1
|
Stewart DC, Brisson BK, Dekky B, Berger AC, Yen W, Mauldin EA, Loebel C, Gillette D, Assenmacher CA, Quincey C, Stefanovski D, Cristofanilli M, Cukierman E, Burdick JA, Borges VF, Volk SW. Prognostic and therapeutic implications of tumor-restrictive type III collagen in the breast cancer microenvironment. NPJ Breast Cancer 2024; 10:86. [PMID: 39358397 PMCID: PMC11447064 DOI: 10.1038/s41523-024-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and bioinformatic experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in non-invasive and invasive breast cancer cell lines. In human triple-negative breast cancer biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in non-invasive compared to invasive regions. Similarly, bioinformatics analysis of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free, and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces the formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective therapeutic modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashton C Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corisa Quincey
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Stewart DC, Brisson BK, Yen WK, Liu Y, Wang C, Ruthel G, Gullberg D, Mauck RL, Maden M, Han L, Volk SW. Type III Collagen Regulates Matrix Architecture and Mechanosensing during Wound Healing. J Invest Dermatol 2024:S0022-202X(24)02078-5. [PMID: 39236902 DOI: 10.1016/j.jid.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Postnatal cutaneous wound healing is characterized by development of a collagen-rich scar lacking the architecture and functional integrity of unwounded tissue. Directing cell behaviors to efficiently heal wounds while minimizing scar formation remains a major wound management goal. In this study, we demonstrate type III collagen (COL3) as a critical regulator of re-epithelialization and scar formation during healing of COL3-enriched, regenerative (Acomys), scar-permissive (CD-1 Mus and wild-type Col3B6/B6 mice) and COL3-deficient, scar-promoting (Col3F/F, a murine conditional knockdown model) cutaneous wound models. We define a scar-permissive fibrillar collagen architecture signature characterized by elongated and anisotropically aligned collagen fibers that is dose-dependently suppressed by COL3. Furthermore, loss of COL3 alters how cells interpret their microenvironment-their mechanoperception-such that COL3-deficient cells display mechanically active phenotypes in the absence of increased microenvironmental stiffness through the upregulation and engagement of the profibrotic integrin α11. Further understanding COL3's role in regulating matrix architecture and mechanoresponses may inform clinical strategies that harness proregenerative mechanisms.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Becky K Brisson
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William K Yen
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuchen Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donald Gullberg
- The Department of Biomedicine, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Malcolm Maden
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Susan W Volk
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Syx D, Malfait F. Pathogenic mechanisms in genetically defined Ehlers-Danlos syndromes. Trends Mol Med 2024; 30:824-843. [PMID: 39147618 DOI: 10.1016/j.molmed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 08/17/2024]
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of rare heritable connective tissue disorders, common hallmarks of which are skin hyperextensibility, joint hypermobility, and generalized connective tissue fragility. Currently, 13 EDS types are recognized, caused by defects in 20 genes which consequently alter biosynthesis, organization, and/or supramolecular assembly of collagen fibrils in the extracellular matrix (ECM). Molecular analyses on patient samples (mostly dermal fibroblast cultures), combined with studies on animal models, have highlighted that part of EDS pathogenesis can be attributed to impaired cellular dynamics. Although our understanding of the full extent of (extra)cellular consequences is still limited, this narrative review aims to provide a comprehensive overview of our current knowledge on the extracellular, pericellular, and intracellular alterations implicated in EDS pathogenesis.
Collapse
Affiliation(s)
- Delfien Syx
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
4
|
Demirdas S, van den Bersselaar LM, Lechner R, Bos J, Alsters SI, Baars MJ, Baas AF, Baysal Ö, van der Crabben SN, Dulfer E, Giesbertz NA, Helderman-van den Enden AT, Hilhorst-Hofstee Y, Kempers MJ, Komdeur FL, Loeys B, Majoor-Krakauer D, Ockeloen CW, Overwater E, van Tintelen PJ, Voorendt M, de Waard V, Maugeri A, Brüggenwirth HT, van de Laar IM, Houweling AC. Vascular Ehlers-Danlos Syndrome: A Comprehensive Natural History Study in a Dutch National Cohort of 142 Patients. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e003978. [PMID: 38623759 PMCID: PMC11188628 DOI: 10.1161/circgen.122.003978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Vascular Ehlers-Danlos syndrome (vEDS) is a rare connective tissue disorder with a high risk for arterial, bowel, and uterine rupture, caused by heterozygous pathogenic variants in COL3A1. The aim of this cohort study is to provide further insights into the natural history of vEDS and describe genotype-phenotype correlations in a Dutch multicenter cohort to optimize patient care and increase awareness of the disease. METHODS Individuals with vEDS throughout the Netherlands were included. The phenotype was charted by retrospective analysis of molecular and clinical data, combined with a one-time physical examination. RESULTS A total of 142 individuals (50% female) participated the study, including 46 index patients (32%). The overall median age at genetic diagnosis was 41.0 years. More than half of the index patients (54.3%) and relatives (53.1%) had a physical appearance highly suggestive of vEDS. In these individuals, major events were not more frequent (P=0.90), but occurred at a younger age (P=0.01). A major event occurred more often and at a younger age in men compared with women (P<0.001 and P=0.004, respectively). Aortic aneurysms (P=0.003) and pneumothoraces (P=0.029) were more frequent in men. Aortic dissection was more frequent in individuals with a COL3A1 variant in the first quarter of the collagen helical domain (P=0.03). CONCLUSIONS Male sex, type and location of the COL3A1 variant, and physical appearance highly suggestive of vEDS are risk factors for the occurrence and early age of onset of major events. This national multicenter cohort study of Dutch individuals with vEDS provides a valuable basis for improving guidelines for the diagnosing, follow-up, and treatment of individuals with vEDS.
Collapse
Affiliation(s)
- Serwet Demirdas
- Department of Clinical Genetics, Cardiovascular Institute, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands (S.D., L.M.v.d.B., R.L., D.M.-K., H.T.B., I.M.B.H.v.d.L.)
- European Reference Network ReCONNET, Ehlers Danlos Syndrome Working Group, Rotterdam, the Netherlands (S.D.)
| | - Lisa M. van den Bersselaar
- Department of Clinical Genetics, Cardiovascular Institute, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands (S.D., L.M.v.d.B., R.L., D.M.-K., H.T.B., I.M.B.H.v.d.L.)
| | - Rosan Lechner
- Department of Clinical Genetics, Cardiovascular Institute, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands (S.D., L.M.v.d.B., R.L., D.M.-K., H.T.B., I.M.B.H.v.d.L.)
| | - Jessica Bos
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.M., A.C.H.)
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.C.H.)
| | - Suzanne I.M. Alsters
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.M., A.C.H.)
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.C.H.)
| | - Marieke J.H. Baars
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.M., A.C.H.)
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.C.H.)
| | - Annette F. Baas
- Department of Genetics, University Medical Center Utrecht, the Netherlands (A.F.B., N.A.A.G., P.J.v.T.)
| | - Özlem Baysal
- Department of Human Genetics, Radboud University Nijmegen Medical Center, the Netherlands (O.B., M.J.E.K., B.L., C.W.O., M.V.)
| | - Saskia N. van der Crabben
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.M., A.C.H.)
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.C.H.)
| | - Eelco Dulfer
- Department of Genetics, University Medical Center Groningen, the Netherlands (E.D., E.O.)
| | - Noor A.A. Giesbertz
- Department of Genetics, University Medical Center Utrecht, the Netherlands (A.F.B., N.A.A.G., P.J.v.T.)
| | | | - Yvonne Hilhorst-Hofstee
- Department of Clinical Genetics, Leiden University Medical Center, the Netherlands (Y.H.-H.)
| | - Marlies J.E. Kempers
- Department of Human Genetics, Radboud University Nijmegen Medical Center, the Netherlands (O.B., M.J.E.K., B.L., C.W.O., M.V.)
| | - Fenne L. Komdeur
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.M., A.C.H.)
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.C.H.)
| | - Bart Loeys
- Department of Human Genetics, Radboud University Nijmegen Medical Center, the Netherlands (O.B., M.J.E.K., B.L., C.W.O., M.V.)
| | - Daniëlle Majoor-Krakauer
- Department of Clinical Genetics, Cardiovascular Institute, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands (S.D., L.M.v.d.B., R.L., D.M.-K., H.T.B., I.M.B.H.v.d.L.)
| | - Charlotte W. Ockeloen
- Department of Human Genetics, Radboud University Nijmegen Medical Center, the Netherlands (O.B., M.J.E.K., B.L., C.W.O., M.V.)
| | - Eline Overwater
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.M., A.C.H.)
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.C.H.)
- Department of Genetics, University Medical Center Groningen, the Netherlands (E.D., E.O.)
| | - Peter J. van Tintelen
- Department of Genetics, University Medical Center Utrecht, the Netherlands (A.F.B., N.A.A.G., P.J.v.T.)
| | - Marsha Voorendt
- Department of Human Genetics, Radboud University Nijmegen Medical Center, the Netherlands (O.B., M.J.E.K., B.L., C.W.O., M.V.)
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, the Netherlands (V.d.W.)
| | - Alessandra Maugeri
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.M., A.C.H.)
| | - Hennie T. Brüggenwirth
- Department of Clinical Genetics, Cardiovascular Institute, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands (S.D., L.M.v.d.B., R.L., D.M.-K., H.T.B., I.M.B.H.v.d.L.)
| | - Ingrid M.B.H. van de Laar
- Department of Clinical Genetics, Cardiovascular Institute, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands (S.D., L.M.v.d.B., R.L., D.M.-K., H.T.B., I.M.B.H.v.d.L.)
- European Reference Network for Rare Multisystemic Vascular Disease, Medium Sized Arteries Working Group, Rotterdam, the Netherlands (I.M.B.H.v.d.L.)
| | - Arjan C. Houweling
- Department of Human Genetics, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.M., A.C.H.)
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, the Netherlands (J.B., S.I.M.A., M.J.H.B., S.N.v.d.C., F.L.K., E.O., A.C.H.)
| |
Collapse
|
5
|
Asta L, D’Angelo GA, Marinelli D, Benedetto U. Genetic Basis, New Diagnostic Approaches, and Updated Therapeutic Strategies of the Syndromic Aortic Diseases: Marfan, Loeys-Dietz, and Vascular Ehlers-Danlos Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6615. [PMID: 37623198 PMCID: PMC10454608 DOI: 10.3390/ijerph20166615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Syndromic aortic diseases (SADs) encompass various pathological manifestations affecting the aorta caused by known genetic factors, such as aneurysms, dissections, and ruptures. However, the genetic mutation underlying aortic pathology also gives rise to clinical manifestations affecting other vessels and systems. As a consequence, the main syndromes currently identified as Marfan, Loeys-Dietz, and vascular Ehlers-Danlos are characterized by a complex clinical picture. In this contribution, we provide an overview of the genetic mutations currently identified in order to have a better understanding of the pathogenic mechanisms. Moreover, an update is presented on the basis of the most recent diagnostic criteria, which enable an early diagnosis. Finally, therapeutic strategies are proposed with the goal of improving the rates of patient survival and the quality of life of those affected by these SADs.
Collapse
Affiliation(s)
- Laura Asta
- Department of Cardiac Surgery, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Gianluca A. D’Angelo
- Department of Cardiac Surgery, SS Annunziata Hospital, 66100 Chieti, Italy; (G.A.D.); (D.M.); (U.B.)
| | - Daniele Marinelli
- Department of Cardiac Surgery, SS Annunziata Hospital, 66100 Chieti, Italy; (G.A.D.); (D.M.); (U.B.)
| | - Umberto Benedetto
- Department of Cardiac Surgery, SS Annunziata Hospital, 66100 Chieti, Italy; (G.A.D.); (D.M.); (U.B.)
| |
Collapse
|
6
|
Doherty EL, Aw WY, Warren EC, Hockenberry M, Whitworth CP, Krohn G, Howell S, Diekman BO, Legant WR, Nia HT, Hickey AJ, Polacheck WJ. Patient-derived extracellular matrix demonstrates role of COL3A1 in blood vessel mechanics. Acta Biomater 2023; 166:346-359. [PMID: 37187299 PMCID: PMC10330735 DOI: 10.1016/j.actbio.2023.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Vascular Ehlers-Danlos Syndrome (vEDS) is a rare autosomal dominant disease caused by mutations in the COL3A1 gene, which renders patients susceptible to aneurysm and arterial dissection and rupture. To determine the role of COL3A1 variants in the biochemical and biophysical properties of human arterial ECM, we developed a method for synthesizing ECM directly from vEDS donor fibroblasts. We found that the protein content of the ECM generated from vEDS donor fibroblasts differed significantly from ECM from healthy donors, including upregulation of collagen subtypes and other proteins related to ECM structural integrity. We further found that ECM generated from a donor with a glycine substitution mutation was characterized by increased glycosaminoglycan content and unique viscoelastic mechanical properties, including increased time constant for stress relaxation, resulting in a decrease in migratory speed of human aortic endothelial cells when seeded on the ECM. Collectively, these results demonstrate that vEDS patient-derived fibroblasts harboring COL3A1 mutations synthesize ECM that differs in composition, structure, and mechanical properties from healthy donors. These results further suggest that ECM mechanical properties could serve as a prognostic indicator for patients with vEDS, and the insights provided by the approach demonstrate the broader utility of cell-derived ECM in disease modeling. STATEMENT OF SIGNIFICANCE: The role of collagen III ECM mechanics remains unclear, despite reported roles in diseases including fibrosis and cancer. Here, we generate fibrous, collagen-rich ECM from primary donor cells from patients with vascular Ehlers-Danlos syndrome (vEDS), a disease caused by mutations in the gene that encodes collagen III. We observe that ECM grown from vEDS patients is characterized by unique mechanical signatures, including altered viscoelastic properties. By quantifying the structural, biochemical, and mechanical properties of patient-derived ECM, we identify potential drug targets for vEDS, while defining a role for collagen III in ECM mechanics more broadly. Furthermore, the structure/function relationships of collagen III in ECM assembly and mechanics will inform the design of substrates for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Elizabeth L Doherty
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA; UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wen Yih Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA; UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily C Warren
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Max Hockenberry
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Chloe P Whitworth
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Grace Krohn
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Stefanie Howell
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brian O Diekman
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Wesley R Legant
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Hadi Tavakoli Nia
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Anthony J Hickey
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Legrand A, Guery C, Faugeroux J, Fontaine E, Beugnon C, Gianfermi A, Loisel-Ferreira I, Verpont MC, Adham S, Mirault T, Hadchouel J, Jeunemaitre X. Comparative therapeutic strategies for preventing aortic rupture in a mouse model of vascular Ehlers-Danlos syndrome. PLoS Genet 2022; 18:e1010059. [PMID: 35245290 PMCID: PMC8926273 DOI: 10.1371/journal.pgen.1010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/16/2022] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Vascular Ehlers-Danlos syndrome is a rare inherited disorder caused by genetic variants in type III collagen. Its prognosis is especially hampered by unpredictable arterial ruptures and there is no therapeutic consensus. We created a knock-in Col3a1+/G182R mouse model and performed a complete genetic, molecular and biochemical characterization. Several therapeutic strategies were also tested. Col3a1+/G182R mice showed a spontaneous mortality caused by thoracic aortic rupture that recapitulates the vascular Ehlers-Danlos syndrome with a lower survival rate in males, thin non-inflammatory arteries and an altered arterial collagen. Transcriptomic analysis of aortas showed upregulation of genes related to inflammation and cell stress response. Compared to water, survival rate of Col3a1+/G182R mice was not affected by beta-blockers (propranolol or celiprolol). Two other vasodilating anti-hypertensive agents (hydralazine, amlodipine) gave opposite results on aortic rupture and mortality rate. There was a spectacular beneficial effect of losartan, reversed by the cessation of its administration, and a marked deleterious effect of exogenous angiotensin II. These results suggest that blockade of the renin angiotensin system should be tested as a first-line medical therapy in patients with vascular Ehlers-Danlos syndrome. Vascular Ehlers-Danlos syndrome (vEDS) is a rare vascular genetic disease leading to life-threatening arterial and colonic fragility in young adulthood. We created a new mutant mouse with a typical disease-causing variant in the gene responsible for vEDS. This mouse recapitulates the vEDS vascular features with spontaneous mortality due to aortic rupture. We also tested several antihypertensive therapeutic strategies to improve the survival of this mouse. Only one of the 5 tested medications, losartan, which blocks the activity of angiotensin II, a vasoconstricting hormone, improves the survival of this mouse. Moreover, the deleterious effect of angiotensin II administration further highlights the role of angiotensin II on susceptibility to aortic rupture in this mouse. These results support the interest of a therapeutic trial in vEDS patients using angiotensin II receptor blockers.
Collapse
Affiliation(s)
- Anne Legrand
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Centre, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique et Centre de Référence des Maladies Vasculaires Rares, Paris, France
| | - Charline Guery
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Centre, Paris, France
| | - Julie Faugeroux
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Centre, Paris, France
| | - Erika Fontaine
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Centre, Paris, France
| | - Carole Beugnon
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Centre, Paris, France
| | - Amélie Gianfermi
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Centre, Paris, France
| | | | | | - Salma Adham
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique et Centre de Référence des Maladies Vasculaires Rares, Paris, France
| | - Tristan Mirault
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Centre, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique et Centre de Référence des Maladies Vasculaires Rares, Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Médecine Vasculaire, Paris, France
| | | | - Xavier Jeunemaitre
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Centre, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique et Centre de Référence des Maladies Vasculaires Rares, Paris, France
- * E-mail:
| |
Collapse
|
8
|
Omar R, Malfait F, Van Agtmael T. Four decades in the making: Collagen III and mechanisms of vascular Ehlers Danlos Syndrome. Matrix Biol Plus 2021; 12:100090. [PMID: 34849481 PMCID: PMC8609142 DOI: 10.1016/j.mbplus.2021.100090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Vascular Ehlers Danlos (vEDS) syndrome is a severe multi-systemic connective tissue disorder characterized by risk of dissection and rupture of the arteries, gastro-intestinal tract and gravid uterus. vEDS is caused by mutations in COL3A1, that encodes the alpha 1 chain of type III collagen, which is a major extracellular matrix component of the vasculature and hollow organs. The first causal mutations were identified in the 1980s but progress in our understanding of the pathomolecular mechanisms has been limited. Recently, the application of more refined animal models combined with global omics approaches has yielded important new insights both in terms of disease mechanisms and potential for therapeutic intervention. However, it is also becoming apparent that vEDS is a complex disorder in terms of its molecular disease mechanisms with a poorly understood allelic and mechanistic heterogeneity. In this brief review we will focus our attention on the disease mechanisms of COL3A1 mutations and vEDS, and recent progress in therapeutic approaches using animal models.
Collapse
Affiliation(s)
- Ramla Omar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Fransiska Malfait
- Centre for Medical Genetics, Ghent University Hospital, Belgium
- Department of Biomolecular Medicine, Ghent University, Belgium
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| |
Collapse
|
9
|
Vroman R, Malfait AM, Miller RE, Malfait F, Syx D. Animal Models of Ehlers-Danlos Syndromes: Phenotype, Pathogenesis, and Translational Potential. Front Genet 2021; 12:726474. [PMID: 34712265 PMCID: PMC8547655 DOI: 10.3389/fgene.2021.726474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of heritable connective tissues disorders mainly characterized by skin hyperextensibility, joint hypermobility and generalized tissue fragility. Currently, 14 EDS subtypes each with particular phenotypic features are recognized and are caused by genetic defects in 20 different genes. All of these genes are involved in the biosynthesis and/or fibrillogenesis of collagens at some level. Although great progress has been made in elucidating the molecular basis of different EDS subtypes, the pathogenic mechanisms underlying the observed phenotypes remain poorly understood, and consequentially, adequate treatment and management options for these conditions remain scarce. To date, several animal models, mainly mice and zebrafish, have been described with defects in 14 of the 20 hitherto known EDS-associated genes. These models have been instrumental in discerning the functions and roles of the corresponding proteins during development, maturation and repair and in portraying their roles during collagen biosynthesis and/or fibrillogenesis, for some even before their contribution to an EDS phenotype was elucidated. Additionally, extensive phenotypical characterization of these models has shown that they largely phenocopy their human counterparts, with recapitulation of several clinical hallmarks of the corresponding EDS subtype, including dermatological, cardiovascular, musculoskeletal and ocular features, as well as biomechanical and ultrastructural similarities in tissues. In this narrative review, we provide a comprehensive overview of animal models manifesting phenotypes that mimic EDS with a focus on engineered mouse and zebrafish models, and their relevance in past and future EDS research. Additionally, we briefly discuss domestic animals with naturally occurring EDS phenotypes. Collectively, these animal models have only started to reveal glimpses into the pathophysiological aspects associated with EDS and will undoubtably continue to play critical roles in EDS research due to their tremendous potential for pinpointing (common) signaling pathways, unveiling possible therapeutic targets and providing opportunities for preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Robin Vroman
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne-Marie Malfait
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Rachel E. Miller
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Fransiska Malfait
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Boel A, Burger J, Vanhomwegen M, Beyens A, Renard M, Barnhoorn S, Casteleyn C, Reinhardt DP, Descamps B, Vanhove C, van der Pluijm I, Coucke P, Willaert A, Essers J, Callewaert B. Slc2a10 knock-out mice deficient in ascorbic acid synthesis recapitulate aspects of arterial tortuosity syndrome and display mitochondrial respiration defects. Hum Mol Genet 2021; 29:1476-1488. [PMID: 32307537 DOI: 10.1093/hmg/ddaa071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022] Open
Abstract
Arterial tortuosity syndrome (ATS) is a recessively inherited connective tissue disorder, mainly characterized by tortuosity and aneurysm formation of the major arteries. ATS is caused by loss-of-function mutations in SLC2A10, encoding the facilitative glucose transporter GLUT10. Former studies implicated GLUT10 in the transport of dehydroascorbic acid, the oxidized form of ascorbic acid (AA). Mouse models carrying homozygous Slc2a10 missense mutations did not recapitulate the human phenotype. Since mice, in contrast to humans, are able to intracellularly synthesize AA, we generated a novel ATS mouse model, deficient for Slc2a10 as well as Gulo, which encodes for L-gulonolactone oxidase, an enzyme catalyzing the final step in AA biosynthesis in mouse. Gulo;Slc2a10 double knock-out mice showed mild phenotypic anomalies, which were absent in single knock-out controls. While Gulo;Slc2a10 double knock-out mice did not fully phenocopy human ATS, histological and immunocytochemical analysis revealed compromised extracellular matrix formation. Transforming growth factor beta signaling remained unaltered, while mitochondrial function was compromised in smooth muscle cells derived from Gulo;Slc2a10 double knock-out mice. Altogether, our data add evidence that ATS is an ascorbate compartmentalization disorder, but additional factors underlying the observed phenotype in humans remain to be determined.
Collapse
Affiliation(s)
- Annekatrien Boel
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,Ghent-Fertility and Stem cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Joyce Burger
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Marine Vanhomwegen
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Aude Beyens
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marjolijn Renard
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Christophe Casteleyn
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Dieter P Reinhardt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Faculty of Dentistry, McGill University, H3A 0C7 Montreal, Quebec, Canada
| | - Benedicte Descamps
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium
| | - Christian Vanhove
- Infinity (IBiTech-MEDISIP), Department of Electronics and Information Systems, Ghent University, 9000 Ghent, Belgium
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Paul Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Andy Willaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Kim ESH, Saw J, Kadian-Dodov D, Wood M, Ganesh SK. FMD and SCAD: Sex-Biased Arterial Diseases With Clinical and Genetic Pleiotropy. Circ Res 2021; 128:1958-1972. [PMID: 34110898 DOI: 10.1161/circresaha.121.318300] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multifocal fibromuscular dysplasia (FMD) and spontaneous coronary artery dissection are both sex-biased diseases disproportionately affecting women over men in a 9:1 ratio. Traditionally known in the context of renovascular hypertension, recent advances in knowledge about FMD have demonstrated that FMD is a systemic arteriopathy presenting as arterial stenosis, aneurysm, and dissection in virtually any arterial bed. FMD is also characterized by major cardiovascular presentations including hypertension, stroke, and myocardial infarction. Similar to FMD, spontaneous coronary artery dissection is associated with a high prevalence of extracoronary vascular abnormalities, including FMD, aneurysm, and extracoronary dissection, and recent studies have also found genetic associations between the two diseases. This review will summarize the relationship between FMD and spontaneous coronary artery dissection with a focus on common clinical associations, histopathologic mechanisms, genetic susceptibilities, and the biology of these diseases. The current status of disease models and critical future research directions will also be addressed.
Collapse
Affiliation(s)
- Esther S H Kim
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (E.S.H.K.)
| | - Jacqueline Saw
- Division of Cardiology, Vancouver General Hospital, University of British Columbia Canada (J.S.)
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute, Marie-Joseé and Henry R. Kravis Center for Cardiovascular Health, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY (D.K.-D.)
| | - Malissa Wood
- Division of Cardiology, Harvard Medical School, Massachusetts General Hospital, Boston (M.W.)
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine (S.K.G.), University of Michigan Medical School, Ann Arbor.,Department of Human Genetics (S.K.G.), University of Michigan Medical School, Ann Arbor
| |
Collapse
|
12
|
Kawamura Y, Murtada SI, Gao F, Liu X, Tellides G, Humphrey JD. Adventitial remodeling protects against aortic rupture following late smooth muscle-specific disruption of TGFβ signaling. J Mech Behav Biomed Mater 2021; 116:104264. [PMID: 33508556 DOI: 10.1016/j.jmbbm.2020.104264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/21/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
Altered signaling through transforming growth factor-beta (TGFβ) increases the risk of aortic dissection in patients, which has been confirmed in mouse models. It is well known that altered TGFβ signaling affects matrix turnover, but there has not been a careful examination of associated changes in structure-function relations. In this paper, we present new findings on the rupture potential of the aortic wall following late postnatal smooth muscle cell (SMC)-specific disruption of type I and II TGFβ receptors in a mouse model with demonstrated dissection susceptibility. Using a combination of custom computer-controlled biaxial tests and quantitative histology and immunohistochemistry, we found that loss of TGFβ signaling in SMCs compromises medial properties but induces compensatory changes in the adventitia that preserve wall strength above that which is needed to resist in vivo values of wall stress. These findings emphasize the different structural defects that lead to aortic dissection and rupture - compromised medial integrity and insufficient adventitial strength, respectively. Relative differences in these two defects, in an individual subject at a particular time, likely reflects the considerable phenotypic diversity that is common in clinical presentations of thoracic aortic dissection and rupture. There is, therefore, a need to move beyond examinations of bulk biological assays and wall properties to cell- and layer-specific studies that delineate pathologic and compensatory changes in wall biology and composition, and thus the structural integrity of the aortic wall that can dictate differences between life and death.
Collapse
Affiliation(s)
- Y Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - F Gao
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - X Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - G Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Dubacher N, Münger J, Gorosabel MC, Crabb J, Ksiazek AA, Caspar SM, Bakker ENTP, van Bavel E, Ziegler U, Carrel T, Steinmann B, Zeisberger S, Meienberg J, Matyas G. Celiprolol but not losartan improves the biomechanical integrity of the aorta in a mouse model of vascular Ehlers-Danlos syndrome. Cardiovasc Res 2020; 116:457-465. [PMID: 31056650 DOI: 10.1093/cvr/cvz095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Antihypertensive drugs are included in the medical therapy of vascular Ehlers-Danlos syndrome (vEDS). The β-blocker celiprolol has been suggested to prevent arterial damage in vEDS, but the underlying mechanism remains unclear. It is also unknown whether the widely used angiotensin II receptor type 1 antagonist losartan has a therapeutic effect in vEDS. Here, we evaluated the impact of celiprolol and losartan on the biomechanical integrity of the vEDS thoracic aorta. METHODS AND RESULTS We established a new approach to measure the maximum tensile force at rupture of uniaxially stretched murine thoracic aortic rings. In a vEDS model, which we (re-)characterized here at molecular level, heterozygous mice showed a significant reduction in the rupture force compared to wild-type mice, reflecting the increased mortality due to aortic rupture. For the assessment of treatment effects, heterozygous mice at 4 weeks of age underwent a 4-week treatment with celiprolol, losartan, and, as a proof-of-concept drug, the matrix metalloproteinase inhibitor doxycycline. Compared to age- and sex-matched untreated heterozygous mice, treatment with doxycycline or celiprolol resulted in a significant increase of rupture force, whereas no significant change was detected upon losartan treatment. CONCLUSIONS In a vEDS model, celiprolol or doxycycline, but not losartan, can improve the biomechanical integrity of the aortic wall, thereby potentially reducing the risk of dissection and rupture. As doxycycline is a broad-spectrum antibiotic with considerable side effects, celiprolol may be more suitable for a long-term therapy and thus rather indicated for the medication of patients with vEDS.
Collapse
Affiliation(s)
- Nicolo Dubacher
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, 8952, Schlieren-Zurich, Switzerland
| | - Justyna Münger
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, 8952, Schlieren-Zurich, Switzerland
| | - Maria C Gorosabel
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, 8952, Schlieren-Zurich, Switzerland
| | - Jessica Crabb
- Institute of Mechanical Systems, Swiss Federal Institute of Technology Zurich, 8092, Zurich, Switzerland
| | - Agnieszka A Ksiazek
- Institute for Regenerative Medicine, University of Zurich, 8091, Zurich, Switzerland.,Clinic for Small Animal Internal Medicine, University of Zurich, 8057, Zurich, Switzerland
| | - Sylvan M Caspar
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, 8952, Schlieren-Zurich, Switzerland
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, 1000 GG, Amsterdam, The Netherlands
| | - Ed van Bavel
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, 1000 GG, Amsterdam, The Netherlands
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, 8057, Zurich, Switzerland
| | - Thierry Carrel
- Department of Cardiovascular Surgery, University Hospital, 3010, Berne, Switzerland
| | - Beat Steinmann
- Division of Metabolism, University Children's Hospital, 8032, Zurich, Switzerland
| | - Steffen Zeisberger
- Institute for Regenerative Medicine, University of Zurich, 8091, Zurich, Switzerland.,Wyss Zurich, University of Zurich, 8044 Zurich, Switzerland
| | - Janine Meienberg
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, 8952, Schlieren-Zurich, Switzerland
| | - Gabor Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, 8952, Schlieren-Zurich, Switzerland.,Department of Cardiovascular Surgery, University Hospital, 3010, Berne, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
14
|
Bowen CJ, Calderón Giadrosic JF, Burger Z, Rykiel G, Davis EC, Helmers MR, Benke K, Gallo MacFarlane E, Dietz HC. Targetable cellular signaling events mediate vascular pathology in vascular Ehlers-Danlos syndrome. J Clin Invest 2020; 130:686-698. [PMID: 31639107 PMCID: PMC6994142 DOI: 10.1172/jci130730] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Vascular Ehlers-Danlos syndrome (vEDS) is an autosomal-dominant connective tissue disorder caused by heterozygous mutations in the COL3A1 gene, which encodes the pro-α 1 chain of collagen III. Loss of structural integrity of the extracellular matrix is believed to drive the signs and symptoms of this condition, including spontaneous arterial dissection and/or rupture, the major cause of mortality. We created 2 mouse models of vEDS that carry heterozygous mutations in Col3a1 that encode glycine substitutions analogous to those found in patients, and we showed that signaling abnormalities in the PLC/IP3/PKC/ERK pathway (phospholipase C/inositol 1,4,5-triphosphate/protein kinase C/extracellular signal-regulated kinase) are major mediators of vascular pathology. Treatment with pharmacologic inhibitors of ERK1/2 or PKCβ prevented death due to spontaneous aortic rupture. Additionally, we found that pregnancy- and puberty-associated accentuation of vascular risk, also seen in vEDS patients, was rescued by attenuation of oxytocin and androgen signaling, respectively. Taken together, our results provide evidence that targetable signaling abnormalities contribute to the pathogenesis of vEDS, highlighting unanticipated therapeutic opportunities.
Collapse
Affiliation(s)
- Caitlin J. Bowen
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | - Zachary Burger
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Graham Rykiel
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elaine C. Davis
- Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Mark R. Helmers
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly Benke
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Elena Gallo MacFarlane
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harry C. Dietz
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
15
|
Wang C, Brisson BK, Terajima M, Li Q, Hoxha K, Han B, Goldberg AM, Sherry Liu X, Marcolongo MS, Enomoto-Iwamoto M, Yamauchi M, Volk SW, Han L. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus. Matrix Biol 2019; 85-86:47-67. [PMID: 31655293 DOI: 10.1016/j.matbio.2019.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Despite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1+/- mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix, indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte mechanotransduction. In both tissues, reduction of type III collagen leads to decrease in tissue modulus despite the increase in collagen cross-linking. This suggests that the disruption of matrix structure due to type III collagen deficiency outweighs the stiffening of collagen fibrils by increased cross-linking, leading to a net negative impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our understanding of type III collagen across various tissue types, and to uncover critical molecular components of the microniche for regenerative strategies targeting articular cartilage and meniscus repair.
Collapse
Affiliation(s)
- Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, United States
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Kevt'her Hoxha
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Biao Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Abby M Goldberg
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, United States
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Michele S Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, United States
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, 19104, United States.
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
16
|
Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases. Gene 2019; 707:151-171. [PMID: 31075413 DOI: 10.1016/j.gene.2019.05.003] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
Collagen alpha-1(III) chain, also known as the alpha 1 chain of type III collagen, is a protein that in humans is encoded by the COL3A1 gene. Three alpha 1 chains are required to form the type III collagen molecule which has a long triple-helical domain. Type III collagen, an extracellular matrix protein, is synthesized by cells as a pre-procollagen. It is found as a major structural component in hollow organs such as large blood vessels, uterus and bowel. Other functions of type III collagen include interaction with platelets in the blood clotting cascade and it is also an important signaling molecule in wound healing. Mutations in the COL3A1 gene cause the vascular type of Ehlers-Danlos syndrome (vEDS; OMIM 130050). It is the most serious form of EDS, since patients often die suddenly due to a rupture of large arteries. Inactivation of the murine Col3a1 gene leads to a shorter life span in homozygous mutant mice. The mice die prematurely from a rupture of major arteries mimicking the human vEDS phenotype. The biochemical and cellular effects of COL3A1 mutations have been studied extensively. Most of the glycine mutations lead to the synthesis of type III collagen with reduced thermal stability, which is more susceptible for proteinases. Intracellular accumulation of this normally secreted protein is also found. Ultrastructural analyses have demonstrated dilated rough endoplasmic reticulum and changes in the diameter of collagen fibers. Other clinical conditions associated with type III collagen are several types of fibroses in which increased amounts of type III collagen accumulate in the target organs.
Collapse
|
17
|
D'hondt S, Guillemyn B, Syx D, Symoens S, De Rycke R, Vanhoutte L, Toussaint W, Lambrecht BN, De Paepe A, Keene DR, Ishikawa Y, Bächinger HP, Janssens S, Bertrand MJ, Malfait F. Type III collagen affects dermal and vascular collagen fibrillogenesis and tissue integrity in a mutant Col3a1 transgenic mouse model. Matrix Biol 2018; 70:72-83. [DOI: 10.1016/j.matbio.2018.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/15/2022]
|
18
|
Vascular aspects of the Ehlers-Danlos Syndromes. Matrix Biol 2018; 71-72:380-395. [PMID: 29709596 DOI: 10.1016/j.matbio.2018.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
The Ehlers-Danlos Syndromes comprise a heterogeneous group of rare monogenic conditions that are characterized by joint hypermobility, skin and vascular fragility and generalized connective tissue friability. The latest classification recognizes 13 clinical subtypes, with mutations identified in 19 different genes. Besides defects in fibrillar collagens (collagen types I, III and V), their modifying enzymes (ADAMTS-2, lysylhydroxylase 1 (LH1)), and molecules involved in collagen folding (FKBP22), defects have recently been identified in other constituents of the extracellular matrix (e.g. Tenascin-X, collagen type XII), enzymes involved in glycosaminoglycan biosynthesis (β4GalT7 and β3GalT6), dermatan 4-O-sulfotransferase-1 (D4ST1), dermatan sulfate epimerase (DSE)), (putative) transcription factors (ZNF469, PRDM5), components of the complement pathway (C1r, C1s) and an intracellular Zinc transporter (ZIP13). Easy bruising is, to a variable degree, present in all subtypes of EDS. A variable bleeding tendency, manifesting e.g. as gum bleeding, menometrorraghia, postnatal or peri-operative hemorrhage is observed in many EDS-patients of varying EDS subtypes. Life-threatening arterial aneurysms, dissections and ruptures of medium-sized and large arteries are a hallmark of the vascular subtype of EDS, caused by a molecular defect in collagen type III, an important constituent of blood vessel walls and hollow organs. They may however also occur in other EDS subtypes, especially in classical EDS, caused by defects in type V collagen or, rarely, type I collagen, and in kyphoscoliotic EDS, caused by defects in LH1 or FKBP22. These manifestations of vascular fragility and bleeding are usually attributed to fragility of the blood vessel walls and the perivascular connective tissues, but the molecular pathomechanisms underlying these complications are poorly studied. This review summarizes current knowledge on manifestations of vascular fragility in the different EDS subtypes.
Collapse
|
19
|
Chiarelli N, Carini G, Zoppi N, Ritelli M, Colombi M. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome. PLoS One 2018; 13:e0191220. [PMID: 29346445 PMCID: PMC5773204 DOI: 10.1371/journal.pone.0191220] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/29/2017] [Indexed: 01/20/2023] Open
Abstract
Vascular Ehlers-Danlos syndrome (vEDS) is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII), which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER) homeostasis, COLLs folding and extracellular matrix (ECM) organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition into the ECM of several structural proteins crucial to the integrity of soft connective tissues.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Nicoletta Zoppi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Marco Ritelli
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
20
|
Byers PH, Belmont J, Black J, De Backer J, Frank M, Jeunemaitre X, Johnson D, Pepin M, Robert L, Sanders L, Wheeldon N. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:40-47. [PMID: 28306228 DOI: 10.1002/ajmg.c.31553] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vascular Ehlers Danlos syndrome (vEDS) is an uncommon genetic disorders characterized by arterial aneurysm, dissection and rupture, bowel rupture, and rupture of the gravid uterus. The frequency is estimated as 1/50,000-1/200,000 and results from pathogenic variants in COL3A1, which encodes the chains of type III procollagen, a major protein in vessel walls and hollow organs. Initial diagnosis depends on the recognitions of clinical features, including family history. Management is complex and requires multiple specialists who can respond to and manage the major complications. A summary of recommendations for management include: Identify causative variants in COL3A1 prior to application of diagnosis, modulate life style to minimize injury, risk of vessel/organ rupture, identify and create care team, provide individual plans for emergency care ("vascular EDS passport") with diagnosis and management plan for use when traveling, centralize management at centers of excellence (experience) when feasible, maintain blood pressure in the normal range and treat hypertension aggressively, surveillance of vascular tree by doppler ultrasound, CTA (low radiation alternatives) or MRA if feasible on an annual basis. These recommendations represent a consensus of an international group of specialists with a broad aggregate experience in the care of individuals with vascular EDS that will need to be assessed on a regular basis as new information develops. © 2017 Wiley Periodicals, Inc.
Collapse
|
21
|
|
22
|
Wang L, Liu H, Jiao Y, Wang E, Clark SH, Postlethwaite AE, Gu W, Chen H. Differences between Mice and Humans in Regulation and the Molecular Network of Collagen, Type III, Alpha-1 at the Gene Expression Level: Obstacles that Translational Research Must Overcome. Int J Mol Sci 2015; 16:15031-56. [PMID: 26151842 PMCID: PMC4519886 DOI: 10.3390/ijms160715031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/17/2022] Open
Abstract
Collagen, type III, alpha-1 (COL3A1) is essential for normal collagen I fibrillogenesis in many organs. There are differences in phenotypes of mutations in the COL3A1 gene in humans and mutations in mice. In order to investigate whether the regulation and gene network of COL3A1 is the same in healthy populations of mice and humans, we compared the quantitative trait loci (QTL) that regulate the expression level of COL3A1 and the gene network of COL3A1 pathways between humans and mice using whole genome expression profiles. Our results showed that, for the regulation of expression of Col3a1 in mice, an eQTL on chromosome (Chr) 12 regulates the expression of Col3a1. However, expression of genes in the syntenic region on human Chr 7 has no association with the expression level of COL3A1. For the gene network comparison, we identified 44 top genes whose expression levels are strongly associated with that of Col3a1 in mice. We next identified 41 genes strongly associated with the expression level of COL3A1 in humans. There are a few but significant differences in the COL3A1 gene network between humans and mice. Several genes showed opposite association with expression of COL3A1. These genes are known to play important roles in development and function of the extracellular matrix of the lung. Difference in the molecular pathway of key genes in the COL3A1 gene network in humans and mice suggest caution should be used in extrapolating results from models of human lung diseases in mice to clinical lung diseases in humans. These differences may influence the efficacy of drugs in humans whose development employed mouse models.
Collapse
Affiliation(s)
- Lishi Wang
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Department of Basic Research, Inner Mongolia Medical College, Inner Mongolia 010110, China.
| | - Hongchao Liu
- Integrative Research Center, the first Hospital of Qiqihaer City, Qiqihaer 161005, China.
| | - Yan Jiao
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Department of Medicine, Mudanjiang Medical College, Mudanjiang 157001, China.
| | - Erjian Wang
- Integrative Research Center, the first Hospital of Qiqihaer City, Qiqihaer 161005, China.
| | - Stephen H Clark
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Arnold E Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, USA.
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, USA.
| | - Hong Chen
- Integrative Research Center, the first Hospital of Qiqihaer City, Qiqihaer 161005, China.
| |
Collapse
|
23
|
Miedel EL, Brisson BK, Hamilton T, Gleason H, Swain GP, Lopas L, Dopkin D, Perosky JE, Kozloff KM, Hankenson KD, Volk SW. Type III collagen modulates fracture callus bone formation and early remodeling. J Orthop Res 2015; 33:675-84. [PMID: 25626998 PMCID: PMC4406871 DOI: 10.1002/jor.22838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/19/2015] [Indexed: 02/04/2023]
Abstract
Type III collagen (Col3) has been proposed to play a key role in tissue repair based upon its temporospatial expression during the healing process of many tissues, including bone. Given our previous finding that Col3 regulates the quality of cutaneous repair, as well as our recent data supporting its role in regulating osteoblast differentiation and trabecular bone quantity, we hypothesized that mice with diminished Col3 expression would exhibit altered long-bone fracture healing. To determine the role of Col3 in bone repair, young adult wild-type (Col3+/+) and haploinsufficent (Col3+/-) mice underwent bilateral tibial fractures. Healing was assessed 7, 14, 21, and 28 days following fracture utilizing microcomputed tomography (microCT), immunohistochemistry, and histomorphometry. MicroCT analysis revealed a small but significant increase in bone volume fraction in Col3+/- mice at day 21. However, histological analysis revealed that Col3+/- mice have less bone within the callus at days 21 and 28, which is consistent with the established role for Col3 in osteogenesis. Finally, a reduction in fracture callus osteoclastic activity in Col3+/- mice suggests Col3 also modulates callus remodeling. Although Col3 haploinsufficiency affected biological aspects of bone repair, it did not affect the regain of mechanical function in the young mice that were evaluated in this study. These findings provide evidence for a modulatory role for Col3 in fracture repair and support further investigations into its role in impaired bone healing.
Collapse
Affiliation(s)
- Emily L. Miedel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Becky K. Brisson
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Todd Hamilton
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hadley Gleason
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gary P. Swain
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luke Lopas
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek Dopkin
- Department of Small Animal Clinical Science and Department of Physiology, Michigan State University, East Lansing, MI
| | - Joseph E. Perosky
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI
| | - Kenneth M. Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Small Animal Clinical Science and Department of Physiology, Michigan State University, East Lansing, MI
| | - Susan W. Volk
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
24
|
Abstract
OBJECTIVES Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved in the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. METHODS The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-Kras transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK receptor antagonist (proglumide, 0.1 mg/mL). Pancreas from the mice were removed and examined histologically for number and grade of PanINs after 1, 2, or 4 months of antagonist therapy. RESULTS Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed, and progression to advanced lesions arrested in mice treated with proglumide compared with the controls (P = 0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared with vehicle (P < 0.001). CONCLUSIONS These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. The use of CCK receptor antagonists may have a role in cancer prophylaxis in high-risk subjects and may reduce fibrosis in the microenvironment.
Collapse
|
25
|
Volk SW, Shah SR, Cohen AJ, Wang Y, Brisson BK, Vogel LK, Hankenson KD, Adams SL. Type III collagen regulates osteoblastogenesis and the quantity of trabecular bone. Calcif Tissue Int 2014; 94:621-31. [PMID: 24626604 PMCID: PMC4335719 DOI: 10.1007/s00223-014-9843-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/26/2014] [Indexed: 11/25/2022]
Abstract
Type III collagen (Col3), a fibril-forming collagen, is a major extracellular matrix component in a variety of internal organs and skin. It is also expressed at high levels during embryonic skeletal development and is expressed by osteoblasts in mature bone. Loss of function mutations in the gene encoding Col3 (Col3a1) are associated with vascular Ehlers-Danlos syndrome (EDS). Although the most significant clinical consequences of this syndrome are associated with catastrophic failure and impaired healing of soft tissues, several studies have documented skeletal abnormalities in vascular EDS patients. However, there are no reports of the role of Col3 deficiency on the murine skeleton. We compared craniofacial and skeletal phenotypes in young (6-8 weeks) and middle-aged (>1 year) control (Col3(+/+)) and haploinsufficient (Col3(+/-)) mice, as well as young null (Col3(-/-)) mice by microcomputed tomography (μCT). Although Col3(+/-) mice did not have significant craniofacial abnormalities based upon cranial morphometrics, μCT analysis of distal femur trabecular bone demonstrated significant reductions in bone volume (BV), bone volume fraction (BV/TV), connectivity density, structure model index and trabecular thickness in young adult female Col3(+/-) mice relative to wild-type littermates. The reduction in BV/TV persisted in female mice at 1 year of age. Next, we evaluated the role of Col3 in vitro. Osteogenesis assays revealed that cultures of mesenchymal progenitors collected from Col3(-/-) embryos display decreased alkaline phosphatase activity and reduced capacity to undergo mineralization. Consistent with this data, a reduction in expression of osteogenic markers (type I collagen, osteocalcin and bone sialoprotein) correlates with reduced bone Col3 expression in Col3(+/-) mice and with age in vivo. A small but significant reduction in osteoclast numbers was found in Col3(+/-) compared to Col3(+/+) bones. Taken together, these findings indicate that Col3 plays a role in development of trabecular bone through its effects on osteoblast differentiation.
Collapse
Affiliation(s)
- Susan W Volk
- Department of Clinical Studies-Philadelphia, University of Pennsylvania School of Veterinary Medicine, 312 Hill Pavilion, 380 S. University Ave, Philadelphia, PA, 19104-4539, USA,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Milewicz DM, Reid A, Cecchi A. Vascular Ehlers-Danlos syndrome: exploring the role of inflammation in arterial disease. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:5-7. [PMID: 24550430 PMCID: PMC4331049 DOI: 10.1161/circgenetics.114.000507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dianna M. Milewicz
- Department of Internal Medicine University of Texas Health Science
Center at Houston, Houston, TX
| | - Amy Reid
- Department of Internal Medicine, University of Chicago, Chicago,
IL
| | - Alana Cecchi
- Department of Internal Medicine University of Texas Health Science
Center at Houston, Houston, TX
| |
Collapse
|
27
|
Mizuno K, Boudko S, Engel J, Bächinger HP. Vascular Ehlers-Danlos syndrome mutations in type III collagen differently stall the triple helical folding. J Biol Chem 2013; 288:19166-76. [PMID: 23645670 DOI: 10.1074/jbc.m113.462002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vascular Ehlers-Danlos syndrome (EDS) type IV is the most severe form of EDS. In many cases the disease is caused by a point mutation of Gly in type III collagen. A slower folding of the collagen helix is a potential cause for over-modifications. However, little is known about the rate of folding of type III collagen in patients with EDS. To understand the molecular mechanism of the effect of mutations, a system was developed for bacterial production of homotrimeric model polypeptides. The C-terminal quarter, 252 residues, of the natural human type III collagen was attached to (GPP)7 with the type XIX collagen trimerization domain (NC2). The natural collagen domain forms a triple helical structure without 4-hydroxylation of proline at a low temperature. At 33 °C, the natural collagenous part is denatured, but the C-terminal (GPP)7-NC2 remains intact. Switching to a low temperature triggers the folding of the type III collagen domain in a zipper-like fashion that resembles the natural process. We used this system for the two known EDS mutations (Gly-to-Val) in the middle at Gly-910 and at the C terminus at Gly-1018. In addition, wild-type and Gly-to-Ala mutants were made. The mutations significantly slow down the overall rate of triple helix formation. The effect of the Gly-to-Val mutation is much more severe compared with Gly-to-Ala. This is the first report on the folding of collagen with EDS mutations, which demonstrates local delays in the triple helix propagation around the mutated residue.
Collapse
Affiliation(s)
- Kazunori Mizuno
- Shriners Hospitals for Children Portland Research Center, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
28
|
Faugeroux J, Nematalla H, Li W, Clement M, Robidel E, Frank M, Curis E, Ait-Oufella H, Caligiuri G, Nicoletti A, Hagege A, Messas E, Bruneval P, Jeunemaitre X, Bergaya S. Angiotensin II promotes thoracic aortic dissections and ruptures in Col3a1 haploinsufficient mice. Hypertension 2013; 62:203-8. [PMID: 23630948 DOI: 10.1161/hypertensionaha.111.00974] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vascular Ehlers-Danlos syndrome is a dramatic inherited disease caused by mutations of type III collagen (COL3A1) gene, associated with early-onset occurrence of arterial ruptures. Col3a1(+/-) heterozygous mice, the only vascular Ehlers-Danlos syndrome model available to date, have no spontaneous early vascular phenotype. Our objective was to determine the susceptibility of Col3a1(+/-) mice to develop arterial ruptures under high blood pressure (BP) conditions induced by a 4-week infusion of angiotensin II (AngII). AngII (1 μg/kg per minute) significantly and comparably increased systolic BP in Col3a1(+/-) and Col3a1(+/+) mice but led to a higher premature mortality rate in Col3a1(+/-) mice compared with Col3a1(+/+) mice (73% versus 36%; P=0.03), particularly during the first-week infusion (55% versus 0%). Echocardiography and histological analysis evidenced that early deaths were caused by thoracic aortic ruptures preceded by dissections and associated with low aortic collagen fibrils content. Remarkably, lowering the dose of AngII (0.5 μg/kg per minute) rescued the first-week premature deaths of Col3a1(+/-) mice while decreasing the rises in systolic BP (P=0.05 compared with the high-dose AngII), resulting in similar mortality rates in both groups of mice at the end of the 4-week period (30% versus 50% in Col3a1(+/-) and Col3a1(+/+) mice; P=0.30). Finally, norepinephrine infusion (3.9 μg/kg per minute) did not induced significant mortality in both groups, whereas it significantly increased systolic BP, comparably with the high and with the low dose of AngII in Col3a1(+/-) mice (P=0.53 and P=1.00, respectively). Our findings demonstrated the extreme sensitivity of Col3a1 insufficient mice to prematurely develop thoracic aortic ruptures in response to AngII and its associated high levels in BP.
Collapse
Affiliation(s)
- Julie Faugeroux
- INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tae HJ, Marshall S, Zhang J, Wang M, Briest W, Talan MI. Chronic treatment with a broad-spectrum metalloproteinase inhibitor, doxycycline, prevents the development of spontaneous aortic lesions in a mouse model of vascular Ehlers-Danlos syndrome. J Pharmacol Exp Ther 2012; 343:246-51. [PMID: 22815532 DOI: 10.1124/jpet.112.197020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is no proven therapy or prevention for vascular Ehlers-Danlos syndrome (vEDS), a genetic disorder associated with the mutation of procollagen type III and characterized by increased fragility of vascular and hollow organ walls. Heterozygous COL3A1-deficient (HT) mice recapitulate a mild presentation of one of the variants of vEDS: haploinsufficiency for collagen III. Adult HT mice are characterized by increased metalloproteinase (MMP) activity, reduced collagen content in the arterial walls, and spontaneous development of various severity lesions in aorta. We hypothesized that chronic treatment with a MMP inhibitor would increase collagen content and prevent the development of spontaneous aortic lesions. HT mice were treated since weaning with the broad-spectrum MMP inhibitor doxycycline added to food. At the age of 9 months MMP-9 expression was twice as high in the tunica media of aorta in untreated HT mice, whereas total collagen content was 30% lower (p < 0.01) and the cumulative score of aortic lesions was eight times higher than in wild-type (WT) mice (p < 0.01). After 9 months of doxycycline treatment, MMP-9 activity, collagen content, and lesions in the aortas of HT mice were at the level of those of WT mice (p > 0.05). In the mouse model of collagen III haploinsufficiency treatment with broad-spectrum MMP inhibitor that was started early in life normalized increased MMP activity, reduced aortic collagen content in adults, and prevented the development of spontaneous aortic lesions. Our findings provide experimental justification for the clinical evaluation of the benefit of doxycycline at least in the haploinsufficient variety of vEDS.
Collapse
Affiliation(s)
- Hyun-Jin Tae
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
30
|
COL3A1 haploinsufficiency results in a variety of Ehlers-Danlos syndrome type IV with delayed onset of complications and longer life expectancy. Genet Med 2011; 13:717-22. [PMID: 21637106 DOI: 10.1097/gim.0b013e3182180c89] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To characterize the clinical outcome of heterozygosity for COL3A1 null mutations in Ehlers-Danlos syndrome type IV, the vascular type. METHODS We identified mutations that produced premature termination codons and resulted in nonsense-mediated messenger RNA decay in 19 families. We reviewed the clinical and family histories and medical complications in 54 individuals from these families with COL3A1 null mutations. RESULTS Compared with individuals with missense or exon-skipping mutations, we found that life span was extended, the age of first complication was delayed by almost 15 years, and major complications were limited to vascular events. The families were ascertained after a complication in a single individual, but only 28% of relatives, some of whom had reached their seventies or eighties without incidents, had a complication and only 30% had minor clinical features of Ehlers-Danlos syndrome type IV CONCLUSION: Null mutations have reduced penetrance compared with missense and splicing mutations, and the phenotype seems to be limited almost entirely to vascular events.
Collapse
|
31
|
Rimsza LM, Unger JM, Tome ME, Leblanc ML. A strategy for full interrogation of prognostic gene expression patterns: exploring the biology of diffuse large B cell lymphoma. PLoS One 2011; 6:e22267. [PMID: 21829609 PMCID: PMC3150354 DOI: 10.1371/journal.pone.0022267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/21/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Gene expression profiling yields quantitative data on gene expression used to create prognostic models that accurately predict patient outcome in diffuse large B cell lymphoma (DLBCL). Often, data are analyzed with genes classified by whether they fall above or below the median expression level. We sought to determine whether examining multiple cut-points might be a more powerful technique to investigate the association of gene expression with outcome. METHODOLOGY/PRINCIPAL FINDINGS We explored gene expression profiling data using variable cut-point analysis for 36 genes with reported prognostic value in DLBCL. We plotted two-group survival logrank test statistics against corresponding cut-points of the gene expression levels and smooth estimates of the hazard ratio of death versus gene expression levels. To facilitate comparisons we also standardized the expression of each of the genes by the fraction of patients that would be identified by any cut-point. A multiple comparison adjusted permutation p-value identified 3 different patterns of significance: 1) genes with significant cut-point points below the median, whose loss is associated with poor outcome (e.g. HLA-DR); 2) genes with significant cut-points above the median, whose over-expression is associated with poor outcome (e.g. CCND2); and 3) genes with significant cut-points on either side of the median, (e.g. extracellular molecules such as FN1). CONCLUSIONS/SIGNIFICANCE Variable cut-point analysis with permutation p-value calculation can be used to identify significant genes that would not otherwise be identified with median cut-points and may suggest biological patterns of gene effects.
Collapse
Affiliation(s)
- Lisa M Rimsza
- Department of Pathology, University of Arizona, Tucson, Arizona, United States of America.
| | | | | | | |
Collapse
|
32
|
Briest W, Cooper TK, Tae HJ, Krawczyk M, McDonnell NB, Talan MI. Doxycycline ameliorates the susceptibility to aortic lesions in a mouse model for the vascular type of Ehlers-Danlos syndrome. J Pharmacol Exp Ther 2011; 337:621-7. [PMID: 21363928 DOI: 10.1124/jpet.110.177782] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vascular form of Ehlers-Danlos syndrome (vEDS), a rare disease with grave complications resulting from rupture of major arteries, is caused by mutations of collagen type III [α1 chain of collagen type III (COL3A1)]. The only, recently proven, preventive strategy consists of the reduction of arterial wall stress by β-adrenergic blockers. The heterozygous (HT) Col3a1 knockout mouse has reduced expression of collagen III and recapitulates features of a mild presentation of the disease. The objective of this study was to determine whether changing the balance between synthesis and degradation of collagen by chronic treatment with doxycycline, a nonspecific matrix metalloproteinase (MMP) inhibitor, could prevent the development of vascular pathology in HT mice. After 3 months of treatment with doxycycline or placebo, 9-month-old HT or wild-type (WT) mice were subjected to surgical stressing of the aorta. A 3-fold increase in stress-induced aortic lesions found in untreated HT mice 1 week after intervention (cumulative score 4.5 ± 0.87 versus 1.3 ± 0.34 in WT, p < 0.001) was fully prevented in the doxycycline-treated group (1.1 ± 0.56, p < 0.001). Untreated HT mice showed increased MMP-9 activity in the carotid artery and decreased collagen content in the aorta; however, in doxycycline-treated animals there was normalization to the levels observed in WT mice. Doxycycline treatment inhibits the activity of tissue MMP and attenuates the decrease in the collagen content in aortas of mice haploinsufficient for collagen III, as well as prevents the development of stress-induced vessel pathology. The results suggest that doxycycline merits clinical testing as a treatment for vEDS.
Collapse
Affiliation(s)
- Wilfried Briest
- Laboratory of Cardiovascular Sciences, National Institute on Aging, Baltimore, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Volk SW, Wang Y, Mauldin EA, Liechty KW, Adams SL. Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs 2011; 194:25-37. [PMID: 21252470 DOI: 10.1159/000322399] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2010] [Indexed: 01/19/2023] Open
Abstract
The repair of cutaneous wounds in the postnatal animal is associated with the development of scar tissue. Directing cell activities to efficiently heal wounds while minimizing the development of scar tissue is a major goal of wound management and the focus of intensive research efforts. Type III collagen (Col3), expressed in early granulation tissue, has been proposed to play a prominent role in cutaneous wound repair, although little is known about its role in this process. To establish the role of Col3 in cutaneous wound repair, we examined the healing of excisional wounds in a previously described murine model of Col3 deficiency. Col3 deficiency (Col3+/-) in aged mice resulted in accelerated wound closure with increased wound contraction. In addition, Col3-deficient mice had increased myofibroblast density in the wound granulation tissue as evidenced by an increased expression of the myofibroblast marker, α-smooth muscle actin. In vitro, dermal fibroblasts obtained from Col3-deficient embryos (Col3+/- and -/-) were more efficient at collagen gel contraction and also displayed increased myofibroblast differentiation compared to those harvested from wild-type (Col3+/+) embryos. Finally, wounds from Col3-deficient mice also had significantly more scar tissue area on day 21 post-wounding compared to wild-type mice. The effect of Col3 expression on myofibroblast differentiation and scar formation in this model suggests a previously undefined role for this ECM protein in tissue regeneration and repair.
Collapse
Affiliation(s)
- Susan W Volk
- Department of Clinical Studies and Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | |
Collapse
|
34
|
Smith LB, Hadoke PWF, Dyer E, Denvir MA, Brownstein D, Miller E, Nelson N, Wells S, Cheeseman M, Greenfield A. Haploinsufficiency of the murine Col3a1 locus causes aortic dissection: a novel model of the vascular type of Ehlers-Danlos syndrome. Cardiovasc Res 2010; 90:182-90. [PMID: 21071432 PMCID: PMC3058731 DOI: 10.1093/cvr/cvq356] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims The vascular type of Ehlers–Danlos syndrome (EDS IV) is an autosomal-dominant disorder characterized by thin translucent skin and extensive bruising. Patients with EDS IV have reduced life expectancy (median 45–50 years) due to spontaneous rupture of arteries (particularly large arteries) or bowel. EDS IV results from mutation of the COL3A1 gene, which encodes the pro-α1 chains of type III collagen that is secreted into the extracellular matrix, e.g. by smooth muscle cells. A mouse model of EDS IV produced by targeted ablation of Col3a1 has been of limited use as only 10% of homozygous animals survive to adulthood, whereas heterozygous animals do not die from arterial rupture. We report a novel, exploitable model of EDS IV in a spontaneously generated mouse line. Methods and results Mice were identified by predisposition to sudden, unexpected death from dissection of the thoracic aorta. Aortic dissection inheritance was autosomal-dominant, presented at an early age (median, 6 weeks) with incomplete penetrance, and had a similar sex ratio bias as EDS IV (2:1, male:female). Molecular genetic analysis demonstrated that the causal mutation is a spontaneous 185 kb deletion, including the promoter region and exons 1–39, of the Col3a1 gene. As in EDS IV, aortic dissection was not associated with elevated blood pressure, aneurysm formation, or infection, but may result from aberrant collagen fibrillogenesis within the aortic wall. Conclusion This novel, exploitable mouse line that faithfully models the vascular aspects of human EDS IV provides an important new tool for advancing understanding of EDS IV and of aortic dissection in general.
Collapse
Affiliation(s)
- Lee B Smith
- MRC Human Reproductive Sciences Unit, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|