007/s12035-023-03847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
With the aging of the population, treatment of conditions emerging in old age, such as neurodegenerative disorders, has become a major medical challenge. Of these, Alzheimer's disease, leading to cognitive dysfunction, is of particular interest. Neuronal loss plays an important role in the pathophysiology of this condition, and over the years, a great effort has been made to determine the role of various factors in this process. Unfortunately, until now, the exact pathomechanism of this condition remains unknown. However, the most popular theories associate AD with abnormalities in the Tau and β-amyloid (Aβ) proteins, which lead to their deposition and result in neuronal death. Neurons, like all cells, die in a variety of ways, among which pyroptosis, apoptosis, and necroptosis are associated with the activation of various caspases. It is worth mentioning that Tau and Aβ proteins are considered to be one of the caspase activators, leading to cell death. Moreover, the protease activity of caspases influences both of the previously mentioned proteins, Tau and Aβ, converting them into more toxic derivatives. Due to the variety of ways caspases impact the development of AD, drugs targeting caspases could potentially be useful in the treatment of this condition. Therefore, there is a constant need to search for novel caspase inhibitors and evaluate them in preclinical and clinical trials.
Collapse
Affiliation(s)
- Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland.
| | - Michał K Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20093, Lublin, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
6
|
Lei Y, Yu H, Ding S, Liu H, Liu C, Fu R. Molecular mechanism of ATF6 in unfolded protein response and its role in disease. Heliyon 2024; 10:e25937. [PMID: 38434326 PMCID: PMC10907738 DOI: 10.1016/j.heliyon.2024.e25937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Activating transcription factor 6 (ATF6), an important signaling molecule in unfolded protein response (UPR), plays a role in the pathogenesis of several diseases, including diseases such as congenital retinal disease, liver fibrosis and ankylosing spondylitis. After endoplasmic reticulum stress (ERS), ATF6 is activated after separation from binding immunoglobulin protein (GRP78/BiP) in the endoplasmic reticulum (ER) and transported to the Golgi apparatus to be hydrolyzed by site 1 and site 2 proteases into ATF6 fragments, which localize to the nucleus and regulate the transcription and expression of ERS-related genes. In these diseases, ERS leads to the activation of UPR, which ultimately lead to the occurrence and development of diseases by regulating the physiological state of cells through the ATF6 signaling pathway. Here, we discuss the evidence for the pathogenic importance of ATF6 signaling in different diseases and discuss preclinical results.
Collapse
Affiliation(s)
| | | | - Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Yu X, Dang L, Zhang R, Yang W. Therapeutic Potential of Targeting the PERK Signaling Pathway in Ischemic Stroke. Pharmaceuticals (Basel) 2024; 17:353. [PMID: 38543139 PMCID: PMC10974972 DOI: 10.3390/ph17030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
Many pathologic states can lead to the accumulation of unfolded/misfolded proteins in cells. This causes endoplasmic reticulum (ER) stress and triggers the unfolded protein response (UPR), which encompasses three main adaptive branches. One of these UPR branches is mediated by protein kinase RNA-like ER kinase (PERK), an ER stress sensor. The primary consequence of PERK activation is the suppression of global protein synthesis, which reduces ER workload and facilitates the recovery of ER function. Ischemic stroke induces ER stress and activates the UPR. Studies have demonstrated the involvement of the PERK pathway in stroke pathophysiology; however, its role in stroke outcomes requires further clarification. Importantly, considering mounting evidence that supports the therapeutic potential of the PERK pathway in aging-related cognitive decline and neurodegenerative diseases, this pathway may represent a promising therapeutic target in stroke. Therefore, in this review, our aim is to discuss the current understanding of PERK in ischemic stroke, and to summarize pharmacologic tools for translational stroke research that targets PERK and its associated pathways.
Collapse
Affiliation(s)
| | | | | | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Box 3094, 303 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
8
|
Xie J, Zhang Y, Li B, Xi W, Wang Y, Li L, Liu C, Shen L, Han B, Kong Y, Yao H, Zhang Z. Inhibition of OGFOD1 by FG4592 confers neuroprotection by activating unfolded protein response and autophagy after ischemic stroke. J Transl Med 2024; 22:248. [PMID: 38454480 PMCID: PMC10921652 DOI: 10.1186/s12967-024-04993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Acute ischemic stroke is a common neurological disease with a significant financial burden but lacks effective drugs. Hypoxia-inducible factor (HIF) and prolyl hydroxylases (PHDs) participate in the pathophysiological process of ischemia. However, whether FG4592, the first clinically approved PHDs inhibitor, can alleviate ischemic brain injury remains unclear. METHODS The infarct volumes and behaviour tests were first analyzed in mice after ischemic stroke with systemic administration of FG4592. The knockdown of HIF-1α and pretreatments of HIF-1/2α inhibitors were then used to verify whether the neuroprotection of FG4592 is HIF-dependent. The targets predicting and molecular docking methods were applied to find other targets of FG4592. Molecular, cell biological and gene knockdown methods were finally conducted to explore the potential neuroprotective mechanisms of FG4592. RESULTS We found that the systemic administration of FG4592 decreased infarct volume and improved neurological defects of mice after transient or permanent ischemia. Meanwhile, FG4592 also activated autophagy and inhibited apoptosis in peri-infarct tissue of mice brains. However, in vitro and in vivo results suggested that the neuroprotection of FG4592 was not classical HIF-dependent. 2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1 (OGFOD1) was found to be a novel target of FG4592 and regulated the Pro-62 hydroxylation in the small ribosomal protein s23 (Rps23) with the help of target predicting and molecular docking methods. Subsequently, the knockdown of OGFOD1 protected the cell against ischemia/reperfusion injury and activated unfolded protein response (UPR) and autophagy. Moreover, FG4592 was also found to activate UPR and autophagic flux in HIF-1α independent manner. Blocking UPR attenuated the neuroprotection, pro-autophagy effect and anti-apoptosis ability of FG4592. CONCLUSION This study demonstrated that FG4592 could be a candidate drug for treating ischemic stroke. The neuroprotection of FG4592 might be mediated by inhibiting alternative target OGFOD1, which activated the UPR and autophagy and inhibited apoptosis after ischemic injury. The inhibition of OGFOD1 is a novel therapy for ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bin Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Wen Xi
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yu Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lu Li
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Chenchen Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ling Shen
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - HongHong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, Jiangsu, China.
- The Brain Cognition and Brain Disease Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
9
|
Li Y, Li M, Feng S, Xu Q, Zhang X, Xiong X, Gu L. Ferroptosis and endoplasmic reticulum stress in ischemic stroke. Neural Regen Res 2024; 19:611-618. [PMID: 37721292 PMCID: PMC10581588 DOI: 10.4103/1673-5374.380870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Ferroptosis is a form of non-apoptotic programmed cell death, and its mechanisms mainly involve the accumulation of lipid peroxides, imbalance in the amino acid antioxidant system, and disordered iron metabolism. The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum, and the progression of inflammatory diseases can trigger endoplasmic reticulum stress. Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival. Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke. However, there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke. This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke, aiming to provide a reference for developing treatments for ischemic stroke.
Collapse
Affiliation(s)
- Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingyang Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shi Feng
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xu Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
10
|
Cui S, Ke L, Wang H, Li L. TSG-6 alleviates cerebral ischemia/reperfusion injury and blood-brain barrier disruption by suppressing ER stress-mediated inflammation. Brain Res 2023; 1817:148466. [PMID: 37336316 DOI: 10.1016/j.brainres.2023.148466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Tumor necrosis factor-stimulated gene-6 (TSG-6) exhibits promising neuroprotective activity, but how it influences cerebral ischemia/reperfusion (CIR) injury remains to be established. Here, the impact of TSG-6 on the CIR-induced disturbance in the blood-brain barrier (BBB) and associated neurological degeneration was assessed, and the related molecular processes were explored. In this study, TSG-6 markedly reduced CIR-mediated increases in neurological deficit scores, decreased infarct volume, and protected against the apoptotic death of neurons in MCAO/R model rats. Similarly, TSG-6 pretreatment protected cultured neurons against OGD/R-associated neuronal death. TSG-6 also restored BBB integrity, suppressing PERK-eIF2α and IRE1α-TRAF2 pathway activation in CIR model systems, thereby inhibiting NF-κB, TNF-α, IL-1β, and IL-6. The further use of specific inhibitors of ER stress, 4-phenyl butyric acid (4-PBA), PERK (GSK2656157), and IRE1α (STF083010) demonstrated the ability of ER stress to drive inflammatory activity in the context of CIR injury i the PERK-eIF2α-NF-κB and IRE1α-TRAF2-NF-κB pathways. Consistently, the activation of ER stress using tunicamycin resulted in reversing the beneficial effects of TSG-6 on CIR-associated BBB disruption and neurological damage in vitro and in vivo. Treatment with TSG-6 can protect against CIR injury via the inhibition of ER stress-related inflammatory activity induced through the PERK-eIF2α-NF-κB and IRE1α-TRAF2-NF-κB pathways.
Collapse
Affiliation(s)
- Shengwei Cui
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China; Department of Neurology, Graduate School of Anhui University of Traditional Chinese Medicine, Anhui, Hefei 230038, China
| | - Li Ke
- Department of Thoracic Surgery, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Lujiang Road 17, Hefei 230001, China.
| | - Han Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China.
| | - Liangyong Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
11
|
Pluta R. The Dual Role of Autophagy in Postischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy. Int J Mol Sci 2023; 24:13793. [PMID: 37762096 PMCID: PMC10530906 DOI: 10.3390/ijms241813793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is a self-defense and self-degrading intracellular system involved in the recycling and elimination of the payload of cytoplasmic redundant components, aggregated or misfolded proteins and intracellular pathogens to maintain cell homeostasis and physiological function. Autophagy is activated in response to metabolic stress or starvation to maintain homeostasis in cells by updating organelles and dysfunctional proteins. In neurodegenerative diseases, such as cerebral ischemia, autophagy is disturbed, e.g., as a result of the pathological accumulation of proteins associated with Alzheimer's disease and their structural changes. Postischemic brain neurodegeneration, such as Alzheimer's disease, is characterized by the accumulation of amyloid and tau protein. After cerebral ischemia, autophagy was found to be activated in neuronal, glial and vascular cells. Some studies have shown the protective properties of autophagy in postischemic brain, while other studies have shown completely opposite properties. Thus, autophagy is now presented as a double-edged sword with possible therapeutic potential in brain ischemia. The exact role and regulatory pathways of autophagy that are involved in cerebral ischemia have not been conclusively elucidated. This review aims to provide a comprehensive look at the advances in the study of autophagy behavior in neuronal, glial and vascular cells for ischemic brain injury. In addition, the importance of autophagy in neurodegeneration after cerebral ischemia has been highlighted. The review also presents the possibility of modulating the autophagy machinery through various compounds on the development of neurodegeneration after cerebral ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
12
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
13
|
Kline G, Paxman RJ, Lin CY, Madrazo N, Yoon L, Grandjean JMD, Lee K, Nugroho K, Powers ET, Wiseman RL, Kelly JW. Divergent Proteome Reactivity Influences Arm-Selective Activation of the Unfolded Protein Response by Pharmacological Endoplasmic Reticulum Proteostasis Regulators. ACS Chem Biol 2023; 18:1719-1729. [PMID: 37523656 PMCID: PMC10442855 DOI: 10.1021/acschembio.3c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Pharmacological activation of the activating transcription factor 6 (ATF6) arm of the unfolded protein response (UPR) has proven useful for ameliorating proteostasis deficiencies in cellular and mouse models of numerous etiologically diverse diseases. Previous high-throughput screening efforts identified the small molecule AA147 as a potent and selective ATF6 activating compound that operates through a mechanism involving metabolic activation of its 2-amino-p-cresol substructure affording a quinone methide, which then covalently modifies a subset of endoplasmic reticulum (ER) protein disulfide isomerases (PDIs). Another compound identified in this screen, AA132, also contains a 2-amino-p-cresol moiety; however, this compound showed less transcriptional selectivity, instead globally activating all three arms of the UPR. Here, we show that AA132 activates global UPR signaling through a mechanism analogous to that of AA147, involving metabolic activation and covalent modification of proteins including multiple PDIs. Chemoproteomic-enabled analyses show that AA132 covalently modifies PDIs to a greater extent than AA147. However, the extent of PDI labeling by AA147 approaches a plateau more rapidly than PDI labeling by AA132. These observations together suggest that AA132 can access a larger pool of proteins for covalent modification, possibly because its activated form is less susceptible to quenching than activated AA147. In other words, the lower reactivity of activated AA132 allows it to persist longer and modify more PDIs in the cellular environment. Collectively, these results suggest that AA132 globally activates the UPR through increased engagement of ER PDIs. Consistent with this, reducing the cellular concentration of AA132 decreases PDI modifications and enables selective ATF6 activation. Our results highlight the relationship between metabolically activatable-electrophile stability, ER proteome reactivity, and the transcriptional response observed with the enaminone chemotype of ER proteostasis regulators, enabling continued development of next-generation ATF6 activating compounds.
Collapse
Affiliation(s)
- Gabriel
M. Kline
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ryan J. Paxman
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chung-Yon Lin
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Nicole Madrazo
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Leonard Yoon
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Julia M. D. Grandjean
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Kyunga Lee
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Karina Nugroho
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Evan T. Powers
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - R. Luke Wiseman
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Jeffery W. Kelly
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
- The
Skaggs Institute for Chemical Biology, The
Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Zhang YP, Yang Q, Li YA, Yu MH, He GW, Zhu YX, Liu ZG, Liu XC. Inhibition of the Activating Transcription Factor 6 Branch of Endoplasmic Reticulum Stress Ameliorates Brain Injury after Deep Hypothermic Circulatory Arrest. J Clin Med 2023; 12:jcm12030814. [PMID: 36769462 PMCID: PMC9917384 DOI: 10.3390/jcm12030814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Neurological dysfunction is a common complication of deep hypothermic circulatory arrest (DHCA). Endoplasmic reticulum (ER) stress plays a role in neuronal ischemia-reperfusion injury; however, it is unknown whether it contributes to DHCA-induced brain injury. Here, we aimed to investigate the role of ER stress in a rat DHCA model and cell hypothermic oxygen-glucose deprivation reoxygenation (OGD/R) model. ER stress and apoptosis-related protein expression were identified using Western blot analysis. Cell counting assay-8 and flow cytometry were used to determine cell viability and apoptosis, respectively. Brain injury was evaluated using modified neurological severity scores, whereas brain injury markers were detected through histological examinations and immunoassays. We observed significant ER stress molecule upregulation in the DHCA rat hippocampus and in hypothermic OGD/R PC-12 cells. In vivo and in vitro experiments showed that ER stress or activating transcription factor 6 (ATF6) inhibition alleviated rat DHCA-induced brain injury, increased cell viability, and decreased apoptosis accompanied by C/EBP homologous protein (CHOP). ER stress is involved in DHCA-induced brain injury, and the inhibition of the ATF6 branch of ER stress may ameliorate this injury by inhibiting CHOP-mediated apoptosis. This study establishes a scientific foundation for identifying new therapeutic targets for perioperative brain protection in clinical DHCA.
Collapse
Affiliation(s)
- You-Peng Zhang
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Qin Yang
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Yi-Ai Li
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Ming-Huan Yu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Guo-Wei He
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Department of Cardiac Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou 310027, China
- School of Pharmacy, Wannan Medical College, Wuhu 241001, China
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yu-Xiang Zhu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
| | - Zhi-Gang Liu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Correspondence: (Z.-G.L.); (X.-C.L.); Tel.: +86-18822686088 (Z.-G.L.); +86-13821359285 (X.-C.L.)
| | - Xiao-Cheng Liu
- Center for Basic Medical Research, Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, 61 Third Street, Tianjin 300000, China
- Correspondence: (Z.-G.L.); (X.-C.L.); Tel.: +86-18822686088 (Z.-G.L.); +86-13821359285 (X.-C.L.)
| |
Collapse
|
15
|
Kline GM, Paxman RJ, Lin CY, Madrazo N, Grandjean JM, Lee K, Nugroho K, Powers ET, Wiseman RL, Kelly JW. Divergent Proteome Reactivity Influences Arm-Selective Activation of Pharmacological Endoplasmic Reticulum Proteostasis Regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524237. [PMID: 36712115 PMCID: PMC9882204 DOI: 10.1101/2023.01.16.524237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pharmacological activation of the activating transcription factor 6 (ATF6) arm of the Unfolded Protein Response (UPR) has proven useful for ameliorating proteostasis deficiencies in a variety of etiologically diverse diseases. Previous high-throughput screening efforts identified the small molecule AA147 as a potent and selective ATF6 activating compound that operates through a mechanism involving metabolic activation of its 2-amino- p -cresol substructure affording a quinone methide, which then covalently modifies a subset of ER protein disulfide isomerases (PDIs). Intriguingly, another compound identified in this screen, AA132, also contains a 2-amino- p -cresol moiety; however, this compound showed less transcriptional selectivity, instead globally activating all three arms of the UPR. Here, we show that AA132 activates global UPR signaling through a mechanism analogous to that of AA147, involving metabolic activation and covalent PDI modification. Chemoproteomic-enabled analyses show that AA132 covalently modifies PDIs to a greater extent than AA147. Paradoxically, activated AA132 reacts slower with PDIs, indicating it is less reactive than activated AA147. This suggests that the higher labeling of PDIs observed with activated AA132 can be attributed to its lower reactivity, which allows this activated compound to persist longer in the cellular environment prior to quenching by endogenous nucleophiles. Collectively, these results suggest that AA132 globally activates the UPR through increased engagement of ER PDIs. Consistent with this, reducing the cellular concentration of AA132 decreases PDI modifications and allows for selective ATF6 activation. Our results highlight the relationship between metabolically activatable-electrophile stability, ER proteome reactivity, and the transcriptional response observed with the enaminone chemotype of ER proteostasis regulators, enabling continued development of next-generation ATF6 activating compounds.
Collapse
Affiliation(s)
- Gabriel M. Kline
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Chung-Yon Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Nicole Madrazo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Julia M. Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kyunga Lee
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Karina Nugroho
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
16
|
Barabutis N, Akhter MS, Kubra KT, Jackson K. Growth Hormone-Releasing Hormone in Endothelial Inflammation. Endocrinology 2022; 164:6887354. [PMID: 36503995 PMCID: PMC9923806 DOI: 10.1210/endocr/bqac209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The discovery of hypothalamic hormones propelled exciting advances in pharmacotherapy and improved life quality worldwide. Growth hormone-releasing hormone (GHRH) is a crucial element in homeostasis maintenance, and regulates the release of growth hormone from the anterior pituitary gland. Accumulating evidence suggests that this neuropeptide can also promote malignancies, as well as inflammation. Our review is focused on the role of that 44 - amino acid peptide (GHRH) and its antagonists in inflammation and vascular function, summarizing recent findings in the corresponding field. Preclinical studies demonstrate the protective role of GHRH antagonists against endothelial barrier dysfunction, suggesting that the development of those peptides may lead to new therapies against pathologies related to vascular remodeling (eg, sepsis, acute respiratory distress syndrome). Targeted therapies for those diseases do not exist.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Correspondence: Nektarios Barabutis, MSc, PhD, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Dr, Monroe, LA 71201, USA.
| | | | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Keith Jackson
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
17
|
Leptin alleviates endoplasmic reticulum stress induced by cerebral ischemia/reperfusion injury via the PI3K/Akt signaling pathway. Biosci Rep 2022; 42:232083. [PMID: 36367210 PMCID: PMC9744719 DOI: 10.1042/bsr20221443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cerebral ischemic/reperfusion injury (CIRI) is a key factor for the prognosis of ischemic stroke (IS), the leading disease in terms of global disability and fatality rates. Recent studies have shown that endoplasmic reticulum stress (ERS) may be a target against CIRI and that leptin, a peptide hormone, has neuroprotective activity to mitigate CIRI. METHODS An in vitro CIRI model was induced in primary cortical neurons by oxygen-glucose deprivation and reoxygenation (OGD/R) after pretreatment with LY294002 (10 µmol/L) and/or leptin (0.4 mg/L), and cell viability, neuronal morphology and endoplasmic reticulum (ER) dysfunction were evaluated. An in vivo CIRI model was established in rats by middle cerebral artery occlusion and reperfusion (MCAO/R) after the injection of LY294002 (10 μmol/L) and/or leptin (1 mg/kg), and neurological function, infarct volume, cerebral pathological changes, the expression of ERS-related proteins and cell apoptosis were examined. RESULTS In vitro, leptin treatment improved the cell survival rate, ameliorated neuronal pathological morphology and alleviated OGD/R-induced ERS. In vivo, administration of leptin significantly reduced the infarct volume, neurological deficit scores and neuronal apoptosis as well as pathological alterations. In addition, leptin suppressed MCAO/R-induced ERS and may decrease apoptosis by inhibiting ERS-related death and caspase 3 activation. It also regulated expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax in the cortex. Furthermore, the inhibitory effect of leptin on ERS was significantly decreased by the effective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. CONCLUSIONS These results confirm that ERS plays an important role in CIRI and that leptin can inhibit the activation of ERS through the PI3K/Akt pathway, thereby alleviating CIRI. These findings provide novel therapeutic targets for IS.
Collapse
|
18
|
Yuan Z, Lu L, Lian Y, Zhao Y, Tang T, Xu S, Yao Z, Yu Z. AA147 ameliorates post-cardiac arrest cerebral ischemia/reperfusion injury through the co-regulation of the ATF6 and Nrf2 signaling pathways. Front Pharmacol 2022; 13:1028002. [PMID: 36506549 PMCID: PMC9727236 DOI: 10.3389/fphar.2022.1028002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemia/reperfusion caused by cardiac arrest (CA) disturbs endoplasmic reticulum (ER) homeostasis and redox balance in neurons. AA147, originally developed as a pharmacologic activator of the activating transcription factor 6 (ATF6), can protect multiple tissues from ischemia/reperfusion injury (IRI) by decreasing reactive oxygen species (ROS) and restoring ER function. However, it is unclear whether pharmacologic treatment of AA147 could ameliorate post-CA cerebral IRI and whether it is associated with proteostasis regulation and anti-oxidative stress mechanism. In the present study, mice were subjected to 9 min-CA surgery followed by cardiopulmonary resuscitation (CPR). AA147 or vehicle was administered 1 day before the operation and 15 min after the return of spontaneous circulation. We found that AA147 restored neurological function and reduced dead neurons in mice suffering from CA. Moreover, AA147 inhibited CA/CPR-caused neuronal apoptosis and ER stress, indicated by reduced TUNEL-positive neurons, surged expression of Bcl-2/Bax, and down expression of cleaved caspase-3, caspase-12, C/EBP homologous protein (CHOP). The expression of ATF6 and its regulated gene glucose-regulated protein 78 (GRP78) increased significantly after the administration of AA147, suggesting the activation of the ATF6 pathway. In addition, AA147 also alleviated the upsurge of the ROS generation and MDA levels as well as increased SOD activity, accompanied by enhancement of the nuclear factor E2-related factor 2 (Nrf2) and its modulated heme-oxygenase-1 (HO-1) expressions. Cotreatment of AA147 with inhibitors of the ATF6 or Nrf2 significantly suppressed AA147-dependent reductions in ROS scavenging and neuronal death after CA/CPR. The results suggested that AA147 could confer neuroprotection against post-CA cerebral IRI through inhibition of oxidative stress along with ER stress-associated apoptosis, which is attributed to the coregulation of both ATF6 and Nrf2 signaling pathways activity. Our findings support the potential for AA147 as a therapeutic approach to improve post-CA brain injury.
Collapse
Affiliation(s)
- Zhu Yuan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liping Lu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingtao Lian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanrui Zhao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Tang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhun Yao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Zhui Yu,
| |
Collapse
|
19
|
Kubra KT, Akhter MS, Saini Y, Kousoulas KG, Barabutis N. Activating transcription factor 6 protects against endothelial barrier dysfunction. Cell Signal 2022; 99:110432. [PMID: 35933031 PMCID: PMC10413362 DOI: 10.1016/j.cellsig.2022.110432] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Endothelial hyperpermeability is associated with sepsis and acute respiratory distress syndrome (ARDS). The identification of molecular pathways involved in barrier dysfunction; may reveal promising therapeutic targets to combat ARDS. Unfolded protein response (UPR) is a highly conserved molecular pathway, which ameliorates endoplasmic reticulum stress. The present work focuses on the effects of ATF6, which is a UPR sensor, in lipopolysaccharides (LPS)-induced endothelial hyperpermeability. METHODS The in vitro effects of AA147 and Ceapin-A7 in LPS-induced endothelial barrier dysfunction were investigated in bovine pulmonary artery endothelial cells (BPAEC). Small interfering (si) RNA was utilized to "silence" ATF6, and electric cell-substrate impedance sensing (ECIS) measured transendothelial resistance. Fluorescein isothiocyanate (FITC)-dextran assay was utilized to assess paracellular permeability. Protein expression levels were evaluated with Western blotting, and cell viability with MTT assay. RESULTS We demonstrated that AA147 prevents LPS-induced barrier disruption by counteracting Cofilin and myosin light chain 2 (MLC2) activation, as well as VE-Cadherin phosphorylation. Moreover, this ATF6 inducer opposed LPS-triggered decrease in transendothelial resistance (TEER), as well as LPS-induced paracellular hyperpermeability. On the other hand, ATF6 suppression due to Ceapin-A7 or small interfering RNA exerted the opposite effects, and potentiated LPS-induced endothelial barrier disruption. Moderate concentrations of both ATF6 modulators did not affect cell viability. CONCLUSIONS ATF6 activation protects against endothelial barrier function, suggesting that this UPR sensor may serve as a therapeutic target for sepsis and ARDS.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Yogesh Saini
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
20
|
Li X, Li R, Lu L, Dhar A, Sheng H, Yang W. Beneficial effects of neuronal ATF6 activation in permanent ischemic stroke. Front Cell Neurosci 2022; 16:1016391. [PMID: 36313623 PMCID: PMC9614111 DOI: 10.3389/fncel.2022.1016391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: Brain ischemia leads to the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) lumen and consequently, ER stress. To help cells restore ER function, a series of adaptive stress response pathways, collectively termed the unfolded protein response (UPR), are activated. We have previously demonstrated that the UPR pathway initiated by ATF6 is pro-survival in transient ischemic stroke. However, the effect of ATF6 activation on the outcome after permanent ischemic stroke remains unknown. Here, we addressed this knowledge gap. Method: sATF6-KI mice with functional short-form ATF6 (sATF6) predominantly expressed in forebrain neurons were subjected to two ischemic stroke models: photothrombotic stroke and permanent middle cerebral artery occlusion (pMCAO). Both short-term and long-term functional outcomes were evaluated. Changes in neuroinflammation and cerebrovascular density after pMCAO were also assessed. Results: Compared to littermate controls, sATF6-KI mice performed significantly better in open field, cylinder, and foot fault tests on day 1 or 3 after photothrombotic stroke. However, on days 7 and 14 after stroke, the performance of these functional tests was not significantly different between groups, which is likely related to mild brain damage associated with this stroke model. Thus, to evaluate the long-term effects of ATF6 activation in permanent stroke, we turned to our pMCAO model. We first found that on day 4 after pMCAO, functional outcome was better, and infarct volumes were smaller in sATF6-KI mice vs controls. Next, the 15-day stroke outcome study indicated that compared to control mice, sATF6-KI mice consistently exhibited improved performance in neurologic scoring, tight rope test, and tape removal test, after pMCAO. Moreover, sATF6-KI mice showed higher vascular density and lower activation of both astrocytes and microglia around stroke regions on day 16 after pMCAO. Conclusions: Here, we presented the first evidence that activation of the ATF6 UPR branch is protective in permanent ischemic stroke, which further supports the therapeutic potential of targeting the ATF6 pathway in stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
21
|
Jin B, Xie L, Zhan D, Zhou L, Feng Z, He J, Qin J, Zhao C, Luo L, Li L. Nrf2 dictates the neuronal survival and differentiation of embryonic zebrafish harboring compromised alanyl-tRNA synthetase. Development 2022; 149:276217. [DOI: 10.1242/dev.200342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
tRNA synthetase deficiency leads to unfolded protein responses in neuronal disorders; however, its function in embryonic neurogenesis remains unclear. This study identified an aars1cq71/cq71 mutant zebrafish allele that showed increased neuronal apoptosis and compromised neurogenesis. aars1 transcripts were highly expressed in primary neural progenitor cells, and their aberration resulted in protein overloading and activated Perk. nfe2l2b, a paralog of mammalian Nfe2l2, which encodes Nrf2, is a pivotal executor of Perk signaling that regulates neuronal phenotypes in aars1cq71/cq71 mutants. Interference of nfe2l2b in nfe2l2bΔ1/Δ1 mutants did not affect global larval development. However, aars1cq71/cq71;nfe2l2bΔ1/Δ1 mutant embryos exhibited increased neuronal cell survival and neurogenesis compared with their aars1cq71/cq71 siblings. nfe2l2b was harnessed by Perk at two levels. Its transcript was regulated by Chop, an implementer of Perk. It was also phosphorylated by Perk. Both pathways synergistically assured the nuclear functions of nfe2l2b to control cell survival by targeting p53. Our study extends the understanding of tRNA synthetase in neurogenesis and implies that Nrf2 is a cue to mitigate neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Binbin Jin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Liqin Xie
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Dan Zhan
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Luping Zhou
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Zhi Feng
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Jiangyong He
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Jie Qin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Biomedical Engineering and informatics, Chongqing University of Posts and Telecommunications 2 , Chongqing 40065 , China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences 3 , Chongqing 400714 , China
| |
Collapse
|
22
|
Kukharsky MS, Everett MW, Lytkina OA, Raspopova MA, Kovrazhkina EA, Ovchinnikov RK, Antohin AI, Moskovtsev AA. Protein Homeostasis Dysregulation in Pathogenesis of Neurodegenerative Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893322060115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Wu K, Zhou K, Zhao M, Xiang L, Mei T, Xu W, Shang B, Liu X, Lai Y, Lin M, Luo J, Zhao L. TCF7L2 promotes ER stress signaling in diabetic retinopathy. Exp Eye Res 2022; 221:109142. [PMID: 35691375 DOI: 10.1016/j.exer.2022.109142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022]
Abstract
Diabetic retinopathy (DR) is one of the most common blindness in working-age adults. Transcription factor 7 like 2 (TCF7L2) is a susceptibility gene of DR, however, its roles in the pathogenesis of DR are still largely unknown. In this study, we found that TCF7L2 was mainly located in the cell nucleus of retinal ganglion cell layer (GCL) and inner nuclear layer (INL), while it was not expressed in the cell nucleus of retinal outer nuclear layer (ONL). Expression of TCF7L2 was significantly elevated in the retinas of db/db diabetic mice and oxygen-induced retinopathy (OIR) mice. Also, in Ad-hTCF7L2 treated hiPSCs-derived retinal progenitor cells (RPCs), activating transcription factor 6 (ATF6)-related endoplasmic reticulum (ER) stress signaling was remarkably activated. Moreover, knockdown of TCF7L2 significantly inhibited ATF6-related ER stress signaling. Furthermore, the data of endothelial permeability assay showed that RPCs pretreated with Ad-hTCF7L2 lead to enhanced monolayer permeability of human umbilical vein endothelial cells (HUVECs), and knockdown of TCF7L2 or ATF6 in RPCs could alleviate the monolayer permeability of HUVECs. Thus, our results showed that TCF7L2 could trigger ATF6-related ER stress signaling and promote vein endothelial cell permeability, which will provide important insight into the role of TCF7L2 in the pathogenesis of DR and contribute to designing potential therapies.
Collapse
Affiliation(s)
- Keling Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kesi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lijun Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Tingfang Mei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenchang Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bizhi Shang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xinqi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuhua Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Mingkai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingyi Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
24
|
Hamedi KR, Harmon KA, Goodwin RL, Arce S. Autophagy and the Bone Marrow Microenvironment: A Review of Protective Factors in the Development and Maintenance of Multiple Myeloma. Front Immunol 2022; 13:889954. [PMID: 35663979 PMCID: PMC9161817 DOI: 10.3389/fimmu.2022.889954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
The role of the unfolded protein response (UPR) in plasma cells (PC) and their malignant multiple myeloma (MM) counterparts is a well described area of research. The importance of autophagy in these cells, as well as the interplay between autophagy and the UPR system, has also been well studied. In this review, we will discuss the relationship between these two cellular responses and how they can be utilized in MM to account for the high levels of monoclonal immunoglobulin (Ig) protein synthesis that is characteristic of this disease. Interactions between MM cells and the bone marrow (BM) microenvironment and how MM cells utilize the UPR/autophagy pathway for their survival. These interacting pathways form the foundation for the mechanism of action for bortezomib, a proteasome inhibitor used to modify the progression of MM, and the eventual drug resistance that MM cells develop. One important resistance pathway implicated in MM progression is caspase 10 which attenuates autophagy to maintain its prosurvival function and avoid cell death. We lay a groundwork for future research including 3D in vitro models for better disease monitoring and personalized treatment. We also highlight pathways involved in MM cell survival and drug resistance that could be used as new targets for effective treatment.
Collapse
Affiliation(s)
- Kamron R Hamedi
- University of South Carolina School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Katrina A Harmon
- Research and Development Department, Organogenesis, Birmingham, AL, United States
| | - Richard L Goodwin
- Biomedical Sciences, University of South Carolina School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Sergio Arce
- Biomedical Sciences, University of South Carolina School of Medicine Greenville, University of South Carolina, Greenville, SC, United States.,Prisma Health Cancer Institute, Prisma Health System, Greenville, SC, United States
| |
Collapse
|
25
|
Wang L, Liu Y, Zhang X, Ye Y, Xiong X, Zhang S, Gu L, Jian Z, Wang H. Endoplasmic Reticulum Stress and the Unfolded Protein Response in Cerebral Ischemia/Reperfusion Injury. Front Cell Neurosci 2022; 16:864426. [PMID: 35602556 PMCID: PMC9114642 DOI: 10.3389/fncel.2022.864426] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by sudden interruption of blood flow in a certain part of the brain, leading to serious disability and death. At present, treatment methods for ischemic stroke are limited to thrombolysis or thrombus removal, but the treatment window is very narrow. However, recovery of cerebral blood circulation further causes cerebral ischemia/reperfusion injury (CIRI). The endoplasmic reticulum (ER) plays an important role in protein secretion, membrane protein folding, transportation, and maintenance of intracellular calcium homeostasis. Endoplasmic reticulum stress (ERS) plays a crucial role in cerebral ischemia pathophysiology. Mild ERS helps improve cell tolerance and restore cell homeostasis; however, excessive or long-term ERS causes apoptotic pathway activation. Specifically, the protein kinase R-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways are significantly activated following initiation of the unfolded protein response (UPR). CIRI-induced apoptosis leads to nerve cell death, which ultimately aggravates neurological deficits in patients. Therefore, it is necessary and important to comprehensively explore the mechanism of ERS in CIRI to identify methods for preserving brain cells and neuronal function after ischemia.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shudi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Zhihong Jian,
| | - Hongfa Wang
- Rehabilitation Medicine Center, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Hongfa Wang,
| |
Collapse
|
26
|
Shi M, Chai Y, Zhang J, Chen X. Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front Immunol 2022; 12:794580. [PMID: 35082783 PMCID: PMC8784382 DOI: 10.3389/fimmu.2021.794580] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuronal death and inflammatory response are two common pathological hallmarks of acute central nervous system injury and chronic degenerative disorders, both of which are closely related to cognitive and motor dysfunction associated with various neurological diseases. Neurological diseases are highly heterogeneous; however, they share a common pathogenesis, that is, the aberrant accumulation of misfolded/unfolded proteins within the endoplasmic reticulum (ER). Fortunately, the cell has intrinsic quality control mechanisms to maintain the proteostasis network, such as chaperone-mediated folding and ER-associated degradation. However, when these control mechanisms fail, misfolded/unfolded proteins accumulate in the ER lumen and contribute to ER stress. ER stress has been implicated in nearly all neurological diseases. ER stress initiates the unfolded protein response to restore proteostasis, and if the damage is irreversible, it elicits intracellular cascades of death and inflammation. With the growing appreciation of a functional association between ER stress and neurological diseases and with the improved understanding of the multiple underlying molecular mechanisms, pharmacological and genetic targeting of ER stress are beginning to emerge as therapeutic approaches for neurological diseases.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
27
|
Kalra P, Khan H, Kaur A, Singh TG. Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective. Neurochem Res 2022; 47:825-843. [PMID: 34993703 DOI: 10.1007/s11064-021-03500-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia is one of the most devastating brain injuries and a primary cause of acquired and persistent disability worldwide. Despite ongoing therapeutic interventions at both the experimental and clinical levels, options for stroke-related brain injury are still limited. Several evidence suggests that autophagy is triggered in response to cerebral ischemia, therefore targeting autophagy-related signaling pathways can provide a new direction for the therapeutic implications in the ischemic injury. Autophagy is a highly conserved lysosomal-dependent pathway that degrades and recycles damaged or non-essential cellular components to maintain neuronal homeostasis. But, whether autophagy activation promotes cell survival against ischemic injury or, on the contrary, causes neuronal death is still under debate. We performed an extensive literature search from PubMed, Bentham and Elsevier for various aspects related to molecular mechanisms and pathobiology involved in autophagy and several pre-clinical studies justifiable further in the clinical trials. Autophagy modulates various downstream molecular cascades, i.e., mTOR, NF-κB, HIF-1, PPAR-γ, MAPK, UPR, and ROS pathways in cerebral ischemic injury. In this review, the various approaches and their implementation in the translational research in ischemic injury into practices has been covered. It will assist researchers in finding a way to cross the unbridgeable chasm between the pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
28
|
Li H, Wen W, Luo J. Targeting Endoplasmic Reticulum Stress as an Effective Treatment for Alcoholic Pancreatitis. Biomedicines 2022; 10:biomedicines10010108. [PMID: 35052788 PMCID: PMC8773075 DOI: 10.3390/biomedicines10010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatitis and alcoholic pancreatitis are serious health concerns with an urgent need for effective treatment strategies. Alcohol is a known etiological factor for pancreatitis, including acute pancreatitis (AP) and chronic pancreatitis (CP). Excessive alcohol consumption induces many pathological stress responses; of particular note is endoplasmic reticulum (ER) stress and adaptive unfolded protein response (UPR). ER stress results from the accumulation of unfolded/misfolded protein in the ER and is implicated in the pathogenesis of alcoholic pancreatitis. Here, we summarize the possible mechanisms by which ER stress contributes to alcoholic pancreatitis. We also discuss potential approaches targeting ER stress and UPR in developing novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Wen Wen
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
| | - Jia Luo
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (H.L.); (W.W.)
- Iowa City VA Health Care System, Iowa City, IA 52246, USA
- Correspondence: ; Tel.: +1-319-335-2256
| |
Collapse
|
29
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2022; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
30
|
Rehni AK, Cho S, Dave KR. Ischemic brain injury in diabetes and endoplasmic reticulum stress. Neurochem Int 2022; 152:105219. [PMID: 34736936 PMCID: PMC8918032 DOI: 10.1016/j.neuint.2021.105219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
Diabetes is a widespread disease characterized by high blood glucose levels due to abnormal insulin activity, production, or both. Chronic diabetes causes many secondary complications including cardiovascular disease: a life-threatening complication. Cerebral ischemia-related mortality, morbidity, and the extent of brain injury are high in diabetes. However, the mechanism of increase in ischemic brain injury during diabetes is not well understood. Multiple mechanisms mediate diabetic hyperglycemia and hypoglycemia-induced increase in ischemic brain injury. Endoplasmic reticulum (ER) stress mediates both brain injury as well as brain protection after ischemia-reperfusion injury. The pathways of ER stress are modulated during diabetes. Free radical generation and mitochondrial dysfunction, two of the prominent mechanisms that mediate diabetic increase in ischemic brain injury, are known to stimulate the pathways of ER stress. Increased ischemic brain injury in diabetes is accompanied by a further increase in the activation of ER stress. As there are many metabolic changes associated with diabetes, differential activation of the pathways of ER stress may mediate pronounced ischemic brain injury in subjects suffering from diabetes. We presently discuss the literature on the significance of ER stress in mediating increased ischemia-reperfusion injury in diabetes.
Collapse
Affiliation(s)
- Ashish K Rehni
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sunjoo Cho
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
31
|
Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab 2021; 32:980-993. [PMID: 34756776 PMCID: PMC8589112 DOI: 10.1016/j.tem.2021.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA; Sanders Brown Center for Aging, Lexington, KY 40508-0536, USA.
| |
Collapse
|
32
|
An update on the unfolded protein response in brain ischemia: Experimental evidence and therapeutic opportunities. Neurochem Int 2021; 151:105218. [PMID: 34732355 DOI: 10.1016/j.neuint.2021.105218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022]
Abstract
After ischemic stroke or cardiac arrest, brain ischemia occurs. Currently, no pharmacologic intervention that targets cellular processes has proven effective in improving neurologic outcome in patients after brain ischemia. Recent experimental research has identified the crucial role of proteostasis in survival and recovery of cells after ischemia. In particular, the unfolded protein response (UPR), a key signaling pathway that safeguards cellular proteostasis, is emerging as a promising therapeutic target for brain ischemia. For some time, the UPR has been known to play a critical role in the pathophysiology of brain ischemia; however, only in the recent years has the field grown substantially, largely due to the extensive use of UPR-specific mouse genetic models and the rapidly expanding availability of pharmacologic tools that target the UPR. In this review, we provide a timely update on the progress in our understanding of the UPR in experimental brain ischemia, and discuss the therapeutic implications of targeting the UPR in ischemic stroke and cardiac arrest.
Collapse
|
33
|
Li R, Shen Y, Li X, Lu L, Wang Z, Sheng H, Hoffmann U, Yang W. Activation of the XBP1s/O-GlcNAcylation Pathway Improves Functional Outcome After Cardiac Arrest and Resuscitation in Young and Aged Mice. Shock 2021; 56:755-761. [PMID: 34652341 PMCID: PMC9059164 DOI: 10.1097/shk.0000000000001732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT After cardiac arrest (CA) and resuscitation, the unfolded protein response (UPR) is activated in various organs including the brain. However, the role of the UPR in CA outcome remains largely unknown. One UPR branch involves spliced X-box-binding protein-1 (XBP1s). Notably, XBP1s, a transcriptional factor, can upregulate expression of specific enzymes related to glucose metabolism, and subsequently boost O-linked β-N-acetylglucosamine modification (O-GlcNAcylation). The current study is focused on effects of the XBP1 UPR branch and its downstream O-GlcNAcylation on CA outcome. Using both loss-of-function and gain-of-function mouse genetic tools, we provide the first evidence that activation of the XBP1 UPR branch in the post-CA brain is neuroprotective. Specifically, neuron-specific Xbp1 knockout mice had worse CA outcome, while mice with neuron-specific expression of Xbp1s in the brain had better CA outcome. Since it has been shown that the protective role of the XBP1s signaling pathway under ischemic conditions is mediated by increasing O-GlcNAcylation, we then treated young mice with glucosamine, and found that functional deficits were mitigated on day 3 post CA. Finally, after confirming that glucosamine can boost O-GlcNAcylation in the aged brain, we subjected aged mice to 8 min CA, and then treated them with glucosamine. We found that glucosamine-treated aged mice performed significantly better in behavioral tests. Together, our data indicate that the XBP1s/O-GlcNAc pathway is a promising target for CA therapy.
Collapse
Affiliation(s)
- Ran Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Parks SZ, Gao T, Jimenez Awuapura N, Ayathamattam J, Chabosseau PL, Kalvakolanu DV, Valdivia HH, Rutter GA, Leclerc I. The Ca 2+ -binding protein sorcin stimulates transcriptional activity of the unfolded protein response mediator ATF6. FEBS Lett 2021; 595:1782-1796. [PMID: 33960419 DOI: 10.1002/1873-3468.14101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022]
Abstract
Sorcin is a calcium-binding protein involved in maintaining endoplasmic reticulum (ER) Ca2+ stores. We have previously shown that overexpressing sorcin under the rat insulin promoter was protective against high-fat diet-induced pancreatic beta-cell dysfunction in vivo. Activating transcription factor 6 (ATF6) is a key mediator of the unfolded protein response (UPR) that provides cellular protection during the progression of ER stress. Here, using nonexcitable HEK293 cells, we show that sorcin overexpression increased ATF6 signalling, whereas sorcin knock out caused a reduction in ATF6 transcriptional activity and increased ER stress. Altogether, our data suggest that sorcin downregulation during lipotoxic stress may prevent full ATF6 activation and a normal UPR during the progression of obesity and insulin resistance.
Collapse
Affiliation(s)
- Steven Z Parks
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Tian Gao
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Natalia Jimenez Awuapura
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Joseph Ayathamattam
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Pauline L Chabosseau
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Dhananjaya V Kalvakolanu
- Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Héctor H Valdivia
- Cardiovascular Research Center, University of Wisconsin-Madison, WI, USA
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion & Reproduction, Imperial College London, UK
| |
Collapse
|
36
|
Shen Y, Li R, Yu S, Zhao Q, Wang Z, Sheng H, Yang W. Activation of the ATF6 (Activating Transcription Factor 6) Signaling Pathway in Neurons Improves Outcome After Cardiac Arrest in Mice. J Am Heart Assoc 2021; 10:e020216. [PMID: 34111943 PMCID: PMC8477867 DOI: 10.1161/jaha.120.020216] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Background Ischemia/reperfusion injury impairs proteostasis, and triggers adaptive cellular responses, such as the unfolded protein response (UPR), which functions to restore endoplasmic reticulum homeostasis. After cardiac arrest (CA) and resuscitation, the UPR is activated in various organs including the brain. However, the role of the UPR in CA has remained largely unknown. Here we aimed to investigate effects of activation of the ATF6 (activating transcription factor 6) UPR branch in CA. Methods and Results Conditional and inducible sATF6-KI (short-form ATF6 knock-in) mice and a selective ATF6 pathway activator 147 were used. CA was induced in mice by KCl injection, followed by cardiopulmonary resuscitation. We first found that neurologic function was significantly improved, and neuronal damage was mitigated after the ATF6 pathway was activated in neurons of sATF6-KI mice subjected to CA/cardiopulmonary resuscitation. Further RNA sequencing analysis indicated that such beneficial effects were likely attributable to increased expression of pro-proteostatic genes regulated by ATF6. Especially, key components of the endoplasmic reticulum-associated degradation process, which clears potentially toxic unfolded/misfolded proteins in the endoplasmic reticulum, were upregulated in the sATF6-KI brain. Accordingly, the CA-induced increase in K48-linked polyubiquitin in the brain was higher in sATF6-KI mice relative to control mice. Finally, CA outcome, including the survival rate, was significantly improved in mice treated with compound 147. Conclusions This is the first experimental study to determine the role of the ATF6 UPR branch in CA outcome. Our data indicate that the ATF6 UPR branch is a prosurvival pathway and may be considered as a therapeutic target for CA.
Collapse
Affiliation(s)
- Yuntian Shen
- Department of AnesthesiologyCenter for Perioperative Organ ProtectionDuke University Medical CenterDurhamNC
| | - Ran Li
- Department of AnesthesiologyCenter for Perioperative Organ ProtectionDuke University Medical CenterDurhamNC
| | - Shu Yu
- Department of AnesthesiologyCenter for Perioperative Organ ProtectionDuke University Medical CenterDurhamNC
| | - Qiang Zhao
- Department of AnesthesiologyCenter for Perioperative Organ ProtectionDuke University Medical CenterDurhamNC
| | - Zhuoran Wang
- Department of AnesthesiologyCenter for Perioperative Organ ProtectionDuke University Medical CenterDurhamNC
| | - Huaxin Sheng
- Department of AnesthesiologyCenter for Perioperative Organ ProtectionDuke University Medical CenterDurhamNC
| | - Wei Yang
- Department of AnesthesiologyCenter for Perioperative Organ ProtectionDuke University Medical CenterDurhamNC
| |
Collapse
|
37
|
Wang Z, Li X, Spasojevic I, Lu L, Shen Y, Qu X, Hoffmann U, Warner DS, Paschen W, Sheng H, Yang W. Increasing O-GlcNAcylation is neuroprotective in young and aged brains after ischemic stroke. Exp Neurol 2021; 339:113646. [PMID: 33600817 DOI: 10.1016/j.expneurol.2021.113646] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Spliced X-box binding protein-1 (XBP1s) together with the hexosamine biosynthetic pathway (HBP) and O-GlcNAcylation forms the XBP1s/HBP/O-GlcNAc axis. Our previous studies have provided evidence that activation of this axis is neuroprotective after ischemic stroke and critically, ischemia-induced O-GlcNAcylation is impaired in the aged brain. However, the XBP1s' neuroprotective role and its link to O-GlcNAcylation in stroke, as well as the therapeutic potential of targeting this axis in stroke, have not been well established. Moreover, the mechanisms underlying this age-related impairment of O-GlcNAcylation induction after brain ischemia remain completely unknown. In this study, using transient ischemic stroke models, we first demonstrated that neuron-specific overexpression of Xbp1s improved outcome, and pharmacologically boosting O-GlcNAcylation with thiamet-G reversed worse outcome observed in neuron-specific Xbp1 knockout mice. We further showed that thiamet-G treatment improved long-term functional recovery in both young and aged animals after transient ischemic stroke. Mechanistically, using an analytic approach developed here, we discovered that availability of UDP-GlcNAc was compromised in the aged brain, which may constitute a novel mechanism responsible for the impaired O-GlcNAcylation activation in the aged brain after ischemia. Finally, based on this new mechanistic finding, we evaluated and confirmed the therapeutic effects of glucosamine treatment in young and aged animals using both transient and permanent stroke models. Our data together support that increasing O-GlcNAcylation is a promising strategy in stroke therapy.
Collapse
Affiliation(s)
- Zhuoran Wang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xuan Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ivan Spasojevic
- Department of Medicine - Oncology, Duke University Medical Center, Durham, NC, USA; PK/PD Core Laboratory, Duke Cancer Institute, Duke School of Medicine, Durham, NC, USA
| | - Liping Lu
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yuntian Shen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xingguang Qu
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ulrike Hoffmann
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - David S Warner
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Huaxin Sheng
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wei Yang
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
38
|
Marmolejo-Martínez-Artesero S, Casas C, Romeo-Guitart D. Endogenous Mechanisms of Neuroprotection: To Boost or Not to Boost. Cells 2021; 10:cells10020370. [PMID: 33578870 PMCID: PMC7916582 DOI: 10.3390/cells10020370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Postmitotic cells, like neurons, must live through a lifetime. For this reason, organisms/cells have evolved with self-repair mechanisms that allow them to have a long life. The discovery workflow of neuroprotectors during the last years has focused on blocking the pathophysiological mechanisms that lead to neuronal loss in neurodegeneration. Unfortunately, only a few strategies from these studies were able to slow down or prevent neurodegeneration. There is compelling evidence demonstrating that endorsing the self-healing mechanisms that organisms/cells endogenously have, commonly referred to as cellular resilience, can arm neurons and promote their self-healing. Although enhancing these mechanisms has not yet received sufficient attention, these pathways open up new therapeutic avenues to prevent neuronal death and ameliorate neurodegeneration. Here, we highlight the main endogenous mechanisms of protection and describe their role in promoting neuron survival during neurodegeneration.
Collapse
Affiliation(s)
- Sara Marmolejo-Martínez-Artesero
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| | - Caty Casas
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
| | - David Romeo-Guitart
- Department of Cell Biology, Physiology and Immunology, Institut de Neurociències (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
- Laboratory “Hormonal Regulation of Brain Development and Functions”—Team 8, Institut Necker Enfants-Malades (INEM), INSERM U1151, Université Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
- Correspondence: ; Tel.: +33-01-40-61-53-57
| |
Collapse
|
39
|
Grandjean JMD, Wiseman RL. Small molecule strategies to harness the unfolded protein response: where do we go from here? J Biol Chem 2020; 295:15692-15711. [PMID: 32887796 PMCID: PMC7667976 DOI: 10.1074/jbc.rev120.010218] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) plays a central role in regulating endoplasmic reticulum (ER) and global cellular physiology in response to pathologic ER stress. The UPR is comprised of three signaling pathways activated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Once activated, these proteins initiate transcriptional and translational signaling that functions to alleviate ER stress, adapt cellular physiology, and dictate cell fate. Imbalances in UPR signaling are implicated in the pathogenesis of numerous, etiologically-diverse diseases, including many neurodegenerative diseases, protein misfolding diseases, diabetes, ischemic disorders, and cancer. This has led to significant interest in establishing pharmacologic strategies to selectively modulate IRE1, ATF6, or PERK signaling to both ameliorate pathologic imbalances in UPR signaling implicated in these different diseases and define the importance of the UPR in diverse cellular and organismal contexts. Recently, there has been significant progress in the identification and characterization of UPR modulating compounds, providing new opportunities to probe the pathologic and potentially therapeutic implications of UPR signaling in human disease. Here, we describe currently available UPR modulating compounds, specifically highlighting the strategies used for their discovery and specific advantages and disadvantages in their application for probing UPR function. Furthermore, we discuss lessons learned from the application of these compounds in cellular and in vivo models to identify favorable compound properties that can help drive the further translational development of selective UPR modulators for human disease.
Collapse
Affiliation(s)
- Julia M D Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
40
|
Abstract
Acute Respiratory Distress Syndrome is a severe disorder affecting thousands of individuals worldwide. The available medical countermeasures do not sufficiently suppress the unacceptable high mortality rates associated with those in need. Thus, intense efforts aim to delineate the function of the lung endothelium, so to deliver new therapeutic approaches against this disease. The present manuscript attempts to shed light on the interrelations between the unfolded protein response and autophagy towards lung disease, to deliver a new line of possible therapeutic approaches against the ferocious Acute Respiratory Distress Syndrome.
Collapse
Affiliation(s)
- Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
41
|
Wang M, Lee H, Elkin K, Bardhi R, Guan L, Chandra A, Geng X, Ding Y. Detrimental and Beneficial Effect of Autophagy and a Potential Therapeutic Target after Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8372647. [PMID: 33688357 PMCID: PMC7924073 DOI: 10.1155/2020/8372647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022]
Abstract
Autophagy, a physiologic mechanism that promotes energy recycling and orderly degradation through self-regulated disassembly of cellular components, helps maintain homeostasis. A series of evidences suggest that autophagy is activated as a response to ischemia and has been well-characterized as a therapeutic target. However, the role of autophagy after ischemia remains controversial. Activated-autophagy can remove necrotic substances against ischemic injury to promote cell survival. On the contrary, activation of autophagy may further aggravate ischemic injury, causing cell death. Therefore, the present review will examine the current understanding of the precise mechanism and role of autophagy in ischemia and recent neuroprotective therapies on autophagy, drug therapies, and nondrug therapies, including electroacupuncture (EA).
Collapse
Affiliation(s)
- Meng Wang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kenneth Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Redina Bardhi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Ankush Chandra
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
42
|
Fu J, Tao T, Li Z, Chen Y, Li J, Peng L. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed Pharmacother 2020; 131:110658. [PMID: 32841895 DOI: 10.1016/j.biopha.2020.110658] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are a diverse group of neurological disorders, which are characterized by spontaneous recurrent seizures. Although a wide range of pathogenic mechanisms such as alterations in ion channels, inflammation and neuronal loss have been reported to be implicated in the epileptogenesis, the underlying pathogenesis of epilepsy remains unclear currently. Endoplasmic reticulum (ER) stress is regarded as a condition that unfolded or misfolded proteins accumulate in the ER lumen. Excessive or prolonged ER stress causes the activation of the unfolded protein response (UPR) to buffer ER stress and restore ER homeostasis. Increasing evidence has indicated dysregulated ER stress during epileptogenesis, which may participate in various pathological processes associated with epilepsy. In this present review, we summarized recent advances in the involvement of ER stress in the pathogenesis of epilepsy. Additionally, the antiepileptic and neuroprotective effects of interventions targeting ER stress were also discussed.
Collapse
Affiliation(s)
- Jie Fu
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China; Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Tao Tao
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Zuoxiao Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Yangmei Chen
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jinglun Li
- Department of Neurology, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| | - Lilei Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University. Taiping Street, Jiangyang District, Luzhou, 646000, China.
| |
Collapse
|
43
|
ClC-3 induction protects against cerebral ischemia/reperfusion injury through promoting Beclin1/Vps34-mediated autophagy. Hum Cell 2020; 33:1046-1055. [DOI: 10.1007/s13577-020-00406-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
|
44
|
Kubra KT, Akhter MS, Uddin MA, Barabutis N. Unfolded protein response in cardiovascular disease. Cell Signal 2020; 73:109699. [PMID: 32592779 DOI: 10.1016/j.cellsig.2020.109699] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved molecular machinery, which protects the cells against a diverse variety of stimuli. Activation of this element has been associated with both human health and disease. The purpose of the current manuscript is to provide the most updated information on the involvement of UPR towards the improvement; or deterioration of cardiovascular functions. Since UPR is consisted of three distinct elements, namely the activating transcription factor 6, the protein kinase RNA-like endoplasmic reticulum kinase; and the inositol-requiring enzyme-1α, a highly orchestrated manipulation of those molecular branches may provide new therapeutic possibilities against the severe outcomes of cardiovascular disease.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
45
|
Abstract
Background A growing body of literature suggests the cell–intrinsic activity of Atf6α during ER stress responses has implications for tissue cell number during growth and development, as well as in adult biology and tumorigenesis [1]. This concept is important, linking the cellular processes of secretory protein synthesis and endoplasmic reticulum stress response with functional tissue capacity and organ size. However, the field contains conflicting observations, especially notable in secretory cell types like the pancreatic beta cell. Scope of review Here we summarize current knowledge of the basic biology of Atf6α, along with the pleiotropic roles Atf6α plays in cell life and death decisions and possible explanations for conflicting observations. We include studies investigating the roles of Atf6α in cell survival, death and proliferation using well-controlled methodology and specific validated outcome measures, with a focus on endocrine and metabolic tissues when information was available. Major conclusions The net outcome of Atf6α on cell survival and cell death depends on cell type and growth conditions, the presence and degree of ER stress, and the duration and intensity of Atf6α activation. It is unquestioned that Atf6α activity influences the cell fate decision between survival and death, although opposite directions of this outcome are reported in different contexts. Atf6α can also trigger cell cycle activity to expand tissue cell number through proliferation. Much work remains to be done to clarify the many gaps in understanding in this important emerging field.
Collapse
Affiliation(s)
- Rohit B Sharma
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jarin T Snyder
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Laura C Alonso
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
46
|
Glembotski CC, Arrieta A, Blackwood EA, Stauffer WT. ATF6 as a Nodal Regulator of Proteostasis in the Heart. Front Physiol 2020; 11:267. [PMID: 32322217 PMCID: PMC7156617 DOI: 10.3389/fphys.2020.00267] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Proteostasis encompasses a homeostatic cellular network in all cells that maintains the integrity of the proteome, which is critical for optimal cellular function. The components of the proteostasis network include protein synthesis, folding, trafficking, and degradation. Cardiac myocytes have a specialized endoplasmic reticulum (ER) called the sarcoplasmic reticulum that is well known for its role in contractile calcium handling. However, less studied is the proteostasis network associated with the ER, which is of particular importance in cardiac myocytes because it ensures the integrity of proteins that are critical for cardiac contraction, e.g., ion channels, as well as proteins necessary for maintaining myocyte viability and interaction with other cell types, e.g., secreted hormones and growth factors. A major aspect of the ER proteostasis network is the ER unfolded protein response (UPR), which is initiated when misfolded proteins in the ER activate a group of three ER transmembrane proteins, one of which is the transcription factor, ATF6. Prior to studies in the heart, ATF6 had been shown in model cell lines to be primarily adaptive, exerting protective effects by inducing genes that encode ER proteins that fortify protein-folding in this organelle, thus establishing the canonical role for ATF6. Subsequent studies in isolated cardiac myocytes and in the myocardium, in vivo, have expanded roles for ATF6 beyond the canonical functions to include the induction of genes that encode proteins outside of the ER that do not have known functions that are obviously related to ER protein-folding. The identification of such non-canonical roles for ATF6, as well as findings that the gene programs induced by ATF6 differ depending on the stimulus, have piqued interest in further research on ATF6 as an adaptive effector in cardiac myocytes, underscoring the therapeutic potential of activating ATF6 in the heart. Moreover, discoveries of small molecule activators of ATF6 that adaptively affect the heart, as well as other organs, in vivo, have expanded the potential for development of ATF6-based therapeutics. This review focuses on the ATF6 arm of the ER UPR and its effects on the proteostasis network in the myocardium.
Collapse
Affiliation(s)
- Christopher C Glembotski
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Adrian Arrieta
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Erik A Blackwood
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| | - Winston T Stauffer
- Department of Biology, College of Sciences, San Diego State University Heart Institute, San Diego State University, San Diego, CA, United States
| |
Collapse
|
47
|
Wang YC, Li X, Shen Y, Lyu J, Sheng H, Paschen W, Yang W. PERK (Protein Kinase RNA-Like ER Kinase) Branch of the Unfolded Protein Response Confers Neuroprotection in Ischemic Stroke by Suppressing Protein Synthesis. Stroke 2020; 51:1570-1577. [PMID: 32212900 DOI: 10.1161/strokeaha.120.029071] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background and Purpose- Ischemic stroke impairs endoplasmic reticulum (ER) function, causes ER stress, and activates the unfolded protein response. The unfolded protein response consists of 3 branches controlled by ER stress sensor proteins, which include PERK (protein kinase RNA-like ER kinase). Activated PERK phosphorylates eIF2α (eukaryotic initiation factor 2 alpha), resulting in inhibition of global protein synthesis. Here, we aimed to clarify the role of the PERK unfolded protein response branch in stroke. Methods- Neuron-specific and tamoxifen-inducible PERK conditional knockout (cKO) mice were generated by cross-breeding Camk2a-CreERT2 with Perkf/f mice. Transient middle cerebral artery occlusion was used to induce stroke. Short- and long-term stroke outcomes were evaluated. Protein synthesis in the brain was assessed using a surface-sensing-of-translation approach. Results- After tamoxifen-induced deletion of Perk in forebrain neurons was confirmed in PERK-cKO mice, PERK-cKO and control mice were subjected to transient middle cerebral artery occlusion and 3 days or 3 weeks recovery. PERK-cKO mice had larger infarcts and worse neurological outcomes compared with control mice, suggesting that PERK-induced eIF2α phosphorylation and subsequent suppression of translation protects neurons from ischemic stress. Indeed, better stroke outcomes were observed in PERK-cKO mice that received postischemic treatment with salubrinal, which can restore the ischemia-induced increase in phosphorylated eIF2α in these mice. Finally, our data showed that post-treatment with salubrinal improved functional recovery after stroke. Conclusions- Here, we presented the first evidence that postischemic suppression of translation induced by PERK activation promotes recovery of neurological function after stroke. This confirms and further extends our previous observations that recovery of ER function impaired by ischemic stress critically contributes to stroke outcome. Therefore, future research should include strategies to improve stroke outcome by targeting unfolded protein response branches to restore protein homeostasis in neurons.
Collapse
Affiliation(s)
- Ya-Chao Wang
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Xuan Li
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Yuntian Shen
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Jingjun Lyu
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Huaxin Sheng
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Wulf Paschen
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| | - Wei Yang
- From the Department of Anesthesiology, Center for Perioperative Organ Protection, Duke University Medical Center, Durham, NC
| |
Collapse
|
48
|
Stone S, Wu S, Nave KA, Lin W. The UPR preserves mature oligodendrocyte viability and function in adults by regulating autophagy of PLP. JCI Insight 2020; 5:132364. [PMID: 32053121 DOI: 10.1172/jci.insight.132364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/06/2020] [Indexed: 01/03/2023] Open
Abstract
Maintaining cellular proteostasis is essential for oligodendrocyte viability and function; however, its underlying mechanisms remain unexplored. Unfolded protein response (UPR), which comprises 3 parallel branches, inositol requiring enzyme 1 (IRE1), pancreatic ER kinase (PERK), and activating transcription factor 6α (ATF6α), is a major mechanism that maintains cellular proteostasis by facilitating protein folding, attenuating protein translation, and enhancing autophagy and ER-associated degradation. Here we report that impaired UPR in oligodendrocytes via deletion of PERK and ATF6α did not affect developmental myelination but caused late-onset mature oligodendrocyte dysfunction and death in young adult mice. The detrimental effects of the impaired UPR on mature oligodendrocytes were accompanied by autophagy impairment and intracellular proteolipid protein (PLP) accumulation and were rescued by PLP deletion. Data indicate that PLP was degraded by autophagy and that intracellular PLP accumulation was cytotoxic to oligodendrocytes. Thus, these findings imply that the UPR is required for maintaining cellular proteostasis and the viability and function of mature oligodendrocytes in adults by regulating autophagy of PLP.
Collapse
Affiliation(s)
- Sarrabeth Stone
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shuangchan Wu
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wensheng Lin
- Department of Neuroscience and.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
49
|
Palmer JE, Brietske BM, Bate TC, Blackwood EA, Garg M, Glembotski CC, Cooley CB. Reactive Oxygen Species (ROS)-Activatable Prodrug for Selective Activation of ATF6 after Ischemia/Reperfusion Injury. ACS Med Chem Lett 2020; 11:292-297. [PMID: 32184959 DOI: 10.1021/acsmedchemlett.9b00299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
We describe here the design, synthesis, and biological evaluation of a reactive oxygen species (ROS)-activatable prodrug for the selective delivery of 147, a small molecule ATF6 activator, for ischemia/reperfusion injury. ROS-activatable prodrug 1 and a negative control unable to release free drug were synthesized and examined for peroxide-mediated activation. Prodrug 1 blocks activity of 147 by its inability to undergo metabolic oxidation by ER-resident cytochrome P450 enzymes such as Cyp1A2, probed directly here for the first time. Biological evaluation of ROS-activatable prodrug 1 in primary cardiomyocytes demonstrates protection against peroxide-mediated toxicity and enhances viability following simulated I/R injury. The ability to selectively target ATF6 activation under diseased conditions establishes the potential for localized stress-responsive signaling pathway activation as a therapeutic approach for I/R injury and related protein misfolding maladies.
Collapse
Affiliation(s)
- Jonathan E. Palmer
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Breanna M. Brietske
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Tyler C. Bate
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Erik A. Blackwood
- San Diego State University Heart Institute and Department of Biology, San Diego State University, San Diego, California 92182, United States
| | - Manasa Garg
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Christopher C. Glembotski
- San Diego State University Heart Institute and Department of Biology, San Diego State University, San Diego, California 92182, United States
| | - Christina B. Cooley
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| |
Collapse
|
50
|
Involvement of Metabolic Lipid Mediators in the Regulation of Apoptosis. Biomolecules 2020; 10:biom10030402. [PMID: 32150849 PMCID: PMC7175142 DOI: 10.3390/biom10030402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is the physiological mechanism of cell death and can be modulated by endogenous and exogenous factors, including stress and metabolic alterations. Reactive oxygen species (ROS), as well as ROS-dependent lipid peroxidation products (including isoprostanes and reactive aldehydes including 4-hydroxynonenal) are proapoptotic factors. These mediators can activate apoptosis via mitochondrial-, receptor-, or ER stress-dependent pathways. Phospholipid metabolism is also an essential regulator of apoptosis, producing the proapoptotic prostaglandins of the PGD and PGJ series, as well as the antiapoptotic prostaglandins of the PGE series, but also 12-HETE and 20-HETE. The effect of endocannabinoids and phytocannabinoids on apoptosis depends on cell type-specific differences. Cells where cannabinoid receptor type 1 (CB1) is the dominant cannabinoid receptor, as well as cells with high cyclooxygenase (COX) activity, undergo apoptosis after the administration of cannabinoids. In contrast, in cells where CB2 receptors dominate, and cells with low COX activity, cannabinoids act in a cytoprotective manner. Therefore, cell type-specific differences in the pro- and antiapoptotic effects of lipids and their (oxidative) products might reveal new options for differential bioanalysis between normal, functional, and degenerating or malignant cells, and better integrative biomedical treatments of major stress-associated diseases.
Collapse
|