1
|
Tang X, Zheng N, Lin Q, You Y, Gong Z, Zhuang Y, Wu J, Wang Y, Huang H, Ke J, Chen F. Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis. Neural Regen Res 2025; 20:1103-1123. [PMID: 38845218 PMCID: PMC11438345 DOI: 10.4103/nrr.nrr-d-23-01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/28/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00027/figure1/v/2024-07-06T104127Z/r/image-tiff Cardiac arrest can lead to severe neurological impairment as a result of inflammation, mitochondrial dysfunction, and post-cardiopulmonary resuscitation neurological damage. Hypoxic preconditioning has been shown to improve migration and survival of bone marrow-derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest, but the specific mechanisms by which hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown. To this end, we established an in vitro co-culture model of bone marrow-derived mesenchymal stem cells and oxygen-glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis, possibly through inhibition of the MAPK and nuclear factor κB pathways. Subsequently, we transplanted hypoxia-preconditioned bone marrow-derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia. The results showed that hypoxia-preconditioned bone marrow-derived mesenchymal stem cells significantly reduced cardiac arrest-induced neuronal pyroptosis, oxidative stress, and mitochondrial damage, whereas knockdown of the liver isoform of phosphofructokinase in bone marrow-derived mesenchymal stem cells inhibited these effects. To conclude, hypoxia-preconditioned bone marrow-derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest, and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.
Collapse
Affiliation(s)
- Xiahong Tang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Nan Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Qingming Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yan You
- The Second Department of Intensive Care Unit, Fujian Provincial Hospital South Branch, Fuzhou, Fujian Province, China
| | - Zheng Gong
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yangping Zhuang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jiali Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yu Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Hanlin Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jun Ke
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Feng Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Guo Y, Gharibani P, Agarwal P, Modi H, Cho SM, Thakor NV, Geocadin RG. Endogenous orexin and hyperacute autonomic responses after resuscitation in a preclinical model of cardiac arrest. Front Neurosci 2024; 18:1437464. [PMID: 39347533 PMCID: PMC11427410 DOI: 10.3389/fnins.2024.1437464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Objectives The study of autonomic responses to cardiac arrest (CA) resuscitation deserves attention due to the impact of autonomic function on survival and arousal. Orexins are known to modulate autonomic function, but the role of endogenous orexin in hyperacute recovery of autonomic function post-resuscitation is not well understood. We hypothesized that endogenous orexin facilitates hyperacute cardiovascular sympathetic activity post-resuscitation, and this response could be attenuated by suvorexant, a dual orexin receptor antagonist. Methods A well-established 7-min asphyxial CA rat model was studied. Heart rate (HR) and blood pressure were monitored from baseline to 90-min post-resuscitation. Autonomic function was evaluated by spectral analysis of HR variability, whereby the ratio of low- and high-frequency components (LF/HF ratio) represents the balance between sympathetic/parasympathetic activities. Plasma orexin-A levels and orexin receptors immunoreactivity in the rostral ventrolateral medulla (RVLM), the key central region for regulating sympathetic output, were measured post-resuscitation. Neurological outcome was assessed via neurologic-deficit score at 4-h post-resuscitation. Key results A significant increase in HR was found over 25-40 min post-resuscitation (p < 0.01 vs. baseline), which was attenuated by suvorexant significantly (p < 0.05). Increased HR (from 15-to 25-min post-resuscitation) was correlated with better neurological outcomes (rs = 0.827, p = 0.005). There was no evident increase in mean arterial pressure over 25-40 min post-resuscitation, while systolic pressure was reduced greatly by suvorexant (p < 0.05). The LF/HF ratio was higher in animals with favorable outcomes than in animals injected with suvorexant over 30-40 min post-resuscitation (p < 0.05). Plasma orexin-A levels elevated at 15-min and peaked at 30-min post-resuscitation (p < 0.01 vs. baseline). Activated orexin receptors-immunoreactive neurons were found co-stained with tyrosine hydroxylase-immunopositive cells in the RVLM at 2-h post-resuscitation. Conclusion Together, increased HR and elevated LF/HF ratio indicative of sympathetic arousal during a critical window (25-40 min) post-resuscitation are observed in animals with favorable outcomes. The orexin system appears to facilitate this hyperacute autonomic response post-CA.
Collapse
Affiliation(s)
- Yu Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Payam Gharibani
- Department of Neurology, Division of Neuroimmunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Prachi Agarwal
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Engineering, Baltimore, MD, United States
| | - Hiren Modi
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sung-Min Cho
- Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Romergryko G Geocadin
- Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Gao Y, Liu H, Zhou Y, Cai S, Zhang J, Sun J, Duan M. Cold inducible RNA binding protein-regulated mitochondria associated endoplasmic reticulum membranes-mediated Ca 2+ transport play a critical role in hypothermia cerebral resuscitation. Exp Neurol 2024; 379:114883. [PMID: 38992825 DOI: 10.1016/j.expneurol.2024.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Cardiac arrest is a global health issue causing more deaths than many other diseases. Hypothermia therapy is commonly used to treat secondary brain injury resulting from cardiac arrest. Previous studies have shown that CIRP is induced in specific brain regions during hypothermia and inhibits mitochondrial apoptotic factors. However, the specific mechanisms by which hypothermia-induced CIRP exerts its anti-apoptotic effect are still unknown. This study aims to investigate the role of Cold-inducible RNA-binding protein (CIRP) in mitochondrial-associated endoplasmic reticulum membrane (MAM)-mediated Ca2+ transport during hypothermic brain resuscitation.We constructed a rat model of cardiac arrest and resuscitation and hippocampal neuron oxygen-glucose deprivation/reoxygenation model. We utilized shRNA transfection to interfere the expression of CIRP and observe the effect of CIRP on the structure and function of MAM.Hypothermia induced CIRP can reduce the apoptosis of hippocampal neurons, and improve the survival rate of rats. Hypothermia induced CIRP can reduce the expressions of calcium transporters IP3R and VDAC1 in MAM, reduce the concentration of calcium in mitochondria, decrease the expression of ROS, and stabilize the mitochondrial membrane potential. Immunofluorescence and immunocoprecipitation showed that CIRP could directly interact with IP3R-VDAC1 complex, thereby changing the structure of MAM, inhibiting calcium transportation and improving mitochondrial function in vivo and vitro.Both in vivo and in vitro experiments have confirmed that hypothermia induced CIRP can act on the calcium channel IP3R-VDAC1 in MAM, reduce the calcium overload in mitochondria, improve the energy metabolism of mitochondria, and thus play a role in neuron resuscitation. This study contributes to understanding hypothermia therapy and identifies potential targets for brain injury treatment.
Collapse
Affiliation(s)
- Yu Gao
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China
| | - Haoxin Liu
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Yaqing Zhou
- Department of Pain Management, Affiliated Hospital of Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Shenquan Cai
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, Jiangsu, China
| | - Jie Zhang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, Jiangsu, China
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China.
| | - Manlin Duan
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, Jiangsu, China; Department of Anesthesiology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China.
| |
Collapse
|
4
|
Beekman R, Khosla A, Buckley R, Honiden S, Gilmore EJ. Temperature Control in the Era of Personalized Medicine: Knowledge Gaps, Research Priorities, and Future Directions. J Intensive Care Med 2024; 39:611-622. [PMID: 37787185 DOI: 10.1177/08850666231203596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Hypoxic-ischemic brain injury (HIBI) is the leading cause of death and disability after cardiac arrest. To date, temperature control is the only intervention shown to improve neurologic outcomes in patients with HIBI. Despite robust preclinical evidence supporting hypothermia as neuroprotective therapy after cardiac arrest, there remains clinical equipoise regarding optimal core temperature, therapeutic window, and duration of therapy. Current guidelines recommend continuous temperature monitoring and active fever prevention for at least 72 h and additionally note insufficient evidence regarding temperature control targeting 32 °C-36 °C. However, population-based thresholds may be inadequate to support the metabolic demands of ischemic, reperfused, and dysregulated tissue. Promoting a more personalized approach with individualized targets has the potential to further improve outcomes. This review will analyze current knowledge and evidence, address research priorities, explore the components of high-quality temperature control, and define critical future steps that are needed to advance patient-centered care for cardiac arrest survivors.
Collapse
Affiliation(s)
- Rachel Beekman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Akhil Khosla
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan Buckley
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shyoko Honiden
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emily J Gilmore
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Deng Z, Liang B, Li T, Liu Q, Wang X, Sun X, Ou Z, Zhao L, Xu C, Liu H, Li J. Development and validation of a risk prediction model for valve regurgitation in Behçet's disease. Clin Rheumatol 2024; 43:1711-1721. [PMID: 38536517 DOI: 10.1007/s10067-024-06897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND In Behçet's disease (BD), mild-to-severe valvular regurgitation (VR) poses a serious complication that contributes significantly to heart failure and eventually death. The accurate prediction of VR is crucial in the early stages of BD subjects for improved prognosis. Accordingly, this study aimed to develop a nomogram that can detect VR early in the course of BD. METHODS One hundred seventy-two patients diagnosed with Behçet's disease (BD) were conducted to assess cardiac valve regurgitation as the primary outcome. The severity of regurgitation was classified as mild, moderate, or severe. The parameters related to the diagnostic criteria were used to develop model 1. The combination of stepAIC, best subset, and random forest approaches was employed to identify the independent predictors of VR and thus establish model 2 and create a nomogram for predicting the probability of VR in BD. Receiver operating characteristics (ROC) and decision curve analysis (DCA) were used to evaluate the model performance. RESULTS Thirty-four patients experienced mild-to-severe VR events. Model 2 was established using five variables, including arterial involvement, sex, age at hospitalization, mean arterial pressure, and skin lesions. In comparison with model 1 (0.635, 95% CI: 0.512-0.757), the ROC of model 2 (0.879, 95% CI: 0.793-0.966) was improved significantly. DCA suggested that model 2 was more feasible and clinically applicable than model 1. CONCLUSION A predictive model and a nomogram for predicting the VR of patients with Behçet's disease were developed. The good performance of this model can help us identify potential high-risk groups for heart failure. Key Points • In this study, the predictors of VR in BD were evaluated, and a risk prediction model was developed for the early prediction of the occurrence of VR in patients with BD. • The VR prediction model included the following indexes: arterial involvement, sex, age at hospitalization, mean arterial pressure, and skin lesions. • The risk model that we developed was better and more optimized than the models built with diagnostic criteria parameters, and visualizing and personalizing the model, a nomogram, provided clinicians with an easy and intuitive tool for practical prediction.
Collapse
Affiliation(s)
- Zixian Deng
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Southern University of Science and Technology, Jinan University), 1017 Dongmen North Road, Shenzhen, Guangdong, China
| | - Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Tangzhiming Li
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Southern University of Science and Technology, Jinan University), 1017 Dongmen North Road, Shenzhen, Guangdong, China
| | - Qiyun Liu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Southern University of Science and Technology, Jinan University), 1017 Dongmen North Road, Shenzhen, Guangdong, China
| | - Xiaoyu Wang
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Southern University of Science and Technology, Jinan University), 1017 Dongmen North Road, Shenzhen, Guangdong, China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Southern University of Science and Technology, Jinan University), 1017 Dongmen North Road, Shenzhen, Guangdong, China
| | - Ziwei Ou
- Department of Cardiology, Xiangya Third Hospital, Central South University, Changsha, China
| | - Lin Zhao
- Department of Cardiology, Xiangya Third Hospital, Central South University, Changsha, China
| | - Cong Xu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Southern University of Science and Technology, Jinan University), 1017 Dongmen North Road, Shenzhen, Guangdong, China
| | - Huadong Liu
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Southern University of Science and Technology, Jinan University), 1017 Dongmen North Road, Shenzhen, Guangdong, China.
| | - Jianghua Li
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital (The Second Clinical Medical College, The First Affiliated Hospital, Southern University of Science and Technology, Jinan University), 1017 Dongmen North Road, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Kocaşaban DÜ, Güler S, Günaydin YK. Effect of Target Temperature Management on Optic Nerve Sheath Diameter in Post-Cardiac Arrest Patients. Ther Hypothermia Temp Manag 2024. [PMID: 38608231 DOI: 10.1089/ther.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Target Temperature Management (TTM) is a procedure used in post-cardiac arrest (CA) patients to reduce mortality and morbidity. The goal of this study was to investigate the link between intracranial pressure (ICP) and optic nerve sheath diameter (ONSD) in this patient group, which has a high mortality rate, despite TTM, and to see if ONSD may be used to predict mortality. The research was designed to be a retrospective observational study. The study comprised patients who were followed up on in a tertiary intensive care unit, had post-CA TTM, and had brain computed tomography (BCT) before and 0-6 hours after TTM. ONSD measurements were acquired from patients' BCT images recorded before and after TTM. The difference in pre-TTM ONSD and post-TTM ONSD measurements in all post-CA patients, as well as the difference in pre-TTM ONSD and post-TTM ONSD measurements in surviving and deceased patients, was compared. The study involved 33 participants. The patients' average age was 60.58-12.39 years, and 75.8% were male. Around 51.5% of the patients died. When the pre-TTM and post-TTM ONSDs of all patients were compared, there was no statistically significant difference (p = 0.856). When the percentage change (Δ) values between the post-TTM ONSD and pre-TTM ONSD and post-TTM ONSD measures of the surviving patients and the deceased patients were compared, a difference was observed (p < 0.01). Increased ICP in post-CA patients is a significant clinical issue associated with mortality and poor neurological prognosis. ONSD measurement may be useful in monitoring ICP, which may rise, despite TTM, and higher ONSD measurements may be used as an indicator for mortality in post-CA patients, who have received TTM.
Collapse
Affiliation(s)
- Dilber Üçöz Kocaşaban
- Department of Emergency Medicine, Ankara Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Sertaç Güler
- Department of Emergency Medicine, Ankara Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Yahya Kemal Günaydin
- Department of Emergency Medicine, Ankara Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
7
|
Binda DD, Baker MB, Varghese S, Wang J, Badenes R, Bilotta F, Nozari A. Targeted Temperature Management for Patients with Acute Ischemic Stroke: A Literature Review. J Clin Med 2024; 13:586. [PMID: 38276093 PMCID: PMC10816923 DOI: 10.3390/jcm13020586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Despite significant advances in medical imaging, thrombolytic therapy, and mechanical thrombectomy, acute ischemic strokes (AIS) remain a major cause of mortality and morbidity globally. Targeted temperature management (TTM) has emerged as a potential therapeutic intervention, aiming to mitigate neuronal damage and improve outcomes. This literature review examines the efficacy and challenges of TTM in the context of an AIS. A comprehensive literature search was conducted using databases such as PubMed, Cochrane, Web of Science, and Google Scholar. Studies were selected based on relevance and quality. We identified key factors influencing the effectiveness of TTM such as its timing, depth and duration, and method of application. The review also highlighted challenges associated with TTM, including increased pneumonia rates. The target temperature range was typically between 32 and 36 °C, with the duration of cooling from 24 to 72 h. Early initiation of TTM was associated with better outcomes, with optimal results observed when TTM was started within the first 6 h post-stroke. Emerging evidence indicates that TTM shows considerable potential as an adjunctive treatment for AIS when implemented promptly and with precision, thereby potentially mitigating neuronal damage and enhancing overall patient outcomes. However, its application is complex and requires the careful consideration of various factors.
Collapse
Affiliation(s)
- Dhanesh D. Binda
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Maxwell B. Baker
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Shama Varghese
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Jennifer Wang
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| | - Rafael Badenes
- Department Anesthesiology, Surgical-Trauma Intensive Care and Pain Clinic, Hospital Clínic Universitari, University of Valencia, 46010 Valencia, Spain
| | - Federico Bilotta
- Department of Anaesthesiology, Critical Care and Pain Medicine, Policlinico Umberto I Teaching Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| | - Ala Nozari
- Department of Anesthesiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA; (D.D.B.); (M.B.B.); (S.V.); (J.W.); (A.N.)
| |
Collapse
|
8
|
Shen Y, Wang Q, Modi HR, Pathak AP, Geocadin RG, Thakor NV, Senarathna J. Quantification of Cerebral Vascular Autoregulation Immediately Following Resuscitation from Cardiac Arrest. Ann Biomed Eng 2023; 51:1847-1858. [PMID: 37184745 PMCID: PMC10760599 DOI: 10.1007/s10439-023-03210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Cerebral vascular autoregulation is impaired following resuscitation from cardiac arrest (CA), and its quantification may allow assessing CA-induced brain injury. However, hyperemia occurring immediately post-resuscitation limits the application of most metrics that quantify autoregulation. Therefore, to characterize autoregulation during this critical period, we developed three novel metrics based on how the cerebrovascular resistance (CVR) covaries with changes in cerebral perfusion pressure (CPP): (i) θCVR, which quantifies the CVR vs CPP gradient, (ii) a CVR-based transfer function analysis, and (iii) CVRx, the correlation coefficient between CPP and CVR. We tested these metrics in a model of asphyxia induced CA and resuscitation using seven adult male Wistar rats. Mean arterial pressure (MAP) and cortical blood flow recorded for 30 min post-resuscitation via arterial cannulation and laser speckle contrast imaging, were used as surrogates of CPP and cerebral blood flow (CBF), while CVR was computed as the CPP/CBF ratio. Using our metrics, we found that the status of cerebral vascular autoregulation altered substantially during hyperemia, with changes spread throughout the 0-0.05 Hz frequency band. Our metrics push the boundary of how soon autoregulation can be assessed, and if validated against outcome markers, may help develop a reliable metric of brain injury post-resuscitation.
Collapse
Affiliation(s)
- Yucheng Shen
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qihong Wang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hiren R Modi
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Traylor Bldg. 701, Baltimore, MD, 21205, USA
| | - Romergryko G Geocadin
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesia and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Traylor Bldg. 701, Baltimore, MD, 21205, USA.
- The Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Gao Y, Liu H, Zhou J, Guo M, Sun J, Duan M. THE PROTECTIVE EFFECT OF C23 IN A RAT MODEL OF CARDIAC ARREST AND RESUSCITATION. Shock 2023; 59:892-901. [PMID: 36930651 DOI: 10.1097/shk.0000000000002113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
ABSTRACT Background : Systemic inflammation acts as a contributor to neurologic deficits after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Extracellular cold-inducible RNA-binding, protein (CIRP) has been demonstrated to be responsible in part for the inflammation through binding to toll-like receptor 4 (TLR4) after cerebral ischemia. The short peptide C23 derived from CIRP has a high affinity for TLR4, we hypothesize that C23 reduces systemic inflammation after CA/CPR by blocking the binding of CIRP to TLR4. Methods : Adult male SD rats in experimental groups were subjected to 5 min of CA followed by resuscitation. C23 peptide (8 mg/kg) or normal saline was injected intraperitoneally at the beginning of the return of spontaneous circulation (ROSC). Results : The expressions of CIRP, TNF-α, IL-6, and IL-1β in serum and brain tissues were significantly increased at 24 h after ROSC ( P < 0.05). C23 treatment could markedly decrease the expressions of TNF-α, IL-6, and IL-1β in serum ( P < 0.05). Besides, it can decrease the expressions of TLR4, TNF-α, IL-6, and IL-1β in the cortex and hippocampus and inhibit the colocalization of CIRP and TLR4 ( P < 0.05). In addition, C23 treatment can reduce the apoptosis of hippocampus neurons ( P < 0.05). Finally, the rats in the C23 group have improved survival rate and neurological prognosis ( P < 0.05). Conclusions: These findings suggest that C23 can reduce systemic inflammation and it has the potential to be developed into a possible therapy for post-CA syndrome.
Collapse
Affiliation(s)
- Yu Gao
- Department of anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China
| | - Haoxin Liu
- Department of anesthesiology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Jiejie Zhou
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, Jiangsu, China
| | - Min Guo
- Department of anesthesiology, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Jie Sun
- Department of anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China
| | | |
Collapse
|
10
|
Crouzet C, Phan T, Wilson RH, Shin TJ, Choi B. Intrinsic, widefield optical imaging of hemodynamics in rodent models of Alzheimer's disease and neurological injury. NEUROPHOTONICS 2023; 10:020601. [PMID: 37143901 PMCID: PMC10152182 DOI: 10.1117/1.nph.10.2.020601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The complex cerebrovascular network is critical to controlling local cerebral blood flow (CBF) and maintaining brain homeostasis. Alzheimer's disease (AD) and neurological injury can result in impaired CBF regulation, blood-brain barrier breakdown, neurovascular dysregulation, and ultimately impaired brain homeostasis. Measuring cortical hemodynamic changes in rodents can help elucidate the complex physiological dynamics that occur in AD and neurological injury. Widefield optical imaging approaches can measure hemodynamic information, such as CBF and oxygenation. These measurements can be performed over fields of view that range from millimeters to centimeters and probe up to the first few millimeters of rodent brain tissue. We discuss the principles and applications of three widefield optical imaging approaches that can measure cerebral hemodynamics: (1) optical intrinsic signal imaging, (2) laser speckle imaging, and (3) spatial frequency domain imaging. Future work in advancing widefield optical imaging approaches and employing multimodal instrumentation can enrich hemodynamic information content and help elucidate cerebrovascular mechanisms that lead to the development of therapeutic agents for AD and neurological injury.
Collapse
Affiliation(s)
- Christian Crouzet
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thinh Phan
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Robert H. Wilson
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Medicine, Irvine, California, United States
| | - Teo Jeon Shin
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Seoul National University, Department of Pediatric Dentistry and Dental Research Institute, Seoul, Republic of Korea
| | - Bernard Choi
- University of California, Irvine, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, Department of Surgery, Irvine, California, United States
- University of California, Irvine, Edwards Lifesciences Foundation Cardiovascular Innovation Research Center, California, United States
| |
Collapse
|
11
|
Zhou Z, Liu Z, Zhang C, Zhang W, Zhang C, Chen T, Wang Y. Mild hypothermia alleviates early brain injury after subarachnoid hemorrhage via suppressing pyroptosis through AMPK/NLRP3 inflammasome pathway in rats. Brain Res Bull 2023; 193:72-83. [PMID: 36535306 DOI: 10.1016/j.brainresbull.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
As a subtype of stroke, subarachnoid hemorrhage (SAH) has a notoriously high rate of disability and mortality owing to the lack of effective intervention. Early brain injury (EBI) is the main factor responsible for the dismal prognosis of SAH patients. The current study intends to explore the molecular mechanism underlying the effect of MH on EBI after SAH from a novel perspective of pyroptosis, a highly specific inflammatory programmed cell death, in the SAH rat model. Sprague-Dawley (SD) rats were divided into different groups in accordance with various treatments. In the treatment group, the rats underwent mild hypothermia for 4 h after modeling; in the inhibitor group, Compound C (an inhibitor of AMPK) was administered intravenous injections (i.v.) 30 min before modeling. Neurological score, neuronal death, brain water content, inflammatory reaction, and expression levels of pyroptosis-related proteins were evaluated in the rats. Our results indicate that the MH therapy significantly increased the neurological score and assuaged brain edema, neuronal injury, and inflammatory reaction induced by SAH. Meanwhile, MH therapy upregulated the level of AMPK phosphorylation whereas downregulated the protein expressions of NLRP3, ASC, cleaved caspase-1, GSDMD, IL-1β, and IL-18. The reversed effect of MH therapy by Compound C concretely indicated that MH therapy inhibited pyroptosis through an AMPK-dependent pathway. Our study also found that MH therapy potently curbed the increasing trend of brain temperature (BT), rectal temperature (RT), and ICP after SAH. Taken together, our data indicate that the neuroprotective effects of MH therapy were manifested by inhibiting pyroptosis via the AMPK/NLRP3 inflammasome pathway, which may serve as a promising therapy for the intervention of SAH.
Collapse
Affiliation(s)
- Zhaopeng Zhou
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Zhuanghua Liu
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Chenxu Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Wang Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Chunlei Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu, 214044, China.
| |
Collapse
|
12
|
Li P, Sun Z, Tian T, Yu D, Tian H, Gong P. Recent developments and controversies in therapeutic hypothermia after cardiopulmonary resuscitation. Am J Emerg Med 2023; 64:1-7. [PMID: 36435004 DOI: 10.1016/j.ajem.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic hypothermia was recommended as the only neuroprotective treatment in comatose patients after return of spontaneous circulation (ROSC). With new evidence suggesting a similar neuroprotective effect of 36 °C and 33 °C, the term "therapeutic hypothermia" was substituted by "targeted temperature management" in 2011, which in turn was replaced by the term "temperature control" in 2022 because of new evidence of the similar effects of target normothermia and 33 °C. However, there is no clear consensus on the efficacy of therapeutic hypothermia. In this article, we provide an overview of the recent evidence from basic and clinical research related to therapeutic hypothermia and re-evaluate its application as a post-ROSC neuroprotective intervention in clinical settings.
Collapse
Affiliation(s)
- Peijuan Li
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Dalian Medical University, Dalian, Liaoning, China
| | - Zhangping Sun
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Dalian Medical University, Dalian, Liaoning, China
| | - Tian Tian
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Dalian Medical University, Dalian, Liaoning, China
| | - Dongping Yu
- Department of Emergency, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui Tian
- Department of Emergency, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Ping Gong
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China; Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
13
|
Ou Z, Guo Y, Gharibani P, Slepyan A, Routkevitch D, Bezerianos A, Geocadin RG, Thakor NV. Time-Frequency Analysis of Somatosensory Evoked High-Frequency (600 Hz) Oscillations as an Early Indicator of Arousal Recovery after Hypoxic-Ischemic Brain Injury. Brain Sci 2022; 13:2. [PMID: 36671984 PMCID: PMC9855942 DOI: 10.3390/brainsci13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiac arrest (CA) remains the leading cause of coma, and early arousal recovery indicators are needed to allocate critical care resources properly. High-frequency oscillations (HFOs) of somatosensory evoked potentials (SSEPs) have been shown to indicate responsive wakefulness days following CA. Nonetheless, their potential in the acute recovery phase, where the injury is reversible, has not been tested. We hypothesize that time-frequency (TF) analysis of HFOs can determine arousal recovery in the acute recovery phase. To test our hypothesis, eleven adult male Wistar rats were subjected to asphyxial CA (five with 3-min mild and six with 7-min moderate to severe CA) and SSEPs were recorded for 60 min post-resuscitation. Arousal level was quantified by the neurological deficit scale (NDS) at 4 h. Our results demonstrated that continuous wavelet transform (CWT) of SSEPs localizes HFOs in the TF domain under baseline conditions. The energy dispersed immediately after injury and gradually recovered. We proposed a novel TF-domain measure of HFO: the total power in the normal time-frequency space (NTFS) of HFO. We found that the NTFS power significantly separated the favorable and unfavorable outcome groups. We conclude that the NTFS power of HFOs provides earlier and objective determination of arousal recovery after CA.
Collapse
Affiliation(s)
- Ze Ou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Payam Gharibani
- Departments of Neurology, Division of Neuroimmunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ariel Slepyan
- Departments of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Routkevitch
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anastasios Bezerianos
- Information Technologies Institute (ITI), Center for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Romergryko G. Geocadin
- Departments of Neurology, Anesthesiology, Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nitish V. Thakor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
The utility of therapeutic hypothermia on cerebral autoregulation. JOURNAL OF INTENSIVE MEDICINE 2022; 3:27-37. [PMID: 36789361 PMCID: PMC9924009 DOI: 10.1016/j.jointm.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain injury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including patient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management.
Collapse
|
15
|
Valkov S, Nilsen JH, Mohyuddin R, Schanche T, Kondratiev T, Sieck GC, Tveita T. Autoregulation of Cerebral Blood Flow During 3-h Continuous Cardiopulmonary Resuscitation at 27°C. Front Physiol 2022; 13:925292. [PMID: 35755426 PMCID: PMC9218627 DOI: 10.3389/fphys.2022.925292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Victims of accidental hypothermia in hypothermic cardiac arrest (HCA) may survive with favorable neurologic outcome if early and continuous prehospital cardiopulmonary resuscitation (CPR) is started and continued during evacuation and transport. The efficacy of cerebral autoregulation during hypothermic CPR is largely unknown and is aim of the present experiment. Methods: Anesthetized pigs (n = 8) were surface cooled to HCA at 27°C before 3 h continuous CPR. Central hemodynamics, cerebral O2 delivery (DO2) and uptake (VO2), cerebral blood flow (CBF), and cerebral perfusion pressure (CPP) were determined before cooling, at 32°C and at 27°C, then at 15 min after the start of CPR, and hourly thereafter. To estimate cerebral autoregulation, the static autoregulatory index (sARI), and the CBF/VO2 ratio were determined. Results: After the initial 15-min period of CPR at 27°C, cardiac output (CO) and mean arterial pressure (MAP) were reduced significantly when compared to corresponding values during spontaneous circulation at 27°C (-66.7% and -44.4%, respectively), and remained reduced during the subsequent 3-h period of CPR. During the first 2-h period of CPR at 27°C, blood flow in five different brain areas remained unchanged when compared to the level during spontaneous circulation at 27°C, but after 3 h of CPR blood flow in 2 of the 5 areas was significantly reduced. Cooling to 27°C reduced cerebral DO2 by 67.3% and VO2 by 84.4%. Cerebral VO2 was significantly reduced first after 3 h of CPR. Cerebral DO2 remained unaltered compared to corresponding levels measured during spontaneous circulation at 27°C. Cerebral autoregulation was preserved (sARI > 0.4), at least during the first 2 h of CPR. Interestingly, the CBF/VO2 ratio during spontaneous circulation at 27°C indicated the presence of an affluent cerebral DO2, whereas after CPR, the CBF/VO2 ratio returned to the level of spontaneous circulation at 38°C. Conclusion: Despite a reduced CO, continuous CPR for 3 h at 27°C provided sufficient cerebral DO2 to maintain aerobic metabolism and to preserve cerebral autoregulation during the first 2-h period of CPR. This new information supports early start and continued CPR in accidental hypothermia patients during rescue and transportation for in hospital rewarming.
Collapse
Affiliation(s)
- Sergei Valkov
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jan Harald Nilsen
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway.,Department of Research and Education, Norwegian Air Ambulance Foundation, Drøbak, Norway
| | - Rizwan Mohyuddin
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Torstein Schanche
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MI, United States
| | - Timofei Kondratiev
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MI, United States
| | - Torkjel Tveita
- Anaesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MI, United States
| |
Collapse
|
16
|
Han S, Contreras MI, Bazrafkan A, Rafi M, Dara SM, Orujyan A, Panossian A, Crouzet C, Lopour B, Choi B, Wilson RH, Akbari Y. Cortical Anoxic Spreading Depolarization During Cardiac Arrest is Associated with Remote Effects on Peripheral Blood Pressure and Postresuscitation Neurological Outcome. Neurocrit Care 2022; 37:139-154. [PMID: 35729464 PMCID: PMC9259534 DOI: 10.1007/s12028-022-01530-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/29/2022] [Indexed: 10/25/2022]
Abstract
BACKGROUND Spreading depolarizations (SDs) are self-propagating waves of neuronal and glial depolarizations often seen in neurological conditions in both humans and animal models. Because SD is thought to worsen neurological injury, the role of SD in a variety of cerebral insults has garnered significant investigation. Anoxic SD is a type of SD that occurs because of anoxia or asphyxia. Although asphyxia leading to a severe drop in blood pressure may affect cerebral hemodynamics and is widely known to cause anoxic SD, the effect of anoxic SD on peripheral blood pressure in the extremities has not been investigated. This relationship is especially important to understand for conditions such as circulatory shock and cardiac arrest that directly affect both peripheral and cerebral perfusion in addition to producing anoxic SD in the brain. METHODS In this study, we used a rat model of asphyxial cardiac arrest to investigate the role of anoxic SD on cerebral hemodynamics and metabolism, peripheral blood pressure, and the relationship between these variables in 8- to 12-week-old male rats. We incorporated a multimodal monitoring platform measuring cortical direct current simultaneously with optical imaging. RESULTS We found that during anoxic SD, there is decoupling of peripheral blood pressure from cerebral blood flow and metabolism. We also observed that anoxic SD may modify cerebrovascular resistance. Furthermore, shorter time difference between anoxic SDs measured at different locations in the same rat was associated with better neurological outcome on the basis of the recovery of electrocorticography activity (bursting) immediately post resuscitation and the neurological deficit scale score 24 h post resuscitation. CONCLUSIONS To our knowledge, this is the first study to quantify the relationship between peripheral blood pressure, cerebral hemodynamics and metabolism, and neurological outcome in anoxic SD. These results indicate that the characteristics of SD may not be limited to cerebral hemodynamics and metabolism but rather may also encompass changes in peripheral blood flow, possibly through a brain-heart connection, providing new insights into the role of anoxic SD in global ischemia and recovery.
Collapse
Affiliation(s)
- Sangwoo Han
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA
| | | | - Afsheen Bazrafkan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Masih Rafi
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Shirin M Dara
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Ani Orujyan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Anais Panossian
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Christian Crouzet
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA
| | - Beth Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Bernard Choi
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA.,Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Robert H Wilson
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA.,Department of Surgery, University of California, Irvine, Irvine, CA, USA.,Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yama Akbari
- Department of Neurology, University of California, Irvine, Irvine, CA, USA. .,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, USA. .,Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
17
|
Guo Y, Cho SM, Wei Z, Wang Q, Modi HR, Gharibani P, Lu H, Thakor NV, Geocadin RG. Early Thalamocortical Reperfusion Leads to Neurologic Recovery in a Rodent Cardiac Arrest Model. Neurocrit Care 2022; 37:60-72. [PMID: 35072925 DOI: 10.1007/s12028-021-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cerebral blood flow (CBF) plays an important role in neurological recovery after cardiac arrest (CA) resuscitation. However, the variations of CBF recovery in distinct brain regions and its correlation with neurologic recovery after return of spontaneous circulation (ROSC) have not been characterized. This study aimed to investigate the characteristics of regional cerebral reperfusion following resuscitation in predicting neurological recovery. METHODS Twelve adult male Wistar rats were studied, ten resuscitated from 7-min asphyxial CA and two uninjured rats, which were designated as healthy controls (HCs). Dynamic changes in CBF in the cerebral cortex, hippocampus, thalamus, brainstem, and cerebellum were assessed by pseudocontinuous arterial spin labeling magnetic resonance imaging, starting at 60 min after ROSC to 156 min (or time to spontaneous arousal). Neurologic outcomes were evaluated by the neurologic deficit scale at 24 h post-ROSC in a blinded manner. Correlations between regional CBF (rCBF) and neurological recovery were undertaken. RESULTS All post-CA animals were found to be nonresponsive during the 60-156 min post ROSC, with reductions in rCBF by 24-42% compared with HC. Analyses of rCBF during the post-ROSC time window from 60 to 156 min showed the rCBF recovery of hippocampus and thalamus were positively associated with better neurological outcomes (rs = 0.82, p = 0.004 and rs = 0.73, p < 0.001, respectively). During 96 min before arousal, thalamic and cortical rCBF exhibited positive correlations with neurological recovery (rs = 0.80, p < 0.001 and rs = 0.65, p < 0.001, respectively); for predicting a favorable neurological outcome, the thalamic rCBF threshold was above 50.84 ml/100 g/min (34% of HC) (area under the curve of 0.96), whereas the cortical rCBF threshold was above 60.43 ml/100 g/min (38% of HC) (area under the curve of 0.88). CONCLUSIONS Early magnetic resonance imaging analyses showed early rCBF recovery in thalamus, hippocampus, and cortex post ROSC was positively correlated with neurological outcomes at 24 h. Our findings suggest new translational insights into the regional reperfusion and the time window that may be critical in neurological recovery and warrant further validation.
Collapse
Affiliation(s)
- Yu Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Min Cho
- Departments of Neurology, Anesthesiology, Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA
| | - Zhiliang Wei
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qihong Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiren R Modi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Payam Gharibani
- Departments of Neurology, Division of Neuroimmunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Romergryko G Geocadin
- Departments of Neurology, Anesthesiology, Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA.
| |
Collapse
|
18
|
Modi HR, Wang Q, Olmstead SJ, Khoury ES, Sah N, Guo Y, Gharibani P, Sharma R, Kannan RM, Kannan S, Thakor NV. Systemic administration of dendrimer N-acetyl cysteine improves outcomes and survival following cardiac arrest. Bioeng Transl Med 2022; 7:e10259. [PMID: 35079634 PMCID: PMC8780014 DOI: 10.1002/btm2.10259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiac arrest (CA), the sudden cessation of effective cardiac pumping function, is still a major clinical problem with a high rate of early and long-term mortality. Post-cardiac arrest syndrome (PCAS) may be related to an early systemic inflammatory response leading to exaggerated and sustained neuroinflammation. Therefore, early intervention with targeted drug delivery to attenuate neuroinflammation may greatly improve therapeutic outcomes. Using a clinically relevant asphyxia CA model, we demonstrate that a single (i.p.) dose of dendrimer-N-acetylcysteine conjugate (D-NAC), can target "activated" microglial cells following CA, leading to an improvement in post-CA survival rate compared to saline (86% vs. 45%). D-NAC treatment also significantly improved gross neurological score within 4 h of treatment (p < 0.05) and continued to show improvement at 48 h (p < 0.05). Specifically, there was a substantial impairment in motor responses after CA, which was subsequently improved with D-NAC treatment (p < 0.05). D-NAC also mitigated hippocampal cell density loss seen post-CA in the CA1 and CA3 subregions (p < 0.001). These results demonstrate that early therapeutic intervention even with a single D-NAC bolus results in a robust sustainable improvement in long-term survival, short-term motor deficits, and neurological recovery. Our current work lays the groundwork for a clinically relevant therapeutic approach to treating post-CA syndrome.
Collapse
Affiliation(s)
- Hiren R. Modi
- Department of Biomedical EngineeringThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and NeuroscienceWalter Reed Army Institute of Research (WRAIR)Silver SpringMarylandUSA
| | - Qihong Wang
- Department of Biomedical EngineeringThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- Center for Blood Oxygen Transport and Hemostasis (CBOTH), Department of PediatricsUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Sarah J. Olmstead
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Elizabeth S. Khoury
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nirnath Sah
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yu Guo
- Department of Biomedical EngineeringThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Payam Gharibani
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rishi Sharma
- Center for Nanomedicine, Department of OphthalmologyWilmer Eye Institute Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of OphthalmologyWilmer Eye Institute Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nitish V. Thakor
- Department of Biomedical EngineeringThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
19
|
Cattaneo GF, Herrmann AM, Eiden SA, Wieser M, Kellner E, Doostkam S, Süß P, Kiefer S, Fauth L, Maurer CJ, Wolfertz J, Nitzsche B, Büchert M, Jost T, Ihorst G, Haberstroh J, Mülling C, Strecker C, Niesen WD, Shah MJ, Urbach H, Boltze J, Meckel S. Selective intra-carotid blood cooling in acute ischemic stroke: A safety and feasibility study in an ovine stroke model. J Cereb Blood Flow Metab 2021; 41:3097-3110. [PMID: 34159825 PMCID: PMC8756475 DOI: 10.1177/0271678x211024952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Selective therapeutic hypothermia (TH) showed promising preclinical results as a neuroprotective strategy in acute ischemic stroke. We aimed to assess safety and feasibility of an intracarotid cooling catheter conceived for fast and selective brain cooling during endovascular thrombectomy in an ovine stroke model.Transient middle cerebral artery occlusion (MCAO, 3 h) was performed in 20 sheep. In the hypothermia group (n = 10), selective TH was initiated 20 minutes before recanalization, and was maintained for another 3 h. In the normothermia control group (n = 10), a standard 8 French catheter was used instead. Primary endpoints were intranasal cooling performance (feasibility) plus vessel patency assessed by digital subtraction angiography and carotid artery wall integrity (histopathology, both safety). Secondary endpoints were neurological outcome and infarct volumes.Computed tomography perfusion demonstrated MCA territory hypoperfusion during MCAO in both groups. Intranasal temperature decreased by 1.1 °C/3.1 °C after 10/60 minutes in the TH group and 0.3 °C/0.4 °C in the normothermia group (p < 0.001). Carotid artery and branching vessel patency as well as carotid wall integrity was indifferent between groups. Infarct volumes (p = 0.74) and neurological outcome (p = 0.82) were similar in both groups.Selective TH was feasible and safe. However, a larger number of subjects might be required to demonstrate efficacy.
Collapse
Affiliation(s)
- Giorgio Fm Cattaneo
- Institute for Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Andrea M Herrmann
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany.,Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian A Eiden
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuela Wieser
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Department of MR Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Soroush Doostkam
- Department of Neuropathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Süß
- Department of Neuropathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Selina Kiefer
- Department of Pathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Fauth
- Department of Pathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph J Maurer
- Department of Diagnostic and Interventional Radiology and Neuroradiology, Universitätsklinikum Augsburg, Augsburg, Germany
| | | | - Björn Nitzsche
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | | | | | - Gabriele Ihorst
- Department of Clinical Trials, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jörg Haberstroh
- Center for Experimental Models and Transgenic Service (CEMT), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Mülling
- Faculty of Veterinary Medicine, Institute of Veterinary Anatomy, Histology and Embryology, Leipzig University, Leipzig, Germany
| | - Christoph Strecker
- Department of Neurology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf-Dirk Niesen
- Department of Neurology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mukesch J Shah
- Department of Neurosurgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Boltze
- School of Live Sciences, University of Warwick, Coventry, UK
| | - Stephan Meckel
- Department of Neuroradiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Neuroradiology, Kepler University Hospital, Johannes Kepler University Linz, Austria
| |
Collapse
|
20
|
Wang W, Li R, Miao W, Evans C, Lu L, Lyu J, Li X, Warner DS, Zhong X, Hoffmann U, Sheng H, Yang W. Development and Evaluation of a Novel Mouse Model of Asphyxial Cardiac Arrest Revealed Severely Impaired Lymphopoiesis After Resuscitation. J Am Heart Assoc 2021; 10:e019142. [PMID: 34013738 PMCID: PMC8483518 DOI: 10.1161/jaha.120.019142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Animal disease models represent the cornerstone in basic cardiac arrest (CA) research. However, current experimental models of CA and resuscitation in mice are limited. In this study, we aimed to develop a mouse model of asphyxial CA followed by cardiopulmonary resuscitation (CPR), and to characterize the immune response after asphyxial CA/CPR. Methods and Results CA was induced in mice by switching from an O2/N2 mixture to 100% N2 gas for mechanical ventilation under anesthesia. Real-time measurements of blood pressure, brain tissue oxygen, cerebral blood flow, and ECG confirmed asphyxia and ensuing CA. After a defined CA period, mice were resuscitated with intravenous epinephrine administration and chest compression. We subjected young adult and aged mice to this model, and found that after CA/CPR, mice from both groups exhibited significant neurologic deficits compared with sham mice. Analysis of post-CA brain confirmed neuroinflammation. Detailed characterization of the post-CA immune response in the peripheral organs of both young adult and aged mice revealed that at the subacute phase following asphyxial CA/CPR, the immune system was markedly suppressed as manifested by drastic atrophy of the spleen and thymus, and profound lymphopenia. Finally, our data showed that post-CA systemic lymphopenia was accompanied with impaired T and B lymphopoiesis in the thymus and bone marrow, respectively. Conclusions In this study, we established a novel validated asphyxial CA model in mice. Using this new model, we further demonstrated that asphyxial CA/CPR markedly affects both the nervous and immune systems, and notably impairs lymphopoiesis of T and B cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| | - Ran Li
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| | - Wanying Miao
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| | - Cody Evans
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| | - Liping Lu
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| | - Jingjun Lyu
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| | - Xuan Li
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| | - David S Warner
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| | - Xiaoping Zhong
- Department of Pediatrics Duke University Medical Center Durham NC
| | - Ulrike Hoffmann
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| | - Huaxin Sheng
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| | - Wei Yang
- Department of Anesthesiology Center for Perioperative Organ Protection Duke University Medical Center Durham NC
| |
Collapse
|
21
|
Zhang L, Liang W, Li Y, Yan J, Xue J, Guo Q, Gao L, Li H, Shi Q. Mild therapeutic hypothermia improves neurological outcomes in a rat model of cardiac arrest. Brain Res Bull 2021; 173:97-107. [PMID: 34022286 DOI: 10.1016/j.brainresbull.2021.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/01/2021] [Accepted: 05/16/2021] [Indexed: 11/30/2022]
Abstract
Cardiac arrest (CA) is the leading cause of death in humans. Research has shown that mild therapeutic hypothermia (MTH) can reduce neurological sequelae and mortality after CA. Nevertheless, the mechanism remains unclear. This study aimed to determine whether MTH promotes neurogenesis, attenuates neuronal damage, and inhibits apoptosis of neurons in rats after CA. Sprague-Dawley rats were divided into the normothermia and mild hypothermia groups. The rats in the normothermia and hypothermia groups were exposed to 2 h of normothermia (36-37℃) and hypothermia (32-33℃), respectively, immediately after resuscitation from 5 min of asphyxial CA. Corresponding control groups not subjected to CA were included. On days 1-6, 5-bromodeoxyuridine (BrdU) 100 mg/kg/day was administered intraperitoneally. The animals were euthanized 1 week after CA. Compared with the normothermia group, the hypothermia group showed a significant increase in the number of doublecortin (DCX) immune-positive cells in the subgranular zone of the hippocampus 1 week after CA. Neurogenesis was assessed using double immunofluorescent labeling of BrdU with neuronal-specific nuclear protein (NeuN)/DCX. There was no marked change in the number of newborn mature (BrdU+-NeuN+) neurons, though there was a significant increase in the number of newborn immature (BrdU+-DCX+) neurons in the hypothermia than in the normothermia group 1 week after CA. Neuronal injury and apoptosis in the CA1 region of the hippocampus, assessed using NeuN immunofluorescence and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays, were significantly reduced in the hypothermia group 1 week after CA. Moreover, mild hypothermia increased the expression of cold-shock protein RNA-binding motif protein 3 (RBM3) in the early stage (24 h/48 h) after CA. These results suggested that mild hypothermia promotes generation of neuronal cells, reduces neuronal injury, and inhibits apoptosis of neurons, which may be related to RBM3 expression.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wei Liang
- Department of Critical Care Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Yiling Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jie Yan
- Department of Human Anatomy and Histoembryology, School of Medicine, Xi'an Jiaotong University, Xian, Shaanxi, China.
| | - Jingwen Xue
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qinyue Guo
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Lan Gao
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Hao Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Qindong Shi
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Critical Care Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
22
|
Cui H, Yang Z, Xiao P, Shao F, Zhao S, Tang Z. Effects of Different Target Temperatures on Angiogenesis and Neurogenesis Following Resuscitation in a Porcine Model After Cardiac Arrest. Shock 2021; 55:67-73. [PMID: 32433204 DOI: 10.1097/shk.0000000000001559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The optimal effective temperature of targeted temperature management (TTM) used to prevent cerebral injury following cardiopulmonary resuscitation (CPR) is undetermined. In this study, we compared the mortality, neurologic deficits, and cerebral protein levels of two target temperatures. METHODS Fifty 4-month-old female domestic pigs were randomized to sham, TTM at 33°C ± 0.5°C (T33), TTM at 35°C ± 0.5°C (T35), and normothermic (NT) groups. In the NT and TTM groups, untreated ventricular fibrillation was induced electrically in animals for 10 min, followed by 6 min of CPR. Target core temperatures (Tc) of TTM groups were induced and maintained (6 h) using an endovascular hypothermia device, and rewarmed to 37.5 ± 0.5°C in the next 6 h. Tc of the NT group was maintained at 37.5 ± 0.5°C. The survival outcomes and neurological function were evaluated every 24 h for 72 h. RESULTS All animals were successfully resuscitated with no significant differences in baseline characteristics or hemodynamic indexes. Survival rates and neurological outcomes were significantly improved in the TTM groups, with T33 showing the most significant effect. Compared with NT-treated animals, TTM-treated animals had higher expressions of angiopoietin-1, transforming growth factor-alpha , vascular endothelial growth factor, metallopeptidase inhibitor (TIMP)-1, TIMP-2, and platelet-derived growth factor-BB. Macrophage migration inhibitory factor and IL-17F levels were markedly upregulated after resuscitation in the NT group but inhibited in the TTM groups. Neuron-specific enolase staining data was also consistent with our conclusion that hypothermia can reduce reperfusion-induced brain injuries. CONCLUSION Lower target temperature showed greater protective effects against cerebral injuries after CPR, and the improved neurological outcomes after TTM may be associated with decreased expression of pro-inflammatory cytokines and increased expression of blood-brain barrier and neurogenesis regulatory factors in this porcine model of CA following resuscitation.
Collapse
Affiliation(s)
- Hao Cui
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Xiao
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Fei Shao
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shen Zhao
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Wei Z, Wang Q, Modi HR, Cho SM, Geocadin R, Thakor NV, Lu H. Acute-stage MRI cerebral oxygen consumption biomarkers predict 24-hour neurological outcome in a rat cardiac arrest model. NMR IN BIOMEDICINE 2020; 33:e4377. [PMID: 32662593 PMCID: PMC7541582 DOI: 10.1002/nbm.4377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 05/13/2023]
Abstract
Brain injury following cardiac arrest (CA) is thought to be caused by a sudden loss of blood flow resulting in disruption in oxygen delivery, neural function and metabolism. However, temporal trajectories of the brain's physiology in the first few hours following CA have not been fully characterized. Furthermore, the extent to which these early measures can predict future neurological outcomes has not been determined. The present study sought to perform dynamic measurements of cerebral blood flow (CBF), oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) with MRI in the first 3 hours following the return of spontaneous circulation (ROSC) in a rat CA model. It was found that CBF, OEF and CMRO2 all revealed a time-dependent increase during the first 3 hours after the ROSC. Furthermore, the temporal trajectories of CBF and CMRO2 , but not OEF, were different across rats and related to neurologic outcomes at a later time (24 hours after the ROSC) (P < .001). Rats who manifested better outcomes revealed faster increases in CBF and CMRO2 during the acute stage. When investigating physiological parameters measured at a single time point, CBF (ρ = 0.82, P = .004) and CMRO2 (ρ = 0.80, P = .006) measured at ~ 3 hours post-ROSC were positively associated with neurologic outcome scores at 24 hours. These findings shed light on brain physiological changes following CA, and suggest that MRI measures of brain perfusion and metabolism may provide a potential biomarker to guide post-CA management.
Collapse
Affiliation(s)
- Zhiliang Wei
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Qihong Wang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hiren R. Modi
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Min Cho
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Romergryko Geocadin
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nitish V. Thakor
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Hosseini M, Wilson RH, Crouzet C, Amirhekmat A, Wei KS, Akbari Y. Resuscitating the Globally Ischemic Brain: TTM and Beyond. Neurotherapeutics 2020; 17:539-562. [PMID: 32367476 PMCID: PMC7283450 DOI: 10.1007/s13311-020-00856-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrest (CA) afflicts ~ 550,000 people each year in the USA. A small fraction of CA sufferers survive with a majority of these survivors emerging in a comatose state. Many CA survivors suffer devastating global brain injury with some remaining indefinitely in a comatose state. The pathogenesis of global brain injury secondary to CA is complex. Mechanisms of CA-induced brain injury include ischemia, hypoxia, cytotoxicity, inflammation, and ultimately, irreversible neuronal damage. Due to this complexity, it is critical for clinicians to have access as early as possible to quantitative metrics for diagnosing injury severity, accurately predicting outcome, and informing patient care. Current recommendations involve using multiple modalities including clinical exam, electrophysiology, brain imaging, and molecular biomarkers. This multi-faceted approach is designed to improve prognostication to avoid "self-fulfilling" prophecy and early withdrawal of life-sustaining treatments. Incorporation of emerging dynamic monitoring tools such as diffuse optical technologies may provide improved diagnosis and early prognostication to better inform treatment. Currently, targeted temperature management (TTM) is the leading treatment, with the number of patients needed to treat being ~ 6 in order to improve outcome for one patient. Future avenues of treatment, which may potentially be combined with TTM, include pharmacotherapy, perfusion/oxygenation targets, and pre/postconditioning. In this review, we provide a bench to bedside approach to delineate the pathophysiology, prognostication methods, current targeted therapies, and future directions of research surrounding hypoxic-ischemic brain injury (HIBI) secondary to CA.
Collapse
Affiliation(s)
- Melika Hosseini
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Robert H Wilson
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Christian Crouzet
- Department of Neurology, School of Medicine, University of California, Irvine, USA
- Beckman Laser Institute, University of California, Irvine, USA
| | - Arya Amirhekmat
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Kevin S Wei
- Department of Neurology, School of Medicine, University of California, Irvine, USA
| | - Yama Akbari
- Department of Neurology, School of Medicine, University of California, Irvine, USA.
- Beckman Laser Institute, University of California, Irvine, USA.
| |
Collapse
|
25
|
Zhao S, Yang Z, Sun P, Wu X, Tang W, Shao F, Tang Z. Conjunctival microcirculation is associated with cerebral cortex microcirculation in post-resuscitation mild hypothermia: A rat model. Microcirculation 2020; 27:e12604. [PMID: 31876330 DOI: 10.1111/micc.12604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This study aimed to compare the changes in sublingual and conjunctival microcirculation occurring with cerebral cortex microcirculation changes during mild hypothermia in a rat model of cardiac arrest. METHODS Twenty-four rats were randomized into mild hypothermia (M) or normothermia (C) groups. Ventricular fibrillation was electrically induced and left untreated for 8 minutes, followed by 8 minutes of cardiopulmonary resuscitation. The core temperature in group M reduced to 33 ± 0.5°C at 13 minutes after restoration of spontaneous circulation and was maintained for 8 hours. In group C, the core temperature was maintained at 37 ± 0.2°C. The hemodynamics and microcirculation in the sublingual region, bulbar conjunctiva, and cerebral cortex were measured at baseline and 1, 2, 3, 4, 6, and 8 hours after restoration of spontaneous circulation. RESULTS The M group showed significantly worse sublingual microcirculation at 6 hours post-resuscitation. However, microcirculation in the conjunctiva and cerebral cortex at 3 hours post-resuscitation were better in the M group. In the M group, microcirculation in the cerebral cortex was significantly correlated with that in the conjunctiva but not the sublingual microcirculation. CONCLUSIONS Changes in conjunctival microcirculation are closely related to cerebral cortex microcirculation during mild hypothermia, indicating that cerebral cortex microcirculation could be monitored by measuring conjunctival microcirculation.
Collapse
Affiliation(s)
- Shen Zhao
- Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Medicine, Fujian Medical University, Fuzhou, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Sun
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Wu
- Weil Institute of Emergency and Critical Care Research, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Research, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Fei Shao
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Crouzet C, Wilson RH, Lee D, Bazrafkan A, Tromberg BJ, Akbari Y, Choi B. Dissociation of Cerebral Blood Flow and Femoral Artery Blood Pressure Pulsatility After Cardiac Arrest and Resuscitation in a Rodent Model: Implications for Neurological Recovery. J Am Heart Assoc 2020; 9:e012691. [PMID: 31902319 PMCID: PMC6988151 DOI: 10.1161/jaha.119.012691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Impaired neurological function affects 85% to 90% of cardiac arrest (CA) survivors. Pulsatile blood flow may play an important role in neurological recovery after CA. Cerebral blood flow (CBF) pulsatility immediately, during, and after CA and resuscitation has not been investigated. We characterized the effects of asphyxial CA on short‐term (<2 hours after CA) CBF and femoral arterial blood pressure (ABP) pulsatility and studied their relationship to cerebrovascular resistance (CVR) and short‐term neuroelectrical recovery. Methods and Results Male rats underwent asphyxial CA followed by cardiopulmonary resuscitation. A multimodal platform combining laser speckle imaging, ABP, and electroencephalography to monitor CBF, peripheral blood pressure, and brain electrophysiology, respectively, was used. CBF and ABP pulsatility and CVR were assessed during baseline, CA, and multiple time points after resuscitation. Neuroelectrical recovery, a surrogate for neurological outcome, was assessed using quantitative electroencephalography 90 minutes after resuscitation. We found that CBF pulsatility differs significantly from baseline at all experimental time points with sustained deficits during the 2 hours of postresuscitation monitoring, whereas ABP pulsatility was relatively unaffected. Alterations in CBF pulsatility were inversely correlated with changes in CVR, but ABP pulsatility had no association to CVR. Interestingly, despite small changes in ABP pulsatility, higher ABP pulsatility was associated with worse neuroelectrical recovery, whereas CBF pulsatility had no association. Conclusions Our results reveal, for the first time, that CBF pulsatility and CVR are significantly altered in the short‐term postresuscitation period after CA. Nevertheless, higher ABP pulsatility appears to be inversely associated with neuroelectrical recovery, possibly caused by impaired cerebral autoregulation and/or more severe global cerebral ischemia.
Collapse
Affiliation(s)
- Christian Crouzet
- Beckman Laser Institute and Medical Clinic Irvine CA.,Department of Biomedical Engineering University of California Irvine CA.,University of California, Irvine Irvine CA
| | - Robert H Wilson
- Beckman Laser Institute and Medical Clinic Irvine CA.,University of California, Irvine Irvine CA
| | - Donald Lee
- Department of Neurology University of California Irvine CA.,University of California, Irvine Irvine CA
| | - Afsheen Bazrafkan
- Department of Neurology University of California Irvine CA.,University of California, Irvine Irvine CA
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Clinic Irvine CA.,Department of Biomedical Engineering University of California Irvine CA.,Department of Surgery University of California Irvine CA.,University of California, Irvine Irvine CA
| | - Yama Akbari
- Beckman Laser Institute and Medical Clinic Irvine CA.,Department of Neurology University of California Irvine CA.,University of California, Irvine Irvine CA
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic Irvine CA.,Department of Biomedical Engineering University of California Irvine CA.,Department of Surgery University of California Irvine CA.,Edwards Lifesciences Center for Advanced Cardiovascular Technology Irvine CA.,University of California, Irvine Irvine CA
| |
Collapse
|
27
|
Horioka K, Tanaka H, Isozaki S, Okuda K, Asari M, Shiono H, Ogawa K, Shimizu K. Hypothermia-induced activation of the splenic platelet pool as a risk factor for thrombotic disease in a mouse model. J Thromb Haemost 2019; 17:1762-1771. [PMID: 31237986 PMCID: PMC6851562 DOI: 10.1111/jth.14555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypothermia, either therapeutically induced or accidental (ie, an involuntary decrease in core body temperature to <35°C), results in hemostatic disorders. However, it remains unclear whether hypothermia enhances or inhibits coagulation, especially in severe hypothermia. The present study evaluated the thrombocytic and hemostatic changes in hypothermic mice. METHODS C57Bl/6 mice were placed at an ambient temperature of -20°C under general anesthesia. When the rectal temperature decreased to 15°C, 10 mice were immediately euthanized, while another 10 mice were rewarmed, kept in normal conditions for 24 hours, and then euthanized. These treatments were also performed in 20 splenectomized mice. RESULTS The hypothermic mice had adhesion of CD62P-positive platelets with high expression of von Willebrand factor (vWF) in their spleens, while the status of the peripheral platelets was unchanged. Furthermore, the plasma levels of platelet factor 4 (PF4) and pro-platelet basic protein (PPBP), which are biomarkers for platelet degranulation, were significantly higher in hypothermic mice than in control mice, indicating that hypothermia activated the platelets in the splenic pool. Thus, we analyzed these biomarkers in asplenic mice. There was no increase in either PF4 or PPBP in splenectomized hypothermic mice. Additionally, the plasma D-dimer elevation and microthrombosis were caused in rewarmed mice, but not in asplenic rewarmed mice. CONCLUSIONS Our results indicate that hypothermia leads to platelet activation in the spleen via the upregulation of vWF, and this activation causes hypercoagulability after rewarming.
Collapse
Affiliation(s)
- Kie Horioka
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroki Tanaka
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Shotaro Isozaki
- Division of Gastroenterology and Hematology/OncologyAsahikawa Medical UniversityAsahikawaJapan
| | - Katsuhiro Okuda
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Masaru Asari
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroshi Shiono
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| | - Katsuhiro Ogawa
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Keiko Shimizu
- Department of Legal MedicineAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
28
|
Moler FW, Silverstein FS, Nadkarni VM, Meert KL, Shah SH, Slomine B, Christensen J, Holubkov R, Page K, Dean JM. Pediatric out-of-hospital cardiac arrest: Time to goal target temperature and outcomes. Resuscitation 2018; 135:88-97. [PMID: 30572071 DOI: 10.1016/j.resuscitation.2018.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
AIM Although recent out-of-hospital cardiac arrest (CA) trials found no benefits of hypothermia versus normothermia targeted temperature management, preclinical models suggest earlier timing of hypothermia improves neuroprotective efficacy. This study investigated whether shorter time to goal temperature was associated with better one-year outcomes in the Therapeutic Hypothermia After Pediatric Cardiac Arrest Out-of-Hospital Trial. METHODS Patients were classified by tertiles of time to attain assigned goal temperature range (32-34°C or 36-37.5°C) following ROSC. Outcomes in the first tertile ("earlier") Group 1 were compared with second and third tertiles ("later") Group 2. Separate analyses were, additionally, completed for hypothermia and normothermia intervention groups. Three one-year outcomes were examined: survival; Vineland Adaptive Behavior Scale (VABS-II) score≥70; and decrease in VABS-II≤15 points from baseline. RESULTS In the entire cohort (n=281), median time from ROSC to goal temperature was 7.4 [IQR 6.2-9.7] hours: Group 1, 5.8 [IQR 5.2, 6.2] and Group 2, 8.8 [IQR 7.4, 10.4] h. Outcomes did not differ between these groups. For hypothermia subgroup, survival was lower in Group 1 than 2, [10/49(20%) versus 47/99(47%), p<0.002], with a trend toward fewer with VABS-II scores≥70 and change in VABS-II≤15 points (p=0.07-0.08). For normothermia subgroup, there was a trend toward higher survival in Group 1 than 2 [18/42(43%) versus 21/83(25%), p=0.065], but no differences in VABS-II-related measures. In multivariable logistic regression models, no difference in earlier and later groups or temperature intervention was observed. CONCLUSION We found no evidence that earlier time to goal temperature was associated with better outcomes.
Collapse
Affiliation(s)
- Frank W Moler
- University of Michigan Medical School, Ann Arbor, MI, United States.
| | | | - Vinay M Nadkarni
- Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kathleen L Meert
- Children's Hospital of Michigan, Wayne State University, Detroit, MI, United States
| | - Samir H Shah
- University of Tennessee Health Sciences Center, United States
| | - Beth Slomine
- Kennedy Krieger Institute and Johns Hopkins University, Baltimore, MD, United States
| | - James Christensen
- Kennedy Krieger Institute and Johns Hopkins University, Baltimore, MD, United States
| | | | - Kent Page
- University of Utah, Salt Lake City, UT, United States
| | | | | |
Collapse
|