1
|
Shoemaker LN, Samaei S, Deller G, Wang DJJ, Milej D, St. Lawrence K. All-optics technique for monitoring absolute cerebral blood flow: validation against magnetic resonance imaging perfusion. NEUROPHOTONICS 2024; 11:045002. [PMID: 39372121 PMCID: PMC11448701 DOI: 10.1117/1.nph.11.4.045002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Significance The ability to monitor cerebral blood flow (CBF) at the bedside is essential to managing critical-care patients with neurological emergencies. Diffuse correlation spectroscopy (DCS) is ideal because it is non-invasive, portable, and inexpensive. We investigated a near-infrared spectroscopy (NIRS) approach for converting DCS measurements into physiological units of blood flow. Aim Using magnetic resonance imaging perfusion as a reference, we investigated the accuracy of absolute CBF measurements from a bolus-tracking NIRS method that used transient hypoxia as a flow tracer and hypercapnia-induced increases in CBF measured by DCS. Approach Twelve participants (7 female, 28 ± 6 years) completed a hypercapnia protocol with simultaneous CBF recordings from DCS and arterial spin labeling (ASL). Nine participants completed the transient hypoxia protocol while instrumented with time-resolved NIRS. The estimate of baseline CBF was subsequently used to calibrate hypercapnic DCS data. Results Moderately strong correlations at baseline ( slope = 0.79 andR 2 = 0.59 ) and during hypercapnia ( slope = 0.90 andR 2 = 0.58 ) were found between CBF values from calibrated DCS and ASL (range 34 to 85 mL / 100 g / min ). Conclusions Results demonstrated the feasibility of an all-optics approach that can both quantify CBF and perform continuous perfusion monitoring.
Collapse
Affiliation(s)
- Leena N. Shoemaker
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, School of Kinesiology, London, Ontario, Canada
| | - Saeed Samaei
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Graham Deller
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Danny J. J. Wang
- University of Southern California, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Laboratory of fMRI Technology, Los Angeles, California, United States
| | - Daniel Milej
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Keith St. Lawrence
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| |
Collapse
|
2
|
James S, Sanggaard S, Akif A, Mishra SK, Sanganahalli BG, Blumenfeld H, Verhagen JV, Hyder F, Herman P. Spatiotemporal features of neurovascular (un)coupling with stimulus-induced activity and hypercapnia challenge in cerebral cortex and olfactory bulb. J Cereb Blood Flow Metab 2023; 43:1891-1904. [PMID: 37340791 PMCID: PMC10676132 DOI: 10.1177/0271678x231183887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023]
Abstract
Carbon dioxide (CO2) is traditionally considered as metabolic waste, yet its regulation is critical for brain function. It is well accepted that hypercapnia initiates vasodilation, but its effect on neuronal activity is less clear. Distinguishing how stimulus- and CO2-induced vasodilatory responses are (dis)associated with neuronal activity has profound clinical and experimental relevance. We used an optical method in mice to simultaneously image fluorescent calcium (Ca2+) transients from neurons and reflectometric hemodynamic signals during brief sensory stimuli (i.e., hindpaw, odor) and CO2 exposure (i.e., 5%). Stimuli-induced neuronal and hemodynamic responses swiftly increased within locally activated regions exhibiting robust neurovascular coupling. However, hypercapnia produced slower global vasodilation which was temporally uncoupled to neuronal deactivation. With trends consistent across cerebral cortex and olfactory bulb as well as data from GCaMP6f/jRGECO1a mice (i.e., green/red Ca2+ fluorescence), these results unequivocally reveal that stimuli and CO2 generate comparable vasodilatory responses but contrasting neuronal responses. In summary, observations of stimuli-induced regional neurovascular coupling and CO2-induced global neurovascular uncoupling call for careful appraisal when using CO2 in gas mixtures to affect vascular tone and/or neuronal excitability, because CO2 is both a potent vasomodulator and a neuromodulator.
Collapse
Affiliation(s)
- Shaun James
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Simon Sanggaard
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Adil Akif
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Hal Blumenfeld
- Department of Neurology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA
- John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Peter Herman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Nakabayashi M, Liu S, Broti NM, Ichinose M, Ono Y. Deep-learning-based separation of shallow and deep layer blood flow rates in diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:5358-5375. [PMID: 37854549 PMCID: PMC10581791 DOI: 10.1364/boe.498693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Diffuse correlation spectroscopy faces challenges concerning the contamination of cutaneous and deep tissue blood flow. We propose a long short-term memory network to directly quantify the flow rates of shallow and deep-layer tissues. By exploiting the different contributions of shallow and deep-layer flow rates to auto-correlation functions, we accurately predict the shallow and deep-layer flow rates (RMSE = 0.047 and 0.034 ml/min/100 g of simulated tissue, R2 = 0.99 and 0.99, respectively) in a two-layer flow phantom experiment. This approach is useful in evaluating the blood flow responses of active muscles, where both cutaneous and deep-muscle blood flow increase with exercise.
Collapse
Affiliation(s)
- Mikie Nakabayashi
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 2148571, Japan
| | - Siwei Liu
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 2148571, Japan
| | - Nawara Mahmood Broti
- Electrical Engineering Program, Graduate School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 2148571, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University,1-1 Surugadai, Kanda, Chiyoda-ku, Tokyo,1018301, Japan
| | - Yumie Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 2148571, Japan
| |
Collapse
|
4
|
Shoemaker LN, Milej D, Sajid A, Mistry J, Lawrence KS, Shoemaker JK. Characterization of cerebral macro- and microvascular hemodynamics during transient hypotension. J Appl Physiol (1985) 2023; 135:717-725. [PMID: 37560766 PMCID: PMC10642516 DOI: 10.1152/japplphysiol.00743.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
The aim of the current study was to establish the interplay between blood flow patterns within a large cerebral artery and a downstream microvascular segment under conditions of transiently reduced mean arterial pressure (MAP). We report data from nine young, healthy participants (5 women; 26 ± 4 yr) acquired during a 15-s bout of sudden-onset lower body negative pressure (LBNP; -80 mmHg). Simultaneous changes in microvascular cerebral blood flow (CBF) and middle cerebral artery blood velocity (MCAvmean) were captured using diffuse correlation spectroscopy (DCS) and transcranial Doppler ultrasound (TCD), respectively. Brachial blood pressure (finger photoplethysmography) and TCD waveforms were extracted at baseline and during the nadir blood pressure (BP) response to LBNP and analyzed using a modified Windkessel model to calculate indices of cerebrovascular resistance (Ri) and compliance (Ci). Compared with baseline, rapid-onset LBNP decreased MAP by 22 ± 16% and Ri by 14 ± 10% (both P ≤ 0.03). Ci increased (322 ± 298%; P < 0.01) but MCAvmean (-8 ± 16%; P = 0.09) and CBF (-2 ± 3%; P = 0.29) were preserved. The results provide evidence that changes in both vascular resistance and compliance preserve CBF, as indexed by no significant changes in MCAvmean or DCS microvascular flow, during transient hypotension.NEW & NOTEWORTHY To characterize the relationship between cerebrovascular patterns within the large middle cerebral artery (MCA) and a downstream microvascular segment, we used a novel combination of transcranial Doppler ultrasound of the MCA and optical monitoring of a downstream microvascular segment, respectively, under conditions of transiently reduced mean arterial pressure (i.e., lower body negative pressure, -80 mmHg). A rapid increase in vessel compliance accompanied the maintenance of MCA blood velocity and downstream microvascular flow.
Collapse
Affiliation(s)
- Leena N Shoemaker
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Aleena Sajid
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Jigneshkumar Mistry
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
5
|
Fu C, Wang D, Wang L, Zhu L, Li Z, Chen T, Feng H, Li F. Diffuse optical detection of global cerebral ischemia in an adult porcine model. JOURNAL OF BIOPHOTONICS 2023; 16:e202200168. [PMID: 36397661 DOI: 10.1002/jbio.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Rapid screening for ischemic strokes in prehospital settings may improve patient outcomes by allowing early deployment of vascular recanalization therapies. However, there are no low-cost and convenient methods that can assess ischemic strokes in such a setting. Diffuse correlation spectroscopy (DCS) is a promising method for continuous, noninvasive transcranial monitoring of cerebral blood flow. In this study, we used a DCS system to detect cerebral hemodynamics before and after acute ischemic stroke in pigs. Seven adult porcines were chosen to establish ischemic stroke models via bilateral common carotid artery ligation (n = 5) or air emboli (n = 2). The results showed a significant difference in blood flow index (BFI) between the normal and ischemic groups. Relative blood flow index (rBFI) exhibited excellent results. Therefore, the diffuse optical method can assess the hemodynamic changes in acute cerebral ischemic stroke onset in pigs, and rBFI may be a promising biomarker for identifying cerebral ischemic stroke.
Collapse
Affiliation(s)
- Chuhua Fu
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
- Department of Neurosurgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, People's Republic of China
| | - Detian Wang
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China
| | - Long Wang
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| | - Liguo Zhu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China
| | - Zeren Li
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, People's Republic of China
| | - Tunan Chen
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| | - Hua Feng
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| | - Fei Li
- Department of Neurosurgery of Southwest Hospital, Army Medical University, Chong Qing, People's Republic of China
| |
Collapse
|
6
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
7
|
Côté-Corriveau G, Simard MN, Beaulieu O, Chowdhury RA, Gagnon MM, Gagnon M, Ledjiar O, Bernard C, Nuyt AM, Dehaes M, Luu TM. Associations between neurological examination at term-equivalent age and cerebral hemodynamics and oxygen metabolism in infants born preterm. Front Neurosci 2023; 17:1105638. [PMID: 36937667 PMCID: PMC10017489 DOI: 10.3389/fnins.2023.1105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background Infants born at 29-36 weeks gestational age (GA) are at risk of experiencing neurodevelopmental challenges. We hypothesize that cerebral hemodynamics and oxygen metabolism measured by bedside optical brain monitoring are potential biomarkers of brain development and are associated with neurological examination at term-equivalent age (TEA). Methods Preterm infants (N = 133) born 29-36 weeks GA and admitted in the neonatal intensive care unit were enrolled in this prospective cohort study. Combined frequency-domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) were used from birth to TEA to measure cerebral hemoglobin oxygen saturation and an index of microvascular cerebral blood flow (CBF i ) along with peripheral arterial oxygen saturation (SpO2). In combination with hemoglobin concentration in the blood, these parameters were used to derive cerebral oxygen extraction fraction (OEF) and an index of cerebral oxygen metabolism (CMRO2i ). The Amiel-Tison and Gosselin Neurological Assessment was performed at TEA. Linear regression models were used to assess the associations between changes in FDNIRS-DCS parameters from birth to TEA and GA at birth. Logistic regression models were used to assess the associations between changes in FDNIRS-DCS parameters from birth to TEA and neurological examination at TEA. Results Steeper increases in CBF i (p < 0.0001) and CMRO2i (p = 0.0003) were associated with higher GA at birth. Changes in OEF, CBF i , and CMRO2i from birth to TEA were not associated with neurological examination at TEA. Conclusion In this population, cerebral FDNIRS-DCS parameters were not associated with neurological examination at TEA. Larger increases in CBF i and CMRO2i from birth to TEA were associated with higher GA. Non-invasive bedside FDNIRS-DCS monitoring provides cerebral hemodynamic and metabolic parameters that may complement neurological examination to assess brain development in preterm infants.
Collapse
Affiliation(s)
- Gabriel Côté-Corriveau
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal, QC, Canada
| | - Marie-Noëlle Simard
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- School of Rehabilitation, University of Montreal, Montreal, QC, Canada
| | - Olivia Beaulieu
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Rasheda Arman Chowdhury
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada
| | - Marie-Michèle Gagnon
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Mélanie Gagnon
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Omar Ledjiar
- Unité de Recherche Clinique Appliquée, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Catherine Bernard
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
| | - Anne Monique Nuyt
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal, QC, Canada
| | - Mathieu Dehaes
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, QC, Canada
- *Correspondence: Mathieu Dehaes,
| | - Thuy Mai Luu
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC, Canada
- Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal, QC, Canada
- Thuy Mai Luu,
| |
Collapse
|
8
|
Udina C, Avtzi S, Mota-Foix M, Rosso AL, Ars J, Kobayashi Frisk L, Gregori-Pla C, Durduran T, Inzitari M. Dual-task related frontal cerebral blood flow changes in older adults with mild cognitive impairment: A functional diffuse correlation spectroscopy study. Front Aging Neurosci 2022; 14:958656. [PMID: 36605362 PMCID: PMC9807627 DOI: 10.3389/fnagi.2022.958656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction In a worldwide aging population with a high prevalence of motor and cognitive impairment, it is paramount to improve knowledge about underlying mechanisms of motor and cognitive function and their interplay in the aging processes. Methods We measured prefrontal cerebral blood flow (CBF) using functional diffuse correlation spectroscopy during motor and dual-task. We aimed to compare CBF changes among 49 older adults with and without mild cognitive impairment (MCI) during a dual-task paradigm (normal walk, 2- forward count walk, 3-backward count walk, obstacle negotiation, and heel tapping). Participants with MCI walked slower during the normal walk and obstacle negotiation compared to participants with normal cognition (NC), while gait speed during counting conditions was not different between the groups, therefore the dual-task cost was higher for participants with NC. We built a linear mixed effects model with CBF measures from the right and left prefrontal cortex. Results MCI (n = 34) showed a higher increase in CBF from the normal walk to the 2-forward count walk (estimate = 0.34, 95% CI [0.02, 0.66], p = 0.03) compared to participants with NC, related to a right- sided activation. Both groups showed a higher CBF during the 3-backward count walk compared to the normal walk, while only among MCI, CFB was higher during the 2-forward count walk. Discussion Our findings suggest a differential prefrontal hemodynamic pattern in older adults with MCI compared to their NC counterparts during the dual-task performance, possibly as a response to increasing attentional demand.
Collapse
Affiliation(s)
- Cristina Udina
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Cristina Udina,
| | - Stella Avtzi
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Miriam Mota-Foix
- Statistics and Bioinformatics Unit, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Andrea L. Rosso
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joan Ars
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lisa Kobayashi Frisk
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Clara Gregori-Pla
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Turgut Durduran
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Marco Inzitari
- REFiT Barcelona Research Group, Parc Sanitari Pere Virgili and Vall d’Hebron Research Institute (VHIR), Barcelona, Spain,Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
9
|
Lozano-Vicario L, Zambom-Ferraresi F, Zambom-Ferraresi F, de la Casa-Marín A, Ollo-Martínez I, Sáez de Asteasu ML, Cedeño-Veloz BA, Fernández-Irigoyen J, Santamaría E, Romero-Ortuno R, Izquierdo M, Martínez-Velilla N. Effectiveness of a multicomponent exercise training program for the management of delirium in hospitalized older adults using near-infrared spectroscopy as a biomarker of brain perfusion: Study protocol for a randomized controlled trial. Front Aging Neurosci 2022; 14:1013631. [PMID: 36589545 PMCID: PMC9797855 DOI: 10.3389/fnagi.2022.1013631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Delirium is an important cause of morbidity and mortality in older adults admitted to hospital. Multicomponent interventions targeting delirium risk factors, including physical exercise and mobilization, have been shown to reduce delirium incidence by 30-40% in acute care settings. However, little is known about its role in the evolution of delirium, once established. This study is a randomized clinical trial conducted in the Acute Geriatric Unit of Hospital Universitario de Navarra (Pamplona, Spain). Hospitalized patients with delirium who meet the inclusion criteria will be randomly assigned to the intervention or the control group. The intervention will consist of a multicomponent exercise training program, which will be composed of supervised progressive resistance and strength exercise over 3 consecutive days. Functional Near-Infrared Spectroscopy (NIRS) will be used for assessing cerebral and muscle tissue blood flow. The objective is to assess the effectiveness of this intervention in modifying the following primary outcomes: duration and severity of delirium and functional status. This study will contribute to determine the effectiveness of physical exercise in the management of delirium. It will be the first study to evaluate the impact of a multicomponent intervention based on physical exercise in the evolution of delirium. Clinical trial registration ClinicalTrials.gov. identifier: NCT05442892 (date of registration June 26, 2022).
Collapse
Affiliation(s)
- Lucía Lozano-Vicario
- Department of Geriatric Medicine, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | - Fabiola Zambom-Ferraresi
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Fabricio Zambom-Ferraresi
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Antón de la Casa-Marín
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Iranzu Ollo-Martínez
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Mikel L. Sáez de Asteasu
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Nicolás Martínez-Velilla
- Department of Geriatric Medicine, Hospital Universitario de Navarra (HUN), Pamplona, Spain
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdisNa), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| |
Collapse
|
10
|
Tsukinaga A, Yoshitani K, Ozaki T, Takahashi JC, Ogata S, Ohnishi Y. Quantitative regional cerebral blood flow measurement using near-infrared spectroscopy and indocyanine green in patients undergoing superficial temporal to middle cerebral artery bypass for moyamoya disease: a novel method using a frequency filter. J Clin Monit Comput 2022; 37:421-429. [PMID: 36167879 DOI: 10.1007/s10877-022-00916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
Measuring regional cerebral blood flow (rCBF) after revascularization for moyamoya disease, as a type of ischemic cerebrovascular disease, is crucial. This study aims to validate our novel technology that combines near-infrared spectroscopy (NIRS) with a frequency filter to extract the arterial component. We measured rCBF before and after revascularization for moyamoya disease and at the end of the surgery using NIRO-200NX (Hamamatsu Photonics, Japan) and indocyanine green (ICG). rCBF was calculated using Fick's principle, change in arterial ICG concentrations, and maximum arterial ICG concentration. rCBF measured with NIRS (rCBF_N) was compared with pre- and postoperative rCBF measured with SPECT (rCBF_S). Thirty-four procedures were analyzed. rCBF_N increased from baseline to end of the surgery (mean difference (MD), 2.99 ml/min/100 g; 95% confidence interval (CI), 0.40-5.57 ml/min/100 g on the diseased side; MD, 4.94 ml/min/100 g; 95% CI, 2.35-7.52 ml/min/100 g on the non-diseased side). Similar trends were observed for rCBF_S (MD, 3.98 ml/min/100 g; 95% CI, 2.30-5.67 ml/min/100 g on the diseased side; MD, 2.77 ml/min/100 g; 95% CI, 1.09-4.45 ml/min/100 g on the non-diseased side). Intraclass correlations 3 (ICC3s) between rCBF_N and rCBF_S were weak on the diseased side (ICC3, 0.25; 95% CI, -0.03-0.5; p = 0.07) and the non-diseased side (ICC3, 0.24; 95% CI, -0.05-0.5; p = 0.08). rCBF measurements based on this novel method were weakly correlated with rCBF measurements with SPECT.
Collapse
Affiliation(s)
- Akito Tsukinaga
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshimmachi, SuitaOsaka, 564-8565, Japan
| | - Kenji Yoshitani
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshimmachi, SuitaOsaka, 564-8565, Japan.
| | - Takeo Ozaki
- Systems Division, Hamamatsu Photonics K.K, Hamamatsu, Japan
| | - Jun C Takahashi
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Soshiro Ogata
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yoshihiko Ohnishi
- Department of Anesthesiology, National Cerebral and Cardiovascular Center, 6-1 Kishibeshimmachi, SuitaOsaka, 564-8565, Japan
| |
Collapse
|
11
|
Suwalski M, Shoemaker LN, Shoemaker JK, Diop M, Murkin JM, Chui J, St. Lawrence K, Milej D. Assessing the Sensitivity of Multi-Distance Hyperspectral NIRS to Changes in the Oxidation State of Cytochrome C Oxidase in the Brain. Metabolites 2022; 12:metabo12090817. [PMID: 36144221 PMCID: PMC9502461 DOI: 10.3390/metabo12090817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) measurements of tissue oxygen saturation (StO2) are frequently used during vascular and cardiac surgeries as a non-invasive means of assessing brain health; however, signal contamination from extracerebral tissues remains a concern. As an alternative, hyperspectral (hs)NIRS can be used to measure changes in the oxidation state of cytochrome c oxidase (ΔoxCCO), which provides greater sensitivity to the brain given its higher mitochondrial concentration versus the scalp. The purpose of this study was to evaluate the depth sensitivity of the oxCCO signal to changes occurring in the brain and extracerebral tissue components. The oxCCO assessment was conducted using multi-distance hsNIRS (source-detector separations = 1 and 3 cm), and metabolic changes were compared to changes in StO2. Ten participants were monitored using an in-house system combining hsNIRS and diffuse correlation spectroscopy (DCS). Data were acquired during carotid compression (CC) to reduce blood flow and hypercapnia to increase flow. Reducing blood flow by CC resulted in a significant decrease in oxCCO measured at rSD = 3 cm but not at 1 cm. In contrast, significant changes in StO2 were found at both distances. Hypercapnia caused significant increases in StO2 and oxCCO at rSD = 3 cm, but not at 1 cm. Extracerebral contamination resulted in elevated StO2 but not oxCCO after hypercapnia, which was significantly reduced by applying regression analysis. This study demonstrated that oxCCO was less sensitive to extracerebral signals than StO2.
Collapse
Affiliation(s)
- Marianne Suwalski
- Department of Medical Biophysics, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
- Imaging Division, Lawson Health Research Institute, Imaging Program, 268 Grosvenor St, London, ON N6A 4V2, Canada
- Correspondence: (M.S.); (D.M.)
| | - Leena N. Shoemaker
- Imaging Division, Lawson Health Research Institute, Imaging Program, 268 Grosvenor St, London, ON N6A 4V2, Canada
- Department of Kinesiology, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - J. Kevin Shoemaker
- Department of Kinesiology, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Mamadou Diop
- Department of Medical Biophysics, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
- Imaging Division, Lawson Health Research Institute, Imaging Program, 268 Grosvenor St, London, ON N6A 4V2, Canada
| | - John M. Murkin
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON N6A 5A5, Canada
| | - Jason Chui
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON N6A 5A5, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
- Imaging Division, Lawson Health Research Institute, Imaging Program, 268 Grosvenor St, London, ON N6A 4V2, Canada
| | - Daniel Milej
- Department of Medical Biophysics, Western University, 1151 Richmond St, London, ON N6A 3K7, Canada
- Imaging Division, Lawson Health Research Institute, Imaging Program, 268 Grosvenor St, London, ON N6A 4V2, Canada
- Correspondence: (M.S.); (D.M.)
| |
Collapse
|
12
|
Gomez A, Sainbhi AS, Froese L, Batson C, Slack T, Stein KY, Cordingley DM, Mathieu F, Zeiler FA. The Quantitative Associations Between Near Infrared Spectroscopic Cerebrovascular Metrics and Cerebral Blood Flow: A Scoping Review of the Human and Animal Literature. Front Physiol 2022; 13:934731. [PMID: 35910568 PMCID: PMC9335366 DOI: 10.3389/fphys.2022.934731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral blood flow (CBF) is an important physiologic parameter that is vital for proper cerebral function and recovery. Current widely accepted methods of measuring CBF are cumbersome, invasive, or have poor spatial or temporal resolution. Near infrared spectroscopy (NIRS) based measures of cerebrovascular physiology may provide a means of non-invasively, topographically, and continuously measuring CBF. We performed a systematically conducted scoping review of the available literature examining the quantitative relationship between NIRS-based cerebrovascular metrics and CBF. We found that continuous-wave NIRS (CW-NIRS) was the most examined modality with dynamic contrast enhanced NIRS (DCE-NIRS) being the next most common. Fewer studies assessed diffuse correlation spectroscopy (DCS) and frequency resolved NIRS (FR-NIRS). We did not find studies examining the relationship between time-resolved NIRS (TR-NIRS) based metrics and CBF. Studies were most frequently conducted in humans and animal studies mostly utilized large animal models. The identified studies almost exclusively used a Pearson correlation analysis. Much of the literature supported a positive linear relationship between changes in CW-NIRS based metrics, particularly regional cerebral oxygen saturation (rSO2), and changes in CBF. Linear relationships were also identified between other NIRS based modalities and CBF, however, further validation is needed.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Alwyn Gomez,
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Dean M. Cordingley
- Applied Health Sciences Program, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Francois Mathieu
- Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, MA, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Milej D, Rajaram A, Suwalski M, Morrison LB, Shoemaker LN, St. Lawrence K. Assessing the relationship between the cerebral metabolic rate of oxygen and the oxidation state of cytochrome-c-oxidase. NEUROPHOTONICS 2022; 9:035001. [PMID: 35874144 PMCID: PMC9298853 DOI: 10.1117/1.nph.9.3.035001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/22/2022] [Indexed: 05/07/2023]
Abstract
Significance: Hyperspectral near-infrared spectroscopy (hsNIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), the cerebral metabolic rate of oxygen ( CMRO 2 ) and the oxidation state of cytochrome-c-oxidase (oxCCO). CMRO 2 is calculated by combining tissue oxygen saturation ( S t O 2 ) with CBF, whereas oxCCO can be measured directly by hsNIRS. Although both reflect oxygen metabolism, a direct comparison has yet to be studied. Aim: We aim to investigate the relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand. Approach: A hybrid hsNIRS/DCS system was used to measure hemodynamic and metabolic responses in piglets exposed to cerebral ischemia and anesthetic-induced reductions in brain activity. Results: Although a linear relationship was observed between CMRO 2 and oxCCO during ischemia, both exhibited a nonlinear relationship with respect to CBF. In contrast, linear correlation was sufficient to characterize the relationships between CMRO 2 and CBF and between the two metabolic markers during reduced metabolic demand. Conclusions: The observed relationship between CMRO 2 and oxCCO during periods of restricted oxygen delivery and lower metabolic demand indicates that the two metabolic markers are strongly correlated.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Address all correspondence to Daniel Milej,
| | - Ajay Rajaram
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Marianne Suwalski
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Laura B. Morrison
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Leena N. Shoemaker
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Western University, Department of Kinesiology, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
14
|
Wang L, Yang J, Kennan J, Brzezinski A, Williamson CA, Ward KR, McCracken B, Tiba MH, Oldham KR. Cerebral Blood Flow Tracking with Thin-Film Piezoelectric Sensing on an Intracranial Catheter and a Low-Order Hemodynamic Model. IFAC-PAPERSONLINE 2022; 55:361-368. [DOI: 10.1016/j.ifacol.2022.11.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Naraoka M, Matsuda N, Shimamura N, Ohkuma H. Role of microcirculatory impairment in delayed cerebral ischemia and outcome after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2022; 42:186-196. [PMID: 34496662 PMCID: PMC8721782 DOI: 10.1177/0271678x211045446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Early brain injury (EBI) is considered an important cause of morbidity and mortality after aneurysmal subarachnoid hemorrhage (aSAH). As a factor in EBI, microcirculatory dysfunction has become a focus of interest, but whether microcirculatory dysfunction is more important than angiographic vasospasm (aVS) remains unclear. Using data from 128 cases, we measured the time to peak (TTP) in several regions of interest on digital subtraction angiography. The intracerebral circulation time (iCCT) was obtained between the TTP in the ultra-early phase (the baseline iCCT) and in the subacute phase and/or at delayed cerebral ischemia (DCI) onset (the follow-up iCCT). In addition, the difference in the iCCT was calculated by subtracting the baseline iCCT from the follow-up iCCT. Univariate analysis showed that DCI was significantly increased in those patients with a prolonged baseline iCCT, prolonged follow-up iCCT, increased differences in the iCCT, and with severe aVS. Poor outcome was significantly increased in patients with prolonged follow-up iCCT and increased differences in the iCCT. Multivariate analysis revealed that increased differences in the iCCT were a significant risk factor that increased DCI and poor outcome. The results suggest that the increasing microcirculatory dysfunction over time, not aVS, causes DCI and poor outcome after aneurysmal aSAH.
Collapse
Affiliation(s)
- Masato Naraoka
- Department of Neurosurgery, Hirosaki University School of Medicine & Hospital, Hirosaki, Japan
| | - Naoya Matsuda
- Department of Neurosurgery, Hirosaki University School of Medicine & Hospital, Hirosaki, Japan
| | - Norihito Shimamura
- Department of Neurosurgery, Hirosaki University School of Medicine & Hospital, Hirosaki, Japan
| | - Hiroki Ohkuma
- Department of Neurosurgery, Hirosaki University School of Medicine & Hospital, Hirosaki, Japan
| |
Collapse
|
16
|
Gomez A, Sainbhi AS, Froese L, Batson C, Alizadeh A, Mendelson AA, Zeiler FA. Near Infrared Spectroscopy for High-Temporal Resolution Cerebral Physiome Characterization in TBI: A Narrative Review of Techniques, Applications, and Future Directions. Front Pharmacol 2021; 12:719501. [PMID: 34803673 PMCID: PMC8602694 DOI: 10.3389/fphar.2021.719501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022] Open
Abstract
Multimodal monitoring has been gaining traction in the critical care of patients following traumatic brain injury (TBI). Through providing a deeper understanding of the individual patient's comprehensive physiologic state, or "physiome," following injury, these methods hold the promise of improving personalized care and advancing precision medicine. One of the modalities being explored in TBI care is near-infrared spectroscopy (NIRS), given it's non-invasive nature and ability to interrogate microvascular and tissue oxygen metabolism. In this narrative review, we begin by discussing the principles of NIRS technology, including spatially, frequency, and time-resolved variants. Subsequently, the applications of NIRS in various phases of clinical care following TBI are explored. These applications include the pre-hospital, intraoperative, neurocritical care, and outpatient/rehabilitation setting. The utility of NIRS to predict functional outcomes and evaluate dysfunctional cerebrovascular reactivity is also discussed. Finally, future applications and potential advancements in NIRS-based physiologic monitoring of TBI patients are presented, with a description of the potential integration with other omics biomarkers.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Asher A Mendelson
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Ioussoufovitch S, Cohen DJF, Milej D, Diop M. Compressed sensing time-resolved spectrometer for quantification of light absorbers in turbid media. BIOMEDICAL OPTICS EXPRESS 2021; 12:6442-6460. [PMID: 34745748 PMCID: PMC8547999 DOI: 10.1364/boe.433427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Time-resolved (TR) spectroscopy is well-suited to address the challenges of quantifying light absorbers in highly scattering media such as living tissue; however, current TR spectrometers are either based on expensive array detectors or rely on wavelength scanning. Here, we introduce a TR spectrometer architecture based on compressed sensing (CS) and time-correlated single-photon counting. Using both CS and basis scanning, we demonstrate that-in homogeneous and two-layer tissue-mimicking phantoms made of Intralipid and Indocyanine Green-the CS method agrees with or outperforms uncompressed approaches. Further, we illustrate the superior depth sensitivity of TR spectroscopy and highlight the potential of the device to quantify absorption changes in deeper (>1 cm) tissue layers.
Collapse
Affiliation(s)
- Seva Ioussoufovitch
- Western University, Faculty of Engineering, School of Biomedical Engineering, Collaborative Training Program in Musculoskeletal Health Research, Bone & Joint Institute, 1151 Richmond St., London, N6A 5C1, Canada
| | - David Jonathan Fulop Cohen
- Western University, Schulich School of Medicine & Dentistry, Department of Medical Biophysics, 1151 Richmond St., London, N6A 5C1, Canada
| | - Daniel Milej
- Western University, Schulich School of Medicine & Dentistry, Department of Medical Biophysics, 1151 Richmond St., London, N6A 5C1, Canada
- Lawson Health Research Institute, Imaging Program, 268 Grosvenor St., London, N6A 4V2, Canada
| | - Mamadou Diop
- Western University, Faculty of Engineering, School of Biomedical Engineering, Collaborative Training Program in Musculoskeletal Health Research, Bone & Joint Institute, 1151 Richmond St., London, N6A 5C1, Canada
- Western University, Schulich School of Medicine & Dentistry, Department of Medical Biophysics, 1151 Richmond St., London, N6A 5C1, Canada
- Lawson Health Research Institute, Imaging Program, 268 Grosvenor St., London, N6A 4V2, Canada
| |
Collapse
|
18
|
Jang DH, Piel S, Greenwood JC, Kelly M, Mazandi VM, Ranganathan A, Lin Y, Starr J, Hallowell T, Shofer FS, Baker WB, Lafontant A, Andersen K, Ehinger JK, Kilbaugh TJ. Alterations in cerebral and cardiac mitochondrial function in a porcine model of acute carbon monoxide poisoning. Clin Toxicol (Phila) 2021; 59:801-809. [PMID: 33529085 PMCID: PMC8326298 DOI: 10.1080/15563650.2020.1870691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The purpose of this study is the development of a porcine model of carbon monoxide (CO) poisoning to investigate alterations in brain and heart mitochondrial function. DESIGN Two group large animal model of CO poisoning. SETTING Laboratory. SUBJECTS Ten swine were divided into two groups: Control (n = 4) and CO (n = 6). INTERVENTIONS Administration of a low dose of CO at 200 ppm to the CO group over 90 min followed by 30 min of re-oxygenation at room air. The Control group received room air for 120 min. MEASUREMENTS Non-invasive optical monitoring was used to measure cerebral blood flow and oxygenation. Cerebral microdialysis was performed to obtain semi real time measurements of cerebral metabolic status. At the end of the exposure, both fresh brain (cortical and hippocampal tissue) and heart (apical tissue) were immediately harvested to measure mitochondrial respiration and reactive oxygen species (ROS) generation and blood was collected to assess plasma cytokine concentrations. MAIN RESULTS Animals in the CO group showed significantly decreased Complex IV-linked mitochondrial respiration in hippocampal and apical heart tissue but not cortical tissue. There also was a significant increase in mitochondrial ROS generation across all measured tissue types. The CO group showed a significantly higher cerebral lactate-to-pyruvate ratio. Both IL-8 and TNFα were significantly increased in the CO group compared with the Control group obtained from plasma. While not significant there was a trend to an increase in optically measured cerebral blood flow and hemoglobin concentration in the CO group. CONCLUSIONS Low-dose CO poisoning is associated with early mitochondrial disruption prior to an observable phenotype highlighting the important role of mitochondrial function in the pathology of CO poisoning. This may represent an important intervenable pathway for therapy and intervention.
Collapse
Affiliation(s)
- David H. Jang
- Department of Emergency Medicine, Division of Medical Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sarah Piel
- Resuscitation Science Center, Philadelphia, PA, USA
| | - John C. Greenwood
- Department of Anesthesiology and Critical Care Medicine, Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Matthew Kelly
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Yuxi Lin
- Resuscitation Science Center, Philadelphia, PA, USA
| | | | | | - Frances S. Shofer
- Department of Emergency Medicine, Division of Medical Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Wesley B. Baker
- Department of Pediatric Neurology, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Alec Lafontant
- Department of Pediatric Neurology, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Kristen Andersen
- Department of Pediatric Neurology, The Children’s Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Johannes K. Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund University, Malmo, Sweden
| | | |
Collapse
|
19
|
Barud M, Dabrowski W, Siwicka-Gieroba D, Robba C, Bielacz M, Badenes R. Usefulness of Cerebral Oximetry in TBI by NIRS. J Clin Med 2021; 10:2938. [PMID: 34209017 PMCID: PMC8268432 DOI: 10.3390/jcm10132938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Measurement of cerebral oximetry by near-infrared spectroscopy provides continuous and non-invasive information about the oxygen saturation of haemoglobin in the central nervous system. This is especially important in the case of patients with traumatic brain injuries. Monitoring of cerebral oximetry in these patients could allow for the diagnosis of inadequate cerebral oxygenation caused by disturbances in cerebral blood flow. It could enable identification of episodes of hypoxia and cerebral ischemia. Continuous bedside measurement could facilitate the rapid diagnosis of intracranial bleeding or cerebrovascular autoregulation disorders and accelerate the implementation of treatment. However, it should be remembered that the method of monitoring cerebral oximetry by means of near-infrared spectroscopy also has its numerous limitations, resulting mainly from its physical properties. This paper summarizes the usefulness of monitoring cerebral oximetry by near-infrared spectroscopy in patients with traumatic brain injury, taking into account the advantages and the disadvantages of this technique.
Collapse
Affiliation(s)
- Małgorzata Barud
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-954 Lublin, Poland; (W.D.); (D.S.-G.)
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-954 Lublin, Poland; (W.D.); (D.S.-G.)
| | - Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-954 Lublin, Poland; (W.D.); (D.S.-G.)
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino, 16100 Genova, Italy;
| | - Magdalena Bielacz
- Institute of Tourism and Recreation, State Vocational College of Szymon Szymonowicz, 22-400 Zamosc, Poland;
| | - Rafael Badenes
- Department of Anaesthesiology and Intensive Care, Hospital Clìnico Universitario de Valencia, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
20
|
Zavriyev AI, Kaya K, Farzam P, Farzam PY, Sunwoo J, Jassar AS, Sundt TM, Carp SA, Franceschini MA, Qu JZ. The role of diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy in monitoring cerebral hemodynamics during hypothermic circulatory arrests. JTCVS Tech 2021; 7:161-177. [PMID: 34318236 PMCID: PMC8311503 DOI: 10.1016/j.xjtc.2021.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Real-time noninvasive monitoring of cerebral blood flow (CBF) during surgery is key to reducing mortality rates associated with adult cardiac surgeries requiring hypothermic circulatory arrest (HCA). We explored a method to monitor cerebral blood flow during different brain protection techniques using diffuse correlation spectroscopy (DCS), a noninvasive optical technique which, combined with frequency-domain near-infrared spectroscopy (FDNIRS), also provides a measure of oxygen metabolism. METHODS We used DCS in combination with FDNIRS to simultaneously measure hemoglobin oxygen saturation (SO2), an index of cerebral blood flow (CBFi), and an index of cerebral metabolic rate of oxygen (CMRO2i) in 12 patients undergoing cardiac surgery with HCA. RESULTS Our measurements revealed that a negligible amount of blood is delivered to the cerebral cortex during HCA with retrograde cerebral perfusion, indistinguishable from HCA-only cases (median CBFi drops of 93% and 95%, respectively) with consequent similar decreases in SO2 (mean decrease of 0.6 ± 0.1% and 0.9 ± 0.2% per minute, respectively); CBFi and SO2 are mostly maintained with antegrade cerebral perfusion; the relationship of CMRO2i to temperature is given by CMRO2i = 0.052e0.079T. CONCLUSIONS FDNIRS-DCS is able to detect changes in CBFi, SO2, and CMRO2i with intervention and can become a valuable tool for optimizing cerebral protection during HCA.
Collapse
Key Words
- ACP, antegrade cerebral perfusion
- CBFi, cerebral blood flow (index)
- CMRO2i, cerebral metabolic rate of oxygen (index)
- CPB, cardiopulmonary bypass
- DCS, diffuse correlation spectroscopy
- EEG, electroencephalography
- FDNIRS, frequency-domain near-infrared spectroscopy
- HCA, hypothermic circulatory arrest
- NIRS, near-infrared spectroscopy
- RCP, retrograde cerebral perfusion
- SO2, hemoglobin oxygen saturation
- TCD, transcranial Doppler ultrasound
- antegrade cerebral perfusion
- brain imaging
- cerebral blood flow
- diffuse correlation spectroscopy
- hypothermic circulatory arrest
- near-infrared spectroscopy
- rSO2, regional oxygen saturation
- retrograde cerebral perfusion
Collapse
Affiliation(s)
- Alexander I. Zavriyev
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Kutlu Kaya
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Parisa Farzam
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Parya Y. Farzam
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - John Sunwoo
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Arminder S. Jassar
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Thoralf M. Sundt
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Stefan A. Carp
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Maria Angela Franceschini
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Jason Z. Qu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
21
|
Milej D, Abdalmalak A, Rajaram A, Jhajj A, Owen AM, St. Lawrence K. Incorporating early and late-arriving photons to improve the reconstruction of cerebral hemodynamic responses acquired by time-resolved near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:056003. [PMCID: PMC8130006 DOI: 10.1117/1.jbo.26.5.056003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 06/14/2023]
Abstract
Significance: Despite its advantages in terms of safety, low cost, and portability, functional near-infrared spectroscopy applications can be challenging due to substantial signal contamination from hemodynamics in the extracerebral layer (ECL). Time-resolved near-infrared spectroscopy (tr NIRS) can improve sensitivity to brain activity but contamination from the ECL remains an issue. This study demonstrates how brain signal isolation can be further improved by applying regression analysis to tr data acquired at a single source–detector distance. Aim: To investigate if regression analysis can be applied to single-channel trNIRS data to further isolate the brain and reduce signal contamination from the ECL. Approach: Appropriate regressors for trNIRS were selected based on simulations, and performance was evaluated by applying the regression technique to oxygenation responses recording during hypercapnia and functional activation. Results: Compared to current methods of enhancing depth sensitivity for trNIRS (i.e., higher statistical moments and late gates), incorporating regression analysis using a signal sensitive to the ECL significantly improved the extraction of cerebral oxygenation signals. In addition, this study demonstrated that regression could be applied to trNIRS data from a single detector using the early arriving photons to capture hemodynamic changes in the ECL. Conclusion: Applying regression analysis to trNIRS metrics with different depth sensitivities improves the characterization of cerebral oxygenation signals.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Androu Abdalmalak
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ajay Rajaram
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Amandeep Jhajj
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Adrian M. Owen
- Western University, Brain and Mind Institute, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
22
|
Wu KC, Sunwoo J, Sheriff F, Farzam P, Farzam PY, Orihuela-Espina F, LaRose SL, Monk AD, Aziz-Sultan MA, Patel N, Vaitkevicius H, Franceschini MA. Validation of diffuse correlation spectroscopy measures of critical closing pressure against transcranial Doppler ultrasound in stroke patients. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200360R. [PMID: 33774980 PMCID: PMC7998065 DOI: 10.1117/1.jbo.26.3.036008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/08/2021] [Indexed: 05/25/2023]
Abstract
SIGNIFICANCE Intracranial pressure (ICP), variability in perfusion, and resulting ischemia are leading causes of secondary brain injury in patients treated in the neurointensive care unit. Continuous, accurate monitoring of cerebral blood flow (CBF) and ICP guide intervention and ultimately reduce morbidity and mortality. Currently, only invasive tools are used to monitor patients at high risk for intracranial hypertension. AIM Diffuse correlation spectroscopy (DCS), a noninvasive near-infrared optical technique, is emerging as a possible method for continuous monitoring of CBF and critical closing pressure (CrCP or zero-flow pressure), a parameter directly related to ICP. APPROACH We optimized DCS hardware and algorithms for the quantification of CrCP. Toward its clinical translation, we validated the DCS estimates of cerebral blood flow index (CBFi) and CrCP in ischemic stroke patients with respect to simultaneously acquired transcranial Doppler ultrasound (TCD) cerebral blood flow velocity (CBFV) and CrCP. RESULTS We found CrCP derived from DCS and TCD were highly linearly correlated (ipsilateral R2 = 0.77, p = 9 × 10 - 7; contralateral R2 = 0.83, p = 7 × 10 - 8). We found weaker correlations between CBFi and CBFV (ipsilateral R2 = 0.25, p = 0.03; contralateral R2 = 0.48, p = 1 × 10 - 3) probably due to the different vasculature measured. CONCLUSION Our results suggest DCS is a valid alternative to TCD for continuous monitoring of CrCP.
Collapse
Affiliation(s)
- Kuan-Cheng Wu
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - John Sunwoo
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Faheem Sheriff
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Parisa Farzam
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Parya Y. Farzam
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Felipe Orihuela-Espina
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- National Institute for Astrophysics Optics and Electronics, Department of Computational Sciences, Puebla, Mexico
| | - Sarah L. LaRose
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Andrew D. Monk
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Mohammad A. Aziz-Sultan
- Brigham and Women’s Hospital, Department of Neurosurgery, Boston, Massachusetts, United States
| | - Nirav Patel
- Brigham and Women’s Hospital, Department of Neurosurgery, Boston, Massachusetts, United States
| | - Henrikas Vaitkevicius
- Brigham and Women’s Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital and Harvard Medical School, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
23
|
McManus R, Ioussoufovitch S, Froats E, St Lawrence K, Van Uum S, Diop M. Dynamic response of cerebral blood flow to insulin-induced hypoglycemia. Sci Rep 2020; 10:21300. [PMID: 33277531 PMCID: PMC7718270 DOI: 10.1038/s41598-020-77626-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
The dynamics of cerebral blood flow (CBF) at the onset of hypoglycemia may play a key role in hypoglycemia unawareness; however, there is currently a paucity of techniques that can monitor adult CBF with high temporal resolution. Herein, we investigated the use of diffuse correlation spectroscopy (DCS) to monitor the dynamics of CBF during insulin-induced hypoglycemia in adults. Plasma glucose concentrations, cortisol levels, and changes in CBF were measured before and during hypoglycemia in 8 healthy subjects. Cerebral blood flow increased by 42% following insulin injection with a delay of 17 ± 10 min, while the onset of hypoglycemia symptoms was delayed by 24 ± 11 min. The findings suggest that the onset of CBF increments precedes the appearance of hypoglycemia symptoms in nondiabetic subjects with normal awareness to hypoglycemia, and DCS could be a valuable tool for investigating the role of CBF in hypoglycemia unawareness.
Collapse
Affiliation(s)
- Ruth McManus
- St. Joseph's Health Care, London, ON, N6A 4V2, Canada
| | - Seva Ioussoufovitch
- Department of Biomedical Engineering, Western University, London, ON, N6A 5C1, Canada
| | | | - Keith St Lawrence
- St. Joseph's Health Care, London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada
| | - Stan Van Uum
- St. Joseph's Health Care, London, ON, N6A 4V2, Canada
| | - Mamadou Diop
- St. Joseph's Health Care, London, ON, N6A 4V2, Canada.
- Department of Biomedical Engineering, Western University, London, ON, N6A 5C1, Canada.
- Department of Medical Biophysics, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
24
|
Rajaram A, Milej D, Suwalski M, Yip LCM, Guo LR, Chu MWA, Chui J, Diop M, Murkin JM, St. Lawrence K. Optical monitoring of cerebral perfusion and metabolism in adults during cardiac surgery with cardiopulmonary bypass. BIOMEDICAL OPTICS EXPRESS 2020; 11:5967-5981. [PMID: 33149999 PMCID: PMC7587277 DOI: 10.1364/boe.404101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 05/23/2023]
Abstract
During cardiac surgery with cardiopulmonary bypass (CPB), adequate maintenance of cerebral blood flow (CBF) is vital in preventing postoperative neurological injury - i.e. stroke, delirium, cognitive impairment. Reductions in CBF large enough to impact cerebral energy metabolism can lead to tissue damage and subsequent brain injury. Current methods for neuromonitoring during surgery are limited. This study presents the clinical translation of a hybrid optical neuromonitor for continuous intraoperative monitoring of cerebral perfusion and metabolism in ten patients undergoing non-emergent cardiac surgery with non-pulsatile CPB. The optical system combines broadband near-infrared spectroscopy (B-NIRS) to measure changes in the oxidation state of cytochrome c oxidase (oxCCO) - a direct marker of cellular energy metabolism - and diffuse correlation spectroscopy (DCS) to provide an index of cerebral blood flow (CBFi). As the heart was arrested and the CPB-pump started, increases in CBFi (88.5 ± 125.7%) and significant decreases in oxCCO (-0.5 ± 0.2 µM) were observed; no changes were noted during transitions off CPB. Fifteen hypoperfusion events, defined as large and sustained reductions in CPB-pump flow rate, were identified across all patients and resulted in significant decreases in perfusion and metabolism when mean arterial pressure dropped to 30 mmHg or below. The maximum reduction in cerebral blood flow preceded the corresponding metabolic reduction by 18.2 ± 15.0 s. Optical neuromonitoring provides a safe and non-invasive approach for assessing intraoperative perfusion and metabolism and has potential in guiding patient management to prevent adverse clinical outcomes.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Lawrence C. M. Yip
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - Linrui R. Guo
- Division of Cardiac Surgery, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Michael W. A. Chu
- Division of Cardiac Surgery, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Jason Chui
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| | - John M. Murkin
- Department of Anesthesiology and Perioperative Medicine, London Health Science Centre, 339 Windermere Rd, London, ON, N6A 5A5, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, 268 Grosvenor St., London, ON, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, 1151 Richmond St., London, ON, N6A 3K7, Canada
| |
Collapse
|
25
|
Milej D, Abdalmalak A, Rajaram A, St. Lawrence K. Direct assessment of extracerebral signal contamination on optical measurements of cerebral blood flow, oxygenation, and metabolism. NEUROPHOTONICS 2020; 7:045002. [PMID: 33062801 PMCID: PMC7540337 DOI: 10.1117/1.nph.7.4.045002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/04/2020] [Indexed: 05/08/2023]
Abstract
Significance: Near-infrared spectroscopy (NIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), oxygenation, and oxygen metabolism. However, these methods are vulnerable to signal contamination from the scalp. Our work evaluated methods of reducing the impact of this contamination using time-resolved (TR) NIRS and multidistance (MD) DCS. Aim: The magnitude of scalp contamination was evaluated by measuring the flow, oxygenation, and metabolic responses to a global hemodynamic challenge. Contamination was assessed by collecting data with and without impeding scalp blood flow. Approach: Experiments involved healthy participants. A pneumatic tourniquet was used to cause scalp ischemia, as confirmed by contrast-enhanced NIRS, and a computerized gas system to generate a hypercapnic challenge. Results: Comparing responses acquired with and without the tourniquet demonstrated that the TR-NIRS technique could reduce scalp contributions in hemodynamic signals up to 4 times (r SD = 3 cm ) and 6 times (r SD = 4 cm ). Similarly, blood flow responses from the scalp and brain could be separated by analyzing MD DCS data with a multilayer model. Using these techniques, there was no change in metabolism during hypercapnia, as expected, despite large increases in CBF and oxygenation. Conclusion: NIRS/DCS can accurately monitor CBF and metabolism with the appropriate enhancement to depth sensitivity, highlighting the potential of these techniques for neuromonitoring.
Collapse
Affiliation(s)
- Daniel Milej
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Androu Abdalmalak
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ajay Rajaram
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| |
Collapse
|
26
|
Thiele RH, Shaw AD, Bartels K, Brown CH, Grocott H, Heringlake M, Gan TJ, Miller TE, McEvoy MD. American Society for Enhanced Recovery and Perioperative Quality Initiative Joint Consensus Statement on the Role of Neuromonitoring in Perioperative Outcomes: Cerebral Near-Infrared Spectroscopy. Anesth Analg 2020; 131:1444-1455. [DOI: 10.1213/ane.0000000000005081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Milej D, Shahid M, Abdalmalak A, Rajaram A, Diop M, St. Lawrence K. Characterizing dynamic cerebral vascular reactivity using a hybrid system combining time-resolved near-infrared and diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4571-4585. [PMID: 32923065 PMCID: PMC7449704 DOI: 10.1364/boe.392113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 05/09/2023]
Abstract
This study presents the characterization of dynamic cerebrovascular reactivity (CVR) in healthy adults by a hybrid optical system combining time-resolved (TR) near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS). Blood flow and oxygenation (oxy- and deoxy-hemoglobin) responses to a step hypercapnic challenge were recorded to characterize dynamic and static components of CVR. Data were acquired at short and long source-detector separations (r SD) to assess the impact of scalp hemodynamics, and moment analysis applied to the TR-NIRS to further enhance the sensitivity to the brain. Comparing blood flow and oxygenation responses acquired at short and long r SD demonstrated that scalp contamination distorted the CVR time courses, particularly for oxyhemoglobin. This effect was significantly diminished by the greater depth sensitivity of TR NIRS and less evident in the DCS data due to the higher blood flow in the brain compared to the scalp. The reactivity speed was similar for blood flow and oxygenation in the healthy brain. Given the ease-of-use, portability, and non-invasiveness of this hybrid approach, it is well suited to investigate if the temporal relationship between CBF and oxygenation is altered by factors such as age and cerebrovascular disease.
Collapse
Affiliation(s)
- Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Marwan Shahid
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Androu Abdalmalak
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
- Department of Medical Biophysics, Western University, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
28
|
Rajaram A, Yip LCM, Milej D, Suwalski M, Kewin M, Lo M, Carson JJL, Han V, Bhattacharya S, Diop M, de Ribaupierre S, St. Lawrence K. Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation. Brain Sci 2020; 10:E452. [PMID: 32679665 PMCID: PMC7407524 DOI: 10.3390/brainsci10070452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Post-hemorrhagic ventricular dilatation (PHVD) is characterized by a build-up of cerebral spinal fluid (CSF) in the ventricles, which increases intracranial pressure and compresses brain tissue. Clinical interventions (i.e., ventricular taps, VT) work to mitigate these complications through CSF drainage; however, the timing of these procedures remains imprecise. This study presents Neonatal NeuroMonitor (NNeMo), a portable optical device that combines broadband near-infrared spectroscopy (B-NIRS) and diffuse correlation spectroscopy (DCS) to provide simultaneous assessments of cerebral blood flow (CBF), tissue saturation (StO2), and the oxidation state of cytochrome c oxidase (oxCCO). In this study, NNeMo was used to monitor cerebral hemodynamics and metabolism in PHVD patients selected for a VT. Across multiple VTs in four patients, no significant changes were found in any of the three parameters: CBF increased by 14.6 ± 37.6% (p = 0.09), StO2 by 1.9 ± 4.9% (p = 0.2), and oxCCO by 0.4 ± 0.6 µM (p = 0.09). However, removing outliers resulted in significant, but small, increases in CBF (6.0 ± 7.7%) and oxCCO (0.1 ± 0.1 µM). The results of this study demonstrate NNeMo's ability to provide safe, non-invasive measurements of cerebral perfusion and metabolism for neuromonitoring applications in the neonatal intensive care unit.
Collapse
Affiliation(s)
- Ajay Rajaram
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Lawrence C. M. Yip
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Marianne Suwalski
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Matthew Kewin
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
| | - Marcus Lo
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
| | - Jeffrey J. L. Carson
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Victor Han
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON N6A 3K7, Canada; (V.H.); (S.B.)
| | - Soume Bhattacharya
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, London Health Sciences Centre, London, ON N6A 3K7, Canada; (V.H.); (S.B.)
| | - Mamadou Diop
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| | - Sandrine de Ribaupierre
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Keith St. Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON N6A 4V2, Canada; (L.C.M.Y.); (D.M.); (M.S.); (M.K.); (M.L.); (J.J.L.C.); (M.D.); (K.S.L.)
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada;
| |
Collapse
|
29
|
Shen Y, Wei Y, Bokkers RPH, Uyttenboogaart M, van Dijk JMC. Study protocol of validating a numerical model to assess the blood flow in the circle of Willis. BMJ Open 2020; 10:e036404. [PMID: 32503872 PMCID: PMC7279649 DOI: 10.1136/bmjopen-2019-036404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION We developed a zero-dimensional (0D) model to assess the patient-specific haemodynamics in the circle of Willis (CoW). Similar numerical models for simulating the cerebral blood flow (CBF) had only been validated qualitatively in healthy volunteers by magnetic resonance (MR) angiography and transcranial Doppler (TCD). This study aims to validate whether a numerical model can simulate patient-specific blood flow in the CoW under pathological conditions. METHODS AND ANALYSIS This study is a diagnostic accuracy study. We aim to collect data from a previously performed prospective study that involved patients with aneurysmal subarachnoid haemorrhage (aSAH) receiving both TCD and brain Computerd Tomography angiography (CTA) at the same day. The cerebral flow velocities are calculated by the 0D model, based on the vessel diameters measured on the CTA of each patient. In this study, TCD is considered the gold standard for measuring flow velocity in the CoW. The agreement will be analysed using Pearson correlation coefficients. ETHICS AND DISSEMINATION This study protocol has been approved by the Medical Ethics Review Board of the University Medical Center Groningen: METc2019/103. The results will be submitted to an international scientific journal for peer-reviewed publication. TRIAL REGISTRATION NUMBER NL8114.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Yanji Wei
- Engineering and Technology Institute Groningen, Faculty of Science & Engineering, University of Groningen, Groningen, The Netherlands
| | - Reinoud P H Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten Uyttenboogaart
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Forti RM, Katsurayama M, Menko J, Valler L, Quiroga A, Falcão ALE, Li LM, Mesquita RC. Real-Time Non-invasive Assessment of Cerebral Hemodynamics With Diffuse Optical Spectroscopies in a Neuro Intensive Care Unit: An Observational Case Study. Front Med (Lausanne) 2020; 7:147. [PMID: 32411712 PMCID: PMC7198738 DOI: 10.3389/fmed.2020.00147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
Prevention of secondary damage is an important goal in the treatment of severe neurological conditions, such as major head trauma or stroke. However, there is currently a lack of non-invasive methods for monitoring cerebral physiology. Diffuse optical methods have been proposed as an inexpensive, non-invasive bedside monitor capable of providing neurophysiology information in neurocritical patients. However, the reliability of the technique to provide accurate longitudinal measurement during the clinical evolution of a patient remains largely unaddressed. Here, we report on the translation of a hybrid diffuse optical system combining frequency domain diffuse optical spectroscopy (FD-DOS) and diffuse correlation spectroscopy (DCS) for real-time monitoring of cerebral physiology in a neuro intensive care unit (neuro-ICU). More specifically, we present a case study of a patient admitted with a high-grade aneurysmal subarachnoid hemorrhage, who was monitored throughout hospitalization. We show that the neurophysiological parameters measured by diffuse optics at the bedside are consistent with the clinical evolution of the patient at all the different stages following its brain lesion. These data provide support for clinical translation of DOS/DCS as a useful biomarker of neurophysiology in the neuro-ICU, particularly in locations where other clinical resources are limited.
Collapse
Affiliation(s)
- Rodrigo M Forti
- Institute of Physics, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marilise Katsurayama
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil.,Clinical Hospital, University of Campinas, Campinas, Brazil
| | - Julien Menko
- Department of Emergency Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lenise Valler
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil.,Clinical Hospital, University of Campinas, Campinas, Brazil
| | - Andres Quiroga
- Institute of Physics, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | | | - Li M Li
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil.,School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Rickson C Mesquita
- Institute of Physics, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| |
Collapse
|
31
|
Kharraziha I, Holm H, Bachus E, Ricci F, Sutton R, Fedorowski A, Hamrefors V. Cerebral Oximetry in Syncope and Syndromes of Orthostatic Intolerance. Front Cardiovasc Med 2019; 6:171. [PMID: 31824964 PMCID: PMC6886369 DOI: 10.3389/fcvm.2019.00171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022] Open
Abstract
Cerebral autoregulation is crucial for maintaining cerebral blood flow and perfusion. In recent years, the importance of cerebral oxygenation in syncope and orthostatic intolerance (OI) has received increased attention. Cerebral tissue oxygenation can be measured by using near-infrared spectroscopy (NIRS), which determines the ratio of oxygenated hemoglobin to total hemoglobin in cerebral tissue. NIRS is non-invasive technology using near-infrared light, which displays real-time cerebral tissue oxygenation. Normal values of cerebral tissue oxygenation in healthy subjects are 60 to 80%. Head-up tilt test (HUT) offers the opportunity to observe the haemodynamic changes precipitating syncope and is, today, the standard method for the evaluation of syncope and orthostatic intolerance syndromes. In previous studies where NIRS was applied during HUT, a significant decrease in cerebral tissue oxygenation both prior to and during loss-of-consciousness in vasovagal syncope (VVS) has been observed. Interestingly, cerebral tissue oxygenation appears to decrease even before haemodynamic changes can be observed. Apart from VVS, cerebral tissue oxygenation decreases during orthostatic provocation in patients with orthostatic hypotension (OH) and postural orthostatic tachycardia syndrome (POTS), in the latter even in the absence of hypotension. Importantly, decline of cerebral tissue oxygenation in VVS and POTS during HUT may not correlate with hemodynamic changes. In this mini review, we summarize the current knowledge of the application of cerebral oximetry in syncope and orthostatic intolerance syndromes, discuss its likely value as a clinical diagnostic tool and also emphasize its potential in the understanding of the relevant pathophysiology.
Collapse
Affiliation(s)
- Isabella Kharraziha
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Hannes Holm
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Erasmus Bachus
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Fabrizio Ricci
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Institute of Cardiology, University "G. d'Annunzio", Chieti, Italy.,Department of Neuroscience and Imaging, ITAB - Institute Advanced Biomedical Technologies, University "G. d'Annunzio", Chieti, Italy
| | - Richard Sutton
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden.,National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London, United Kingdom
| | - Artur Fedorowski
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Viktor Hamrefors
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|