1
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
2
|
Maurin M, Pondérand L, Hennebique A, Pelloux I, Boisset S, Caspar Y. Tularemia treatment: experimental and clinical data. Front Microbiol 2024; 14:1348323. [PMID: 38298538 PMCID: PMC10827922 DOI: 10.3389/fmicb.2023.1348323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
Tularemia is a zoonosis caused by the Gram negative, facultative intracellular bacterium Francisella tularensis. This disease has multiple clinical presentations according to the route of infection, the virulence of the infecting bacterial strain, and the underlying medical condition of infected persons. Systemic infections (e.g., pneumonic and typhoidal form) and complications are rare but may be life threatening. Most people suffer from local infection (e.g., skin ulcer, conjunctivitis, or pharyngitis) with regional lymphadenopathy, which evolve to suppuration in about 30% of patients and a chronic course of infection. Current treatment recommendations have been established to manage acute infections in the context of a biological threat and do not consider the great variability of clinical situations. This review summarizes literature data on antibiotic efficacy against F. tularensis in vitro, in animal models, and in humans. Empirical treatment with beta-lactams, most macrolides, or anti-tuberculosis agents is usually ineffective. The aminoglycosides gentamicin and streptomycin remain the gold standard for severe infections, and the fluoroquinolones and doxycycline for infections of mild severity, although current data indicate the former are usually more effective. However, the antibiotic treatments reported in the literature are highly variable in their composition and duration depending on the clinical manifestations, the age and health status of the patient, the presence of complications, and the evolution of the disease. Many patients received several antibiotics in combination or successively. Whatever the antibiotic treatment administered, variable but high rates of treatment failures and relapses are still observed, especially in patients treated more then 2-3 weeks after disease onset. In these patients, surgical treatment is often necessary for cure, including drainage or removal of suppurative lymph nodes or other infectious foci. It is currently difficult to establish therapeutic recommendations, particularly due to lack of comparative randomized studies. However, we have attempted to summarize current knowledge through proposals for improving tularemia treatment which will have to be discussed by a group of experts. A major factor in improving the prognosis of patients with tularemia is the early administration of appropriate treatment, which requires better medical knowledge and diagnostic strategy of this disease.
Collapse
Affiliation(s)
- Max Maurin
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Translational Innovation in Medicine and Complexity (TIMC), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Léa Pondérand
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Aurélie Hennebique
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Translational Innovation in Medicine and Complexity (TIMC), Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Isabelle Pelloux
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
| | - Sandrine Boisset
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Yvan Caspar
- Centre National de Référence Francisella tularensis, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
3
|
An Investigation into the Re-Emergence of Disease Following Cessation of Antibiotic Treatment in Balb/c Mice Infected with Inhalational Burkholderia pseudomallei. Antibiotics (Basel) 2022; 11:antibiotics11101442. [PMID: 36290100 PMCID: PMC9598772 DOI: 10.3390/antibiotics11101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a multifaceted disease. A proportion of the mortality and morbidity reported as a result of infection with this organism may be due to the premature cessation of antibiotic therapy typically lasting for several months. The progression of re-emergent disease was characterised in Balb/c mice following cessation of a 14 day treatment course of co-trimoxazole or finafloxacin, delivered at a human equivalent dose. Mice were culled weekly and the infection characterised in terms of bacterial load in tissues, weight loss, clinical signs of infection, cytokine levels and immunological cell counts. Following cessation of treatment, the infection re-established in some animals. Finafloxacin prevented the re-establishment of the infection for longer than co-trimoxazole, and it is apparent based on the protection offered, the development of clinical signs of disease, bodyweight loss and bacterial load, that finafloxacin was more effective at controlling infection when compared to co-trimoxazole.
Collapse
|
4
|
Storey J, Gobbetti T, Olzinski A, Berridge BR. A Structured Approach to Optimizing Animal Model Selection for Human Translation: The Animal Model Quality Assessment. ILAR J 2022; 62:66-76. [PMID: 35421235 DOI: 10.1093/ilar/ilac004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 12/09/2022] Open
Abstract
Animal studies in pharmaceutical drug discovery are common in preclinical research for compound evaluation before progression into human clinical trials. However, high rates of drug development attrition have prompted concerns regarding animal models and their predictive translatability to the clinic. To improve the characterization and evaluation of animal models for their translational relevance, the authors developed a tool to transparently reflect key features of a model that may be considered in both the application of the model but also the likelihood of successful translation of the outcomes to human patients. In this publication, we describe the rationale for the development of the Animal Model Quality Assessment tool, the questions used for the animal model assessment, and a high-level scoring system for the purpose of defining predictive translatability. Finally, we provide an example of a completed Animal Model Quality Assessment for the adoptive T-cell transfer model of colitis as a mouse model to mimic inflammatory bowel disease in humans.
Collapse
Affiliation(s)
- Joanne Storey
- Animal Research Strategy Group, Office of Animal Welfare, Ethics, Strategy and Risk, GlaxoSmithKline, Stevenage, UK
| | - Thomas Gobbetti
- Experimental Quantitative Pharmacology Group (Immunology Research Unit), GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Alan Olzinski
- Animal Research Strategy Group, Office of Animal Welfare, Ethics, Strategy and Risk, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Brian R Berridge
- National Toxicology Program Division, NIH NIEHS Research Triangle Park, NC, USA
| |
Collapse
|
5
|
The innate immune response in the marmoset during the acute pneumonic disease caused by Burkholderia pseudomallei. Infect Immun 2022; 90:e0055021. [PMID: 35041487 PMCID: PMC8929355 DOI: 10.1128/iai.00550-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a severe human infection that is difficult to treat with antibiotics and for which there is no effective vaccine. Development of novel treatments rely upon appropriately characterized animal models. The common marmoset (Callithrix jacchus) has been established at Defense Science and Technology laboratories (DSTL) as a model of melioidosis. Further analysis was performed on samples generated in these studies to provide a description of the innate immune response. Many of the immunological features described, (migration/activation of neutrophils and macrophages, activation of T cells, elevation of key cytokines IFNγ, TNF-α, IL-6, and IL-1β) have been observed in acute melioidosis human cases and correlated with prognosis. Expression of the MHCII marker (HLA-DR) on neutrophils showed potential as a diagnostic with 80% accuracy when comparing pre- and postchallenge levels in paired blood samples. Discriminant analysis of cell surface, activation markers on neutrophils combined with levels of key cytokines, differentiated between disease states from single blood samples with 78% accuracy. These key markers have utility as a prototype postexposure, presymptomatic diagnostic. Ultimately, these data further validate the use of the marmoset as a suitable model for determining efficacy of medical countermeasures against B. pseudomallei.
Collapse
|
6
|
Deletion Mutants of Francisella Phagosomal Transporters FptA and FptF Are Highly Attenuated for Virulence and Are Protective Against Lethal Intranasal Francisella LVS Challenge in a Murine Model of Respiratory Tularemia. Pathogens 2021; 10:pathogens10070799. [PMID: 34202420 PMCID: PMC8308642 DOI: 10.3390/pathogens10070799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis (Ft) is a Gram-negative, facultative intracellular bacterium that is a Tier 1 Select Agent of concern for biodefense for which there is no licensed vaccine. A subfamily of 9 Francisella phagosomal transporter (fpt) genes belonging to the Major Facilitator Superfamily of transporters was identified as critical to pathogenesis and potential targets for attenuation and vaccine development. We evaluated the attenuation and protective capacity of LVS derivatives with deletions of the fptA and fptF genes in the C57BL/6J mouse model of respiratory tularemia. LVSΔfptA and LVSΔfptF were highly attenuated with LD50 values of >20 times that of LVS when administered intranasally and conferred 100% protection against lethal challenge. Immune responses to the fpt mutant strains in mouse lungs on day 6 post-infection were substantially modified compared to LVS and were associated with reduced organ burdens and reduced pathology. The immune responses to LVSΔfptA and LVSΔfptF were characterized by decreased levels of IL-10 and IL-1β in the BALF versus LVS, and increased numbers of B cells, αβ and γδ T cells, NK cells, and DCs versus LVS. These results support a fundamental requirement for FptA and FptF in the pathogenesis of Ft and the modulation of the host immune response.
Collapse
|
7
|
Waag DM, Chance TB, Trevino SR, Rossi FD, Fetterer DP, Amemiya K, Dankmeyer JL, Ingavale SS, Tobery SA, Zeng X, Kern SJ, Worsham PL, Cote CK, Welkos SL. Comparison of three non-human primate aerosol models for glanders, caused by Burkholderia mallei. Microb Pathog 2021; 155:104919. [PMID: 33915206 DOI: 10.1016/j.micpath.2021.104919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
Burkholderia mallei is a gram-negative obligate animal pathogen that causes glanders, a highly contagious and potentially fatal disease of solipeds including horses, mules, and donkeys. Humans are also susceptible, and exposure can result in a wide range of clinical forms, i.e., subclinical infection, chronic forms with remission and exacerbation, or acute and potentially lethal septicemia and/or pneumonia. Due to intrinsic antibiotic resistance and the ability of the organisms to survive intracellularly, current treatment regimens are protracted and complicated; and no vaccine is available. As a consequence of these issues, and since B. mallei is infectious by the aerosol route, B. mallei is regarded as a major potential biothreat agent. To develop optimal medical countermeasures and diagnostic tests, well characterized animal models of human glanders are needed. The goal of this study was to perform a head-to-head comparison of models employing three commonly used nonhuman primate (NHP) species, the African green monkey (AGM), Rhesus macaque, and the Cynomolgus macaque. The natural history of infection and in vitro clinical, histopathological, immunochemical, and bacteriological parameters were examined. The AGMs were the most susceptible NHP to B. mallei; five of six expired within 14 days. Although none of the Rhesus or Cynomolgus macaques succumbed, the Rhesus monkeys exhibited abnormal signs and clinical findings associated with B. mallei infection; and the latter may be useful for modeling chronic B. mallei infection. Based on the disease progression observations, gross and histochemical pathology, and humoral and cellular immune response findings, the AGM appears to be the optimal model of acute, lethal glanders infection. AGM models of infection by B. pseudomallei, the etiologic agent of melioidosis, have been characterized recently. Thus, the selection of the AGM species provides the research community with a single NHP model for investigations on acute, severe, inhalational melioidosis and glanders.
Collapse
Affiliation(s)
- David M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Taylor B Chance
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Sylvia R Trevino
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Franco D Rossi
- Applied and Advanced Technology-Aerobiology, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - David P Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Susham S Ingavale
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Steven A Tobery
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Steven J Kern
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA.
| | - Susan L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA.
| |
Collapse
|
8
|
French CT, Bulterys PL, Woodward CL, Tatters AO, Ng KR, Miller JF. Virulence from the rhizosphere: ecology and evolution of Burkholderia pseudomallei-complex species. Curr Opin Microbiol 2020; 54:18-32. [PMID: 32028234 DOI: 10.1016/j.mib.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Christopher T French
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, 609 Charles E. Young Drive East, Los Angeles, CA 90095, United States; Northern Arizona University, Department of Biological Sciences, Pathogen and Microbiome Institute 1395 S Knoles Drive, Flagstaff, AZ 86011, United States.
| | - Philip L Bulterys
- Department of Pathology, Stanford University, Lane Building, L235, 300 Pasteur Drive, Stanford, CA, 94305, United States
| | - Cora L Woodward
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States
| | - Avery O Tatters
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States
| | - Ken R Ng
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States
| | - Jeff F Miller
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095, United States; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, 609 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| |
Collapse
|
9
|
Zimmerman SM, Long ME, Dyke JS, Jelesijevic TP, Michel F, Lafontaine ER, Hogan RJ. Use of Immunohistochemistry to Demonstrate In Vivo Expression of the Burkholderia mallei Virulence Factor BpaB During Experimental Glanders. Vet Pathol 2017; 55:258-267. [PMID: 29145795 DOI: 10.1177/0300985817736113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Burkholderia mallei causes the highly contagious and debilitating zoonosis glanders, which infects via inhalation or percutaneous inoculation and often culminates in life-threatening pneumonia and sepsis. In humans, glanders is difficult to diagnose and requires prolonged antibiotic therapy with low success rates. No vaccine exists to protect against B. mallei, and there is concern regarding its use as a bioweapon. The authors previously identified the protein BpaB as a potential target for devising therapies due to its role in adherence to host cells and the formation of biofilms in vitro and its contribution to pathogenicity in a mouse model of glanders. In the present study, the authors developed an immunostaining approach to probe tissues of experimentally infected animals and demonstrated that BpaB is produced exclusively in vivo by wild-type B. mallei in target organs from mice and marmosets. They detected the expression of BpaB by B. mallei both extracellularly and within macrophages, neutrophils, and epithelial cells in respiratory tissues (7/10 marmoset; 2/2 mouse). The authors also noted the intracellular expression of BpaB by B. mallei in macrophages in the regional lymph nodes of mice (2/2 tissues) and MALT of marmosets (4/5 tissues). It is interesting that B. mallei bacteria infecting distal organs did not express BpaB (2/2 mice; 3/3 marmosets), suggesting that the protein is not necessary for bacterial fitness in these anatomic locations. These findings underscore the value of BpaB as a target for developing medical countermeasures and provide insight into its role in pathogenesis.
Collapse
Affiliation(s)
- Shawn M Zimmerman
- 1 Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Mackenzie E Long
- 2 Veterinary Teaching Hospital, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Jeremy S Dyke
- 1 Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Tomislav P Jelesijevic
- 1 Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Frank Michel
- 3 Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Eric R Lafontaine
- 1 Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Robert J Hogan
- 1 Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA.,3 Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
10
|
Caspar Y, Maurin M. Francisella tularensis Susceptibility to Antibiotics: A Comprehensive Review of the Data Obtained In vitro and in Animal Models. Front Cell Infect Microbiol 2017; 7:122. [PMID: 28443249 PMCID: PMC5386985 DOI: 10.3389/fcimb.2017.00122] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/27/2017] [Indexed: 11/13/2022] Open
Abstract
The antibiotic classes that are recommended for tularaemia treatment are the aminoglycosides, the fluoroquinolones and the tetracyclines. However, cure rates vary between 60 and 100% depending on the antibiotic used, the time to appropriate antibiotic therapy setup and its duration, and the presence of complications, such as lymph node suppuration. Thus, antibiotic susceptibility testing (AST) of F. tularensis strains remains of primary importance for detection of the emergence of antibiotic resistances to first-line drugs, and to test new therapeutic alternatives. However, the AST methods reported in the literature were poorly standardized between studies and AST data have not been previously evaluated in a comprehensive and comparative way. The aim of the present review was to summarize experimental data on antibiotic susceptibilities of F. tularensis obtained in acellular media, cell models and animal models since the introduction of fluoroquinolones in the treatment of tularaemia in 1989. We compiled MIC data of 33 antibiotics (including aminoglycosides, fluoroquinolones, tetracyclines, macrolides, β-lactams, chloramphenicol, rifampicin, and linezolid) against 900 F. tularensis strains (504 human strains), including 107 subsp. tularensis (type A), 789 subsp. holarctica (type B) and four subsp. mediasiatica strains, using various AST methods. Specific culture media were identified or confirmed as unsuitable for AST of F. tularensis. Overall, MICs were the lowest for ciprofloxacin (≤ 0.002-0.125 mg/L) and levofloxacin, and ranged from ≤ 0.016 to 2 mg/L for gentamicin, and 0.064 to 4 mg/L for doxycycline. No resistant strain to any of these antibiotics was reported. Fluoroquinolones also exhibited a bactericidal activity against intracellular F. tularensis and lower relapse rates in animal models when compared with the bacteriostatic compound doxycycline. As expected, lower MIC values were found for macrolides against type A and biovar I type B strains, compared to biovar II type B strains. The macrolides were more effective against F. tularensis grown in phagocytic cells than in acellular media.
Collapse
Affiliation(s)
- Yvan Caspar
- Laboratoire de Bactériologie-Hygiène Hospitalière, Département des agents infectieux, Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAGGrenoble, France
| | - Max Maurin
- Laboratoire de Bactériologie-Hygiène Hospitalière, Département des agents infectieux, Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAGGrenoble, France
| |
Collapse
|
11
|
Bearss JJ, Hunter M, Dankmeyer JL, Fritts KA, Klimko CP, Weaver CH, Shoe JL, Quirk AV, Toothman RG, Webster WM, Fetterer DP, Bozue JA, Worsham PL, Welkos SL, Amemiya K, Cote CK. Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice. PLoS One 2017; 12:e0172627. [PMID: 28235018 PMCID: PMC5325312 DOI: 10.1371/journal.pone.0172627] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 01/02/2023] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a Gram negative bacterium designated as a Tier 1 threat. This bacterium is known to be endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. Inhalational melioidosis has been associated with monsoonal rains in endemic areas and is also a significant concern in the biodefense community. There are currently no effective vaccines for B. pseudomallei and antibiotic treatment can be hampered by non-specific symptomology and also the high rate of naturally occurring antibiotic resistant strains. Well-characterized animal models will be essential when selecting novel medical countermeasures for evaluation prior to human clinical trials. Here, we further characterize differences between the responses of BALB/c and C57BL/6 mice when challenged with low doses of a low-passage and well-defined stock of B. pseudomallei K96243 via either intraperitoneal or aerosol routes of exposure. Before challenge, mice were implanted with a transponder to collect body temperature readings, and daily body weights were also recorded. Mice were euthanized on select days for pathological analyses and determination of the bacterial burden in selected tissues (blood, lungs, liver, and spleen). Additionally, spleen homogenate and sera samples were analyzed to better characterize the host immune response after infection with aerosolized bacteria. These clinical, pathological, and immunological data highlighted and confirmed important similarities and differences between these murine models and exposure routes.
Collapse
Affiliation(s)
- Jeremy J. Bearss
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Melissa Hunter
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Dankmeyer
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Kristen A. Fritts
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Chris H. Weaver
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Shoe
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Avery V. Quirk
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Ronald G. Toothman
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Wendy M. Webster
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - David P. Fetterer
- BioStatisitics Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Joel A. Bozue
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Patricia L. Worsham
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Susan L. Welkos
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Kei Amemiya
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Christopher K. Cote
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| |
Collapse
|
12
|
Origgi FC, Pilo P. Francisella Tularensis Clades B.FTN002-00 and B.13 Are Associated With Distinct Pathology in the European Brown Hare (Lepus europaeus). Vet Pathol 2016; 53:1220-1232. [PMID: 26933097 DOI: 10.1177/0300985816629718] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tularemia is a severe disease caused by Francisella tularensis This bacterium has a major pathogenic potential in countless animal species as well as in humans. Despite the relatively significant body of literature available on this microorganism, many questions are still open concerning its biological cycle in the environment, the pathology and pathogenesis of the disease, the possible routes of infection in animals, and the pathologic and ecological relevance of the distinct phylogenetic clusters of F. tularensis In order to address these questions, we have thoroughly characterized the pathology and microbiology of terminally ill European brown hares (Lepus europaeus) infected with F. tularensis subsp. holarctica, collected in Switzerland from 2012 to 2014. F tularensis isolates were typed by defining their phylogenetic clusters. We showed that the pathology associated with F. tularensis subsp. holarctica belonging to the clade B.FTNF002-00 is different from that previously reported to be associated with the clade B.13. In particular, strains of the clade B.FTNF002-00 were almost invariably associated with splenitis and hepatitis and not with the polyserositis affecting pleura, pericardium, and kidney reported in the literature for infections caused by the clade B.13. We describe findings suggesting that the ports of entry for the bacteria might be the respiratory and digestive routes.
Collapse
Affiliation(s)
- F C Origgi
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - P Pilo
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Dobay A, Pilo P, Lindholm AK, Origgi F, Bagheri HC, König B. Dynamics of a Tularemia Outbreak in a Closely Monitored Free-Roaming Population of Wild House Mice. PLoS One 2015; 10:e0141103. [PMID: 26536232 PMCID: PMC4633114 DOI: 10.1371/journal.pone.0141103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 10/04/2015] [Indexed: 11/18/2022] Open
Abstract
Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics.
Collapse
Affiliation(s)
- Akos Dobay
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Paola Pilo
- Institute for Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna K. Lindholm
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Francesco Origgi
- Institute for Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, Bern, Switzerland
| | - Homayoun C. Bagheri
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Barbara König
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Glynn AR, Alves DA, Frick O, Erwin-Cohen R, Porter A, Norris S, Waag D, Nalca A. Comparison of experimental respiratory tularemia in three nonhuman primate species. Comp Immunol Microbiol Infect Dis 2015; 39:13-24. [PMID: 25766142 PMCID: PMC4397973 DOI: 10.1016/j.cimid.2015.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/16/2015] [Accepted: 01/28/2015] [Indexed: 11/19/2022]
Abstract
Tularemia is a zoonotic disease caused by Francisella tularensis, which is transmitted to humans most commonly by contact with infected animals, tick bites, or inhalation of aerosolized bacteria. F. tularensis is highly infectious via the aerosol route; inhalation of as few as 10-50 organisms can cause pneumonic tularemia. Left untreated, the pneumonic form has more than >30% case-fatality rate but with early antibiotic intervention can be reduced to 3%. This study compared tularemia disease progression across three species of nonhuman primates [African green monkey (AGM), cynomolgus macaque (CM), and rhesus macaque (RM)] following aerosolized F. tularensis Schu S4 exposure. Groups of the animals exposed to various challenge doses were observed for clinical signs of infection and blood samples were analyzed to characterize the disease pathogenesis. Whereas the AGMs and CMs succumbed to disease following challenge doses of 40 and 32 colony forming units (CFU), respectively, the RM lethal dose was 276,667 CFU. Following all challenge doses that caused disease, the NHPs experienced weight loss, bacteremia, fever as early as 4 days post exposure, and tissue burden. Necrotizing-to-pyogranulomatous lesions were observed most commonly in the lung, lymph nodes, spleen, and bone marrow. Overall, the CM model consistently manifested pathological responses similar to those resulting from inhalation of F. tularensis in humans and thereby most closely emulates human tularemia disease. The RM model displayed a higher tolerance to infection and survived exposures of up to 15,593 CFU of aerosolized F. tularensis.
Collapse
Affiliation(s)
- Audrey R Glynn
- Center for Aerobiological Sciences, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Derron A Alves
- Pathology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Ondraya Frick
- Center for Aerobiological Sciences, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Rebecca Erwin-Cohen
- Center for Aerobiological Sciences, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Aimee Porter
- Center for Aerobiological Sciences, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Sarah Norris
- Biostatistics Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - David Waag
- Bacteriology Division of U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Aysegul Nalca
- Center for Aerobiological Sciences, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
15
|
López Hernández Y, Yero D, Pinos-Rodríguez JM, Gibert I. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens. Front Microbiol 2015; 6:38. [PMID: 25699030 PMCID: PMC4316775 DOI: 10.3389/fmicb.2015.00038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.
Collapse
Affiliation(s)
- Yamilé López Hernández
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Juan M Pinos-Rodríguez
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
16
|
Affiliation(s)
- George P Tegos
- Center for Molecular Discovery; University of New Mexico; Albuquerque, NM USA; Department of Pathology; University of New Mexico; Albuquerque, NM USA; Wellman Center for Photomedicine; Massachusetts General Hospital; Boston, MA USA; Department of Dermatology; Harvard Medical School; Boston, MA USA
| |
Collapse
|