1
|
Quirk K, Boster KAS, Tithof J, Kelley DH. A brain-wide solute transport model of the glymphatic system. J R Soc Interface 2024; 21:20240369. [PMID: 39439312 PMCID: PMC11496954 DOI: 10.1098/rsif.2024.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Brain waste is largely cleared via diffusion and advection in cerebrospinal fluid (CSF). CSF flows through a pathway referred to as the glymphatic system, which is also being targeted for delivering drugs to the brain. Despite the importance of solute transport, no brain-wide models for predicting clearance and delivery through perivascular pathways and adjacent parenchyma existed. We devised such a model by upgrading an existing model of CSF flow in the mouse brain to additionally solve advection-diffusion equations, thereby estimating solute transport. We simulated steady-state transport of 3 kDa dextran injected proximal to the perivascular space (PVS) of the middle cerebral artery, mimicking in vivo experiments. We performed a sensitivity analysis of 11 biological properties of PVSs and brain parenchyma by repeatedly simulating solute transport with varying parameter values. Parameter combinations that led to a large total pressure gradient, poor CSF perfusion or a steep solute gradient were deemed unrealistic. Solute concentrations in parenchyma were most sensitive to changes in pial PVS size, as this parameter linearly affects volume flow rates. We also found that realistic transport requires both highly permeable penetrating PVSs and high-resistance parenchyma. This study highlights the potential of brain-wide models to provide insights into solute transport processes.
Collapse
Affiliation(s)
- Keelin Quirk
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| |
Collapse
|
2
|
van Osch MJP, Wåhlin A, Scheyhing P, Mossige I, Hirschler L, Eklund A, Mogensen K, Gomolka R, Radbruch A, Qvarlander S, Decker A, Nedergaard M, Mori Y, Eide PK, Deike K, Ringstad G. Human brain clearance imaging: Pathways taken by magnetic resonance imaging contrast agents after administration in cerebrospinal fluid and blood. NMR IN BIOMEDICINE 2024; 37:e5159. [PMID: 38634301 DOI: 10.1002/nbm.5159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Over the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the "EU Joint Programme - Neurodegenerative Disease Research (JPND)" consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration-time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.
Collapse
Affiliation(s)
- Matthias J P van Osch
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Anders Wåhlin
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Paul Scheyhing
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ingrid Mossige
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lydiane Hirschler
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Anders Eklund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Klara Mogensen
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Ryszard Gomolka
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Radbruch
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sara Qvarlander
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Andreas Decker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- KG Jebsen Centre for Brain Fluid Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Katerina Deike
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
3
|
Eide PK. Neurosurgery and the glymphatic system. Acta Neurochir (Wien) 2024; 166:274. [PMID: 38904802 PMCID: PMC11192689 DOI: 10.1007/s00701-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
The discovery of the glymphatic system has fundamentally altered our comprehension of cerebrospinal fluid transport and the removal of waste from brain metabolism. In the past decade, since its initial characterization, research on the glymphatic system has surged exponentially. Its potential implications for central nervous system disorders have sparked significant interest in the field of neurosurgery. Nonetheless, ongoing discussions and debates persist regarding the concept of the glymphatic system, and our current understanding largely relies on findings from experimental animal studies. This review aims to address several key inquiries: What methodologies exist for evaluating glymphatic function in humans today? What is the current evidence supporting the existence of a human glymphatic system? Can the glymphatic system be considered distinct from the meningeal-lymphatic system? What is the human evidence for glymphatic-meningeal lymphatic system failure in neurosurgical diseases? Existing literature indicates a paucity of techniques available for assessing glymphatic function in humans. Thus far, intrathecal contrast-enhanced magnetic resonance imaging (MRI) has shown the most promising results and have provided evidence for the presence of a glymphatic system in humans, albeit with limitations. It is, however, essential to recognize the interconnection between the glymphatic and meningeal lymphatic systems, as they operate in tandem. There are some human studies demonstrating deteriorations in glymphatic function associated with neurosurgical disorders, enriching our understanding of their pathophysiology. However, the translation of this knowledge into clinical practice is hindered by the constraints of current glymphatic imaging modalities.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Nydalen, Pb 4950 N-0424, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Braun M, Sevao M, Keil SA, Gino E, Wang MX, Lee J, Haveliwala MA, Klein E, Agarwal S, Pedersen T, Rhodes CH, Jansson D, Cook D, Peskind E, Perl DP, Piantino J, Schindler AG, Iliff JJ. Macroscopic changes in aquaporin-4 underlie blast traumatic brain injury-related impairment in glymphatic function. Brain 2024; 147:2214-2229. [PMID: 38802114 PMCID: PMC11146423 DOI: 10.1093/brain/awae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 05/29/2024] Open
Abstract
Mild traumatic brain injury (mTBI) has emerged as a potential risk factor for the development of neurodegenerative conditions such as Alzheimer's disease and chronic traumatic encephalopathy. Blast mTBI, caused by exposure to a pressure wave from an explosion, is predominantly experienced by military personnel and has increased in prevalence and severity in recent decades. Yet the underlying pathology of blast mTBI is largely unknown. We examined the expression and localization of AQP4 in human post-mortem frontal cortex and observed distinct laminar differences in AQP4 expression following blast exposure. We also observed similar laminar changes in AQP4 expression and localization and delayed impairment of glymphatic function that emerged 28 days following blast injury in a mouse model of repetitive blast mTBI. In a cohort of veterans with blast mTBI, we observed that blast exposure was associated with an increased burden of frontal cortical MRI-visible perivascular spaces, a putative neuroimaging marker of glymphatic perivascular dysfunction. These findings suggest that changes in AQP4 and delayed glymphatic impairment following blast injury may render the post-traumatic brain vulnerable to post-concussive symptoms and chronic neurodegeneration.
Collapse
Affiliation(s)
- Molly Braun
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mathew Sevao
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Samantha A Keil
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth Gino
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Marie X Wang
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Janet Lee
- VISN 20 Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Mariya A Haveliwala
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Emily Klein
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sanjana Agarwal
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Taylor Pedersen
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - C Harker Rhodes
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
- Department of Pathology, F Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- DoD/USU Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Deidre Jansson
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David Cook
- VISN 20 Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elaine Peskind
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Daniel P Perl
- Department of Pathology, F Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- DoD/USU Brain Tissue Repository, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Juan Piantino
- Division of Child Neurology, Department of Pediatrics, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, OR 97239, USA
| | - Abigail G Schindler
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- VISN 20 Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jeffrey J Iliff
- VISN 20 Northwest Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
5
|
van Veluw SJ, Benveniste H, Bakker ENTP, Carare RO, Greenberg SM, Iliff JJ, Lorthois S, Van Nostrand WE, Petzold GC, Shih AY, van Osch MJP. Is CAA a perivascular brain clearance disease? A discussion of the evidence to date and outlook for future studies. Cell Mol Life Sci 2024; 81:239. [PMID: 38801464 PMCID: PMC11130115 DOI: 10.1007/s00018-024-05277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The brain's network of perivascular channels for clearance of excess fluids and waste plays a critical role in the pathogenesis of several neurodegenerative diseases including cerebral amyloid angiopathy (CAA). CAA is the main cause of hemorrhagic stroke in the elderly, the most common vascular comorbidity in Alzheimer's disease and also implicated in adverse events related to anti-amyloid immunotherapy. Remarkably, the mechanisms governing perivascular clearance of soluble amyloid β-a key culprit in CAA-from the brain to draining lymphatics and systemic circulation remains poorly understood. This knowledge gap is critically important to bridge for understanding the pathophysiology of CAA and accelerate development of targeted therapeutics. The authors of this review recently converged their diverse expertise in the field of perivascular physiology to specifically address this problem within the framework of a Leducq Foundation Transatlantic Network of Excellence on Brain Clearance. This review discusses the overarching goal of the consortium and explores the evidence supporting or refuting the role of impaired perivascular clearance in the pathophysiology of CAA with a focus on translating observations from rodents to humans. We also discuss the anatomical features of perivascular channels as well as the biophysical characteristics of fluid and solute transport.
Collapse
Affiliation(s)
- Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Erik N T P Bakker
- Department of Biomedical Engineering, Amsterdam University Medical Center, Location AMC, Amsterdam Neuroscience Research Institute, Amsterdam, The Netherlands
| | - Roxana O Carare
- Clinical Neurosciences, University of Southampton, Southampton, UK
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey J Iliff
- VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA
| | - Sylvie Lorthois
- Institut de Mécanique Des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS, Toulouse, France
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Science, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Gabor C Petzold
- German Center for Neurodegenerative Disease, Bonn, Germany
- Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Andy Y Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
6
|
Lindstedt S, Wang Q, Niroomand A, Stenlo M, Hyllen S, Pierre L, Olm F, Bechet NB. High resolution fluorescence imaging of the alveolar scaffold as a novel tool to assess lung injury. Sci Rep 2024; 14:6662. [PMID: 38509285 PMCID: PMC10954697 DOI: 10.1038/s41598-024-57313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/17/2024] [Indexed: 03/22/2024] Open
Abstract
Acute lung injury (ALI) represents an aetiologically diverse form of pulmonary damage. Part of the assessment and diagnosis of ALI depends on skilled observer-based scoring of brightfield microscopy tissue sections. Although this readout is sufficient to determine gross alterations in tissue structure, its categorical scores lack the sensitivity to describe more subtle changes in lung morphology. To generate a more sensitive readout of alveolar perturbation we carried out high resolution immunofluorescence imaging on 200 μm lung vibratome sections from baseline and acutely injured porcine lung tissue, stained with a tomato lectin, Lycopersicon Esculentum Dylight-488. With the ability to resolve individual alveoli along with their inner and outer wall we generated continuous readouts of alveolar wall thickness and circularity. From 212 alveoli traced from 10 baseline lung samples we established normal distributions for alveolar wall thickness (27.37; 95% CI [26.48:28.26]) and circularity (0.8609; 95% CI [0.8482:0.8667]) in healthy tissue. Compared to acutely injured lung tissue baseline tissue exhibited a significantly lower wall thickness (26.86 ± 0.4998 vs 50.55 ± 4.468; p = 0.0003) and higher degree of circularityϕ≤ (0.8783 ± 0.01965 vs 0.4133 ± 0.04366; p < 0.0001). These two components were subsequently combined into a single more sensitive variable, termed the morphological quotient (MQ), which exhibited a significant negative correlation (R2 = 0.9919, p < 0.0001) with the gold standard of observer-based scoring. Through the utilisation of advanced light imaging we show it is possible to generate sensitive continuous datasets describing fundamental morphological changes that arise in acute lung injury. These data represent valuable new analytical tools that can be used to precisely benchmark changes in alveolar morphology both in disease/injury as well as in response to treatment/therapy.
Collapse
Affiliation(s)
- Sandra Lindstedt
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Clinical Sciences, Lund University, Lund, Sweden.
- Lund Stem Cell Centre, Lund University, Lund, Sweden.
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden.
| | - Qi Wang
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Anna Niroomand
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
| | - Martin Stenlo
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllen
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Leif Pierre
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Centre, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Nicholas B Bechet
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
- Department of Clinical Sciences, Lund University, Lund, Sweden.
- Lund Stem Cell Centre, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
Ringstad G, Eide PK. Glymphatic-lymphatic coupling: assessment of the evidence from magnetic resonance imaging of humans. Cell Mol Life Sci 2024; 81:131. [PMID: 38472405 DOI: 10.1007/s00018-024-05141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/14/2024]
Abstract
The discoveries that cerebrospinal fluid participates in metabolic perivascular exchange with the brain and further drains solutes to meningeal lymphatic vessels have sparked a tremendous interest in translating these seminal findings from animals to humans. A potential two-way coupling between the brain extra-vascular compartment and the peripheral immune system has implications that exceed those concerning neurodegenerative diseases, but also imply that the central nervous system has pushed its immunological borders toward the periphery, where cross-talk mediated by cerebrospinal fluid may play a role in a range of neoplastic and immunological diseases. Due to its non-invasive approach, magnetic resonance imaging has typically been the preferred methodology in attempts to image the glymphatic system and meningeal lymphatics in humans. Even if flourishing, the research field is still in its cradle, and interpretations of imaging findings that topographically associate with reports from animals have yet seemed to downplay the presence of previously described anatomical constituents, particularly in the dura. In this brief review, we illuminate these challenges and assess the evidence for a glymphatic-lymphatic coupling. Finally, we provide a new perspective on how human brain and meningeal clearance function may possibly be measured in future.
Collapse
Affiliation(s)
- Geir Ringstad
- Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway.
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Chen Y, He X, Cai J, Li Q. Functional aspects of the brain lymphatic drainage system in aging and neurodegenerative diseases. J Biomed Res 2024; 38:206-221. [PMID: 38430054 PMCID: PMC11144931 DOI: 10.7555/jbr.37.20230264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 02/29/2024] [Indexed: 03/03/2024] Open
Abstract
The phenomenon of an aging population is advancing at a precipitous rate. Alzheimer's disease (AD) and Parkinson's disease (PD) are two of the most common age-associated neurodegenerative diseases, both of which are primarily characterized by the accumulation of toxic proteins and the progressive demise of neuronal structures. Recent discoveries about the brain lymphatic drainage system have precipitated a growing body of investigations substantiating its novel roles, including the clearance of macromolecular waste and the trafficking of immune cells. Notably, aquaporin 4-mediated glymphatic transport, crucial for maintaining neural homeostasis, becomes disrupted during the aging process and is further compromised in the pathogenesis of AD and PD. Functional meningeal lymphatic vessels, which facilitate the drainage of cerebrospinal fluid into the deep cervical lymph nodes, are integral in bridging the central nervous system with peripheral immune responses. Dysfunction in these meningeal lymphatic vessels exacerbates pathological trajectory of the age-related neurodegenerative disease. This review explores modulatory influence of the glymphatic system and meningeal lymphatic vessels on the aging brain and its associated neurodegenerative disorders. It also encapsulates the insights of potential mechanisms and prospects of the targeted non-pharmacological interventions.
Collapse
Affiliation(s)
- Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaoxin He
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiachen Cai
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
9
|
Ang PS, Zhang DM, Azizi SA, Norton de Matos SA, Brorson JR. The glymphatic system and cerebral small vessel disease. J Stroke Cerebrovasc Dis 2024; 33:107557. [PMID: 38198946 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES Cerebral small vessel disease is a group of pathologies in which alterations of the brain's blood vessels contribute to stroke and neurocognitive changes. Recently, a neurotoxic waste clearance system composed of perivascular spaces abutting the brain's blood vessels, termed the glymphatic system, has been identified as a key player in brain homeostasis. Given that small vessel disease and the glymphatic system share anatomical structures, this review aims to reexamine small vessel disease in the context of the glymphatic system and highlight novel aspects of small vessel disease physiology. MATERIALS AND METHODS This review was conducted with an emphasis on studies that examined aspects of small vessel disease and on works characterizing the glymphatic system. We searched PubMed for relevant articles using the following keywords: glymphatics, cerebral small vessel disease, arterial pulsatility, hypertension, blood-brain barrier, endothelial dysfunction, stroke, diabetes. RESULTS Cerebral small vessel disease and glymphatic dysfunction are anatomically connected and significant risk factors are shared between the two. These include hypertension, type 2 diabetes, advanced age, poor sleep, obesity, and neuroinflammation. There is clear evidence that CSVD hinders the effective functioning of glymphatic system. CONCLUSION These shared risk factors, as well as the model of cerebral amyloid angiopathy pathogenesis, hint at the possibility that glymphatic dysfunction could independently contribute to the pathogenesis of cerebral small vessel disease. However, the current evidence supports a model of cascading dysfunction, wherein concurrent small vessel and glymphatic injury hinder glymphatic-mediated recovery and promote the progression of subclinical to clinical disease.
Collapse
Affiliation(s)
- Phillip S Ang
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | - Douglas M Zhang
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | - Saara-Anne Azizi
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | | | - James R Brorson
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States; Department of Neurology, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
10
|
Eide PK, Lashkarivand A, Pripp AH, Valnes LM, Hovd M, Ringstad G, Blennow K, Zetterberg H. Mechanisms behind changes of neurodegeneration biomarkers in plasma induced by sleep deprivation. Brain Commun 2023; 5:fcad343. [PMID: 38130841 PMCID: PMC10733810 DOI: 10.1093/braincomms/fcad343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Acute sleep deprivation has been shown to affect cerebrospinal fluid and plasma concentrations of biomarkers associated with neurodegeneration, though the mechanistic underpinnings remain unknown. This study compared individuals who, for one night, were either subject to total sleep deprivation or free sleep, (i) examining plasma concentrations of neurodegeneration biomarkers the morning after sleep deprivation or free sleep and (ii) determining how overnight changes in biomarkers plasma concentrations correlate with indices of meningeal lymphatic and glymphatic clearance functions. Plasma concentrations of amyloid-β 40 and 42, phosphorylated tau peptide 181, glial fibrillary acid protein and neurofilament light were measured longitudinally in subjects who from Day 1 to Day 2 either underwent total sleep deprivation (n = 7) or were allowed free sleep (n = 21). The magnetic resonance imaging contrast agent gadobutrol was injected intrathecally, serving as a cerebrospinal fluid tracer. Population pharmacokinetic model parameters of gadobutrol cerebrospinal fluid-to-blood clearance were utilized as a proxy of meningeal lymphatic clearance capacity and intrathecal contrast-enhanced magnetic resonance imaging as a proxy of glymphatic function. After one night of acute sleep deprivation, the plasma concentrations of amyloid-β 40 and 42 were reduced, but not the ratio, and concentrations of the other biomarkers were unchanged. The overnight change in amyloid-β 40 and 42 plasma concentrations in the sleep group correlated significantly with indices of meningeal lymphatic clearance capacity, while this was not seen for the other neurodegeneration biomarkers. However, overnight change in plasma concentrations of amyloid-β 40 and 42 did not correlate with the glymphatic marker. On the other hand, the overnight change in plasma concentration of phosphorylated tau peptide 181 correlated significantly with the marker of glymphatic function in the sleep deprivation group but not in the sleep group. The present data add to the evidence of the role of sleep and sleep deprivation on plasma neurodegeneration concentrations; however, the various neurodegeneration biomarkers respond differently with different mechanisms behind sleep-induced alterations in amyloid-β and tau plasma concentrations. Clearance capacity of meningeal lymphatics seems more important for sleep-induced changes in amyloid-β 40 and 42 plasma concentrations, while glymphatic function seems most important for change in plasma concentration of phosphorylated tau peptide 181 during sleep deprivation. Altogether, the present data highlight diverse mechanisms behind sleep-induced effects on concentrations of plasma neurodegeneration biomarkers.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, N-0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, N-0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway
| | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, N-0424 Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, N-0130 Oslo, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, N-0424 Oslo, Norway
| | - Markus Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, N-0424 Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital—Rikshospitalet, N-0424 Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, N-4836 Arendal, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-405 30 Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-405 30 Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-405 30 Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-405 30 Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 999077, China
- Department of Medicine, UW School of Medicine and Public Health, Madison, WI 53726, USA
| |
Collapse
|
11
|
Wang X, Delle C, Peng W, Plá V, Giannetto M, Kusk P, Sigurdsson B, Sakurai S, Sweeney A, Sun Q, Du T, Libby RT, Nedergaard M. Age- and glaucoma-induced changes to the ocular glymphatic system. Neurobiol Dis 2023; 188:106322. [PMID: 37832797 DOI: 10.1016/j.nbd.2023.106322] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023] Open
Abstract
The ocular glymphatic system supports bidirectional fluid transport along the optic nerve, thereby removes metabolic wastes including amyloid-β. To better understand this biological process, we examined the distributions of intravitreally and intracisternally infused tracers in full-length optic nerves from different age groups of mice. Aging was linked to globally impaired ocular glymphatic fluid transport, similar to what has seen previously in the brain. Aging also reduced the pupillary responsiveness to light stimulation and abolished light-induced facilitation in anterograde ocular glymphatic flow. In contrast to normal aging, in the DBA/2 J model of glaucoma, we found a pathological increase of glymphatic fluid transport to the anterior optic nerve that was associated with dilation of the perivascular spaces. Thus, aging and glaucoma have fundamentally different effects on ocular glymphatic fluid transport. Manipulation of glymphatic fluid transport might therefore present a new target for the treatment of glaucoma.
Collapse
Affiliation(s)
- Xiaowei Wang
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA.
| | - Christine Delle
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Weiguo Peng
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA
| | - Virginia Plá
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA; Neuroscience Graduate Program, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA
| | - Peter Kusk
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Björn Sigurdsson
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Shinya Sakurai
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA
| | - Amanda Sweeney
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA
| | - Qian Sun
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA
| | - Richard T Libby
- Department of Ophthalmology, University of Rochester Medical Center, Elmwood Avenue 601, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY 14642, USA.
| |
Collapse
|
12
|
Kim D, Gan Y, Nedergaard M, Kelley DH, Tithof J. Image Analysis Techniques for In Vivo Quantification of Cerebrospinal Fluid Flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549937. [PMID: 37546970 PMCID: PMC10401935 DOI: 10.1101/2023.07.20.549937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Over the last decade, there has been a tremendously increased interest in understanding the neurophysiology of cerebrospinal fluid (CSF) flow, which plays a crucial role in clearing metabolic waste from the brain. This growing interest was largely initiated by two significant discoveries: the glymphatic system (a pathway for solute exchange between interstitial fluid deep within the brain and the CSF surrounding the brain) and meningeal lymphatic vessels (lymphatic vessels in the layer of tissue surrounding the brain that drain CSF). These two CSF systems work in unison, and their disruption has been implicated in several neurological disorders including Alzheimer's disease, stoke, and traumatic brain injury. Here, we present experimental techniques for in vivo quantification of CSF flow via direct imaging of fluorescent microspheres injected into the CSF. We discuss detailed image processing methods, including registration and masking of stagnant particles, to improve the quality of measurements. We provide guidance for quantifying CSF flow through particle tracking and offer tips for optimizing the process. Additionally, we describe techniques for measuring changes in arterial diameter, which is an hypothesized CSF pumping mechanism. Finally, we outline how these same techniques can be applied to cervical lymphatic vessels, which collect fluid downstream from meningeal lymphatic vessels. We anticipate that these fluid mechanical techniques will prove valuable for future quantitative studies aimed at understanding mechanisms of CSF transport and disruption, as well as for other complex biophysical systems.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, United States
| | - Yiming Gan
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY, 14627, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, United States
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY, 14627, United States
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, United States
| |
Collapse
|
13
|
Eide PK, Lashkarivand A, Pripp A, Valnes LM, Hovd MH, Ringstad G, Blennow K, Zetterberg H. Plasma neurodegeneration biomarker concentrations associate with glymphatic and meningeal lymphatic measures in neurological disorders. Nat Commun 2023; 14:2084. [PMID: 37045847 PMCID: PMC10097687 DOI: 10.1038/s41467-023-37685-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Clearance of neurotoxic brain proteins via cerebrospinal fluid (CSF) to blood has recently emerged to be crucial, and plasma biomarkers of neurodegeneration were newly introduced to predict neurological disease. This study examines in 106 individuals with neurological disorders associations between plasma biomarkers [40 and 42 amino acid-long amyloid-β (Aβ40 and Aβ42), total-tau, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL)] and magnetic resonance imaging measures of CSF-mediated clearance from brain via extra-vascular pathways (proxy of glymphatic function) and CSF-to-blood clearance variables from pharmacokinetic modeling (proxy of meningeal lymphatic egress). We also examine how biomarkers vary during daytime and associate with subjective sleep quality. Plasma concentrations of neurodegeneration markers associate with indices of glymphatic and meningeal lymphatic functions in individual- and disease-specific manners, vary during daytime, but are unaffected by sleep quality. The results suggest that plasma concentrations of neurodegeneration biomarkers associate with measures of glymphatic and meningeal lymphatic function.
Collapse
Affiliation(s)
- Per Kristian Eide
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Aslan Lashkarivand
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Are Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Lars Magnus Valnes
- Dept. of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Markus Herberg Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Dept. of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal medicine, Sorlandet Hospital, Arendal, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
14
|
Santarius T, Pickard JD. Does deep cerebral venous engorgement contribute to non-hydrocephalic pineal cysts becoming symptomatic? Some missing links. Brain Commun 2023; 5:fcad096. [PMID: 37065089 PMCID: PMC10090880 DOI: 10.1093/braincomms/fcad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
This scientific commentary refers to 'Physiological alterations of pineal recess crowding in symptomatic non-hydrocephalic pineal cysts' by Eide et al. (https://doi.org/10.1093/braincomms/fcad078).
Collapse
Affiliation(s)
- Thomas Santarius
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
15
|
Eide PK, Lindstrøm EK, Pripp AH, Valnes LM, Ringstad G. Physiological alterations of pineal recess crowding in symptomatic non-hydrocephalic pineal cysts. Brain Commun 2023; 5:fcad078. [PMID: 37501910 PMCID: PMC10371044 DOI: 10.1093/braincomms/fcad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 07/29/2023] Open
Abstract
Pineal cysts are prevalent in the population. Due to more widespread use of magnetic resonance imaging, an increasing number of symptomatic patients with non-hydrocephalic pineal cysts are referred to neurologists and neurosurgeons. Currently, there is no generally accepted theoretical framework for linking symptoms to a pineal cyst. We have previously suggested that cyst-induced crowding of the pineal recess may affect venous runoff from the deep cerebral veins crossing the cyst. However, evidence underpinning this hypothesis is sparse. In the present study, we asked whether crowding of the pineal recess without imaging signs of hydrocephalus may be accompanied with alterations in blood flow of the internal cerebral veins, cerebrospinal fluid flow in the Sylvian aqueduct and cerebrospinal fluid-mediated tracer clearance from the brain along extravascular pathways (referred to as glymphatic function). This prospective, observational study included symptomatic individuals with non-hydrocephalic pineal cysts who underwent a standardized magnetic resonance imaging protocol (n = 25): Eleven patients were treated surgically with craniotomy and cyst extirpation and 14 individuals were managed conservatively without surgery. Our findings suggest that cyst-induced crowding of the pineal recess may have brain-wide effects: (i) There was a significant negative correlation between degree of crowding within the pineal recess and change in maximum venous flow velocity at the cyst, and a significant positive correlation between maximum venous flow velocity change at the cyst and net cerebrospinal fluid flow in the Sylvian aqueduct; (ii) increased degree of crowding in the pineal recess was accompanied by significantly impaired glymphatic enrichment in the cerebral cortex and subcortical white matter, indicative of a brain-wide effect in this cohort who also reported markedly impaired subjective sleep quality; (iii) there was a significant negative correlation between the apparent diffusion coefficient (suggestive of interstitial water content) within the thalamus and glymphatic enrichment of tracer and (iv) pineal recess crowding associated with symptoms. Comparison of the surgical cases [in whom 10/11 (91%) reported marked clinical improvement at follow-up] and the conservatively managed cases [in whom 1/14 (7%) reported marked clinical improvement at follow-up] showed differences in pre-treatment glymphatic tracer enrichment as well as differences in tracer enrichment in subarachnoid cerebrospinal fluid spaces. Taken together, we interpret these observations to support the hypothesis that cyst-induced crowding of the pineal recess without hydrocephalus may alter blood flow of the internal cerebral veins and cerebrospinal fluid flow and even cause brain-wide impairment of glymphatic transport with possible implications for cerebrospinal fluid transport of trophic factors such as melatonin.
Collapse
Affiliation(s)
- Per Kristian Eide
- Correspondence to: Per Kristian Eide, MD, PhD Department of Neurosurgery Oslo University Hospital—Rikshospitalet Pb 4950 Nydalen, Sognvannsveien 20 N-0424 Oslo, Norway E-mail:
| | | | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, N-0424 Oslo, Norway
- Faculty of Health Sciences, Oslo Metropolitan University, N-0176 Oslo, Norway
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, N-0424 Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital- Rikshospitalet, N-0424 Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, N-4838 Arendal, Norway
| |
Collapse
|
16
|
He XZ, Li X, Li ZH, Meng JC, Mao RT, Zhang XK, Zhang RT, Huang HL, Gui Q, Xu GY, Wang LH. High-resolution 3D demonstration of regional heterogeneity in the glymphatic system. J Cereb Blood Flow Metab 2022; 42:2017-2031. [PMID: 35786032 PMCID: PMC9580176 DOI: 10.1177/0271678x221109997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accumulating evidence indicates that the glymphatic system has a critical role in maintaining brain homeostasis. However, the detailed anatomy of the glymphatic pathway is not well understood, mostly due to a lack of high spatial resolution 3D visualization. In this study, a fluorescence micro-optical sectioning tomography (fMOST) was used to characterize the glymphatic architecture in the mouse brain. At 30 and 120 min after intracisternal infusion with fluorescent dextran (Dex-3), lectin was injected to stain the cerebral vasculature. Using fMOST, a high-resolution 3D dataset of the brain-wide distribution of Dex-3 was acquired. Combined with fluorescence microscopy and microplate array, the heterogeneous glymphatic flow and the preferential irrigated regions were identified. These cerebral regions containing large-caliber penetrating arteries and/or adjacent to the subarachnoid space had more robust CSF flow compared to other regions. Moreover, the major glymphatic vessels for CSF influx and fluid efflux in the entire brain were shown in 3D. This study demonstrates the regional heterogeneity in the glymphatic system and provides an anatomical resource for further investigation of the glymphatic function.
Collapse
Affiliation(s)
- Xu-Zhong He
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, PR China
| | - Xin Li
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, PR China
| | - Zhen-Hua Li
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, PR China
| | - Jing-Cai Meng
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, PR China
| | - Rui-Ting Mao
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, PR China
| | - Xue-Ke Zhang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, PR China
| | - Rong-Ting Zhang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, PR China
| | - Huai-Liang Huang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, PR China
| | - Qian Gui
- Department of Neurology, Suzhou Municipal Hospital, Suzhou, PR China
| | - Guang-Yin Xu
- Institute of Neuroscience, Soochow University, Suzhou, PR China
| | - Lin-Hui Wang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, Suzhou, PR China
| |
Collapse
|
17
|
Kim E, Van Reet J, Kim HC, Kowsari K, Yoo SS. High Incidence of Intracerebral Hemorrhaging Associated with the Application of Low-Intensity Focused Ultrasound Following Acute Cerebrovascular Injury by Intracortical Injection. Pharmaceutics 2022; 14:2120. [PMID: 36297554 PMCID: PMC9609794 DOI: 10.3390/pharmaceutics14102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
Low-intensity transcranial focused ultrasound (FUS) has gained momentum as a non-/minimally-invasive modality that facilitates the delivery of various pharmaceutical agents to the brain. With the additional ability to modulate regional brain tissue excitability, FUS is anticipated to confer potential neurotherapeutic applications whereby a deeper insight of its safety is warranted. We investigated the effects of FUS applied to the rat brain (Sprague-Dawley) shortly after an intracortical injection of fluorescent interstitial solutes, a widely used convection-enhanced delivery technique that directly (i.e., bypassing the blood-brain-barrier (BBB)) introduces drugs or interstitial tracers to the brain parenchyma. Texas Red ovalbumin (OA) and fluorescein isothiocyanate-dextran (FITC-d) were used as the interstitial tracers. Rats that did not receive sonication showed an expected interstitial distribution of OA and FITC-d around the injection site, with a wider volume distribution of OA (21.8 ± 4.0 µL) compared to that of FITC-d (7.8 ± 2.7 µL). Remarkably, nearly half of the rats exposed to the FUS developed intracerebral hemorrhaging (ICH), with a significantly higher volume of bleeding compared to a minor red blood cell extravasation from the animals that were not exposed to sonication. This finding suggests that the local cerebrovascular injury inflicted by the micro-injection was further exacerbated by the application of sonication, particularly during the acute stage of injury. Smaller tracer volume distributions and weaker fluorescent intensities, compared to the unsonicated animals, were observed for the sonicated rats that did not manifest hemorrhaging, which may indicate an enhanced degree of clearance of the injected tracers. Our results call for careful safety precautions when ultrasound sonication is desired among groups under elevated risks associated with a weakened or damaged vascular integrity.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Jared Van Reet
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu 37224, Korea
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| |
Collapse
|
18
|
Bohr T, Hjorth PG, Holst SC, Hrabětová S, Kiviniemi V, Lilius T, Lundgaard I, Mardal KA, Martens EA, Mori Y, Nägerl UV, Nicholson C, Tannenbaum A, Thomas JH, Tithof J, Benveniste H, Iliff JJ, Kelley DH, Nedergaard M. The glymphatic system: Current understanding and modeling. iScience 2022; 25:104987. [PMID: 36093063 PMCID: PMC9460186 DOI: 10.1016/j.isci.2022.104987] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We review theoretical and numerical models of the glymphatic system, which circulates cerebrospinal fluid and interstitial fluid around the brain, facilitating solute transport. Models enable hypothesis development and predictions of transport, with clinical applications including drug delivery, stroke, cardiac arrest, and neurodegenerative disorders like Alzheimer's disease. We sort existing models into broad categories by anatomical function: Perivascular flow, transport in brain parenchyma, interfaces to perivascular spaces, efflux routes, and links to neuronal activity. Needs and opportunities for future work are highlighted wherever possible; new models, expanded models, and novel experiments to inform models could all have tremendous value for advancing the field.
Collapse
Affiliation(s)
- Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Poul G. Hjorth
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, 2800 Kgs. Lyngby, Denmark
| | - Sebastian C. Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sabina Hrabětová
- Department of Cell Biology and The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging, Department of Diagnostic Radiology, MRC, Oulu University Hospital, Oulu, Finland
- Medical Imaging, Physics and Technology, the Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tuomas Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Kent-Andre Mardal
- Department of Mathematics, University of Oslo, Oslo, Norway
- Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Oslo, Norway
| | | | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - U. Valentin Nägerl
- Instítut Interdisciplinaire de Neurosciences, Université de Bordeaux / CNRS UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex France
| | - Charles Nicholson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Allen Tannenbaum
- Departments of Computer Science/ Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey J. Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, 14642 NY, USA
| |
Collapse
|
19
|
Eide PK. Cellular changes at the glia-neuro-vascular interface in definite idiopathic normal pressure hydrocephalus. Front Cell Neurosci 2022; 16:981399. [PMID: 36119130 PMCID: PMC9478415 DOI: 10.3389/fncel.2022.981399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a subtype of dementia with overlap toward Alzheimer's disease. Both diseases show deposition of the toxic metabolites amyloid-β and tau in brain. A unique feature with iNPH is that a subset of patients may improve clinically following cerebrospinal fluid (CSF) diversion (shunt) surgery. The patients responding clinically to shunting are denoted Definite iNPH, otherwise iNPH is diagnosed as Possible iNPH or Probable iNPH, high-lightening that the clinical phenotype and underlying pathophysiology remain debated. Given the role of CSF disturbance in iNPH, the water channel aquaporin-4 (AQP4) has been suggested a crucial role in iNPH. Altered expression of AQP4 at the astrocytic endfeet facing the capillaries could affect glymphatic function, i.e., the perivascular transport of fluids and solutes, including soluble amyloid-β and tau. This present study asked how altered perivascular expression of AQP4 in subjects with definite iNPH is accompanied with cellular changes at the glia-neuro-vascular interface. For this purpose, information was retrieved from a database established by the author, including prospectively collected management data, physiological data and information from brain biopsy specimens examined with light and electron microscopy. Individuals with definite iNPH were included together with control subjects who matched the definite iNPH cohort closest in gender and age. Patients with definite iNPH presented with abnormally elevated pulsatile intracranial pressure measured overnight. Cortical brain biopsies showed reduced expression of AQP4 at astrocytic endfeet both perivascular and toward neuropil. This was accompanied with reduced expression of the anchor molecule dystrophin (Dp71) at astrocytic perivascular endfeet, evidence of altered cellular metabolic activity in astrocytic endfoot processes (reduced number of normal and increased number of pathological mitochondria), and evidence of reactive changes in astrocytes (astrogliosis). Moreover, the definite iNPH subjects demonstrated in cerebral cortex changes in capillaries (reduced thickness of the basement membrane between astrocytic endfeet and endothelial cells and pericytes, and evidence of impaired blood-brain-barrier integrity). Abnormal changes in neurons were indicated by reduced post-synaptic density length, and reduced number of normal mitochondria in pre-synaptic terminals. In summary, definite iNPH is characterized by profound cellular changes at the glia-neurovascular interface, which probably reflect the underlying pathophysiology.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital—Rikshospitalet, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Per Kristian Eide
| |
Collapse
|
20
|
Li G, Cao Y, Tang X, Huang J, Cai L, Zhou L. The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. J Cereb Blood Flow Metab 2022; 42:1364-1382. [PMID: 35484910 PMCID: PMC9274866 DOI: 10.1177/0271678x221098145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023]
Abstract
The recent discovery of the meningeal lymphatic vessels (mLVs) and glymphatic pathways has challenged the long-lasting dogma that the central nervous system (CNS) lacks a lymphatic system and therefore does not interact with peripheral immunity. This discovery has reshaped our understanding of mechanisms underlying CNS drainage. Under normal conditions, a close connection between mLVs and the glymphatic system enables metabolic waste removal, immune cell trafficking, and CNS immune surveillance. Dysfunction of the glymphatic-mLV system can lead to toxic protein accumulation in the brain, and it contributes to the development of a series of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. The identification of precise cerebral transport routes is based mainly on indirect, invasive imaging of animals, and the results cannot always be applied to humans. Here we review the functions of the glymphatic-mLV system and evidence for its involvement in some CNS diseases. We focus on emerging noninvasive imaging techniques to evaluate the human glymphatic-mLV system and their potential for preclinical diagnosis and prevention of neurodegenerative diseases. Potential strategies that target the glymphatic-mLV system in order to treat and prevent neurological disorders are also discussed.
Collapse
Affiliation(s)
- Gaowei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Cao
- Department of Neurosurgery, Chengdu Second People's hospital, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhan Huang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Linjun Cai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Cao C, Ding J, Cao D, Li B, Wu J, Li X, Li H, Cui G, Shen H, Chen G. TREM2 modulates neuroinflammation with elevated IRAK3 expression and plays a neuroprotective role after experimental SAH in rats. Neurobiol Dis 2022; 171:105809. [PMID: 35781003 DOI: 10.1016/j.nbd.2022.105809] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The modulation of neuroinflammation is a new direction that may alleviate the early brain injury after subarachnoid hemorrhage (SAH). Brain resident microglia/macrophages (Mi/MΦ) are the key drivers of neuroinflammation. Triggering receptor expressed on myeloid cells 2 (TREM2) has been reported to play a neuroprotective role by activating phagocytosis and suspending inflammatory response in experimental ischemic stroke and intracerebral hemorrhage. This study was designed to investigate the role of TREM2 on neuroinflammation and neuroprotective effects in a rat SAH model. METHODS Adult male Sprague-Dawley rats were induced SAH through endovascular perforation. Lentivirus vectors were administered by i.c.v. to induce TREM2 overexpression or knockdown 7 days before SAH induction. Short- and long-term neurobehavioral tests, western blotting, immunofluorescence, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the neuroprotective role of TREM2 after SAH. RESULTS The expression of TREM2 elevated in a rat SAH model with a peak at 48 h after SAH and mainly expressed in Mi/MΦ in brain. TREM2 overexpression improved short- and long-term neurological deficits induced by SAH in rats, while TREM2 knockdown worsened neurological dysfunction. The rats with TREM2 overexpressed presented less neuronal apoptosis and more neuronal survival at 48 h after SAH, while the rats with TREM2 knockdown presented on the contrary. TREM2 overexpression manifested activated phagocytosis and suppressed inflammatory response, with the increase of CD206+/CD11b+ cells and IL-10 expression as well as the decrease of the infiltration of MPO+ cells and the expression of TNF-α, IL-1β. While TREM2 knockdown abolished these effects. The protein level of IRAK3, a negative regulatory factor of inflammation, was significantly elevated after TREM2 overexpression and declined after TREM2 knockdown. CONCLUSIONS Our research suggested TREM2 played a neuroprotective role and improved the short- and long-term neurological deficits by modulating neuroinflammation after SAH. The modulation on neuroinflammation of TREM2 after SAH was related with the elevated protein level of IRAK3.
Collapse
Affiliation(s)
- Cheng Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China; Department of Neurocritical Intensive Care Unit, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin City 214400, Jiangsu Province, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Demao Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Bing Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
22
|
Töger J, Andersen M, Haglund O, Kylkilahti TM, Lundgaard I, Markenroth Bloch K. Real‐time imaging of respiratory effects on cerebrospinal fluid flow in small diameter passageways. Magn Reson Med 2022; 88:770-786. [PMID: 35403247 PMCID: PMC9324219 DOI: 10.1002/mrm.29248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/03/2022]
Abstract
Purpose Respiration‐related CSF flow through the cerebral aqueduct may be useful for elucidating physiology and pathophysiology of the glymphatic system, which has been proposed as a mechanism of brain waste clearance. Therefore, we aimed to (1) develop a real‐time (CSF) flow imaging method with high spatial and sufficient temporal resolution to capture respiratory effects, (2) validate the method in a phantom setup and numerical simulations, and (3) apply the method in vivo and quantify its repeatability and correlation with different respiratory conditions. Methods A golden‐angle radial flow sequence (reconstructed temporal resolution 168 ms, spatial resolution 0.6 mm) was implemented on a 7T MRI scanner and reconstructed using compressed sensing. A phantom setup mimicked simultaneous cardiac and respiratory flow oscillations. The effect of temporal resolution and vessel diameter was investigated numerically. Healthy volunteers (n = 10) were scanned at four different respiratory conditions, including repeat scans. Results Phantom data show that the developed sequence accurately quantifies respiratory oscillations (ratio real‐time/reference QR = 0.96 ± 0.02), but underestimates the rapid cardiac oscillations (ratio QC = 0.46 ± 0.14). Simulations suggest that QC can be improved by increasing temporal resolution. In vivo repeatability was moderate to very strong for cranial and caudal flow (intraclass correlation coefficient range: 0.55–0.99) and weak to strong for net flow (intraclass correlation coefficient range: 0.48–0.90). Net flow was influenced by respiratory condition (p < 0.01). Conclusions The presented real‐time flow MRI method can quantify respiratory‐related variations of CSF flow in the cerebral aqueduct, but it underestimates rapid cardiac oscillations. In vivo, the method showed good repeatability and a relationship between flow and respiration.
Collapse
Affiliation(s)
- Johannes Töger
- Department of Clinical Sciences Lund, Diagnostic Radiology Lund University, Skåne University Hospital Lund Sweden
| | - Mads Andersen
- Philips Healthcare Copenhagen Denmark
- Lund University, Lund University Bioimaging Center Lund Sweden
| | - Olle Haglund
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Tekla Maria Kylkilahti
- Department of Experimental Medical Science Lund University Lund Sweden
- Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
| | - Iben Lundgaard
- Department of Experimental Medical Science Lund University Lund Sweden
- Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
| | | |
Collapse
|
23
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
24
|
Perivascular pumping in the mouse brain: Improved boundary conditions reconcile theory, simulation, and experiment. J Theor Biol 2022; 542:111103. [PMID: 35339513 DOI: 10.1016/j.jtbi.2022.111103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 01/24/2023]
Abstract
Cerebrospinal fluid (CSF) flows through the perivascular spaces (PVSs) surrounding cerebral arteries. Revealing the mechanisms driving that flow could bring improved understanding of brain waste transport and insights for disorders including Alzheimer's disease and stroke. In vivo velocity measurements of CSF in surface PVSs in mice have been used to argue that flow is driven primarily by the pulsatile motion of artery walls - perivascular pumping. However, fluid dynamics theory and simulation have predicted that perivascular pumping produces flows differing from in vivo observations starkly, particularly in the phase and relative amplitude of flow oscillation. We show that coupling theoretical and simulated flows to more realistic end boundary conditions, using resistance and compliance values measured in mice instead of using periodic boundaries, results in velocities that match observations more closely in phase and relative amplitude of oscillation, while preserving the existing agreement in mean flow speed. This quantitative agreement among theory, simulation, and in vivo measurement further supports the idea that perivascular pumping is an important CSF driver in physiological conditions.
Collapse
|
25
|
Takahashi S. Metabolic Contribution and Cerebral Blood Flow Regulation by Astrocytes in the Neurovascular Unit. Cells 2022; 11:cells11050813. [PMID: 35269435 PMCID: PMC8909328 DOI: 10.3390/cells11050813] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The neurovascular unit (NVU) is a conceptual framework that has been proposed to better explain the relationships between the neural cells and blood vessels in the human brain, focused mainly on the brain gray matter. The major components of the NVU are the neurons, astrocytes (astroglia), microvessels, pericytes, and microglia. In addition, we believe that oligodendrocytes should also be included as an indispensable component of the NVU in the white matter. Of all these components, astrocytes in particular have attracted the interest of researchers because of their unique anatomical location; these cells are interposed between the neurons and the microvessels of the brain. Their location suggests that astrocytes might regulate the cerebral blood flow (CBF) in response to neuronal activity, so as to ensure an adequate supply of glucose and oxygen to meet the metabolic demands of the neurons. In fact, the adult human brain, which accounts for only 2% of the entire body weight, consumes approximately 20–25% of the total amount of glucose and oxygen consumed by the whole body. The brain needs a continuous supply of these essential energy sources through the CBF, because there are practically no stores of glucose or oxygen in the brain; both acute and chronic cessation of CBF can adversely affect brain functions. In addition, another important putative function of the NVU is the elimination of heat and waste materials produced by neuronal activity. Recent evidence suggests that astrocytes play pivotal roles not only in supplying glucose, but also fatty acids and amino acids to neurons. Loss of astrocytic support can be expected to lead to malfunction of the NVU as a whole, which underlies numerous neurological disorders. In this review, we shall focus on historical and recent findings with regard to the metabolic contributions of astrocytes in the NVU.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi 350-1298, Japan; ; Tel.: +81-42-984-4111 (ext. 7412) or +81-3-3353-1211 (ext. 62613); Fax: +81-42-984-0664 or +81-3-3357-5445
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
26
|
Kung Y, Chen KY, Liao WH, Hsu YH, Wu CH, Hsiao MY, Huang APH, Chen WS. Facilitating drug delivery in the central nervous system by opening the blood-cerebrospinal fluid barrier with a single low energy shockwave pulse. Fluids Barriers CNS 2022; 19:3. [PMID: 34991647 PMCID: PMC8740485 DOI: 10.1186/s12987-021-00303-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Background The blood-cerebrospinal fluid (CSF) barrier (BCSFB) is critically important to the pathophysiology of the central nervous system (CNS). However, this barrier prevents the safe transmission of beneficial drugs from the blood to the CSF and thus the spinal cord and brain, limiting their effectiveness in treating a variety of CNS diseases. Methods This study demonstrates a method on SD rats for reversible and site-specific opening of the BCSFB via a noninvasive, low-energy focused shockwave (FSW) pulse (energy flux density 0.03 mJ/mm2) with SonoVue microbubbles (2 × 106 MBs/kg), posing a low risk of injury. Results By opening the BCSFB, the concentrations of certain CNS-impermeable indicators (70 kDa Evans blue and 500 kDa FITC-dextran) and drugs (penicillin G, doxorubicin, and bevacizumab) could be significantly elevated in the CSF around both the brain and the spinal cord. Moreover, glioblastoma model rats treated by doxorubicin with this FSW-induced BCSFB (FSW-BCSFB) opening technique also survived significantly longer than untreated controls. Conclusion This is the first study to demonstrate and validate a method for noninvasively and selectively opening the BCSFB to enhance drug delivery into CSF circulation. Potential applications may include treatments for neurodegenerative diseases, CNS infections, brain tumors, and leptomeningeal carcinomatosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00303-x.
Collapse
Affiliation(s)
- Yi Kung
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Kuan-Yu Chen
- Division of Pulmonology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei City, Taiwan
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Yi-Hua Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei City, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Ming-Yen Hsiao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Abel P-H Huang
- Department of Surgery, National Taiwan University Hospital, Taipei City, Taiwan.
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan. .,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
27
|
Szczygielski J, Kopańska M, Wysocka A, Oertel J. Cerebral Microcirculation, Perivascular Unit, and Glymphatic System: Role of Aquaporin-4 as the Gatekeeper for Water Homeostasis. Front Neurol 2021; 12:767470. [PMID: 34966347 PMCID: PMC8710539 DOI: 10.3389/fneur.2021.767470] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland.,Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Anna Wysocka
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Joachim Oertel
- Department of Neurosurgery, Faculty of Medicine and Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
28
|
Shanbhag NC, Bèchet NB, Kritsilis M, Lundgaard I. Impaired cerebrospinal fluid transport due to idiopathic subdural hematoma in pig: an unusual case. BMC Vet Res 2021; 17:250. [PMID: 34284779 PMCID: PMC8290550 DOI: 10.1186/s12917-021-02954-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We report the effects of the presentation of an idiopathic subdural hematoma (SDH) in an adult domestic pig on the glymphatic system, a brain-wide solute clearance system. This accidental finding is based on our recently published study that described this system for the first time in large mammals. Our current results define the need to investigate cerebrovascular pathologies that could compromise glymphatic function in gyrencephalic animal models as a tool to bridge rodent and human glymphatic studies. CASE PRESENTATION The pig underwent intracisternal infusion of a fluorescent tracer under general anesthesia to delineate cerebrospinal fluid (CSF) pathways, and was euthanized at the end of 3 h of tracer circulation. During brain isolation, a hematoma measuring approximately 15 × 35 mm in size beneath the dura was evident overlying fronto-parietal brain surface. Interestingly, CSF tracer distribution was markedly reduced on dorsal, lateral and ventral surfaces of the brain when compared with a control pig that was infused with the same tracer. Furthermore, regional distribution of tracer along the interhemispheric fissure, lateral fissure and hippocampus was 4-5-fold reduced in comparison with a control pig. Microscopically, glial-fibrillary acidic protein and aquaporin-4 water channel immunoreactivities were altered in the SDH pig brain. CONCLUSIONS This is the first case of impaired glymphatic pathway due to an idiopathic SDH in a pig. Potential etiology could involve an acceleration-deceleration injury inflicted prior to arrival at our housing facility (e.g., during animal transportation) leading to disruption of bridging veins along the superior sagittal sinus and impairing CSF pathways in the whole brain. This accidental finding of globally impaired glymphatic function sheds light on a novel consequence of SDH, which may play a role in the enhanced cognitive decline seen in elderly presenting with chronic SDH.
Collapse
Affiliation(s)
- Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Sölvegatan 17, BMC A1304, 223 62, Lund, SE, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Nicholas Burdon Bèchet
- Department of Experimental Medical Science, Lund University, Sölvegatan 17, BMC A1304, 223 62, Lund, SE, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Marios Kritsilis
- Department of Experimental Medical Science, Lund University, Sölvegatan 17, BMC A1304, 223 62, Lund, SE, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Sölvegatan 17, BMC A1304, 223 62, Lund, SE, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Abstract
Cerebrospinal fluid flows around and into the brain, driven by intricate mechanisms, with profound implications for human health. According to the glymphatic hypothesis, in physiological conditions, cerebrospinal fluid flows primarily during sleep and serves to remove metabolic wastes like the amyloid-beta and tau proteins whose accumulation is believed to cause Alzheimer's disease. This paper reviews one research team's recent in vivo experiments and theoretical studies to better understand the fluid dynamics of brain cerebrospinal fluid flow. Driving mechanisms are considered, particularly arterial pulsation. Flow correlates closely with artery motion and changes when artery motion is manipulated. Though there are discrepancies between in vivo observations and predictions from simulations and theoretical studies of the mechanism, realistic boundary conditions bring closer agreement. Vessel shapes are considered, and have elongation that minimizes their hydraulic resistance, perhaps through evolutionary optimization. The pathological condition of stroke is considered. Much tissue damage after stroke is caused by swelling, and there is now strong evidence that early swelling is caused not by fluid from blood, as is commonly thought, but by cerebrospinal fluid. Finally, drug delivery is considered, and demonstrations show the glymphatic system could quickly deliver drugs across the blood-brain barrier. The paper closes with a discussion of future opportunities in the fast-changing field of brain fluid dynamics.
Collapse
Affiliation(s)
- Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|