1
|
Fernández-Moncada I, Lavanco G, Fundazuri UB, Bollmohr N, Mountadem S, Dalla Tor T, Hachaguer P, Julio-Kalajzic F, Gisquet D, Serrat R, Bellocchio L, Cannich A, Fortunato-Marsol B, Nasu Y, Campbell RE, Drago F, Cannizzaro C, Ferreira G, Bouzier-Sore AK, Pellerin L, Bolaños JP, Bonvento G, Barros LF, Oliet SHR, Panatier A, Marsicano G. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice. Nat Commun 2024; 15:6842. [PMID: 39122700 PMCID: PMC11316019 DOI: 10.1038/s41467-024-51008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.
Collapse
Affiliation(s)
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, ''G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Unai B Fundazuri
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nasrin Bollmohr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Sarah Mountadem
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Tommaso Dalla Tor
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Pauline Hachaguer
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Roman Serrat
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec City, QC, Canada
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, F-33000, Bordeaux, France
| | - Luc Pellerin
- Université de Poitiers et CHU de Poitiers, INSERM, IRMETIST, U1313, Poitiers, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Gilles Bonvento
- Universite Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodegeneratives, Fontenay-aux-Roses, France
| | - L Felipe Barros
- Centro de Estudios Cientificos, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Stephane H R Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
2
|
Ranjbar N, Raeisi M, Barzegar M, Ghorbanihaghjo A, Shiva S, Sadeghvand S, Negargar S, Poursistany H, Raeisi S. The possible anti-seizure properties of Klotho. Brain Res 2023; 1820:148555. [PMID: 37634687 DOI: 10.1016/j.brainres.2023.148555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/30/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Recurrent seizures in epilepsy may lead to progressive neuronal damage, which can diminish health-related quality of life. Evaluation and control of pathological processes in the brain is valuable. It seems imperative that new markers and approaches for seizure alleviation be discovered. Klotho (Kl), an antiaging protein, has protective effects in the brain against neurological disorders. It may also have antiseizure effects by improving creatine transfer to the brain, upregulating excitatory amino acid transporters, and inhibiting insulin/insulin-like growth factor-1 (IGF-1), Wingless (Wnt), transforming growth factor-beta (TGF-β), and retinoic-acid-inducible gene-I (RIG-I)/nuclear translocation of nuclear factor-κB (NF-κB) pathways. Stimulation and activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and apoptosis signal-regulating kinase 1 (ASK1)/p38 mitogen‑activated protein kinase (MAPK) signaling pathways could also be considered other possible antiseizure mechanisms of Kl. In the present review, the roles of Kl in the central nervous system as well as its possible anti-seizure properties are discussed for the first time.
Collapse
Affiliation(s)
- Nasrin Ranjbar
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Raeisi
- Student Research Committee, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Barzegar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biothechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Shiva
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Negargar
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniyeh Poursistany
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit of Zahra Mardani Azari Children Educational and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Weiler M, Stieger KC, Shroff K, Klein JP, Wood WH, Zhang Y, Chandrasekaran P, Lehrmann E, Camandola S, Long JM, Mattson MP, Becker KG, Rapp PR. Transcriptional changes in the rat brain induced by repetitive transcranial magnetic stimulation. Front Hum Neurosci 2023; 17:1215291. [PMID: 38021223 PMCID: PMC10679736 DOI: 10.3389/fnhum.2023.1215291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed magnetic fields to affect the physiology of the brain and central nervous system. Repetitive TMS (rTMS) has been used to study and treat several neurological conditions, but its complex molecular basis is largely unexplored. Methods Utilizing three experimental rat models (in vitro, ex vivo, and in vivo) and employing genome-wide microarray analysis, our study reveals the extensive impact of rTMS treatment on gene expression patterns. Results These effects are observed across various stimulation protocols, in diverse tissues, and are influenced by time and age. Notably, rTMS-induced alterations in gene expression span a wide range of biological pathways, such as glutamatergic, GABAergic, and anti-inflammatory pathways, ion channels, myelination, mitochondrial energetics, multiple neuron-and synapse-specific genes. Discussion This comprehensive transcriptional analysis induced by rTMS stimulation serves as a foundational characterization for subsequent experimental investigations and the exploration of potential clinical applications.
Collapse
Affiliation(s)
- Marina Weiler
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin C. Stieger
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kavisha Shroff
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jessie P. Klein
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - William H. Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Prabha Chandrasekaran
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
4
|
Pańczyszyn-Trzewik P, Czechowska E, Stachowicz K, Sowa-Kućma M. The Importance of α-Klotho in Depression and Cognitive Impairment and Its Connection to Glutamate Neurotransmission-An Up-to-Date Review. Int J Mol Sci 2023; 24:15268. [PMID: 37894946 PMCID: PMC10607524 DOI: 10.3390/ijms242015268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Depression is a serious neuropsychiatric disease affecting an increasing number of people worldwide. Cognitive deficits (including inattention, poor memory, and decision-making difficulties) are common in the clinical picture of depression. Cognitive impairment has been hypothesized to be one of the most important components of major depressive disorder (MDD; referred to as clinical depression), although typical cognitive symptoms are less frequent in people with depression than in people with schizophrenia or bipolar disorder (BD; sometimes referred to as manic-depressive disorder). The importance of α-Klotho in the aging process has been well-documented. Growing evidence points to the role of α-Klotho in regulating other biological functions, including responses to oxidative stress and the modulation of synaptic plasticity. It has been proven that a Klotho deficit may contribute to the development of various nervous system pathologies, such as behavioral disorders or neurodegeneration. Given the growing evidence of the role of α-Klotho in depression and cognitive impairment, it is assumed that this protein may be a molecular link between them. Here, we provide a research review of the role of α-Klotho in depression and cognitive impairment. Furthermore, we propose potential mechanisms (related to oxidative stress and glutamatergic transmission) that may be important in α-Klotho-mediated regulation of mental and cognitive function.
Collapse
Affiliation(s)
- Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
| | - Ewelina Czechowska
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
| | - Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland;
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (P.P.-T.); (E.C.)
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna Street 1A, 35-595 Rzeszow, Poland
| |
Collapse
|
5
|
Orellana AM, Mazucanti CH, Dos Anjos LP, de Sá Lima L, Kawamoto EM, Scavone C. Klotho increases antioxidant defenses in astrocytes and ubiquitin-proteasome activity in neurons. Sci Rep 2023; 13:15080. [PMID: 37699938 PMCID: PMC10497516 DOI: 10.1038/s41598-023-41166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Klotho is an antiaging protein, and its levels decline with age and chronic stress. The exogenous administration of Klotho can enhance cognitive performance in mice and negatively modulate the Insulin/IGF1/PI3K/AKT pathway in terms of metabolism. In humans, insulin sensitivity is a hallmark of healthy longevity. Therefore, this study aimed to determine if exogenous Klotho, when added to neuronal and astrocytic cell cultures, could reduce the phosphorylation levels of certain insulin signaling effectors and enhance antioxidant strategies in these cells. Primary cell cultures of cortical astrocytes and neurons from mice were exposed to 1 nM Klotho for 24 h, with or without glucose. Klotho decreased pAKT and mTOR levels. However, in astrocytes, Klotho increased FOXO-3a activity and catalase levels, shielding them from intermediate oxidative stress. In neurons, Klotho did not alter FOXO-3 phosphorylation levels but increased proteasome activity, maintaining lower levels of PFKFB3. This study offers new insights into the roles of Klotho in regulating energy metabolism and the redox state in the brain.
Collapse
Affiliation(s)
- Ana Maria Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, São Paulo, 05508-900, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, São Paulo, 05508-900, Brazil
- Laboratory of Clinical Investigation, Diabetes Section, National Institute on Aging (NIH/NIA), Baltimore, MD, USA
| | - Leticia Pavan Dos Anjos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, São Paulo, 05508-900, Brazil
| | - Larissa de Sá Lima
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, São Paulo, 05508-900, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, São Paulo, 05508-900, Brazil.
| |
Collapse
|
6
|
Zhang J, Zhang A. Relationships between serum Klotho concentrations and cognitive performance among older chronic kidney disease patients with albuminuria in NHANES 2011-2014. Front Endocrinol (Lausanne) 2023; 14:1215977. [PMID: 37560310 PMCID: PMC10407554 DOI: 10.3389/fendo.2023.1215977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Background The potential relationship between Klotho and cognitive function is limited and controversial. This study aimed to quantify the association of Klotho and cognitive impairment in chronic kidney disease (CKD) patients with albuminuria. Methods Serum Klotho was measured by enzyme-linked immunosorbent assay. Patients with urine albumin to creatinine ratio (UACR) > 30mg/g from the National Health and Nutrition Survey (NHANES) 2011-2014 were divided into 4 groups according to the quartile of Klotho. Cognitive function was examined using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Digit Symbol Substitution Test (DSST), and Animal Fluency Test. The relationship between Klotho and cognitive function was analyzed by multivariable regression and subgroup analysis. Results Among 368 CKD patients with albuminuria, we found that Klotho was negatively associated with creatinine, and positively associated with hemoglobin, and estimated glomerular filtration rate. No significant linear relationship was showed between Klotho (as a continuous variable) and cognitive function. When regarded Klotho as a category variable, patients in the quartile 3 group were at a better cognitive performance for CEARD-word learning subset and DSST, especially in the CKD patients with 30 mg/g < UACR <300 mg/g, but not in participants with UACR > 300 mg/g. Conclusions The increased Klotho was associated with an increased cognitive function in CKD patients with microalbuminuria. Further studies are needed to demonstrate whether Klotho may be a beneficial biomarker of cognitive health and neurodegeneration.
Collapse
Affiliation(s)
- Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Barros LF, Ruminot I, Sandoval PY, San Martín A. Enlightening brain energy metabolism. Neurobiol Dis 2023:106211. [PMID: 37352985 DOI: 10.1016/j.nbd.2023.106211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Brain tissue metabolism is distributed across several cell types and subcellular compartments, which activate at different times and with different temporal patterns. The introduction of genetically-encoded fluorescent indicators that are imaged using time-lapse microscopy has opened the possibility of studying brain metabolism at cellular and sub-cellular levels. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides, which inform about relative levels, concentrations and fluxes. This review offers a brief survey of the metabolic indicators that have been validated in brain cells, with some illustrative examples from the literature. Whereas only a small fraction of the metabolome is currently accessible to fluorescent probes, there are grounds to be optimistic about coming developments and the application of these tools to the study of brain disease.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile.
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| | - A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
8
|
Li Y, Shi W, Dai J, Jia Q, Guo G, Zhang Y, Zhang W. Upregulated TNF-α and lactate following ERK-SGK1 activation in the spinal dorsal horn underlies chronic postsurgical pain. CHINESE J PHYSIOL 2023; 66:144-152. [PMID: 37322625 DOI: 10.4103/cjop.cjop-d-22-00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Skin/muscle incision and retraction (SMIR) during surgeries can lead to chronic postsurgical pain (CPSP). The underlying mechanisms are still unclear. In the present study, we showed that SMIR of the thigh induced phosphorylation of extracellular signal-regulated kinase (ERK), followed by serum- and glucocorticoid-inducible kinase-1 (SGK1) activation in the spinal dorsal horn. Intrathecal injection of PD98059, an ERK inhibitor, or GSK650394, a SGK1 inhibitor, significantly attenuated mechanical pain hypersensitivity in SMIR rats. The level of tumor necrosis factor α and lactate in spinal cord was significantly decreased by PD98059 or GSK650394 injection. Furthermore, PD98059 decreased the activation of SGK1 in the spinal dorsal horn. These results indicate that ERK-SGK1 activation followed by proinflammatory mediator release in the spinal dorsal horn underlies CPSP.
Collapse
Affiliation(s)
- Yuying Li
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Wenjuan Shi
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Juanli Dai
- Department of Neurology, Xiehe Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Qi Jia
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Gang Guo
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | | | - Weihong Zhang
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Luthra NS, Clow A, Corcos DM. The Interrelated Multifactorial Actions of Cortisol and Klotho: Potential Implications in the Pathogenesis of Parkinson's Disease. Brain Sci 2022; 12:1695. [PMID: 36552155 PMCID: PMC9775285 DOI: 10.3390/brainsci12121695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is complex, multilayered, and not fully understood, resulting in a lack of effective disease-modifying treatments for this prevalent neurodegenerative condition. Symptoms of PD are heterogenous, including motor impairment as well as non-motor symptoms such as depression, cognitive impairment, and circadian disruption. Aging and stress are important risk factors for PD, leading us to explore pathways that may either accelerate or protect against cellular aging and the detrimental effects of stress. Cortisol is a much-studied hormone that can disrupt mitochondrial function and increase oxidative stress and neuroinflammation, which are recognized as key underlying disease mechanisms in PD. The more recently discovered klotho protein, considered a general aging-suppressor, has a similarly wide range of actions but in the opposite direction to cortisol: promoting mitochondrial function while reducing oxidative stress and inflammation. Both hormones also converge on pathways of vitamin D metabolism and insulin resistance, also implicated to play a role in PD. Interestingly, aging, stress and PD associate with an increase in cortisol and decrease in klotho, while physical exercise and certain genetic variations lead to a decrease in cortisol response and increased klotho. Here, we review the interrelated opposite actions of cortisol and klotho in the pathogenesis of PD. Together they impact powerful and divergent mechanisms that may go on to influence PD-related symptoms. Better understanding of these hormones in PD would facilitate the design of effective interventions that can simultaneously impact the multiple systems involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Nijee S. Luthra
- Department of Neurology, University of California San Francisco, San Francisco, CA 94127, USA
| | - Angela Clow
- Department of Psychology, School of Social Sciences, University of Westminster, London W1B 2HW, UK
| | - Daniel M. Corcos
- Department of Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
10
|
Nakao VW, Mazucanti CHY, de Sá Lima L, de Mello PS, de Souza Port’s NM, Kinoshita PF, Leite JA, Kawamoto EM, Scavone C. Neuroprotective action of α-Klotho against LPS-activated glia conditioned medium in primary neuronal culture. Sci Rep 2022; 12:18884. [PMID: 36344527 PMCID: PMC9640694 DOI: 10.1038/s41598-022-21132-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
The α-Klotho is an anti-aging protein that, when overexpressed, extends the life span in humans and mice. It has an anti-inflammatory and protective action on renal cells by inhibiting NF-κB activation and production of inflammatory cytokines in response to TNF-α. Furthermore, studies have shown the neuroprotective effect of α-Klotho against neuroinflammation on different conditions, such as aging, animal models of neurodegenerative diseases, and ischemic brain injury. This work aimed to evaluate the effects of α-Klotho protein on primary glial cell culture against the proinflammatory challenge with LPS and how this could interfere with neuronal health. Cortical mixed glial cells and purified astrocytes were pretreated with α- α-Klotho and stimulated with LPS followed by TNFα, IL-1β, IL-6, IFN-γ levels, and NF-κB activity analysis. Conditioned medium from cortical mixed glia culture treated with LPS (glia conditioned medium (GCM) was used to induce neuronal death of primary cortical neuronal culture and evaluate if GCM-KL (medium from glia culture pretreated α-Klotho followed by LPS stimulation) or GCM + LPS in the presence of KL can reverse the effect. LPS treatment in glial cells induced an increase in proinflammatory mediators such as TNF-α, IL-1β, IL-6, and IFN-γ, and activation of astrocyte NF-κB. GCM treated-cortical neuronal culture induced a concentration-dependent neuronal death. Pretreatment with α-Klotho decreased TNF-α and IL-6 production, reverted NF-κB activation, and decreased neuronal death induced by GCM. In addition, KL incubation together with GCM + LPS completely reverts the neuronal toxicity induced by low concentration of GCM-LPS. These data suggest an anti-inflammatory and neuroprotective effect of α-Klotho protein in the CNS. This work demonstrated the therapeutic potential of α-Klotho in pathological processes which involves a neuroinflammatory component.
Collapse
Affiliation(s)
- Vinicius Wanatable Nakao
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Caio Henrique Yokowama Mazucanti
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil ,grid.419475.a0000 0000 9372 4913Laboratory of Clinical Investigation, National Institute on Aging (NIA), Bethesda, USA
| | - Larissa de Sá Lima
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Paloma Segura de Mello
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Natacha Medeiros de Souza Port’s
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Paula Fernanda Kinoshita
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Sciences, University Federal of Goias, Goiana, Brazil
| | - Elisa Mitiko Kawamoto
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| | - Cristoforo Scavone
- grid.11899.380000 0004 1937 0722Department of Pharmacology, Institute of Biomedical Science ICB-1, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, 05508-900 Brazil
| |
Collapse
|
11
|
Life extension factor klotho regulates behavioral responses to stress via modulation of GluN2B function in the nucleus accumbens. Neuropsychopharmacology 2022; 47:1710-1720. [PMID: 35449449 PMCID: PMC9283408 DOI: 10.1038/s41386-022-01323-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/08/2022]
Abstract
Klotho is a life extension factor that has the ability to regulate the function of GluN2B-containing N-methyl-D-aspartate receptors (NMDARs), whose dysfunction in the nucleus accumbens (NAc) underlies critical aspects of the pathophysiology of major depression. Here, we study the functional relevance of klotho in the pathogenesis of depression. A chronic social defeat stress paradigm, in which mice are categorized as either susceptible or unsusceptible based on their performance in a social interaction test, was used in this study. We found that the expression of klotho was largely decreased in the NAc of susceptible mice compared to control or unsusceptible mice. Genetic knockdown of klotho in the NAc induced behavioral alterations relevant to depression in naive mice, while overexpression of klotho produced an antidepressive effect in normal mice and ameliorated the behavioral responses to stress in susceptible mice. Molecularly, knockdown of klotho in the NAc resulted in selective decreases in total and synaptic GluN2B expression that were identical to those in susceptible mice. Elevation of klotho in the NAc reversed the reductions in GluN2B expressions and altered synaptic transmission and spine density in the NAc of susceptible mice. Furthermore, blockade of GluN2B with a specific antagonist abolished the beneficial effects of klotho elevation in susceptible mice. Collectively, we demonstrated that klotho in the NAc modulates behavioral responses to stress by regulating the function of GluN2B-containing NMDARs. These results reveal a novel role for klotho in the pathogenesis of depression, providing new insights into the molecular basis of major depression.
Collapse
|
12
|
Rhea EM, Banks WA, Raber J. Insulin Resistance in Peripheral Tissues and the Brain: A Tale of Two Sites. Biomedicines 2022; 10:1582. [PMID: 35884888 PMCID: PMC9312939 DOI: 10.3390/biomedicines10071582] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The concept of insulin resistance has been around since a few decades after the discovery of insulin itself. To allude to the classic Charles Dicken's novel published 62 years before the discovery of insulin, in some ways, this is the best of times, as the concept of insulin resistance has expanded to include the brain, with the realization that insulin has a life beyond the regulation of glucose. In other ways, it is the worst of times as insulin resistance is implicated in devastating diseases, including diabetes mellitus, obesity, and Alzheimer's disease (AD) that affect the brain. Peripheral insulin resistance affects nearly a quarter of the United States population in adults over age 20. More recently, it has been implicated in AD, with the degree of brain insulin resistance correlating with cognitive decline. This has led to the investigation of brain or central nervous system (CNS) insulin resistance and the question of the relation between CNS and peripheral insulin resistance. While both may involve dysregulated insulin signaling, the two conditions are not identical and not always interlinked. In this review, we compare and contrast the similarities and differences between peripheral and CNS insulin resistance. We also discuss how an apolipoprotein involved in insulin signaling and related to AD, apolipoprotein E (apoE), has distinct pools in the periphery and CNS and can indirectly affect each system. As these systems are both separated but also linked via the blood-brain barrier (BBB), we discuss the role of the BBB in mediating some of the connections between insulin resistance in the brain and in the peripheral tissues.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA; (E.M.R.); (W.A.B.)
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William A. Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA; (E.M.R.); (W.A.B.)
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
13
|
Branyan TE, Selvamani A, Park MJ, Korula KE, Kosel KF, Srinivasan R, Sohrabji F. Functional Assessment of Stroke-Induced Regulation of miR-20a-3p and Its Role as a Neuroprotectant. Transl Stroke Res 2022; 13:432-448. [PMID: 34570349 PMCID: PMC9046320 DOI: 10.1007/s12975-021-00945-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
MicroRNAs have gained popularity as a potential treatment for many diseases, including stroke. This study identifies and characterizes a specific member of the miR-17-92 cluster, miR-20a-3p, as a possible stroke therapeutic. A comprehensive microRNA screening showed that miR-20a-3p was significantly upregulated in astrocytes of adult female rats, which typically have better stroke outcomes, while it was profoundly downregulated in astrocytes of middle-aged females and adult and middle-aged males, groups that typically have more severe stroke outcomes. Assays using primary human astrocytes and neurons show that miR-20a-3p treatment alters mitochondrial dynamics in both cell types. To assess whether stroke outcomes could be improved by elevating astrocytic miR-20a-3p, we created a tetracycline (Tet)-induced recombinant adeno-associated virus (rAAV) construct where miR-20a-3p was located downstream a glial fibrillary acidic protein promoter. Treatment with doxycycline induced miR-20-3p expression in astrocytes, reducing mortality and modestly improving sensory motor behavior. A second Tet-induced rAAV construct was created in which miR-20a-3p was located downstream of a neuron-specific enolase (NSE) promoter. These experiments demonstrate that neuronal expression of miR-20a-3p is vastly more neuroprotective than astrocytic expression, with animals receiving the miR-20a-3p vector showing reduced infarction and sensory motor improvement. Intravenous injections, which are a therapeutically tractable treatment route, with miR-20a-3p mimic 4 h after middle cerebral artery occlusion (MCAo) significantly improved stroke outcomes including infarct volume and sensory motor performance. Improvement was not observed when miR-20a-3p was given immediately or 24 h after MCAo, identifying a unique delayed therapeutic window. Overall, this study identifies a novel neuroprotective microRNA and characterizes several key pathways by which it can improve stroke outcomes.
Collapse
Affiliation(s)
- Taylor E Branyan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Amutha Selvamani
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Min Jung Park
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kriti E Korula
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Kelby F Kosel
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
| | - Rahul Srinivasan
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX, 77807, USA.
- Texas A&M Institute for Neuroscience, College Station, TX, 77840, USA.
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
14
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
15
|
Abstract
Klotho gene was originally recognized as a putative aging-suppressor and its prominent age-regulating effects are mostly attributed to the modulation of mineral homeostasis in the kidney. However, recent studies link alterations in hippocampal Klotho expression with cognitive impairment and neurodegenerative diseases. This suggests that hippocampal neurons require Klotho for health and proper functionality. Klotho protects against neuronal dysfunction and regulates several intracellular signaling pathways including oxidative stress response, inflammation, DNA damage, autophagy, endoplasmic reticulum stress response, and multiple types of cell death. Specifically, this chapter covers the current knowledge as to how Klotho protein affects the hippocampal neuronal cells, with special attention paid to underlying molecular mechanisms, and thus influences hippocampal development, hippocampal-dependent cognition, behavior, and motor skills as well as mediates neurodegenerative processes.
Collapse
Affiliation(s)
- Jennifer Mytych
- Department of Biotechnology, Institute of Biology and Biotechnology, Collegium Scientarium Naturalium, University of Rzeszow, Werynia, Poland.
| |
Collapse
|
16
|
Docherty CK, Strembitska A, Baker CP, Schmidt FF, Reay K, Mercer JR. Inducing Energetic Switching Using Klotho Improves Vascular Smooth Muscle Cell Phenotype. Int J Mol Sci 2021; 23:ijms23010217. [PMID: 35008643 PMCID: PMC8745077 DOI: 10.3390/ijms23010217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
The cardiovascular disease of atherosclerosis is characterised by aged vascular smooth muscle cells and compromised cell survival. Analysis of human and murine plaques highlights markers of DNA damage such as p53, Ataxia telangiectasia mutated (ATM), and defects in mitochondrial oxidative metabolism as significant observations. The antiageing protein Klotho could prolong VSMC survival in the atherosclerotic plaque and delay the consequences of plaque rupture by improving VSMC phenotype to delay heart attacks and stroke. Comparing wild-type VSMCs from an ApoE model of atherosclerosis with a flox'd Pink1 knockout of inducible mitochondrial dysfunction we show WT Pink1 is essential for normal cell viability, while Klotho mediates energetic switching which may preserve cell survival. METHODS Wild-type ApoE VSMCs were screened to identify potential drug candidates that could improve longevity without inducing cytotoxicity. The central regulator of cell metabolism AMP Kinase was used as a readout of energy homeostasis. Functional energetic switching between oxidative and glycolytic metabolism was assessed using XF24 technology. Live cell imaging was then used as a functional readout for the WT drug response, compared with Pink1 (phosphatase-and-tensin-homolog (PTEN)-induced kinase-1) knockout cells. RESULTS Candidate drugs were assessed to induce pACC, pAMPK, and pLKB1 before selecting Klotho for its improved ability to perform energetic switching. Klotho mediated an inverse dose-dependent effect and was able to switch between oxidative and glycolytic metabolism. Klotho mediated improved glycolytic energetics in wild-type cells which were not present in Pink1 knockout cells that model mitochondrial dysfunction. Klotho improved WT cell survival and migration, increasing proliferation and decreasing necrosis independent of effects on apoptosis. CONCLUSIONS Klotho plays an important role in VSMC energetics which requires Pink1 to mediate energetic switching between oxidative and glycolytic metabolism. Klotho improved VSMC phenotype and, if targeted to the plaque early in the disease, could be a useful strategy to delay the effects of plaque ageing and improve VSMC survival.
Collapse
|
17
|
Li Y, Zhang Q, Bao H, Nie C. Association of Klotho Gene Polymorphism with Cerebral Infarction. J Med Biochem 2021; 41:204-210. [PMID: 35510207 PMCID: PMC9010054 DOI: 10.5937/jomb0-34196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022] Open
Abstract
Background: We aimed to investigate the expression of Klotho gene in peripheral blood of patients with cerebral infarction (CI) and the association of its polymorphisms with the occurrence of CI.
Methods: A total of 60 CI patients (CI group) and 20 healthy people receiving physical examination (control group) were enrolled as the research subjects. The expression of Klotho gene in CI group and control group was determined using enzyme-linked immunosorbent assay kit. Single nucleotide polymorphisms (rs192031, rs200131 and rs102312) in the promoter region of the Klotho gene were typed via conformational difference gel electrophoresis. Besides, whether the distribution frequencies of Klotho genotypes conformed to Hardy-Weinberg equilibrium was evaluated by chi-square test. Meanwhile, the associations of Klotho alleles and gene polymorphisms with CI occurrence were analyzed.
Results: The protein expression level of Klotho in the peripheral blood was remarkably lower in patients in CI group than that in control group (P<0.05). Hardy-Weinberg equilibrium analysis revealed that Klotho gene polymorphisms (rs192031, rs200131 and rs102312) conformed to the genetic equilibrium distribution (P>0.05). Gene-based association analysis manifested that only rs192031 polymorphism and alleles were correlated with CI occurrence (P<0.05). Systolic blood pressure and high-density lipoprotein cholesterol were notably higher in CI patients with TT genotype of Klotho gene polymorphism rs192031 than those in control group (P<0.05). Furthermore, there were no associations of rs200131 and rs102312 polymorphisms and alleles with the occurrence of CI (P>0.05).
Conclusions: The expression level of Klotho is evidently reduced in the peripheral blood of CI patients. Rs192031 in the promoter region of the Klotho gene is associated with the occurrence of CI, while rs200131 and rs102312 have no relations with CI.
Collapse
Affiliation(s)
- Yu Li
- The Second Affiliated Hospital of Dalian Medical University, Department of Neurology, Dalian, China
| | - Qiang Zhang
- Dalian Shipyard Rehabilitation Hospital, Department of Rehabilitation Medicine, Dalian, China
| | - Haiping Bao
- The Second Affiliated Hospital of Dalian Medical University, Department of Neurology, Dalian, China
| | - Chen Nie
- The Second Affiliated Hospital of Dalian Medical University, Department of Neurology, Dalian, China
| |
Collapse
|
18
|
Park JH, Lo EH, Hayakawa K. Endoplasmic Reticulum Interaction Supports Energy Production and Redox Homeostasis in Mitochondria Released from Astrocytes. Transl Stroke Res 2021; 12:1045-1054. [PMID: 33479917 PMCID: PMC8324082 DOI: 10.1007/s12975-021-00892-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/18/2020] [Accepted: 01/17/2021] [Indexed: 01/09/2023]
Abstract
Mitochondria can be released by astrocytes as part of a help-me signaling process in stroke. In this study, we investigated the molecular mechanisms that underlie mitochondria secretion, redox status, and functional regulation in the extracellular environment. Exposure of rat primary astrocytes to NAD or cADPR elicited an increase in mitochondrial calcium through ryanodine receptor (RyR) in the endoplasmic reticulum (ER). Importantly, CD38 stimulation with NAD accelerated ATP production along with increasing glutathione reductase (GR) and dipicolinic acid (DPA) in intracellular mitochondria. When RyR was blocked by Dantrolene, all effects were clearly diminished. Mitochondrial functional assay showed that these activated mitochondria appeared to be resistant to H2O2 exposure and sustained mitochondrial membrane potential, while inhibition of RyR resulted in disrupted membrane potential under oxidative stress. Finally, a gain- or loss-of-function assay demonstrated that treatment with DPA in control mitochondria preserved GR contents and increased mitochondrial membrane potential, whereas inhibiting GR with carmustine decreased membrane potentials in extracellular mitochondria released from astrocytes. Collectively, these data suggest that ER-mitochondrial interaction mediated by CD38 stimulation may support mitochondrial energy production and redox homeostasis during the mode of mitochondrial transfer from astrocytes.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149-2401, Charlestown, MA, 02129, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149-2401, Charlestown, MA, 02129, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149-2401, Charlestown, MA, 02129, USA.
| |
Collapse
|
19
|
Abstract
Mitochondria play a central role in the pathophysiological processes of acute ischemic stroke. Disruption of the cerebral blood flow during acute ischemic stroke interrupts oxygen and glucose delivery, leading to the dysfunction of mitochondrial oxidative phosphorylation and cellular bioenergetic stress. Cells can respond to such stress by activating mitochondrial quality control mechanisms, including the mitochondrial unfolded protein response, mitochondrial fission and fusion, mitophagy, mitochondrial biogenesis, and intercellular mitochondrial transfer. Collectively, these adaptive response strategies contribute to retaining the integrity and function of the mitochondrial network, thereby helping to recover the homeostasis of the neurovascular unit. In this review, we focus on mitochondrial quality control mechanisms occurring in acute ischemic stroke. A better understanding of how these regulatory pathways work in maintaining mitochondrial homeostasis will provide a rationale for developing innovative neuroprotectants when these mechanisms fail in acute ischemic stroke.
Collapse
Affiliation(s)
- Hong An
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bing Zhou
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Interdisciplinary Innovation Institute of Medicine and Engineering Interdisciplinary, Beihang University, Beijing, China
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Interdisciplinary Innovation Institute of Medicine and Engineering Interdisciplinary, Beihang University, Beijing, China.,Department of Neurosurgery, 71044Xuanwu Hospital, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Landry T, Shookster D, Huang H. Circulating α-klotho regulates metabolism via distinct central and peripheral mechanisms. Metabolism 2021; 121:154819. [PMID: 34153302 PMCID: PMC8277751 DOI: 10.1016/j.metabol.2021.154819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Emerging evidence implicates the circulating α-klotho protein as a prominent regulator of energy balance and substrate metabolism, with diverse, tissue-specific functions. Despite its well-documented ubiquitous role inhibiting insulin signaling, α-klotho elicits potent antidiabetic and anti-obesogenic effects. α-Klotho facilitates insulin release and promotes β cell health in the pancreas, stimulates lipid oxidation in liver and adipose tissue, attenuates hepatic gluconeogenesis, and increases whole-body energy expenditure. The mechanisms underlying α-klotho's peripheral functions are multifaceted, including hydrolyzing transient receptor potential channels, stimulating integrin β1➔focal adhesion kinase signaling, and activating PPARα via inhibition of insulin-like growth factor receptor 1. Moreover, until recently, potential metabolic roles of α-klotho in the central nervous system remained unexplored; however, a novel α-klotho➔fibroblast growth factor receptor➔PI3kinase signaling axis in the arcuate nucleus of the hypothalamus has been identified as a critical regulator of energy balance and glucose metabolism. Overall, the role of circulating α-klotho in the regulation of metabolism is a new focus of research, but accumulating evidence identifies this protein as an encouraging therapeutic target for Type 1 and 2 Diabetes and obesity. This review analyzes the new literature investigating α-klotho-mediated regulation of metabolism and proposes impactful future directions to progress our understanding of this complex metabolic protein.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Daniel Shookster
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
21
|
Typiak M, Kulesza T, Rachubik P, Rogacka D, Audzeyenka I, Angielski S, Saleem MA, Piwkowska A. Role of Klotho in Hyperglycemia: Its Levels and Effects on Fibroblast Growth Factor Receptors, Glycolysis, and Glomerular Filtration. Int J Mol Sci 2021; 22:7867. [PMID: 34360633 PMCID: PMC8345972 DOI: 10.3390/ijms22157867] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
Hyperglycemic conditions (HG), at early stages of diabetic nephropathy (DN), cause a decrease in podocyte numbers and an aberration of their function as key cells for glomerular plasma filtration. Klotho protein was shown to overcome some negative effects of hyperglycemia. Klotho is also a coreceptor for fibroblast growth factor receptors (FGFRs), the signaling of which, together with a proper rate of glycolysis in podocytes, is needed for a proper function of the glomerular filtration barrier. Therefore, we measured levels of Klotho in renal tissue, serum, and urine shortly after DN induction. We investigated whether it influences levels of FGFRs, rates of glycolysis in podocytes, and albumin permeability. During hyperglycemia, the level of membrane-bound Klotho in renal tissue decreased, with an increase in the shedding of soluble Klotho, its higher presence in serum, and lower urinary excretion. The addition of Klotho increased FGFR levels, especially FGFR1/FGFR2, after their HG-induced decrease. Klotho also increased levels of glycolytic parameters of podocytes, and decreased podocytic and glomerular albumin permeability in HG. Thus, we found that the decrease in the urinary excretion of Klotho might be an early biomarker of DN and that Klotho administration may have several beneficial effects on renal function in DN.
Collapse
Affiliation(s)
- Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
| | - Moin A. Saleem
- Bristol Renal, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK;
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdansk, Poland; (T.K.); (P.R.); (D.R.); (I.A.); (S.A.); (A.P.)
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
22
|
Park JH, Nakamura Y, Li W, Hamanaka G, Arai K, Lo EH, Hayakawa K. Effects of O-GlcNAcylation on functional mitochondrial transfer from astrocytes. J Cereb Blood Flow Metab 2021; 41:1523-1535. [PMID: 33153373 PMCID: PMC8221762 DOI: 10.1177/0271678x20969588] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria may be transferred from cell to cell in the central nervous system and this process may help defend neurons against injury and disease. But how mitochondria maintain their functionality during the process of release into extracellular space remains unknown. Here, we report that mitochondrial protein O-GlcNAcylation is a critical process to support extracellular mitochondrial functionality. Activation of CD38-cADPR signaling in astrocytes robustly induced protein O-GlcNAcylation in mitochondria, while oxygen-glucose deprivation and reoxygenation showed transient and mild protein modification. Blocking the endoplasmic reticulum - Golgi trafficking with Brefeldin A or slc35B4 siRNA reduced O-GlcNAcylation, and resulted in the secretion of mitochondria with decreased membrane potential and mtDNA. Finally, loss-of-function studies verified that O-GlcNAc-modified mitochondria demonstrated higher levels of neuroprotection after astrocyte-to-neuron mitochondrial transfer. Collectively, these findings suggest that post-translational modification by O-GlcNAc may be required for supporting the functionality and neuroprotective properties of mitochondria released from astrocytes.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yoshihiko Nakamura
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
23
|
Hanson K, Fisher K, Hooper N. Exploiting the neuroprotective effects of α-klotho to tackle ageing- and neurodegeneration-related cognitive dysfunction. Neuronal Signal 2021; 5:NS20200101. [PMID: 34194816 PMCID: PMC8204227 DOI: 10.1042/ns20200101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Cognitive dysfunction is a key symptom of ageing and neurodegenerative disorders, such as Alzheimer's disease (AD). Strategies to enhance cognition would impact the quality of life for a significant proportion of the ageing population. The α-klotho protein may protect against cognitive decline through multiple mechanisms: such as promoting optimal synaptic function via activation of N-methyl-d-aspartate (NMDA) receptor signalling; stimulating the antioxidant defence system; reducing inflammation; promoting autophagy and enhancing clearance of amyloid-β. However, the molecular and cellular pathways by which α-klotho mediates these neuroprotective functions have yet to be fully elucidated. Key questions remain unanswered: which form of α-klotho (transmembrane, soluble or secreted) mediates its cognitive enhancing properties; what is the neuronal receptor for α-klotho and which signalling pathways are activated by α-klotho in the brain to enhance cognition; how does peripherally administered α-klotho mediate neuroprotection; and what is the molecular basis for the beneficial effect of the VS variant of α-klotho? In this review, we summarise the recent research on neuronal α-klotho and discuss how the neuroprotective properties of α-klotho could be exploited to tackle age- and neurodegeneration-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Kelsey Hanson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Kate Fisher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|
24
|
Bourourou M, Gouix E, Melis N, Friard J, Heurteaux C, Tauc M, Blondeau N. Inhibition of eIF5A hypusination pathway as a new pharmacological target for stroke therapy. J Cereb Blood Flow Metab 2021; 41:1080-1090. [PMID: 32615885 PMCID: PMC8054730 DOI: 10.1177/0271678x20928882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/17/2022]
Abstract
In eukaryotes, the polyamine pathway generates spermidine that activates the hypusination of the translation factor eukaryotic initiation factor 5A (eIF5A). Hypusinated-eIF5A modulates translation, elongation, termination and mitochondrial function. Evidence in model organisms like drosophila suggests that targeting polyamines synthesis might be of interest against ischemia. However, the potential of targeting eIF5A hypusination in stroke, the major therapeutic challenge specific to ischemia, is currently unknown. Using in vitro models of ischemic-related stress, we documented that GC7, a specific inhibitor of a key enzyme in the eIF5A activation pathway, affords neuronal protection. We identified the preservation of mitochondrial function and thereby the prevention of toxic ROS generation as major processes of GC7 protection. To represent a thoughtful opportunity of clinical translation, we explored whether GC7 administration reduces the infarct volume and functional deficits in an in vivo transient focal cerebral ischemia (tFCI) model in mice. A single GC7 pre- or post-treatment significantly reduces the infarct volume post-stroke. Moreover, GC7-post-treatment significantly improves mouse performance in the rotarod and Morris water-maze, highlighting beneficial effects on motor and cognitive post-stroke deficits. Our results identify the targeting of the polyamine-eIF5A-hypusine axis as a new therapeutic opportunity and new paradigm of research in stroke and ischemic diseases.
Collapse
Affiliation(s)
- Miled Bourourou
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, France
| | - Elsa Gouix
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, France
| | | | - Jonas Friard
- CNRS, LP2M, Université Côte d’Azur, Nice, France
| | | | - Michel Tauc
- CNRS, LP2M, Université Côte d’Azur, Nice, France
| | | |
Collapse
|
25
|
da Paz Oliveira G, Elias RM, Peres Fernandes GB, Moyses R, Tufik S, Bichuetti DB, Coelho FMS. Decreased concentration of klotho and increased concentration of FGF23 in the cerebrospinal fluid of patients with narcolepsy. Sleep Med 2020; 78:57-62. [PMID: 33385780 DOI: 10.1016/j.sleep.2020.11.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE to explore the status of concentration of klotho and fibroblast growth factor 23 (FGF23) in cerebrospinal fluid (CSF) of patients with narcolepsy. PATIENTS/METHODS 59 patients with narcolepsy and 17 control individuals were enrolled. We used radioimmunoassay, human klotho enzyme-linked immunosorbent assay (ELISA), human intact FGF23 ELISA and spectrophotometry to measure hypocretin-1, klotho, FGF-23 and phosphorus, respectively. T-Student Test was used to compare klotho and phosphate concentrations, Mann-Whitney U Test were used to compare FGF-23 levels between groups. ANOVA Test was used to compare klotho and phosphate CSF concentrations among narcolepsy patients with CSF hypocretin-1 <110 pg/ml (HCRT-) and narcolepsy patients with CSF hypocretin-1 >110 pg/ml (HCRT+) versus control subjects. RESULTS Klotho and phosphorus CSF levels were lower in narcoleptic patients than in control (908.18 ± 405.51 versus 1265.78 ± 523.26 pg/ml; p = 0.004 and 1.34 ± 0.25 versus 1.58 ± 0.23 mg/dl; p = 0.001, respectively). We found higher FGF-23 levels in narcoleptic patients (5.51 versus 4.00 pg/mL; p = 0.001). Klotho and phosphorus CSF levels were lower in both HCRT- and HCRT+ than controls. Moreover, there were higher FGF-23 levels in both HCRT-/HCRT+ groups versus controls. However, we did not find differences comparing HCRT- and HCRT+ groups, analyzing CSF klotho, FGF-23 or phosphorus levels. CONCLUSIONS Patients with narcolepsy have decreased CSF concentration of klotho and increased CSF levels of FGF-23. These findings may play a role in understanding the pathogenesis of narcolepsy.
Collapse
Affiliation(s)
- Giuliano da Paz Oliveira
- Disciplina de Neurologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil; Universidade Federal do Piauí (UFPI), Campus Ministro Reis Velloso, Parnaíba, PI, Brazil
| | - Rosilene Motta Elias
- Disciplina de Nefrologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | | | - Rosa Moyses
- Disciplina de Nefrologia, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Denis Bernardi Bichuetti
- Disciplina de Neurologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil
| | - Fernando Morgadinho Santos Coelho
- Disciplina de Neurologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, SP, Brazil; Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Landry T, Li P, Shookster D, Jiang Z, Li H, Laing BT, Bunner W, Langton T, Tong Q, Huang H. Centrally circulating α-klotho inversely correlates with human obesity and modulates arcuate cell populations in mice. Mol Metab 2020; 44:101136. [PMID: 33301986 PMCID: PMC7777546 DOI: 10.1016/j.molmet.2020.101136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Our laboratory recently identified the centrally circulating α-klotho protein as a novel hypothalamic regulator of food intake and glucose metabolism in mice. The current study aimed to investigate novel molecular effectors of central α-klotho in the arcuate nucleus of the hypothalamus (ARC), while further deciphering its role regulating energy balance in both humans and mice. Methods Cerebrospinal fluid (CSF) was collected from 22 adults undergoing lower limb orthopedic surgeries, and correlations between body weight and α-klotho were determined using an α-klotho enzyme-linked immunosorbent assay (ELISA) kit. To investigate the effects of α-klotho on energy expenditure (EE), 2-day intracerebroventricular (ICV) treatment was performed in diet-induced obesity (DIO) mice housed in TSE Phenomaster indirect calorimetry metabolic cages. Immunohistochemical staining for cFOS and patch clamp electrophysiology were used to determine the effects of central α-klotho on proopiomelanocortin (POMC) and tyrosine hydroxylase (TH) neurons. Additional stainings were performed to determine novel roles for central α-klotho to regulate non-neuronal cell populations in the ARC. Lastly, ICV pretreatment with fibroblast growth factor receptor (FGFR) or PI3kinase inhibitors was performed to determine the intracellular signaling involved in α-klotho-mediated regulation of ARC nuclei. Results Obese/overweight human subjects had significantly lower CSF α-klotho concentrations compared to lean counterparts (1,044 ± 251 vs. 1616 ± 218 pmol/L, respectively). Additionally, 2 days of ICV α-klotho treatment increased EE in DIO mice. α-Klotho had no effects on TH neuron activity but elicited varied responses in POMC neurons, with 44% experiencing excitatory and 56% experiencing inhibitory effects. Inhibitor experiments identified an α-klotho→FGFR→PI3kinase signaling mechanism in the regulation of ARC POMC and NPY/AgRP neurons. Acute ICV α-klotho treatment also increased phosphorylated ERK in ARC astrocytes via FGFR signaling. Conclusion Our human CSF data provide the first evidence that impaired central α-klotho function may be involved in the pathophysiology of obesity. Furthermore, results in mouse models identify ARC POMC neurons and astrocytes as novel molecular effectors of central α-klotho. Overall, the current study highlights prominent roles of α-klotho→FGFR→PI3kinase signaling in the homeostatic regulation of ARC neurons and whole-body energy balance. Human CSF α-klotho concentrations exhibit a strong, inverse correlation with body weight and BMI. ICV α-klotho treatment increases energy expenditure in DIO mice. α-Klotho.→FGFR→PI3kinase signaling modulates ARC NPY/AgRP and POMC neurons. α-Klotho.→FGFR→ERK signaling regulates ARC astrocytes.
Collapse
Affiliation(s)
- Taylor Landry
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Peixin Li
- Department of Comprehensive Surgery, Medical and Health Center, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Daniel Shookster
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Zhiying Jiang
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hongli Li
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brenton Thomas Laing
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Wyatt Bunner
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Theodore Langton
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hu Huang
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, College of Human Performance and Health, East Carolina University, Greenville, NC, USA; Department of Physiology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
27
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Zamboni RJ, Kodukula K, Chen X. Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. Biores Open Access 2020; 9:94-105. [PMID: 32257625 PMCID: PMC7133426 DOI: 10.1089/biores.2020.0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelination and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path forward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dysfunction take over, and age-related chronic disorders are likely to follow. The physiological consequences can be wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy targets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus no wonder that this topic has caught the attention of biomedical researchers around the world.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Anastasios N. Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantina Sampani
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | | | | | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| |
Collapse
|
28
|
Bauer M, Rahat D, Zisman E, Tabach Y, Lossos A, Meiner V, Arkadir D. MYORG Mutations: a Major Cause of Recessive Primary Familial Brain Calcification. Curr Neurol Neurosci Rep 2019; 19:70. [PMID: 31440850 DOI: 10.1007/s11910-019-0986-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Until recently, the gene associated with the recessive form of familial brain calcification (PFBC, Fahr disease) was unknown. MYORG, a gene that causes recessive PFBC was only recently discovered and is currently the only gene associated with a recessive form of this disease. Here, we review the radiological and clinical findings in adult MYORG mutation homozygous and heterozygous individuals. RECENT FINDINGS MYORG was shown to be the cause of a large fraction of recessive cases of PFBC in patients of different ethnic populations. Pathogenic mutations include inframe insertions and deletions in addition to nonsense and missense mutations that are distributed throughout the entire MYORG coding region. Homozygotes have extensive brain calcification in all known cases, whereas in some carriers of heterozygous mutation, punctuated calcification of the globus pallidus is demonstrated. The clinical spectrum in homozygotes ranges from the lack of neurological symptoms to severe progressive neurological syndrome with bulbar and cerebellar signs, parkinsonism and other movement disorders, and cognitive impairments. Heterozygotes are clinically asymptomatic. MYORG is a transmembrane protein localized to the endoplasmic reticulum and is mainly expressed in astrocytes. While the biochemical pathways of the protein are still unknown, information from its evolution profile across hundreds of species (phylogenetic profiling) suggests a role for MYORG in regulating ion homeostasis via its glycosidase domain. MYORG mutations are a major cause for recessive PFBC in different world populations. Future studies are required in order to reveal the cellular role of the MYORG protein.
Collapse
Affiliation(s)
- Max Bauer
- Department of Neurology, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Dolev Rahat
- Institute for Medical Research, Faculty of Medicine, Hebrew University, Jerusalem, Israel.,Department of Genetics and Metabolic Diseases, Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
| | - Elad Zisman
- Institute for Medical Research, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Yuval Tabach
- Institute for Medical Research, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Alexander Lossos
- Department of Neurology, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel
| | - Vardiella Meiner
- Department of Genetics and Metabolic Diseases, Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
| | - David Arkadir
- Department of Neurology, Hadassah Medical Center and the Hebrew University, POB 12000, 91120, Jerusalem, Israel.
| |
Collapse
|
29
|
Ramadasan-Nair R, Hui J, Itsara LS, Morgan PG, Sedensky MM. Mitochondrial Function in Astrocytes Is Essential for Normal Emergence from Anesthesia in Mice. Anesthesiology 2019; 130:423-434. [PMID: 30707122 PMCID: PMC6375739 DOI: 10.1097/aln.0000000000002528] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC In mice, restriction of loss of the mitochondrial complex I gene Ndufs4 to glutamatergic neurons confers a profound hypersensitivity to volatile anesthetics.Astrocytes are crucial to glutamatergic synapse functioning during excitatory transmission. WHAT THIS ARTICLE TELLS US THAT IS NEW In a tamoxifen-activated astrocyte-specific Ndufs4(KO) mouse, the induction EC50s for tail clamp in both isoflurane and halothane were similar between the control and astrocyte-specific Ndufs4(KO) mice at 3 weeks after 4-hydroxy tamoxifen injection. However, the emergent concentrations in both anesthetics for the astrocyte-specific Ndufs4(KO) mice were half that of the controls.Similarly, the induction EC50s for loss of righting reflex were similar between the control and astrocyte-specific Ndufs4(KO) mice; concentrations for regain of righting reflex in both anesthetics for the astrocyte-specific Ndufs4(KO) mice were much less than the control.Thus, mitochondrial complex I function within astrocytes is essential for normal emergence from anesthesia. BACKGROUND In mice, restriction of loss of the mitochondrial complex I gene Ndufs4 to glutamatergic neurons confers a profound hypersensitivity to volatile anesthetics similar to that seen with global genetic knockout of Ndufs4. Astrocytes are crucial to glutamatergic synapse functioning during excitatory transmission. Therefore, the authors examined the role of astrocytes in the anesthetic hypersensitivity of Ndufs4(KO). METHODS A tamoxifen-activated astrocyte-specific Ndufs4(KO) mouse was constructed. The specificity of the astrocyte-specific inducible model was confirmed by using the green fluorescent protein reporter line Ai6. Approximately 120 astrocyte-specific knockout and control mice were used for the experiments. Mice were anesthetized with varying concentrations of isoflurane or halothane; loss of righting reflex and response to a tail clamp were determined and quantified as the induction and emergence EC50s. Because norepinephrine has been implicated in emergence from anesthesia and astrocytes respond to norepinephrine to release gliotransmitters, the authors measured norepinephrine levels in the brains of control and knockout Ndufs4 animals. RESULTS The induction EC50s for tail clamp in both isoflurane and halothane were similar between the control and astrocyte-specific Ndufs4(KO) mice at 3 weeks after 4-hydroxy tamoxifen injection (induction concentration, EC50(ind)-isoflurane: control = 1.27 ± 0.12, astrocyte-specific knockout = 1.21 ± 0.18, P = 0.495; halothane: control = 1.28 ± 0.05, astrocyte-specific knockout = 1.20 ± 0.05, P = 0.017). However, the emergent concentrations in both anesthetics for the astrocyte-specific Ndufs4(KO) mice were less than the controls for tail clamp; (emergence concentration, EC50(em)-isoflurane: control = 1.18 ± 0.10, astrocyte-specific knockout = 0.67 ± 0.11, P < 0.0001; halothane: control = 1.08 ± 0.09, astrocyte-specific knockout = 0.59 ± 0.12, P < 0.0001). The induction EC50s for loss of righting reflex were also similar between the control and astrocyte-specific Ndufs4(KO) mice (EC50(ind)-isoflurane: control = 1.02 ± 0.10, astrocyte-specific knockout = 0.97 ± 0.06, P = 0.264; halothane: control = 1.03 ± 0.05, astrocyte-specific knockout = 0.99 ± 0.08, P = 0.207). The emergent concentrations for loss of righting reflex in both anesthetics for the astrocyte-specific Ndufs4(KO) mice were less than the control (EC50(em)-isoflurane: control = 1.0 ± 0.07, astrocyte-specific knockout = 0.62 ± 0.12, P < 0.0001; halothane: control = 1.0 ± 0.04, astrocyte-specific KO = 0.64 ± 0.09, P < 0.0001); N ≥ 6 for control and astrocyte-specific Ndufs4(KO) mice. For all tests, similar results were seen at 7 weeks after 4-hydroxy tamoxifen injection. The total norepinephrine content of the brain in global or astrocyte-specific Ndufs4(KO) mice was unchanged compared to control mice. CONCLUSIONS The only phenotype of the astrocyte-specific Ndufs4(KO) mouse was a specific impairment in emergence from volatile anesthetic-induced general anesthesia. The authors conclude that normal mitochondrial function within astrocytes is essential for emergence from anesthesia.
Collapse
Affiliation(s)
- Renjini Ramadasan-Nair
- From the Center for Integrative Brain Research, Seattle Children's Research Institute, Washington (R.R.-N., J.H., L.S.I., P.G.M., M.M.S.) the Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington (P.G.M., M.M.S.)
| | | | | | | | | |
Collapse
|