1
|
Shi Y, Shi Y, Jie R, He J, Luo Z, Li J. Vitamin D: The crucial neuroprotective factor for nerve cells. Neuroscience 2024; 560:272-285. [PMID: 39343160 DOI: 10.1016/j.neuroscience.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Vitamin D is well known for its role in regulating the absorption and utilization of calcium and phosphorus as well as bone formation, and a growing number of studies have shown that vitamin D also has important roles in the nervous system, such as maintaining neurological homeostasis and protecting normal brain function, and that neurons and glial cells may be the targets of these effects. Most reviews of vitamin D's effects on the nervous system have focused on its overall effects, without distinguishing the contributors to these effects. In this review, we mainly focus on the cells of the central nervous system, summarizing the effects of vitamin D on them and the related pathways. With this review, we hope to elucidate the role of vitamin D in the nervous system at the cellular level and provide new insights into the prevention and treatment of neurodegenerative diseases in the direction of neuroprotection, myelin regeneration, and so on.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Yuchen Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Rao Jie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiawei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha 410008, Hunan, PR China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| |
Collapse
|
2
|
Mwema A, Gratpain V, Ucakar B, Vanvarenberg K, Perdaens O, van Pesch V, Muccioli GG, des Rieux A. Impact of calcitriol and PGD 2-G-loaded lipid nanocapsules on oligodendrocyte progenitor cell differentiation and remyelination. Drug Deliv Transl Res 2024; 14:3128-3146. [PMID: 38366115 DOI: 10.1007/s13346-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating and inflammatory disease of the central nervous system (CNS) in need of a curative treatment. MS research has recently focused on the development of pro-remyelinating treatments and neuroprotective therapies. Here, we aimed at favoring remyelination and reducing neuro-inflammation in a cuprizone mouse model of brain demyelination using nanomedicines. We have selected lipid nanocapsules (LNC) coated with the cell-penetrating peptide transactivator of translation (TAT), loaded with either a pro-remyelinating compound, calcitriol (Cal-LNC TAT), or an anti-inflammatory bioactive lipid, prostaglandin D2-glycerol ester (PGD2-G) (PGD2-G-LNC TAT). Following the characterization of these formulations, we showed that Cal-LNC TAT in combination with PGD2-G-LNC TAT increased the mRNA expression of oligodendrocyte differentiation markers both in the CG-4 cell line and in primary mixed glial cell (MGC) cultures. However, while the combination of Cal-LNC TAT and PGD2-G-LNC TAT showed promising results in vitro, no significant impact, in terms of remyelination, astrogliosis, and microgliosis, was observed in vivo in the corpus callosum of cuprizone-treated mice following intranasal administration. Thus, although calcitriol's beneficial effects have been abundantly described in the literature in the context of MS, here, we show that the different doses of calcitriol tested had a negative impact on the mice well-being and showed no beneficial effect in the cuprizone model in terms of remyelination and neuro-inflammation, alone and when combined with PGD2-G-LNC TAT.
Collapse
Affiliation(s)
- Ariane Mwema
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Viridiane Gratpain
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Kevin Vanvarenberg
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium
| | - Océane Perdaens
- Cellular and Molecular Division, Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 53, 1200, Brussels, Belgium
| | - Vincent van Pesch
- Cellular and Molecular Division, Institute of Neuroscience, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 53, 1200, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium.
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, UCLouvain, Avenue E. Mounier 73, 1200, Brussels, Belgium.
| |
Collapse
|
3
|
Abbasi H, Rahnemayan S, Alawfi JS, Mirshekari M, Taheri N, Farhoudi M. The Link Between Vitamin D and the Risk of Aneurysmal Subarachnoid Hemorrhage: A Systematic Review. World Neurosurg 2024; 189:351-356.e1. [PMID: 38876189 DOI: 10.1016/j.wneu.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Vitamin D (VD) is one of the fat-soluble vitamins proposed to be associated with aSAH. According to the clinical evidence, this investigation explores the link between VD concentrations and clinical outcomes in aSAH patients. METHODS This systematic review was executed based on the PRISMA 2020 statement. Observational studies that evaluated the serum VD concentrations in aSAH patients were considered as included articles. Review articles, case reports, letters, commentaries, non-English papers, and conference abstracts were excluded. Five online databases-Scopus, PubMed, Web of Science, Embase, and Ovid-were searched up to November 23, 2023, and based on the Newcastle-Ottawa Scale, the risk of bias was assessed. RESULTS Out of 383 articles initially identified, eventually 7 studies were included in the systematic review. These studies were conducted between 2016 and 2023 and included a total of 333,907 patients. The varying results suggest that VD may impact clinical outcomes in aSAH patients. CONCLUSIONS This study highlights the complex association between VD concentration and the risk of aSAH. The observed inconsistencies in study outcomes suggest that the relationship between VD and aSAH is multifaceted and may be influenced by various factors, including study population, geographical location, and methodological approach.
Collapse
Affiliation(s)
- Hamid Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jumanah S Alawfi
- Clinical Nutrition Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mobin Mirshekari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
de Macêdo LP, de Castro Tavares R, Torres Braga M, Dos Santos LM, Donato G, Lima Júnior FASD, de Macêdo RP, Ugulino Netto A, Franke K, Vansant Oliveira Eugênio P, Batista Cezar-Junior A, Vilela Faquini I, Júnior Silva JL, de Carvalho Júnior EV, Almeida NS, Bandeira E Farias FA, Moraes Valença M, Rocha Cirne Azevedo-Filho H. The relationship between the level of vitamin D and ruptured intracranial aneurysms among patients with high sun exposure. Sci Rep 2024; 14:3555. [PMID: 38347057 PMCID: PMC10861505 DOI: 10.1038/s41598-024-53676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/03/2024] [Indexed: 02/15/2024] Open
Abstract
Non-traumatic subarachnoid hemorrhage (SAH) accounts for 3-5% of acute strokes. Intracranial aneurysm is the most common cause of non-traumatic SAH. Vitamin D influences the cardiovascular system, including the formation and rupture of cerebral aneurysms. To evaluate the serum vitamin D level in patients living in the tropical zone who suffered aneurysmal subarachnoid hemorrhage and its correlation with demographic and neurological characteristics. This is an analytical cross-sectional study to assess the serum level of vitamin D in a study population of 99 patients treated and diagnosed with aSAH in a public hospital in Recife-PE over a period of 12 months. In the study sample, composed of individuals with high sun exposure due to the lifestyle they lead in a tropical region, we observed hypovitaminosis D (85.9%), with a median of 19.9 ng/ml, although the majority of individuals are skin with high concentration of melanin (Fitzpatrick skin type IV and V). In addition, rates of sun exposure are high to all patients (Solar Index 9.03 P50). Most individuals were female (79.8%); there was no statistical difference in solar exposure/solar index between genders. As for the neurological repercussions, there was no statistical relevance in the clinical prognostic scales evaluated. As the sample was composed mainly of individuals whose economic activity is agriculture, the values of solar index found are vastly higher than those of other studies conducted in high latitude regions. In line with the literature review, some aspects were raised with the objective of justifying such findings that go from the base of the poor diet of these individuals, the increase of melanin in the skin and genetic alterations that directs us to possible mechanisms of natural photoprotection to high sun exposure. Thus, we had a vast majority (85%) of hypovitaminosis D, which in fact makes us wonder if there is any influence of calcitriol on vitamin D receptors in vascular walls and in the cardiovascular system as a whole, which influence bleeding events of this nature. As for the neurological repercussions, measured using assessment scales (Glasgow coma scale, WFNS scale, Hunt-Hess and Fisher's tomographic scale) there was no significant difference in the results. As it is only a descriptive study, the causal relationship of the facts cannot be established. However, in a population exposed to high sun exposure and affected by aneurysmal SAH, there is a significant rate of hypovitaminosis D, which supports the hypothesis that vitamin D plays a role in vascular pathologies, such as cerebral aneurysms and SAH.
Collapse
Affiliation(s)
- Lívio Pereira de Macêdo
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil.
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
- , Recife, Brasil.
| | | | | | | | - Glaudir Donato
- Medical Student, Centro de Ciências Médicas, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | | | - Kauê Franke
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
| | | | | | - Igor Vilela Faquini
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
| | | | | | - Nivaldo S Almeida
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
| | | | | | - Hildo Rocha Cirne Azevedo-Filho
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
5
|
Kaur D, Khan H, Grewal AK, Singh TG. Glycosylation: A new signaling paradigm for the neurovascular diseases. Life Sci 2024; 336:122303. [PMID: 38016576 DOI: 10.1016/j.lfs.2023.122303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
A wide range of life-threatening conditions with complicated pathogenesis involves neurovascular disorders encompassing Neurovascular unit (NVU) damage. The pathophysiology of NVU is characterized by several features including tissue hypoxia, stimulation of inflammatory and angiogenic processes, and the initiation of intricate molecular interactions, collectively leading to an elevation in blood-brain barrier permeability, atherosclerosis and ultimately, neurovascular diseases. The presence of compelling data about the significant involvement of the glycosylation in the development of diseases has sparked a discussion on whether the abnormal glycosylation may serve as a causal factor for neurovascular disorders, rather than being just recruited as a secondary player in regulating the critical events during the development processes like embryo growth and angiogenesis. An essential tool for both developing new anti-ischemic therapies and understanding the processes of ischemic brain damage is undertaking pre-clinical studies of neurovascular disorders. Together with the post-translational modification of proteins, the modulation of glycosylation and its enzymes implicates itself in several abnormal activities which are known to accelerate neuronal vasculopathy. Despite the failure of the majority of glycosylation-based preclinical and clinical studies over the past years, there is a significant probability to provide neuroprotection utilizing modern and advanced approaches to target abnormal glycosylation activity at embryonic stages as well. This article focuses on a variety of experimental evidence to postulate the interconnection between glycosylation and vascular disorders along with possible treatment options.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | | | |
Collapse
|
6
|
Haussler MR, Haussler CA, Jurutka PW. Genomically anchored vitamin D receptor mediates an abundance of bioprotective actions elicited by its 1,25-dihydroxyvitamin D hormonal ligand. VITAMINS AND HORMONES 2023; 123:313-383. [PMID: 37717990 DOI: 10.1016/bs.vh.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States.
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| |
Collapse
|
7
|
Fernandes de Souza WD, Zorzella-Pezavento SFG, Ayupe MC, Salgado CL, Oliveira BDC, Moreira F, da Silva GW, Muraro SP, de Souza GF, Proença-Módena JL, Araujo Junior JP, Fonseca DMD, Sartori A. Lung Inflammation Induced by Inactivated SARS-CoV-2 in C57BL/6 Female Mice Is Controlled by Intranasal Instillation of Vitamin D. Cells 2023; 12:cells12071092. [PMID: 37048165 PMCID: PMC10093523 DOI: 10.3390/cells12071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
The COVID-19 pandemic was triggered by the coronavirus SARS-CoV-2, whose peak occurred in the years 2020 and 2021. The main target of this virus is the lung, and the infection is associated with an accentuated inflammatory process involving mainly the innate arm of the immune system. Here, we described the induction of a pulmonary inflammatory process triggered by the intranasal (IN) instillation of UV-inactivated SARS-CoV-2 in C57BL/6 female mice, and then the evaluation of the ability of vitamin D (VitD) to control this process. The assays used to estimate the severity of lung involvement included the total and differential number of cells in the bronchoalveolar lavage fluid (BALF), histopathological analysis, quantification of T cell subsets, and inflammatory mediators by RT-PCR, cytokine quantification in lung homogenates, and flow cytometric analysis of cells recovered from lung parenchyma. The IN instillation of inactivated SARS-CoV-2 triggered a pulmonary inflammatory process, consisting of various cell types and mediators, resembling the typical inflammation found in transgenic mice infected with SARS-CoV-2. This inflammatory process was significantly decreased by the IN delivery of VitD, but not by its IP administration, suggesting that this hormone could have a therapeutic potential in COVID-19 if locally applied. To our knowledge, the local delivery of VitD to downmodulate lung inflammation in COVID-19 is an original proposition.
Collapse
Affiliation(s)
- William Danilo Fernandes de Souza
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | | | - Marina Caçador Ayupe
- Laboratory of Mucosal Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil
| | - Caio Loureiro Salgado
- Laboratory of Mucosal Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil
| | - Bernardo de Castro Oliveira
- Laboratory of Mucosal Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil
| | - Francielly Moreira
- Laboratory of Mucosal Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil
| | - Guilherme William da Silva
- Laboratory of Mucosal Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil
| | - Stefanie Primon Muraro
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Gabriela Fabiano de Souza
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - José Luiz Proença-Módena
- Laboratory of Emerging Viruses, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Joao Pessoa Araujo Junior
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Denise Morais da Fonseca
- Laboratory of Mucosal Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil
| | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
8
|
Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023; 15:nu15020334. [PMID: 36678205 PMCID: PMC9864832 DOI: 10.3390/nu15020334] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Deficiency in vitamin D (VitD), a lipid-soluble vitamin and steroid hormone, affects approximately 24% to 40% of the population of the Western world. In addition to its well-documented effects on the musculoskeletal system, VitD also contributes importantly to the promotion and preservation of cardiovascular health via modulating the immune and inflammatory functions and regulating cell proliferation and migration, endothelial function, renin expression, and extracellular matrix homeostasis. This brief overview focuses on the cardiovascular and cerebrovascular effects of VitD and the cellular, molecular, and functional changes that occur in the circulatory system in VitD deficiency (VDD). It explores the links among VDD and adverse vascular remodeling, endothelial dysfunction, vascular inflammation, and increased risk for cardiovascular and cerebrovascular diseases. Improved understanding of the complex role of VDD in the pathogenesis of atherosclerotic cardiovascular diseases, stroke, and vascular cognitive impairment is crucial for all cardiologists, dietitians, and geriatricians, as VDD presents an easy target for intervention.
Collapse
|
9
|
Galoppin M, Kari S, Soldati S, Pal A, Rival M, Engelhardt B, Astier A, Thouvenot E. Full spectrum of vitamin D immunomodulation in multiple sclerosis: mechanisms and therapeutic implications. Brain Commun 2022; 4:fcac171. [PMID: 35813882 PMCID: PMC9260308 DOI: 10.1093/braincomms/fcac171] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D deficiency has been associated with the risk of multiple sclerosis, disease activity and progression. Results from in vitro experiments, animal models and analysis of human samples from randomized controlled trials provide comprehensive data illustrating the pleiotropic actions of Vitamin D on the immune system. They globally result in immunomodulation by decreasing differentiation of effector T and B cells while promoting regulatory subsets. Vitamin D also modulates innate immune cells such as macrophages, monocytes and dendritic cells, and acts at the level of the blood–brain barrier reducing immune cell trafficking. Vitamin D exerts additional activity within the central nervous system reducing microglial and astrocytic activation. The immunomodulatory role of Vitamin D detected in animal models of multiple sclerosis has suggested its potential therapeutic use for treating multiple sclerosis. In this review, we focus on recent published data describing the biological effects of Vitamin D in animal models of multiple sclerosis on immune cells, blood–brain barrier function, activation of glial cells and its potential neuroprotective effects. Based on the current knowledge, we also discuss optimization of therapeutic interventions with Vitamin D in patients with multiple sclerosis, as well as new technologies allowing in-depth analysis of immune cell regulations by vitamin D.
Collapse
Affiliation(s)
- Manon Galoppin
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
| | - Saniya Kari
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Arindam Pal
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Manon Rival
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| | | | - Anne Astier
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – Université Toulouse III , 31024 Toulouse cedex 3 , France
| | - Eric Thouvenot
- IGF, University Montpellier, CNRS, INSERM , Montpellier , France
- Department of Neurology, Nîmes University Hospital, University Montpellier , Nîmes , France
| |
Collapse
|
10
|
Liu J, Li N, Zhu Z, Kiang KMY, Ng ACK, Dong CM, Leung GKK. Vitamin D Enhances Hematoma Clearance and Neurologic Recovery in Intracerebral Hemorrhage. Stroke 2022; 53:2058-2068. [PMID: 35514286 DOI: 10.1161/strokeaha.121.037769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Erythrophagocytosis by reparative monocyte-derived macrophage contributes to hematoma clearance and neurological recovery after intracerebral hemorrhage (ICH). Vitamin D (VitD) is a neuroprotective hormone and regulates the differentiation of monocyte-derived macrophage from monocytes. In this study, we examined the effects of VitD supplementation on monocyte-derived macrophage and hematoma clearance in rodent with ICH. METHODS Neurobehavioral functions and hematoma volume were assessed using a collagenase injection model in both young- and middle-aged mice with or without VitD treatment given 2 hours post-ICH induction. We used flow cytometry to analyze CD36 expression and macrophage and undifferentiated monocyte cell numbers during in vivo erythrophagocytosis in collagenase and autologous blood injection models. Western blot analysis and immunofluorescence were used to assess the expression levels of the PPAR-γ (peroxisome proliferator-activated receptor γ)-CD36 axis and CD206. A macrophage differentiation study was conducted on murine bone marrow-derived monocytes. RESULTS VitD promoted neurological recovery and facilitated hematoma clearance in both young- and middle-aged mice after ICH. Within the perihematomal region, mature macrophages, rather than undifferentiated monocytes, expressed higher levels of CD36 in driving erythrocyte clearance. VitD increased the macrophage number but decreased the monocyte number and elevated the levels of CD36 and PPAR-γ in the brain. In vitro, VitD accelerated the differentiation of reparative macrophages from bone marrow-derived monocytes. CONCLUSIONS VitD promotes reparative macrophage differentiation, facilitates hematoma clearance, and improves neurobehavioral performance in mice with ICH, suggesting that VitD should be further examined as a potentially promising treatment for ICH.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, China (J.L., N.L., Z.Z., K.K., A.N.)
| | - Ning Li
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, China (J.L., N.L., Z.Z., K.K., A.N.).,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China (N.L.)
| | - Zhiyuan Zhu
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, China (J.L., N.L., Z.Z., K.K., A.N.).,Department of Functional neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou, China (Z.Z.)
| | - Karrie Mei-Yee Kiang
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, China (J.L., N.L., Z.Z., K.K., A.N.)
| | - Anson Cho Kiu Ng
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, China (J.L., N.L., Z.Z., K.K., A.N.)
| | - Celia M Dong
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, China (C.M.D.)
| | | |
Collapse
|
11
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
12
|
Fiani B, Barthelmass M, Siddiqi I, Kortz M, Pennington E, Pasko K. Vitamin D as a modifiable risk factor, predictor, and theoretical therapeutic agent for vasospasm in spontaneous subarachnoid hemorrhage. Acta Neurol Belg 2022; 122:11-15. [PMID: 34275126 DOI: 10.1007/s13760-021-01757-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/13/2021] [Indexed: 11/26/2022]
Abstract
Delayed deterioration associated with cerebral vasospasm (CVS) is a feared complication after spontaneous subarachnoid hemorrhage (SAH) and is one of the leading causes of death in patients with intracranial hemorrhage. The pathophysiology of vasospasm is complex and not fully understood, involving multiple inflammatory pathways in addition to vasoconstriction induced ischemia. Current treatment with anti-inflammatory or vasodilatory medications has been met with limited success and has not led to a decrease in vasospastic associated mortality prompting continued investigation of potential treatment options. The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25-VitD3), is a hormone with downstream effects that induce anti-inflammatory pathways, promote nitric oxide (NO) induced vasodilation, and lead to neuroprotective-gene expression, which may be useful in mitigating the vascular pathogenesis associated with CVS. A high prevalence of vitamin D deficiency has been identified in patients admitted with SAH. Low vitamin D levels in patients, as determined by time of year, has also been correlated to an increased incidence and severity of CVS. Further, the therapeutic usefulness of 1,25-VitD3 has been demonstrated in animal models leading to a decreased incidence of CVS but has yet to be thoroughly investigated in human studies. In this review, we will discuss the findings that suggest the potential of utilizing vitamin D as a predictive indicator, method of prevention, and or treatment option for CVS in patients following spontaneous SAH.
Collapse
Affiliation(s)
- Brian Fiani
- Desert Regional Medical Center, 1180 N. Indian Canyon Dr. Ste. 214 W, Palm Springs, CA, 92262, USA.
| | - Michaela Barthelmass
- Desert Regional Medical Center, 1180 N. Indian Canyon Dr. Ste. 214 W, Palm Springs, CA, 92262, USA
| | - Imran Siddiqi
- Desert Regional Medical Center, 1180 N. Indian Canyon Dr. Ste. 214 W, Palm Springs, CA, 92262, USA
| | - Michael Kortz
- Desert Regional Medical Center, 1180 N. Indian Canyon Dr. Ste. 214 W, Palm Springs, CA, 92262, USA
| | - Elisabeth Pennington
- Desert Regional Medical Center, 1180 N. Indian Canyon Dr. Ste. 214 W, Palm Springs, CA, 92262, USA
| | - Kory Pasko
- Desert Regional Medical Center, 1180 N. Indian Canyon Dr. Ste. 214 W, Palm Springs, CA, 92262, USA
| |
Collapse
|
13
|
Xie Z, Enkhjargal B, Nathanael M, Wu L, Zhu Q, Zhang T, Tang J, Zhang JH. Exendin-4 Preserves Blood-Brain Barrier Integrity via Glucagon-Like Peptide 1 Receptor/Activated Protein Kinase-Dependent Nuclear Factor-Kappa B/Matrix Metalloproteinase-9 Inhibition After Subarachnoid Hemorrhage in Rat. Front Mol Neurosci 2022; 14:750726. [PMID: 35002615 PMCID: PMC8733623 DOI: 10.3389/fnmol.2021.750726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022] Open
Abstract
In this study, we investigated the role of Exendin-4 (Ex-4), a glucagon-like peptide 1 receptor (GLP-1R) agonist, in blood-brain barrier (BBB) disruption after subarachnoid hemorrhage (SAH) in rats. The endovascular perforation model of SAH was performed in Sprague-Dawley rats. Ex-4 was intraperitoneally injected 1 h after SAH induction. To elucidate the underlying molecular mechanism, small interfering ribonucleic acid (siRNA) for GLP-1R and Dorsomorphin, a specific inhibitor of adenosine monophosphate-activated protein kinase (AMPK), were intracerebroventricularly injected 48 h before induction of SAH correspondingly. Immunofluorescence results supported GLP-1R expressed on the endothelial cells of microvessels in the brain after SAH. Administration of Ex-4 significantly reduced brain water content and Evans blue extravasation in both hemispheres, which improved neurological scores at 24 h after SAH. In the mechanism study, Ex-4 treatment significantly increased the expression of GLP-1R, p-AMPK, IκB-α, Occludin, and Claudin-5, while the expression of p-nuclear factor-kappa B (NF-κB) p65, matrix metalloproteinase-9 (MMP-9), and albumin was significantly decreased. The effects of Ex-4 were reversed by the intervention of GLP-1R siRNA or Dorsomorphin, respectively. In conclusion, Ex-4 could preserve the BBB integrity through GLP-1R/AMPK-dependent NF-κB/MMP-9 inhibition after SAH, which should be further investigated as a potential therapeutic target in SAH.
Collapse
Affiliation(s)
- Zhiyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Matei Nathanael
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Lingyun Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
14
|
Bupivacaine in combination with sildenafil (Viagra) and vitamin D3 have anti-inflammatory effects in osteoarthritic chondrocytes. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100066. [PMID: 34909684 PMCID: PMC8663929 DOI: 10.1016/j.crphar.2021.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
Aims To treat osteoarthritic chondrocytes and thereby reduce the inflammation with a drug combination that primarily affects 5-HT- and ATP-evoked Ca2+ signaling. In osteoarthritic chondrocytes, Ca2+ signaling is elevated, resulting in increased production of ATP and inflammatory mediators. The expression of TLR4 and Na+/K+-ATPase was used to evaluate the inflammatory status of the cells. Main methods Equine chondrocytes were collected from joints with mild structural osteoarthritic changes and cultured in monolayers. The cells were treated with a combination of bupivacaine (1 pM) and sildenafil (1 μM) in combination with vitamin D3 (100 nM). A high-throughput screening system, the Flexstation 3 microplate reader, was used to measure intra- and extracellular Ca2+ signaling after exposure to 5-HT, glutamate, or ATP. Expression of inflammatory receptors was assessed by Western blotting. Key findings Drug treatment substantially reduced 5-HT- and ATP-evoked intracellular Ca2+ release and TLR4 expression compared to those in untreated chondrocytes. The combination of sildenafil, vitamin D3 together with metformin, as the ability to take up glucose is limited, increased Na+/K+-ATPase expression. Significance The combination of these three therapeutic substances at concentrations much lower than usually used, reduced expression of the inflammatory receptor TLR4 and increased the cell membrane enzyme Na+/K+-ATPase, which regulates cell volume and reduces increased intracellular Ca2+ concentrations. These remarkable results indicate that this drug combination has disease-modifying osteoarthritis drug (DMOAD) properties and may be a new clinical therapy for osteoarthritis (OA).
Collapse
|
15
|
Parameters of Oxidative Stress, Vitamin D, Osteopontin, and Melatonin in Patients with Lip, Oral Cavity, and Pharyngeal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2364931. [PMID: 34721756 PMCID: PMC8550860 DOI: 10.1155/2021/2364931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022]
Abstract
Lip, oral cavity, and pharyngeal cancers (LOCP) constitute a group of rare neoplasms with unfavorable prognosis. So far, not much is known about the role of vitamin D and oxidative stress in the pathogenesis of LOCP in the European population. The aim of the study was to determine the concentrations of vitamin D, osteopontin, melatonin, and malondialdehyde (MDA) as markers of oxidative stress and/or inflammation, as well as the activities of antioxidant enzymes in the course of LOCP. The vitamin D, melatonin, and osteopontin concentrations in blood serum, the MDA levels in erythrocytes and blood plasma, and the activities of superoxide dismutase (SOD-1), catalase (CAT), and glutathione peroxidase (GPx) in erythrocytes were measured in blood samples taken from 25 LOCP patients of middle age (YCG), 20 LOCP elderly patients (OCG), and 25 healthy middle-aged volunteers. In both cancer groups, decreases in vitamin D and CAT, as well as increases in osteopontin and blood plasma MDA, were observed. An increase in GPx activity in YCG and a decrease in melatonin level in OCG were found. The results indicate the vitamin D deficiency and disturbed oxidant-antioxidant homeostasis in LOCP patients. Osteopontin seems to be associated with LOCP carcinogenesis and requires further research.
Collapse
|
16
|
Shi H, Fang Y, Huang L, Gao L, Lenahan C, Okada T, Travis ZD, Xie S, Tang H, Lu Q, Liu R, Tang J, Cheng Y, Zhang JH. Activation of Galanin Receptor 1 with M617 Attenuates Neuronal Apoptosis via ERK/GSK-3β/TIP60 Pathway After Subarachnoid Hemorrhage in Rats. Neurotherapeutics 2021; 18:1905-1921. [PMID: 34086200 PMCID: PMC8609084 DOI: 10.1007/s13311-021-01066-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease. Neuronal apoptosis plays an important pathological role in early brain injury after SAH. Galanin receptor 1 (GalR1) activation was recently shown to be anti-apoptotic in the setting of ischemic stroke. This study aimed to explore the anti-neuronal apoptosis effect of GalR1 activation after SAH, as well as the underlying mechanisms. GalR1 CRISPR and GalR1 selective agonist, M617, was administered, respectively. Extracellular-signal-regulated kinase (ERK) inhibitor (U0126) and glycogen synthase kinase 3-beta (GSK3-β) CRISPR were administered to investigate the involvement of the ERK/GSK3-β pathway in GalR1-mediated neuroprotection after SAH. Outcome assessments included neurobehavioral tests, western blot, and immunohistochemistry. The results showed that endogenous ligand galanin (Gal) and GalR1 were markedly increased in the ipsilateral brain hemisphere at 12 h and 24 h after SAH. GalR1 were expressed mainly in neurons, but expression was also observed in some astrocytes and microglia. GalR1 CRISPR knockdown exacerbated neurological deficits and neuronal apoptosis 24 h after SAH. Moreover, activation of GalR1 with M617 significantly improved short- and long-term neurological deficits but decreased neuronal apoptosis after SAH. Furthermore, GalR1 activation dysregulated the protein levels of phosphorylated ERK and GSK-3β, but downregulated the phosphorylated Tat-interactive protein 60 (TIP60) and cleaved caspase-3 at 24 h after SAH. GalR1 CRISPR, U0126, and GSK-3β CRISPR abolished the beneficial effects of GalR1 activation at 24 h after SAH in rats. Collectively, the present study demonstrated that activation of GalR1 using M617 attenuated neuronal apoptosis through the ERK/GSK-3β/TIP60 pathway after SAH in rats. GalR1 may serve as a promising therapeutic target for SAH patients.
Collapse
Affiliation(s)
- Hui Shi
- Department of Neurosurgery, Chongqing Medical University, Yongchuan Hospital, Yongchuan, Chongqing, China
| | - Yuanjian Fang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Ling Gao
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Takeshi Okada
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Zachary D Travis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Shucai Xie
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Hong Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Rui Liu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Yuan Cheng
- Department of Neurosurgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
- Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
17
|
Haussler MR, Livingston S, Sabir ZL, Haussler CA, Jurutka PW. Vitamin D Receptor Mediates a Myriad of Biological Actions Dependent on Its 1,25-Dihydroxyvitamin D Ligand: Distinct Regulatory Themes Revealed by Induction of Klotho and Fibroblast Growth Factor-23. JBMR Plus 2021; 5:e10432. [PMID: 33553988 PMCID: PMC7839824 DOI: 10.1002/jbm4.10432] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
The hormonal vitamin D metabolite, 1,25‐dihydroxyvitamin D [1,25(OH)2D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand‐controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D‐regulated genes. Circulating 1,25(OH)2D concentrations are governed by PTH, an inducer of renal D‐hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor‐23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop. 1,25(OH)2D/VDR–RXR acts in kidney to induce Klotho (a phosphaturic coreceptor for FGF23) to correct hyperphosphatemia, NPT2a/c to correct hypophosphatemia, and TRPV5 and CaBP28k to enhance calcium reabsorption. 1,25(OH)2D‐liganded VDR–RXR functions in osteoblasts/osteocytes by augmenting RANK‐ligand expression to paracrine signal osteoclastic bone resorption, while simultaneously inducing FGF23, SPP1, BGLP, LRP5, ANK1, ENPP1, and TNAP, and conversely repressing RUNX2 and PHEX expression, effecting localized control of mineralization to sculpt the skeleton. Herein, we document the history of 1,25(OH)2D/VDR and summarize recent advances in characterizing their physiology, biochemistry, and mechanism of action by highlighting two examples of 1,25(OH)2D/VDR molecular function. The first is VDR‐mediated primary induction of Klotho mRNA by 1,25(OH)2D in kidney via a mechanism initiated by the docking of liganded VDR–RXR on a VDRE at −35 kb in the mouse Klotho gene. In contrast, the secondary induction of FGF23 by 1,25(OH)2D in bone is proposed to involve rapid nongenomic action of 1,25(OH)2D/VDR to acutely activate PI3K, in turn signaling the induction of MZF1, a transcription factor that, in cooperation with c‐ets1‐P, binds to an enhancer element centered at −263 bp in the promoter‐proximal region of the mouse fgf23 gene. Chronically, 1,25(OH)2D‐induced osteopontin apparently potentiates MZF1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Sarah Livingston
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Zhela L Sabir
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Carol A Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Peter W Jurutka
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ.,School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| |
Collapse
|
18
|
Asada R, Nakatsuka Y, Kanamaru H, Kawakita F, Fujimoto M, Miura Y, Shiba M, Yasuda R, Toma N, Suzuki H. Higher Plasma Osteopontin Concentrations Associated with Subsequent Development of Chronic Shunt-Dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2021; 12:808-816. [PMID: 33423213 DOI: 10.1007/s12975-020-00886-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023]
Abstract
A matricellular protein osteopontin (OPN) is considered to exert neuroprotective and healing effects on neurovascular injuries in an acute phase of aneurysmal subarachnoid hemorrhage (SAH). However, the relationships between OPN expression and chronic shunt-dependent hydrocephalus (SDHC) have never been investigated. In 166 SAH patients (derivation and validation cohorts, 110 and 56, respectively), plasma OPN levels were serially measured at days1-3, 4-6, 7-9, and 10-12 after aneurysmal obliteration. The OPN levels and clinical factors were compared between patients with and without subsequent development of chronic SDHC. Plasma OPN levels in the SDHC patients increased from days 1-3 to days 4-6 and remained high thereafter, while those in the non-SDHC patients peaked at days 4-6 and then decreased over time. Plasma OPN levels had no correlation with serum levels of C-reactive protein (CRP), a systemic inflammatory marker. Univariate analyses showed that age, modified Fisher grade, acute hydrocephalus, cerebrospinal fluid drainage, and OPN and CRP levels at days 10-12 were significantly different between patients with and without SDHC. Multivariate analyses revealed that higher plasma OPN levels at days 10-12 were an independent factor associated with the development of SDHC, in addition to a more frequent use of cerebrospinal fluid drainage and higher modified Fisher grade at admission. Plasma OPN levels at days 10-12 maintained similar discrimination power in the validation cohort and had good calibration on the Hosmer-Lemeshow goodness-of-fit test. Prolonged higher expression of OPN may contribute to the development of post-SAH SDHC, possibly by excessive repairing effects promoting fibrosis in the subarachnoid space.
Collapse
Affiliation(s)
- Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshinari Nakatsuka
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoichi Miura
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | | |
Collapse
|
19
|
Hajimohammadebrahim-Ketabforoush M, Shahmohammadi M, Keikhaee M, Eslamian G, Vahdat Shariatpanahi Z. Single high-dose vitamin D3 injection and clinical outcomes in brain tumor resection: A randomized, controlled clinical trial. Clin Nutr ESPEN 2021; 41:153-159. [PMID: 33487259 DOI: 10.1016/j.clnesp.2020.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS Vitamin D is known as a neuroprotective hormone with anti-inflammatory and immune-modulatory properties. We evaluated the effect of vitamin D3 injection on vitamin D status and clinical outcomes in patients with low serum levels of 25-hydroxyvitamin D [25(OH)D] undergoing craniotomy for brain tumor resection. METHODS Patients with benign brain tumors and serum 25(OH)D levels ≤20 ng/mL were randomized to two groups with an equal number of subjects. The study group (n = 30) received intramuscular injection of 300,000 IU vitamin D3 prior to surgery. The control group (n = 30) was left without intervention, and both groups underwent routine therapies. RESULTS On day 5 after craniotomy, the serum 25(OH)D levels increased significantly in the study group (P= <0.001). The length of ICU and hospital stay was significantly lower in the study group compared to the control group (P = 0.01 and P = 0.008, respectively). It was true when the age, tumor size, tumor type, Karnofsky Performance Scale (KPS) score, and calcium and albumin levels at baseline entered the logistic regression model (OR = 0.17 (95%CI = 0.04-0.72, P = 0.01), and OR = 0.19 (95%CI = 0.04-0.82, P = 0.02), respectively). With and without the application of logistic regression analysis, there was no significant difference in perioperative complications. CONCLUSIONS Intramuscular injection of 300,000 IU of vitamin D3 in patients with low serum levels of 25(OH)D undergoing craniotomy, could rise safely the serum 25(OH)D level. This intervention, significantly reduced the length of ICU stay and hospitalization. REGISTERED UNDER Clinicaltrials.gov.identifier no: NCT03248544. Date: 8/14/2017.
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Keikhaee
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Comprehensive Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Vahdat Shariatpanahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Saadatmand K, Khan S, Hassan Q, Hautamaki R, Ashouri R, Lua J, Doré S. Benefits of vitamin D supplementation to attenuate TBI secondary injury? Transl Neurosci 2021; 12:533-544. [PMID: 34992852 PMCID: PMC8678475 DOI: 10.1515/tnsci-2020-0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Vitamin D supplementation has been shown to improve outcomes for patients suffering from a variety of illnesses such as stroke and cancer. Vitamin D deficiencies have been associated with longer hospital stays, greater severity of symptoms, and death in some complex cases. Due to vitamin D’s burgeoning role in improving patient outcomes, a new sector of research is focusing on the lesser-known implications of vitamin D on health. Traumatic brain injury (TBI) affects approximately 69 million people worldwide per year. Here, we summarize the current scientific understanding of vitamin D dynamics with TBI to elucidate a potential way to lessen the cascade of secondary damage after an initial insult, with the goal of improving overall patient outcomes. Because vitamin D supplementation has been correlated with better outcomes in other pathologies involving immune and inflammatory molecules, it is important to study the potential effect of vitamin D deficiency (VDD) and supplementation on TBI outcomes. Research on vitamin D supplementation in TBI remains in the preliminary stages. There is still much to learn about vitamin D deficiency, dosage, variants of supplementary forms, mechanisms, and its role in TBI.
Collapse
Affiliation(s)
- Kiana Saadatmand
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Saba Khan
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Quaratulain Hassan
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Raymond Hautamaki
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Rani Ashouri
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Josh Lua
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America.,Departments of Psychiatry, Pharmaceutics, Psychology, and Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| |
Collapse
|
21
|
Hajimohammadebrahim-Ketabforoush M, Shahmohammadi M, Vahdat Shariatpanahi Z, Zali A. Preoperative Serum Level of Vitamin D is a Possible Protective Factor for Peritumoral Brain Edema of Meningioma: A Cross Sectional Study. Nutr Cancer 2020; 73:2842-2848. [PMID: 33331170 DOI: 10.1080/01635581.2020.1861311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Meningioma is associated with the development of vasogenic edema defined as disrupted blood brain barrier. Vitamin D3 through its own nuclear receptor can regulate the expression of many effective agents on the integrity of the blood brain barrier. This study aimed to investigate the association between preoperative serum levels of 25(OH)D and peritumoral brain edema in patients with meningioma. One hundred and twelve patients with meningioma completed the study. Serum 25(OH)D levels assessment and magnetic resonance imaging (MRI) were done for all patients at the beginning of the study. The percentage of edema index (EI) was used to estimate the extent of peritumoral brain edema through preoperative MRI. The median serum level of 25(OH)D in the patients with the percentage of EI < 100% was significantly higher than those with > 100% (65.58 vs. 37.33, P < 0.001). The median percentage of EI was 24.9. Preoperative serum levels of 25(OH)D had an inverse and significant correlation with the percentage of EI as by increasing each 1 ng/mL of serum 25(OH)D, EI was decreased approximately 4% (95% CI; -5.984 to -1.952, P < 0.001). Vitamin D may be a protective factor for peritumoral brain edema of meningioma.
Collapse
Affiliation(s)
- Melika Hajimohammadebrahim-Ketabforoush
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Vahdat Shariatpanahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Sun J, Wu J, Hua F, Chen Y, Zhan F, Xu G. Sleep Deprivation Induces Cognitive Impairment by Increasing Blood-Brain Barrier Permeability via CD44. Front Neurol 2020; 11:563916. [PMID: 33329306 PMCID: PMC7728917 DOI: 10.3389/fneur.2020.563916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep deprivation occurs frequently in older adults, which can result in delirium and cognitive impairment. CD44 is a key molecular in blood-brain barrier (BBB) regulation. However, whether CD44 participates in the role of sleep deprivation in cognitive impairment remains unclear. In this study, the effect of sleep deprivation on cognitive ability, tissue inflammation, BBB permeability, and astrocyte activity were evaluated in vivo. The differentially expressed genes (DEGs) were identified by RNA sequencing. A CD44 overexpression in the BBB model was performed in vitro to assess the effect and mechanisms of CD44. Sleep deprivation impaired the learning and memory ability and increased the levels of inflammatory cytokines, along with increased BBB permeability and activated astrocytes in hippocampus tissue. RNA sequencing of the hippocampus tissue revealed that 329 genes were upregulated in sleep deprivation-induced mice compared to control mice, and 147 genes were downregulated. GO and pathways showed that DEGs were mainly involved in BBB permeability and astrocyte activation, including nervous system development, neuron development, and brain development, and neuroactive ligand-receptor interaction. Moreover, the PCR analysis revealed that CD44 was dramatically increased in mice with sleep deprivation induction. The overexpression of CD44 in astrocytes promoted BBB permeability in vitro and induced the expression of the downstream gene NANOG. Our results indicate that sleep deprivation upregulated CD44 expression in hippocampus tissue, and increased BBB permeability, resulting in cognitive impairment.
Collapse
Affiliation(s)
- Jing Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jusheng Wu
- Department of Anesthesiology, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020; 12:pharmaceutics12111120. [PMID: 33233734 PMCID: PMC7699866 DOI: 10.3390/pharmaceutics12111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
This review highlights the pre-clinical and clinical work performed to use intranasal delivery of various compounds from growth factors to stem cells to reduce neuroimmune interactions. We introduce the concept of intranasal (IN) delivery and the variations of this delivery method based on the model used (i.e., rodents, non-human primates, and humans). We summarize the literature available on IN delivery of growth factors, vitamins and metabolites, cytokines, immunosuppressants, exosomes, and lastly stem cells. We focus on the improvement of neuroimmune interactions, such as the activation of resident central nervous system (CNS) immune cells, expression or release of cytokines, and detrimental effects of signaling processes. We highlight common diseases that are linked to dysregulations in neuroimmune interactions, such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-764-2938
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michelle E. Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|
25
|
Relationship between suicidal patients and vitamin D: A prospective case-control study. JOURNAL OF SURGERY AND MEDICINE 2020. [DOI: 10.28982/josam.727963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Matsumura K, Kumar TP, Guddanti T, Yan Y, Blackburn SL, McBride DW. Neurobehavioral Deficits After Subarachnoid Hemorrhage in Mice: Sensitivity Analysis and Development of a New Composite Score. J Am Heart Assoc 2020; 8:e011699. [PMID: 30971151 PMCID: PMC6507191 DOI: 10.1161/jaha.118.011699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Because of the failure of numerous clinical trials, various recommendations have been made to improve the usefulness of preclinical studies. Specifically, the STAIR (Stroke Therapy Academic Industry Roundtable) recommendations highlighted functional outcome as a critical measure. Recent reviews of experimental subarachnoid hemorrhage (SAH) studies have brought to light the numerous neurobehavioral scoring systems that are used in preclinical SAH studies. To gain insight into the utility of these scoring systems, as well as to identify a scoring system that best captures the deficits caused by SAH in mice, we designed the current study. Methods and Results Adult male C57BL/6J mice were used. One cohort of mice was randomly allocated to either sham or SAH and had functional testing performed on days 1 to 3 post‐SAH using the modified Bederson Score, Katz Score, Garcia Neuroscore, and Parra Neuroscore, as well as 21 individual subtests. A new composite neuroscore was developed using the 8 most diagnostically accurate subtests. To validate the use of the developed composite neuroscore, another cohort of mice was randomly assigned to either the sham or SAH group and neurobehavior was evaluated on days 1 to 3, 5, and 7 after injury. Receiver operating characteristic curves were used to analyze the diagnostic accuracy of each scoring system, as well as the subtests. Of the 4 published scoring systems, the Parra Neuroscore was diagnostically accurate for SAH injury in mice versus the modified Bederson and Katz Scores, but not the Garcia Neuroscore. However, the newly developed composite neuroscore was found to be statistically more diagnostically accurate than even the Parra Neuroscore. Conclusions The findings of this study promote use of the newly developed composite neuroscore for experimental SAH studies in mice.
Collapse
Affiliation(s)
- Kanako Matsumura
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - T Peeyush Kumar
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Tejesh Guddanti
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Yuanqing Yan
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Spiros L Blackburn
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Devin W McBride
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| |
Collapse
|
27
|
Zhou Y, Yao Y, Sheng L, Zhang J, Zhang JH, Shao A. Osteopontin as a candidate of therapeutic application for the acute brain injury. J Cell Mol Med 2020; 24:8918-8929. [PMID: 32657030 PMCID: PMC7417697 DOI: 10.1111/jcmm.15641] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
Acute brain injury is the leading cause of human death and disability worldwide, which includes intracerebral haemorrhage, subarachnoid haemorrhage, cerebral ischaemia, traumatic brain injury and hypoxia‐ischaemia brain injury. Currently, clinical treatments for neurological dysfunction of acute brain injury have not been satisfactory. Osteopontin (OPN) is a complex adhesion protein and cytokine that interacts with multiple receptors including integrins and CD44 variants, exhibiting mostly neuroprotective roles and showing therapeutic potential for acute brain injury. OPN‐induced tissue remodelling and functional repair mainly rely on its positive roles in the coordination of pro‐inflammatory and anti‐inflammatory responses, blood‐brain barrier maintenance and anti‐apoptotic actions, as well as other mechanisms such as affecting the chemotaxis and proliferation of nerve cells. The blood OPN strongly parallel with the OPN induced in the brain and can be used as a novel biomarker of the susceptibility, severity and outcome of acute brain injury. In the present review, we summarized the molecular signalling mechanisms of OPN as well as its overall role in different kinds of acute brain injury.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lesang Sheng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Wu LY, Enkhjargal B, Xie ZY, Travis ZD, Sun CM, Zhou KR, Zhang TY, Zhu QQ, Hang CH, Zhang JH. Recombinant OX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT signaling pathway following subarachnoid hemorrhage in rats. Exp Neurol 2020; 326:113179. [PMID: 31930990 DOI: 10.1016/j.expneurol.2020.113179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/20/2019] [Accepted: 01/09/2020] [Indexed: 11/16/2022]
Abstract
Subarachnoid hemorrhage (SAH) is the most devastating form of stroke. Reducing neuronal apoptosis is an important countermeasure against early brain injury (EBI) after SAH. Recent evidence indicates that OX40-OX40L coupling is critical for cell survival and proliferation. Current study was performed to detect the role of recombinant OX40 (ReOX40) against neuronal apoptosis after SAH. The endovascular perforation model of SAH was performed on Sprague-Dawley (SD) rats. ReOX40 was injected intracerebroventricularly (i.c.v) 1 h after SAH induction and the following methods were employed: neurological function evaluation, immunofluorescence staining, fluoro-Jade C staining, and western blot. To study the underlying precise molecular mechanism, small interfering ribonucleic acid (siRNA) for OX40L and a specific inhibitor of PI3K, LY294002, were injected i.c.v. into SAH + ReOX40 rats before induction of SAH. When compared with sham rats, the expression of OX40 and OX40L was seen to decrease in the brain at 24 h after SAH induction. Administration of ReOX40 (5 μg/kg) increased expression of the OX40L, reduced the neuronal apoptosis, and improved short and long-term neurological function deficits. Furthermore, ReOx40 heightened activation of OX40L/PI3K/AKT axis, increased the downstream anti-apoptotic protein (Bcl2, Bcl-XL), and depressed the apoptotic protein (cleaved caspase 3, Bax). However, the protective effects of ReOX40 were abolished by the administration of OX40L siRNA and LY294002, respectively. These results demonstrate that ReOX40 attenuates neuronal apoptosis through OX40-OX40L/PI3K/AKT pathway in EBI after SAH.
Collapse
Affiliation(s)
- Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Zhi-Yi Xie
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Zachary D Travis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Cheng-Mei Sun
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Ke-Ren Zhou
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Tong-Yu Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Qi-Quan Zhu
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States; Department of Physiology and Pharmacology, Department of Anesthesiology and Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA 92354, United States.
| |
Collapse
|
29
|
Zhao C, Ma J, Wang Z, Li H, Shen H, Li X, Chen G. Mfsd2a Attenuates Blood-Brain Barrier Disruption After Sub-arachnoid Hemorrhage by Inhibiting Caveolae-Mediated Transcellular Transport in Rats. Transl Stroke Res 2020; 11:1012-1027. [PMID: 31907728 DOI: 10.1007/s12975-019-00775-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Blood-brain barrier (BBB) disruption is one of the critical mechanisms of brain injury induced by subarachnoid hemorrhage (SAH). Past studies have often focused on the tight junctions of endothelial cells. However, low transcellular transport levels also play an important role in the normal functioning of the BBB. Major facilitator superfamily domain-containing 2a (Mfsd2a) has been demonstrated to be essential for the maintenance of the normal BBB. Our present study aimed to explore the roles and mechanisms of Mfsd2a in BBB disruption after SAH. In this study, a prechiasmatic cistern single-injection model was used to produce experimental SAH in Sprague-Dawley rats. Specific small-interfering RNA and plasmids were used to downregulate and upregulate the expression of Mfsd2a prior to assessments in our SAH model. Omega-3 fatty acid deficiency diet was used to reduce DHA in rat brain. The expression level of Mfsd2a decreased significantly after SAH and reached its lowest level at 72 h post-SAH, which then gradually recovered. At 72 h after SAH, BBB function was disrupted; upregulation of Mfsd2a reversed this damage, whereas downregulation of Mfsd2a exacerbated this damage. These effects were primarily mediated through transcellular transport, especially for changes in caveolae compared to those of tight junctions. After stopping the supply of omega-3 fatty acids, the effect of Mfsd2a on inhibition of caveolae and protection of the blood-brain barrier was eliminated. Taken together, Mfsd2a inhibits caveolae-based transcellular transport by transporting omega-3 fatty acids to protect the BBB after SAH.
Collapse
Affiliation(s)
- Chongshun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Junwei Ma
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street,, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
30
|
Li HJ, Han NN, Nan Y, Zhang K, Li G, Chen H. Plasma osteopontin acts as a prognostic marker in acute intracerebral hemorrhage patients. Clin Chim Acta 2020; 500:208-212. [DOI: 10.1016/j.cca.2019.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022]
|
31
|
Grand Moursel L, van der Graaf LM, Bulk M, van Roon‐Mom WM, van der Weerd L. Osteopontin and phospho-SMAD2/3 are associated with calcification of vessels in D-CAA, an hereditary cerebral amyloid angiopathy. Brain Pathol 2019; 29:793-802. [PMID: 30868685 PMCID: PMC6850614 DOI: 10.1111/bpa.12721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
In severe forms of cerebral amyloid angiopathy (CAA) pathology, vascular calcification has been observed in the cerebral cortex, both in vivo on MRI and CT, and post-mortem using histopathology. However, the pathomechanisms leading to calcification of CAA-laden arteries are unknown. Therefore, we investigated the correlation between calcification of cortical arterioles and several potential modulators of vascular calcification using immunohistochemistry in a unique collection of brain material of patients with a hereditary form of CAA, namely hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D or D-CAA). We show a topographical association of osteopontin (OPN) and TGFβ signaling factor phospho-SMAD2/3 (pSMAD2/3) in calcified CAA vessel walls. OPN and pSMAD2/3 gradually accumulate in vessels prior to calcification. Moreover, we found that the vascular accumulation of Collagen 1 (Col1), OPN and pSMAD2/3 immunomarkers correlated with the CAA severity. This was independently of the vessel size, including capillaries in the most severe cases. We propose that calcification of CAA vessels in the observed HCHWA-D cases may be induced by extracellular OPN trapped in the fibrotic Col1 vessel wall, independently of the presence of vascular amyloid.
Collapse
Affiliation(s)
- Laure Grand Moursel
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Linda M. van der Graaf
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Marjolein Bulk
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | | | - Louise van der Weerd
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
32
|
Zuo G, Zhang T, Huang L, Araujo C, Peng J, Travis Z, Okada T, Ocak U, Zhang G, Tang J, Lu X, Zhang JH. Activation of TGR5 with INT-777 attenuates oxidative stress and neuronal apoptosis via cAMP/PKCε/ALDH2 pathway after subarachnoid hemorrhage in rats. Free Radic Biol Med 2019; 143:441-453. [PMID: 31493504 PMCID: PMC6848789 DOI: 10.1016/j.freeradbiomed.2019.09.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress and neuronal apoptosis play important roles in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). The activation of TGR5, a novel membrane-bound bile acid receptor, possesses anti-oxidative stress and anti-apoptotic effects in hepatobiliary disease and kidney disease. The present study aimed to explore the neuroprotective effect of TGR5 activation against EBI after SAH and the potential underlying mechanisms. METHODS The endovascular perforation model of SAH was performed on 199 Sprague Dawley rats to investigate the beneficial effects of TGR5 activation after SAH. INT-777, a specific synthetic TGR5 agonist, was administered intranasally at 1 h after SAH induction. TGR5 CRISPR and ALDH2 CRISPR were administered intracerebroventricularly at 48 h before SAH to illuminate potential mechanisms. The SAH grade, short-term and long-term neurobehavioral tests, TUNEL staining, Fluoro-Jade C staining, Nissl staining, immunofluorescence staining, and western blots were performed at 24 h after SAH. RESULTS The expressions of endogenous TGR5 and ALDH2 gradually increased and peaked at 24 h after SAH. TGR5 was expressed primarily in neurons, as well as in astrocytes and microglia. The activation of TGR5 with INT-777 significantly improved the short-term and long-term neurological deficits, accompanied by reduced the oxidative stress and neuronal apoptosis at 24 h after SAH. Moreover, INT-777 treatment significantly increased the expressions of TGR5, cAMP, phosphorylated PKCε, ALDH2, HO-1, and Bcl-2, while downregulated the expressions of 4-HNE, Bax, and Cleaved Caspase-3. TGR5 CRISPR and ALDH2 CRISPR abolished the neuroprotective effects of TGR5 activation after SAH. CONCLUSIONS In summary, the activation of TGR5 with INT-777 attenuated oxidative stress and neuronal apoptosis via the cAMP/PKCε/ALDH2 signaling pathway after SAH in rats. Furthermore, TGR5 may serve as a novel therapeutic target to ameliorate EBI after SAH.
Collapse
Affiliation(s)
- Gang Zuo
- Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Taicang, Suzhou, Jiangsu, 215400, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Camila Araujo
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jun Peng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Zachary Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Guangyu Zhang
- Mass Spectrometry Core Facility, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Xiaojun Lu
- Department of Neurosurgery, The Affiliated Taicang Hospital, Soochow University, Taicang, Suzhou, Jiangsu, 215400, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA.
| |
Collapse
|
33
|
Hansson E, Skiöldebrand E. Anti-inflammatory effects induced by ultralow concentrations of bupivacaine in combination with ultralow concentrations of sildenafil (Viagra) and vitamin D3 on inflammatory reactive brain astrocytes. PLoS One 2019; 14:e0223648. [PMID: 31596904 PMCID: PMC6785114 DOI: 10.1371/journal.pone.0223648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/25/2019] [Indexed: 11/29/2022] Open
Abstract
Network coupled cells, such as astrocytes, regulate their cellular homeostasis via Ca2+ signals spread between the cells through gap junctions. Intracellular Ca2+ release is controlled by different signaling pathways that can be stimulated by ATP, glutamate and serotonin (5-HT). Based on our findings, all these pathways are influenced by inflammatory agents and must be restored to fully recover the Ca2+ signaling network. An ultralow concentration of the local anesthetic agent bupivacaine reduced 5-HT-evoked intracellular Ca2+ release, and an ultralow concentration of the phosphodiesterase-5 inhibitor sildenafil in combination with vitamin D3 reduced ATP-evoked intracellular Ca2+ release. Combinations of these three substances downregulated 5-HT-, glutamate- and ATP-evoked intracellular Ca2+ release to a more normal Ca2+ signaling state. Furthermore, inflammatory Toll-like receptor 4 expression decreased with a combination of these three substances. Substance P receptor neurokinin (NK)-1 expression was reduced by ultralow concentrations of bupivacaine. Here, bupivacaine and sildenafil (at extremely low concentrations) combined with vitamin D3 have potential anti-inflammatory properties. According to the present study, drug combinations at the right concentrations, especially extremely low concentrations of bupivacaine and sildenafil, affect different cellular biochemical mechanisms and represent a potential solution for downregulating inflammatory parameters, thereby restoring cells or networks to normal physiological homeostasis.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Department of Pathology, Institute of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
34
|
Toyota Y, Wei J, Xi G, Keep RF, Hua Y. White matter T2 hyperintensities and blood-brain barrier disruption in the hyperacute stage of subarachnoid hemorrhage in male mice: The role of lipocalin-2. CNS Neurosci Ther 2019; 25:1207-1214. [PMID: 31568658 PMCID: PMC6776746 DOI: 10.1111/cns.13221] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
AIMS The current study examined whether white matter injury occurs in the hyperacute (4 hours) phase after subarachnoid hemorrhage (SAH) and the potential role of blood-brain barrier (BBB) disruption and an acute phase protein, lipocalin 2 (LCN2), in that injury. METHODS Subarachnoid hemorrhage was induced by endovascular perforation in adult mice. First, wild-type (WT) mice underwent MRI 4 hours after SAH to detect white matter T2 hyperintensities. Second, changes in LCN2 expression and BBB disruption associated with the MRI findings were examined. Third, SAH-induced white matter injury at 4 hours was compared in WT and LCN2 knockout (LCN2 KO) mice. RESULTS At 4 hours, most animals had uni- or bilateral white matter T2 hyperintensities after SAH in WT mice that were associated with BBB disruption and LCN2 upregulation. However, some disruption and LCN2 upregulation was also found in mice with no T2-hyperintensity lesion. In contrast, there were no white matter T2 hyperintensities in LCN2 KO mice after SAH. LCN2 deficiency also attenuated BBB disruption, myelin damage, and oligodendrocyte loss. CONCLUSIONS Subarachnoid hemorrhage causes very early BBB disruption and LCN2 expression in white matter that is associated with and may precede T2 hyperintensities. LCN2 deletion attenuates MRI changes and pathological changes in white matter after SAH.
Collapse
Affiliation(s)
- Yasunori Toyota
- Department of NeurosurgeryUniversity of MichiganAnn ArborMIUSA
| | - Jialiang Wei
- Department of NeurosurgeryUniversity of MichiganAnn ArborMIUSA
| | - Guohua Xi
- Department of NeurosurgeryUniversity of MichiganAnn ArborMIUSA
| | - Richard F. Keep
- Department of NeurosurgeryUniversity of MichiganAnn ArborMIUSA
| | - Ya Hua
- Department of NeurosurgeryUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
35
|
Sun C, Enkhjargal B, Reis C, Zhang T, Zhu Q, Zhou K, Xie Z, Wu L, Tang J, Jiang X, Zhang JH. Osteopontin-Enhanced Autophagy Attenuates Early Brain Injury via FAK-ERK Pathway and Improves Long-Term Outcome after Subarachnoid Hemorrhage in Rats. Cells 2019; 8:cells8090980. [PMID: 31461955 PMCID: PMC6769958 DOI: 10.3390/cells8090980] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 01/31/2023] Open
Abstract
Osteopontin (OPN) enhances autophagy, reduces apoptosis, and attenuates early brain injury (EBI) after a subarachnoid hemorrhage (SAH). A total of 87 Sprague–Dawley rats were subjected to sham or SAH operations to further investigate the signaling pathway involved in osteopontin-enhanced autophagy during EBI, and the potential effect of recombinant OPN (rOPN) administration to improve long-term outcomes after SAH. Rats were randomly divided into five groups: Sham, SAH + Vehicle (PBS, phosphate-buffered saline), SAH + rOPN (5 μg/rat recombinant OPN), SAH + rOPN + Fib-14 (30 mg/kg of focal adhesion kinase (FAK) inhibitor-14), and SAH + rOPN + DMSO (dimethyl sulfoxide). Short-term and long-term neurobehavior tests were performed, followed by a collection of brain samples for assessment of autophagy markers in neurons, pathway proteins expression, and delayed hippocampal injury. Western blot, double immunofluorescence staining, Nissl staining, and Fluoro-Jade C staining assay were used. Results showed that rOPN administration increased autophagy in neurons and improved neurobehavior in a rat model of SAH. With the administration of FAK inhibitor-14 (Fib-14), neurobehavioral improvement and autophagy enhancement induced by rOPN were abolished, and there were consistent changes in the phosphorylation level of ERK1/2. In addition, early administration of rOPN in rat SAH models improved long-term neurobehavior results, possibly by alleviating hippocampal injury. These results suggest that FAK–ERK signaling may be involved in OPN-enhanced autophagy in the EBI phase after SAH. Early administration of rOPN may be a preventive and therapeutic strategy against delayed brain injury after SAH.
Collapse
Affiliation(s)
- Chengmei Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, China
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Keren Zhou
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Zhiyi Xie
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Lingyun Wu
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA
| | - Xiaodan Jiang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, 1023 South Shatai Road, Guangzhou 510515, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus St, CA 92354, USA.
| |
Collapse
|
36
|
Hansson E, Skiöldebrand E. Low-grade inflammation causes gap junction-coupled cell dysfunction throughout the body, which can lead to the spread of systemic inflammation. Scand J Pain 2019; 19:639-649. [PMID: 31251727 DOI: 10.1515/sjpain-2019-0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Gap junction-coupled cells form networks in different organs in the body. These networks can be affected by inflammatory stimuli and become dysregulated. Cell signaling is also changed through connexin-linked gap junctions. This alteration affects the surrounding cells and extracellular matrix in organs. These changes can cause the spread of inflammatory substances, thus affecting other network-linked cells in other organs in the body, which can give rise to systemic inflammation, which in turn can lead to pain that can turn into chronic. METHODS This is a review based on literature search and our own research data of inflammatory stimuli that can affect different organs and particularly gap-junction-coupled cells throughout the body. CONCLUSIONS A remaining question is which cell type or tissue is first affected by inflammatory stimuli. Can endotoxin exposure through the air, water and body start the process and are mast cells the first target cells that have the capacity to alter the physiological status of gap junction-coupled cells, thereby causing breakdown of different barrier systems? IMPLICATIONS Is it possible to address the right cellular and biochemical parameters and restore inflammatory systems to a normal physiological level by therapeutic strategies?
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd Floor, SE 413 45 Gothenburg, Sweden, Phone: +46-31-786 3363
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
37
|
Okada T, Enkhjargal B, Travis ZD, Ocak U, Tang J, Suzuki H, Zhang JH. FGF-2 Attenuates Neuronal Apoptosis via FGFR3/PI3k/Akt Signaling Pathway After Subarachnoid Hemorrhage. Mol Neurobiol 2019; 56:8203-8219. [PMID: 31203572 DOI: 10.1007/s12035-019-01668-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Neuronal apoptosis is a common and critical pathology following subarachnoid hemorrhage (SAH). We investigated the anti-apoptotic property of fibroblast growth factor (FGF)-2 after SAH in rats. A total of 289 rats underwent endovascular perforation to induce SAH or sham operation. Three dosages (3, 9, or 27 μg) of recombinant FGF-2 (rFGF-2) or vehicle was administered intranasally to rats 30 min after SAH induction. The pan-FGF receptor (FGFR) inhibitor PD173074 or vehicle was administered intracerebroventricularly (i.c.v.) 1 h before modeling, in addition to rFGF-2 treatment. Small interfering ribonucleic acid (siRNA) for FGFR1 and FGFR3 or scrambled siRNA was administered i.c.v. 48 h before SAH induction in addition to rFGF-2 treatment. Anti-FGF-2 neutralizing antibody or normal mouse immunoglobulin G (IgG) was administered i.c.v. 1 h before SAH model. Neurobehavioral tests, SAH severity, brain water content, immunofluorescence, Fluoro-Jade C, TUNEL staining, and western blot were evaluated. The expression of FGF-2, FGFR1, and FGFR3 increased after SAH. FGFR1 and FGFR3 were expressed in the neurons. Nine micrograms of FGF-2 alleviated neurological impairments, brain edema, and neuronal apoptosis following SAH. A rFGF-2 treatment improved motor skill learning and spatial memory and increased the number of surviving neurons postinjury to 28 days after SAH. PD173074 abolished the anti-apoptotic effects of rFGF-2 via suppression of the expression of PI3k, phosphorylated Akt (p-Akt), and Bcl-2 leading to enhancement of the expression of Bax. FGFR3 siRNA worsened neurobehavioral function and suppressed the expression of PI3k, p-Akt, and Bcl-2 rather than FGFR1 siRNA in SAH rats treated with rFGF-2. Anti-FGF-2 neutralizing antibody suppressed the expression of PI3k and p-Akt after SAH. FGF-2 may be a promising therapy to reduce post-SAH neuronal apoptosis via activation of the FGFR3/PI3k/Akt signaling pathway.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA.
- Department of Anesthesiology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
38
|
Enkhjargal B, Malaguit J, Ho WM, Jiang W, Wan W, Wang G, Tang J, Zhang JH. Vitamin D attenuates cerebral artery remodeling through VDR/AMPK/eNOS dimer phosphorylation pathway after subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab 2019; 39:272-284. [PMID: 28825325 PMCID: PMC6365598 DOI: 10.1177/0271678x17726287] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The role of vitamin D3 (VitD3) in the upregulation of osteopontin (OPN) and eNOS in the endothelium of cerebral arteries after subarachnoid hemorrhage (SAH) is investigated. The endovascular perforation SAH model in Sprague-Dawley rats ( n = 103) was used. The VitD3 pretreatment (30 ng/kg) increased endogenous OPN and eNOS expression in cerebral arteries compared with naïve rats ( n = 5 per group). Neurobehavioral scores were significantly improved in Pre-SAH+VitD3 group compared with the SAH group. The effects of VitD3 were attenuated by intracerebroventricular (i.c.v) injections of siRNA for the vitamin D receptor (VDR) and OPN in Pre-SAH+VitD3+VDR siRNA and Pre-SAH+VitD3+OPN siRNA rats, respectively ( n = 5 per group). The significant increase of VDR, OPN and decrease of C44 splicing in the cerebral arteries of Pre-SAH+VitD3 rats lead to an increase in basilar artery lumen. The increase in VDR expression led to an upregulation and phosphorylation of AMPK and eNOS, especially dimer form, in endothelium of cerebral artery. The results provide that VitD3 pretreatment attenuates cerebral artery remodeling and vasospasm through the upregulation of OPN and phosphorylation of AMPK (p-AMPK) and eNOS (p-eNOS) at Ser1177-Dimer in the cerebral arteries. Vitamin D may be a useful new preventive and therapeutic strategy against cerebral artery remodeling in stroke patients.
Collapse
Affiliation(s)
- Budbazar Enkhjargal
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jay Malaguit
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Wing M Ho
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Wu Jiang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Weifeng Wan
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gaiqing Wang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
39
|
Mo J, Enkhjargal B, Travis ZD, Zhou K, Wu P, Zhang G, Zhu Q, Zhang T, Peng J, Xu W, Ocak U, Chen Y, Tang J, Zhang J, Zhang JH. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biol 2019; 20:75-86. [PMID: 30296700 PMCID: PMC6174866 DOI: 10.1016/j.redox.2018.09.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 01/13/2023] Open
Abstract
Oxidative stress and neuronal apoptosis have been demonstrated to be key features in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Previous studies have indicated that Mas receptor activation initiates an anti-oxidative and anti-apoptotic role in the brain. However, whether Mas activation can attenuate oxidative stress and neuronal apoptosis after SAH remains unknown. To investigate the beneficial effect of Mas on oxidative stress injury and neuronal apoptosis induced by SAH, a total of 196 rats were subjected to an endovascular perforation model of SAH. AVE 0991 (AVE), a selective agonist of Mas, was administered intranasally 1 h after SAH induction. A779, a selective inhibitor of Mas, and small interfering ribonucleic acid (siRNA) for UCP-2 were administered by intracerebroventricular (i.c.v) injection at 1 h and 48 h before SAH induction respectively. Neurological tests, immunofluorescence, TUNEL, Fluoro-Jade C, DHE staining, and Western blot experiments were performed. We found that Mas activation with AVE significantly improved neurobehavioral scores and reduced oxidative stress and neuronal apoptosis in SAH+AVE group compared with SAH+vehicle group. Moreover, AVE treatment significantly promoted phosphorylation of CREB and the expression UCP-2, as well as upregulated expression of Bcl-2 and downregulation of Romo-1 and Bax. The protective effects of AVE were reversed by i.c.v injection of A779 and UCP-2 siRNA in SAH+AVE+A779 and SAH+AVE+UCP-2 siRNA groups, respectively. In conclusion, our data provides evidence that Mas activation with AVE reduces oxidative stress injury and neuronal apoptosis through Mas/PKA/p-CREB/UCP-2 pathway after SAH. Furthermore, our study indicates that Mas may be a novel therapeutic treatment target in early brain injury of SAH.
Collapse
Affiliation(s)
- Jun Mo
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Zachary D Travis
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Keren Zhou
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Pei Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Guangyu Zhang
- Mass Spectrometry Core Facility, Loma Linda University, Loma Linda, CA 92350, USA
| | - Qiquan Zhu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Tongyu Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jianhua Peng
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Weilin Xu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yili Chen
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA
| | - Jianmin Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Brain Research Institute, Zhejiang University, Hangzhou 310000, Zhejiang, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA 92350, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
40
|
Sayeed I, Turan N, Stein DG, Wali B. Vitamin D deficiency increases blood-brain barrier dysfunction after ischemic stroke in male rats. Exp Neurol 2018; 312:63-71. [PMID: 30502340 DOI: 10.1016/j.expneurol.2018.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022]
Abstract
Because vitamin D hormone deficiency (VDHdef) can worsen severity and outcome for ischemic stroke, we examined the role of VDH in maintaining blood-brain-barrier (BBB integrity) in a rat model of stroke. In most types of stroke, the BBB is markedly compromised, potentially leading to a cascade of injury processes and functional deficits, so we examined a number of biomarkers associated with BBB disruption to determine whether VDH deficiency would further compromise the BBB following a stroke. Male Wistar rats were randomly assigned to one of two diet cohorts, VDH-sufficient (VDHsuf) and VDHdef. The VDHsuf group was fed standard rat chow and the VDHdef group got a VDH-null version of the same diet for 8 weeks. Animals from both cohorts were subjected to transient middle cerebral artery occlusion (tMCAO) surgery, killed at 72 h post-stroke, and their brains evaluated for BBB permeability and injury severity using expression of immunoglobulin (IgG), matrix metalloproteinase-9 (MMP-9) activity and alteration of tight junction (TJ) proteins as markers of BBB disruption. We also evaluated modulation of glucose transporter-1 (GLUT1), osteopontin (OPN), β-catenin and vitamin D receptor (VDR) expression in VDHsuf and VDHdef subjects. At the time of MCAO, rats on the VDHdef diet had circulating VDH levels one-fourth that of rats fed control chow. IgG extravasation after MCAO, indicating more severe BBB injury, was significantly higher in the MCAO+VDHdef than the MCAO+VDHsuf rats. Following MCAO, expression of MMP-9, GLUT1, VDR and OPN increased and the TJ proteins occludin and claudin-5 decreased significantly in the VDHdef compared to the VDHsuf group. We also observed significantly lower expression of β-catenin in the MCAO group of both VDHsuf and VDHdef rats. Under these conditions, VDH deficiency itself can compromise the BBB. We think that low serum VDH levels are likely to complicate stroke severity and its chronic consequences.
Collapse
Affiliation(s)
- Iqbal Sayeed
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA
| | - Nefize Turan
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Donald G Stein
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA
| | - Bushra Wali
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Hansson E, Björklund U, Skiöldebrand E, Rönnbäck L. Anti-inflammatory effects induced by pharmaceutical substances on inflammatory active brain astrocytes-promising treatment of neuroinflammation. J Neuroinflammation 2018; 15:321. [PMID: 30447700 PMCID: PMC6240424 DOI: 10.1186/s12974-018-1361-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Pharmaceutical treatment with probable anti-inflammatory substances that attack cells in various ways including receptors, ion channels, or transporter systems may slow down the progression of inflammatory conditions. Astrocytes and microglia are the most prominent target cells for inflammation in the central nervous system. Their responses upon inflammatory stimuli work through the NO/cyclic GMP/protein kinase G systems that can downregulate the ATP-induced Ca2+ signaling, as well as G protein activities which alter Na+ transporters including Na+/K+-ATPase pump activity, Toll-like receptor 4 (TLR4), glutamate-induced Ca2+ signaling, and release of pro-inflammatory cytokines. The rationale for this project was to investigate a combination of pharmaceutical substances influencing the NO and the Gi/Gs activations of inflammatory reactive cells in order to make the cells return into a more physiological state. The ATP-evoked Ca2+ signaling is important maybe due to increased ATP release and subsequent activation of purinergic receptors. A balance between intercellular Ca2+ signaling through gap junctions and extracellular signaling mediated by extracellular ATP may be important for physiological function. Methods Astrocytes in primary cultures were incubated with lipopolysaccharide in a physiological glucose concentration for 24 h to induce inflammatory reactivity. The probable anti-inflammatory substances sildenafil and 1α,25-Dihydroxyvitamin D3 together with endomorphin-1, naloxone, and levetiracetam, were used in the presence of high glucose concentration in the medium to restore the cells. Glutamate-, 5-HT-, and ATP-evoked intracellular Ca2+ release, Na+/K+-ATPase expression, expression of inflammatory receptors, and release of tumor necrosis factor alpha were measured. Results Sildenafil in ultralow concentration together with 1α,25-Dihydroxyvitamin D3 showed most prominent effects on the ATP-evoked intracellular Ca2+ release. The μ-opioid agonist endomorphin-1, the μ-opioid antagonist naloxone in ultralow concentration, and the antiepileptic agent levetiracetam downregulated the glutamate-evoked intracellular Ca2+ release and TLR4. The combination of the pharmaceutical substances in high glucose concentration downregulated the glutamate- and ATP-evoked Ca2+ signaling and the TLR4 expression and upregulated the Na+/K+-ATPase pump. Conclusion Pharmaceutical treatment with the combination of substances that have potential anti-inflammatory effects, which attack different biochemical mechanisms in the cells may exert decisive effects to downregulate neuroinflammation in the nervous system.
Collapse
Affiliation(s)
- Elisabeth Hansson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden.
| | - Ulrika Björklund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden
| | - Eva Skiöldebrand
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Gothenburg, Sweden
| | - Lars Rönnbäck
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Blå Stråket 7, 3rd floor, SE 413 45, Gothenburg, Sweden
| |
Collapse
|
42
|
Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Mol Neurobiol 2018; 56:1992-2006. [DOI: 10.1007/s12035-018-1213-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
|
43
|
Extracellular matrix component expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix. Acta Biomater 2018; 74:207-221. [PMID: 29777959 DOI: 10.1016/j.actbio.2018.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) plays an important role in numerous processes including cellular proliferation, differentiation, migration, maturation, adhesion guidance and axonal growth. To date, there has been no detailed analysis of the ECM distribution during retinal ontogenesis in humans and the functional importance of many ECM components is poorly understood. In this study, the expression of key ECM components in adult mouse and monkey retina, developing and adult human retina and retinal organoids derived from human pluripotent stem cells was studied. Our data indicate that basement membrane ECMs (Fibronectin and Collagen IV) were expressed in Bruch's membrane and the inner limiting membrane of the developing human retina, whilst the hyalectins (Versican and Brevican), cluster of differentiation 44 (CD44), photoreceptor-specific ECMs Interphotoreceptor Matrix Proteoglycan 1 (IMPG1) and Interphotoreceptor Matrix Proteoglycan 2 (IMPG2) were detected in the developing interphotoreceptor matrix (IPM). The expression of IMPG1, Versican and Brevican in the developing IPM was conserved between human developing retina and human pluripotent stem cell-derived retinal organoids. Blocking the action of CD44 and IMPG1 in pluripotent stem cell derived retinal organoids affected the development of photoreceptors, their inner/outer segments and connecting cilia and disrupted IPM formation, with IMPG1 having an earlier and more significant impact. Together, our data suggest an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation during human retinogenesis. STATEMENT OF SIGNIFICANCE The expression and the role of many extracellular matrix (ECM) components during human retinal development is not fully understood. In this study, expression of key ECM components (Collagen IV, Fibronectin, Brevican, Versican, IMPG1 and IMPG2) was investigated during human retinal ontogenesis. Collagen IV and Fibronectin were expressed in Bruch's membrane; whereas Brevican, Versican, IMPG1 & IMPG2 in the developing interphotoreceptor matrix (IPM). Retinal organoids were successfully generated from pluripotent stem cells. The expression of ECM components was examined in the retinal organoids and found to recapitulate human retinal development in vivo. Using functional blocking experiments, we were able to highlight an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation.
Collapse
|
44
|
MST1 Suppression Reduces Early Brain Injury by Inhibiting the NF- κB/MMP-9 Pathway after Subarachnoid Hemorrhage in Mice. Behav Neurol 2018; 2018:6470957. [PMID: 30018671 PMCID: PMC6029491 DOI: 10.1155/2018/6470957] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/08/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Background Mammalian sterile 20-like kinase 1 (MST1), the key component of the Hippo-YAP pathway, exhibits an important role in the pathophysiological process of various neurological disorders, including ischemic stroke and spinal cord injury. However, during subarachnoid hemorrhage, the involvement of MST1 in the pathophysiology of early brain injury remains unknown. Methods We employed intravascular filament perforation to establish the subarachnoid hemorrhage (SAH) mouse model. The MST1 inhibitor XMU-MP-1 was intraperitoneally injected at 1 h after SAH, followed by daily injections. MST1 in vivo knockdown was performed 3 weeks prior to SAH via intracerebroventricular injection of adeno-associated virus (AAV) packaged with MST1 shRNA. The SAH grade, behavioral deficits, TUNEL staining, Evans blue dye extravasation and fluorescence, brain water content, protein and cytokine expressions by Western blotting, immunofluorescence, and proteome cytokine array were evaluated. Results Following SAH, the phosphorylation level of MST1 was upregulated at 12 h, with a peak at 72 h after SAH. It was colocalized with the microglial marker Iba1. Both XMU-MP-1 and MST1 shRNA alleviated the neurological deficits, blood-brain barrier (BBB) disruption, brain edema, neuroinflammation, and white matter injury, which were induced by SAH in association with nuclear factor- (NF-) κB p65 and matrix metallopeptidase-9 (MMP-9) activation and downregulated endothelial junction protein expression. Conclusions The current findings indicate that MST1 participates in SAH-induced BBB disruption and white matter fiber damage via the downstream NF-κB-MMP-9 signaling pathway. Therefore, MST1 antagonists may serve as a novel therapeutic target to prevent early brain injury in SAH patients.
Collapse
|
45
|
Zhang Y, Xu N, Ding Y, Zhang Y, Li Q, Flores J, Haghighiabyaneh M, Doycheva D, Tang J, Zhang JH. Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. Brain Behav Immun 2018; 70:179-193. [PMID: 29499303 PMCID: PMC5953818 DOI: 10.1016/j.bbi.2018.02.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/20/2018] [Accepted: 02/26/2018] [Indexed: 10/17/2022] Open
Abstract
Chemerin, an adipokine, has been reported to reduce the production of pro-inflammatory cytokines and neutrophil infiltration. This study investigated the role of Chemerin and its natural receptor, ChemR23, as well as its downstream mediator calmodulin-dependent protein kinase kinase 2 (CAMKK2)/adenosine monophosphate-activated protein kinase (AMPK) /Nuclear factor erythroid 2-related factor 2 (Nrf2) following germinal matrix hemorrhage (GMH) in neonatal rats, with a specific focus on inflammation. GMH was induced by intraparenchymal injection of bacterial collagenase (0.3U) in P7 rat pups. The results demonstrated that human recombinant Chemerin (rh-Chemerin) improved neurological and morphological outcomes after GMH. Rh-Chemerin promoted accumulation and proliferation of M2 microglia in periventricular regions at 72 h. Rh-Chemerin increased phosphorylation of CAMKK2, AMPK and expression of Nrf2, and decreased IL-1beta, IL-6 and TNF-alpha levels. Selective inhibition of ChemR23/CAMKK2/AMPK signaling in microglia via intracerebroventricular delivery of liposome-encapsulated specific ChemR23 (Lipo-alpha-NETA), CAMKK2 (Lipo-STO-609) and AMPK (Lipo-Dorsomorphin) inhibitor increased the expression levels of IL-1beta, IL-6 and TNF- alpha, demonstrating that ChemR23/CAMKK2/AMPK signaling in microglia suppressed inflammatory response after GMH. Cumulatively, these data showed that rh-Chemerin ameliorated GMH-induced inflammatory response by promoting ChemR23/CAMKK2/AMPK/Nrf2 pathway, and M2 microglia may be a major mediator of this effect. Thus, rh-Chemerin can serve as a potential agent to reduce the inflammatory response following GMH.
Collapse
Affiliation(s)
- Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China,Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ningbo Xu
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yiting Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Qian Li
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jerry Flores
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mina Haghighiabyaneh
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA,Departments of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA,Correspondence to: John H Zhang, Departments of Anesthesiology, Physiology and Neurosurgery, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Loma Linda, CA 92354, USA,
| |
Collapse
|
46
|
Caccamo D, Ricca S, Currò M, Ientile R. Health Risks of Hypovitaminosis D: A Review of New Molecular Insights. Int J Mol Sci 2018; 19:ijms19030892. [PMID: 29562608 PMCID: PMC5877753 DOI: 10.3390/ijms19030892] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Hypovitaminosis D has become a pandemic, being observed in all ethnicities and age groups worldwide. Environmental factors, such as increased air pollution and reduced ultraviolet B (UVB) irradiation, as well as lifestyle factors, i.e., decreased outdoor activities and/or poor intake of vitamin D-rich food, are likely involved in the etiology of a dramatic reduction of vitamin D circulating levels. The insufficiency/deficiency of vitamin D has long been known for its association with osteoporosis and rickets. However, in the last few decades it has become a serious public health concern since it has been shown to be independently associated with various chronic pathological conditions such as cancer, coronary heart disease, neurological diseases, type II diabetes, autoimmune diseases, depression, with various inflammatory disorders, and with increased risk for all-cause mortality in the general population. Prevention strategies for these disorders have recently involved supplementation with either vitamin D2 or vitamin D3 or their analogs at required daily doses and tolerable upper-limit levels. This review will focus on the emerging evidence about non-classical biological functions of vitamin D in various disorders.
Collapse
Affiliation(s)
- Daniela Caccamo
- Department of Biomedical Sciences, Dental Sciences, and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Sergio Ricca
- Department of Biomedical Sciences, Dental Sciences, and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Monica Currò
- Department of Biomedical Sciences, Dental Sciences, and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Riccardo Ientile
- Department of Biomedical Sciences, Dental Sciences, and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
47
|
Xie Z, Huang L, Enkhjargal B, Reis C, Wan W, Tang J, Cheng Y, Zhang JH. Recombinant Netrin-1 binding UNC5B receptor attenuates neuroinflammation and brain injury via PPARγ/NFκB signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun 2018; 69:190-202. [PMID: 29162556 PMCID: PMC5894358 DOI: 10.1016/j.bbi.2017.11.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation is an essential mechanism involved in the pathogenesis of subarachnoid hemorrhage (SAH)-induced brain injury. Recently, Netrin-1 (NTN-1) is well established to exert anti-inflammatory property in non-nervous system diseases through inhibiting infiltration of neutrophil. The present study was designed to investigate the effects of NTN-1 on neuroinflammation, and the potential mechanism in a rat model of SAH. Two hundred and ninety-four male Sprague Dawley rats (weight 280-330 g) were subjected to the endovascular perforation model of SAH. Recombinant human NTN-1 (rh-NTN-1) was administered intravenously. Small interfering RNA (siRNA) of NTN-1 and UNC5B, and a selective PPARγ antagonist bisphenol A diglycidyl ether (BADGE) were applied. Post-SAH evaluations included neurobehavioral function, brain water content, Western blot analysis, and immunohistochemistry. Our results showed that endogenous NTN-1 and its receptor UNC5B level were increased after SAH. Administration of rh-NTN-1 reduced brain edema, ameliorated neurological impairments, and suppressed microglia activation after SAH, which were concomitant with PPARγ activation, inhibition of NFκB, and decrease in TNF-α, IL-6, and ICAM-1, as well as myeloperoxidase (MPO). Knockdown of endogenous NTN-1 increased expression of pro-inflammatory mediators and MPO, and aggravated neuroinflammation and brain edema. Moreover, knockdown of UNC5B using specific siRNA and inhibition of PPARγ with BADGE blocked the protective effects of rh-NTN-1. In conclusion, our findings indicated that exogenous rh-NTN-1 treatment attenuated neuroinflammation and neurological impairments through inhibiting microglia activation after SAH in rats, which is possibly mediated by UNC5B/PPARγ/NFκB signaling pathway. Exogenous NTN-1 may be a novel therapeutic agent to ameliorating early brain injury via its anti-inflammation effect.
Collapse
Affiliation(s)
- Zongyi Xie
- Department of Neurosurgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China,Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Cesar Reis
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Weifeng Wan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - John H. Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA,Corresponding author: John H. Zhang, MD, PhD, Departments of Anesthesiology, Physiology and Pharmacology and Neurosurgery, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354, USA. Tel: 909-558-4723; Fax: 909-558-0119; , Yuan Cheng, MD, Department of Neurosurgery, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China. Tel: +8623-63693539; Fax: +8623-63693871;
| |
Collapse
|
48
|
Spencer JI, Bell JS, DeLuca GC. Vascular pathology in multiple sclerosis: reframing pathogenesis around the blood-brain barrier. J Neurol Neurosurg Psychiatry 2018; 89:42-52. [PMID: 28860328 DOI: 10.1136/jnnp-2017-316011] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Blood-brain barrier (BBB) disruption has long been recognised as an important early feature of multiple sclerosis (MS) pathology. Traditionally, this has been seen as a by-product of the myelin-specific immune response. Here, we consider whether vascular changes instead play a central role in disease pathogenesis, rather than representing a secondary effect of neuroinflammation or neurodegeneration. Importantly, this is not necessarily mutually exclusive from current hypotheses. Vascular pathology in a genetically predisposed individual, influenced by environmental factors such as pathogens, hypovitaminosis D and smoking, may be a critical initiator of a series of events including hypoxia, protein deposition and immune cell egress that allows the development of a CNS-specific immune response and the classical pathological and clinical hallmarks of disease. We review the changes that occur in BBB function and cerebral perfusion in patients with MS and highlight genetic and environmental risk factors that, in addition to modulating immune function, may also converge to act on the vasculature. Further context is provided by contrasting these changes with other neurological diseases in which there is also BBB malfunction, and highlighting current disease-modifying therapies that may also have an effect on the BBB. Indeed, in reframing current evidence in this model, the vasculature could become an important therapeutic target in MS.
Collapse
Affiliation(s)
- Jonathan I Spencer
- University of Oxford Medical School, Level 2 Academic Centre, John Radcliffe Hospital, Oxford, UK
| | - Jack S Bell
- University of Oxford Medical School, Level 2 Academic Centre, John Radcliffe Hospital, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, Level 1 West Wing, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
49
|
Zhao J, Xiang X, Zhang H, Jiang D, Liang Y, Qing W, Liu L, Zhao Q, He Z. CHOP induces apoptosis by affecting brain iron metabolism in rats with subarachnoid hemorrhage. Exp Neurol 2017; 302:22-33. [PMID: 29291402 DOI: 10.1016/j.expneurol.2017.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/17/2017] [Accepted: 12/26/2017] [Indexed: 01/23/2023]
Abstract
The endoplasmic reticulum stress-related factor CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) aggravates early brain injury (EBI) in rats after subarachnoid hemorrhage (SAH). Our research aims to investigate the role of CHOP-mediated iron metabolism in EBI after SAH and the underlying mechanism. Male Sprague-Dawley rats were used to establish SAH models. Tunicamycin (Tm) was employed to excite CHOP expression, and two CHOP small interfering RNAs (siRNAs) were used to inhibit CHOP expression. Neurological scores, brain water content, and blood-brain barrier (BBB) permeability were evaluated at 24h after SAH. Western blotting and immunofluorescence were implemented for the quantification and localization of GRP78 (glucoseregulated protein78), CHOP, C/EBPα (CCAAT/enhancer binding proteinα) and hepcidin. Apoptotic cells were detected by TUNEL staining, and the brain iron content was measured via Perls' staining. The expression of CHOP and hepcidin increased and the expression of C/EBPα decreased after SAH. Knockdown of CHOP decreased the brain water content, reduced Evans blue extravasation, and improved neurological functions. CHOP significantly increased hepcidin levels and significantly decreased C/EBPα levels after SAH. Hepcidin is expressed in the nuclei of neurons and is widely co-localized with TUNEL-positive cells both in the hippocampus and cortex. Along with increased hepcidin expression, the iron content in brain tissue and the apoptosis rate were increased. Thus, CHOP promotes hepcidin expression by regulating C/EBPα activity, which increases the brain iron content, induces apoptosis and is involved in the development of EBI after SAH.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Xiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dengzhi Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yidan Liang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Qing
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China..
| |
Collapse
|
50
|
Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology 2017; 128:142-151. [PMID: 28986282 DOI: 10.1016/j.neuropharm.2017.09.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 02/05/2023]
Abstract
Neuronal apoptosis is considered to be a crucial therapeutic target against early brain injury (EBI) after subarachnoid hemorrhage (SAH). Emerging evidence indicates that Exendin-4 (Ex-4), a glucagon-like peptide 1 receptor (GLP-1R) agonist, plays a neuroprotective role in cerebrovascular disease. This study was conducted in order to verify the neuroprotective role of EX-4 in EBI after SAH in rats. The endovascular perforation model of SAH was performed in Sprague-Dawley rats (n = 153). Ex-4 was intraperitoneally injected 1 h after SAH induction in the rats (SAH + Ex-4). To elucidate the underlying molecular mechanism, small interfering ribonucleic acid (siRNA) for GLP-1R and a specific inhibitor of PI3K, LY294002, were injected intracerebroventricularly into SAH + Ex-4 rats before induction of SAH (n = 6 per group). SAH grading evaluation, immunohistochemistry, Western blots, neurobehavioral assessment, and Fluoro-Jade C (FJC) staining experiments were performed. Expression of GLP-1R was significantly increased and mainly expressed in neurons at 24 h after SAH induction. Administration of Ex-4 significantly improved both short- and long-term neurobehavior in SAH + Ex-4 group compared to SAH + Vehicle group after SAH. Ex-4 treatment significantly increased the expression of GLP-1R, PI3K, p-Akt, Bcl-xl, and Bcl-2, while at the same time was found to decrease expression of Bax in the brain. Effects of Ex-4 were reversed by the intervention of GLP-1R siRNA and LY294002 in SAH + Ex-4+GLP-1R siRNA and SAH + Ex-4+LY294002 groups, respectively. In conclusion, the neuroprotective effect of Ex-4 in EBI after SAH was mediated by attenuation of neuronal apoptosis via GLP-1R/PI3K/Akt signaling pathway, therefore EX-4 should be further investigated as a potential therapeutic agent in stroke patients.
Collapse
|