1
|
Canuti M, Mira F, Villanúa D, Rodríguez-Pastor R, Guercio A, Urra F, Millán J. Molecular ecology of novel amdoparvoviruses and old protoparvoviruses in Spanish wild carnivorans. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 128:105714. [PMID: 39809349 DOI: 10.1016/j.meegid.2025.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Wild carnivorans are key hosts of parvoviruses of relevance for animal health and wildlife conservation. However, the distribution and diversity of parvoviruses among wild carnivorans are under-investigated, particularly in Southern Europe. We evaluated the presence, spread, and diversity of multi-host protoparvoviruses (canine parvovirus type 2 (CPV-2), feline panleukopenia virus (FPV)), and amdoparvoviruses in 12 carnivoran species from Northern Spain to explore viral ecology. Broad-range PCRs were used to screen spleens (N = 157) and intestines (N = 116) from 171 road-killed mustelids, viverrids, and felids; identified viruses were molecularly characterized. We detected an Asian-like CPV-2c strain in the spleen of one wildcat (Felis silvestris, 1/40, 2.5 %), a globally distributed FPV strain in the spleen of one Eurasian badger (Meles meles, 1/35, 2.9 %), a novel amdoparvovirus (European mustelid amdoparvovirus 1), in the intestine and spleen of one stone marten (Martes foina, 1/16, 6.3 %) and in the spleen of one Eurasian badger (1/35, 2.9 %), the red fox fecal amdovirus (RFFAV) in the intestine and spleen of three wildcats (3/40, 7.5 %), and a novel amdoparvovirus closely related to RFFAV (European felid amdoparvovirus 1) in one wildcat (1/40, 2.5 %). We observed a correlation between the phylogeny of carnivorans and the one of amdoparvoviruses, possibly indicating virus-host co-evolution. Species originating from North America and Eurasia formed different clades, indicating local segregation in the absence of man-linked transboundary movements. In contrast, CPV-2 and FPV strains were internationally dispersed. Different parvovirus species co-occur in sympatric host populations, and higher viral diversity and additional hosts will likely be identified in future studies.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, 1870 Frederiksberg, Denmark.
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy; Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Viale Palatucci snc, 98168 Messina, Italy.
| | - Diego Villanúa
- Navarra environmental management (GAN-NIK), Padre Adoain, 219, Bajo, 31015 Pamplona, Spain.
| | - Ruth Rodríguez-Pastor
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Fermín Urra
- Navarra environmental management (GAN-NIK), Padre Adoain, 219, Bajo, 31015 Pamplona, Spain.
| | - Javier Millán
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Miguel Servet 177, 50013 Zaragoza, Spain; Fundación ARAID, Zaragoza, Av. Ranillas, 1-D, 50018 Zaragoza, Spain; Facultad de Ciencias de la Vida, Universidad Andres Bello, Av. República 252, Santiago, Chile.
| |
Collapse
|
2
|
Colburn ME, Delaney MA, Anchor GC, Terio KA. Effect of formalin-fixation and paraffin-embedded tissue storage times on RNAscope in situ hybridization signal amplification. J Vet Diagn Invest 2024; 36:498-505. [PMID: 38650110 PMCID: PMC11185121 DOI: 10.1177/10406387241245777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
RNAscope in situ hybridization (ISH) detects target RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. Protocols suggest that prolonged FFPE storage and formalin fixation may impact signal detection, potentially limiting the utility of RNAscope ISH in retrospective studies. To develop parameters for RNAscope use with archived specimens, we evaluated the effect of formalin-fixation time by measuring the signal of a reference gene (16srRNA) in selected tissues fixed in 10% neutral-buffered formalin for 1, 2, 3, 5, 7, 10, 14, 21, 28, 60, 90, 180, and 270 d. The signal intensity and percent area of signal decreased after 180 d. Tissues had detectable signal at 180 d but not at 270 d of formalin fixation. To assess target detection in paraffin blocks, we qualitatively compared the signal of canine distemper virus (CDV) antigen via immunohistochemistry and CDV RNA via RNAscope ISH in replicate sections from blocks stored at room temperature for 6 mo, 1, 3, 6, 8, 11, 13, and 15 y; RNA was detected in FFPE tissues stored for up to 15 y. Our results demonstrate that RNAscope ISH can detect targets in tissues with prolonged paraffin storage intervals and formalin-fixation times.
Collapse
Affiliation(s)
- Megan E. Colburn
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL, USA
| | - Martha A. Delaney
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL, USA
| | - Gretchen C. Anchor
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL, USA
| | - Karen A. Terio
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
3
|
Lu Y, Zhang L, Liu X, Lan Y, Wu L, Wang J, Wu K, Yang C, Lv R, Yi D, Zhuo G, Li Y, Shen F, Hou R, Yue B, Fan Z. Red pandas with different diets and environments exhibit different gut microbial functional composition and capacity. Integr Zool 2024; 19:662-682. [PMID: 38420673 DOI: 10.1111/1749-4877.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The red panda (Ailurus fulgens) is a distinctive mammal known for its reliance on a diet primarily consisting of bamboo. The gut microbiota and overall health of animals are strongly influenced by diets and environments. Therefore, conducting research to explore the taxonomical and functional variances within the gut microbiota of red pandas exposed to various dietary and environmental conditions could shed light on the dynamic complexities of their microbial communities. In this study, normal fecal samples were obtained from red pandas residing in captive and semi-free environments under different dietary regimes and used for metabolomic, 16S rRNA, and metagenomic sequencing analysis, with the pandas classified into four distinct cohorts according to diet and environment. In addition, metagenomic sequencing was conducted on mucus fecal samples to elucidate potential etiological agents of disease. Results revealed an increased risk of gastrointestinal diseases in red pandas consuming bamboo shoots due to the heightened presence of pathogenic bacteria, although an increased presence of microbiota-derived tryptophan metabolites appeared to facilitate intestinal balance. The red pandas fed bamboo leaves also exhibited a decrease in gut microbial diversity, which may be attributed to the antibacterial flavonoids and lower protein levels in leaves. Notably, red pandas residing in semi-free environments demonstrated an enriched gut microbial diversity. Moreover, the occurrence of mucus secretion may be due to an increased presence of species associated with diarrhea and a reduced level of microbiota-derived tryptophan metabolites. In summary, our findings substantiate the influential role of diet and environment in modulating the gut microbiota of red pandas, offering potential implications for improved captive breeding practices.
Collapse
Affiliation(s)
- Yunwei Lu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Xu Liu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Lixia Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Jiao Wang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Kongju Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Chaojie Yang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruiqing Lv
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Dejiao Yi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Guifu Zhuo
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Yan Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Fujun Shen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Wu Y, Zhao Y, Zhang X, Wei T, Peng Q, Wang J, Liu Z, Zhu Y, Shao X. Diverse amdoparvoviruses infection of farmed Asian badgers (Meles meles). Arch Virol 2024; 169:139. [PMID: 38849620 DOI: 10.1007/s00705-024-06073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/28/2024] [Indexed: 06/09/2024]
Abstract
Amdoparvoviruses infect various carnivores, including mustelids, canids, skunks, and felids. Aleutian mink disease virus (AMDV) belongs to the prototypical species Amdoparvovirus carnivoran1. Here, we identified a novel amdoparvovirus in farmed Asian badgers (Meles meles), and we named this virus "Meles meles amdoparvovirus" (MMADV). A total of 146 clinical samples were collected from 134 individual badgers, and 30.6% (41/134) of the sampled badgers tested positive for amdoparvovirus by PCR. Viral DNA was detected in feces, blood, spleen, liver, lung, and adipose tissue from these animals. Viral sequences from eight samples were determined, five of which represented nearly full-length genome sequences (4,237-4,265 nt). Six serum samples tested positive by PCR, CIEP, and IAT, four of which had high antibody titers (> 512) against AMDV-G. Twenty-six of the 41 amdoparvovirus-positive badgers showed signs of illness, and necropsy revealed lesions in their organs. Sequence comparisons and phylogenetic analysis of the viral NS1 and VP2 genes of these badger amdoparvoviruses showed that their NS1 proteins shared 62.6%-88.8% sequence identity with known amdoparvoviruses, and they clustered phylogenetically into two related clades. The VP2 proteins shared 76.6%-97.2% identity and clustered into two clades, one of which included raccoon dog and arctic fox amdoparvovirus (RFAV), and the other of which did not include other known amdoparvoviruses. According to the NS1-protein-based criterion for parvovirus species demarcation, the MMADV isolate from farm YS should be classified as a member of a new species of the genus Amdoparvovirus. In summary, we have discovered a novel MMADV and other badger amdoparvoviruses that naturally infect Asian badgers and are possibly pathogenic in badgers.
Collapse
Affiliation(s)
- Yanhong Wu
- Jilin Agricultural Science and Technology University, Jilin, Jilin Province, 132101, China
| | - Yongqiang Zhao
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Xiuting Zhang
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Tao Wei
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Qianwen Peng
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Jianke Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, 071001, China
| | - Zongyue Liu
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, 130112, China
| | - Yanzhu Zhu
- Jilin Agricultural Science and Technology University, Jilin, Jilin Province, 132101, China
| | - Xiqun Shao
- Jilin Agricultural Science and Technology University, Jilin, Jilin Province, 132101, China.
| |
Collapse
|
5
|
Eckstrand CD, Torrevillas BK, Wolking RM, Bradway DS, Warg JV, Clayton RD, Williams LB, Pessier AP, Reno JL, McMenamin-Snekvik KM, Thompson J, Baszler T, Snekvik KR. Investigation of laboratory methods for characterization of aquatic viruses in fish infected experimentally with infectious salmon anemia virus. J Vet Diagn Invest 2024; 36:319-328. [PMID: 37203453 PMCID: PMC11110770 DOI: 10.1177/10406387231173332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Rapid growth in aquaculture has resulted in high-density production systems in ecologically and geographically novel conditions in which the emergence of diseases is inevitable. Well-characterized methods for detection and surveillance of infectious diseases are vital for rapid identification, response, and recovery to protect economic and food security. We implemented a proof-of-concept approach for virus detection using a known high-consequence fish pathogen, infectious salmon anemia virus (ISAV), as the archetypal pathogen. In fish infected with ISAV, we integrated histopathology, virus isolation, whole-genome sequencing (WGS), electron microscopy (EM), in situ hybridization (ISH), and reverse transcription real-time PCR (RT-rtPCR). Fresh-frozen and formalin-fixed tissues were collected from virus-infected, control, and sham-infected Atlantic salmon (Salmo salar). Microscopic differences were not evident between uninfected and infected fish. Viral cytopathic effect was observed in cell cultures inoculated with fresh-frozen tissue homogenates from 3 of 3 ISAV-infected and 0 of 4 uninfected or sham-infected fish. The ISAV genome was detected by shotgun metagenomics in RNA extracted from the medium from 3 of 3 inoculated cell cultures, 3 of 3 infected fish, and 0 of 4 uninfected or sham-infected fish, yielding sufficient coverage for de novo assembly. An ISH probe against ISAV revealed ISAV genome in multiple organs, with abundance in renal hematopoietic tissue. Virus was detected by RT-rtPCR in gill, heart, kidney, liver, and spleen. EM and metagenomic WGS from tissues were challenging and unsuccessful. Our proof-of-concept methodology has promise for detection and characterization of unknown aquatic pathogens and also highlights some associated methodology challenges that require additional investigation.
Collapse
Affiliation(s)
- Chrissy D. Eckstrand
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Brandi K. Torrevillas
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Rebecca M. Wolking
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Daniel S. Bradway
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Janet V. Warg
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Ames, IA, USA
| | - Richard D. Clayton
- National Veterinary Services Laboratories, U.S. Department of Agriculture, Ames, IA, USA
| | - Laura B. Williams
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Allan P. Pessier
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Joetta Lynn Reno
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | | | - Jim Thompson
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Timothy Baszler
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| | - Kevin R. Snekvik
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA
| |
Collapse
|
6
|
Alex CE, Kvapil P, Busch MDM, Jensen T, Conley K, Jackson K, Stubbs EL, Gjeltema J, Garner MM, Kubiski SV, Pesavento PA. Amdoparvovirus-associated disease in red pandas ( Ailurus fulgens). Vet Pathol 2024; 61:269-278. [PMID: 37681307 DOI: 10.1177/03009858231196860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The roster of amdoparvoviruses (APVs) in small carnivores is growing rapidly, but in most cases, the consequences of infection are poorly understood. Red panda amdoparvovirus (RPAV) is highly prevalent in zoo-housed red pandas and has been detected in both healthy and sick animals. Clarifying the clinical impact of RPAV in this endangered species is critical, and zoological collections offer a unique opportunity to examine viral disease association in carefully managed populations. We evaluated the potential impact of RPAV in captive red pandas with a combination of prospective and retrospective analyses. First, we collected feces from 2 healthy animals from one collection over a 6-year period and detected virus in 72/75 total samples, suggesting that RPAV can be a long-term subclinical infection. We next investigated the infections using a retrospective study of infection status and tissue distribution in a cohort of necropsied animals. We performed polymerase chain reaction and in situ hybridization on 43 necropsy cases from 4 zoo collections (3 from the United States, 1 from Europe, 1997-2022). RPAV was present in these populations for at least 2 decades before its discovery and is detectable in common and significant lesions of zoo-housed red pandas, including myocarditis (3/3 cases), nephritis (9/10), and interstitial pneumonia (2/4). RPAV is also detectable in sporadic lesions, including multisystemic pyogranulomatous inflammation, oral/pharyngeal mucosal inflammation, and dermatitis. The colocalization of virus with lesions supports a role in causation, suggesting that despite the apparently persistent and subclinical carriage of most infections, RPAV may have a significant impact in zoo collections.
Collapse
Affiliation(s)
- Charles E Alex
- University of California, Davis, CA
- Wildlife Conservation Society, Bronx, NY
| | | | | | - Trine Jensen
- Aalborg Zoo/Aalborg University, Aalborg, Denmark
| | - Kenneth Conley
- Wildlife Conservation Society, Bronx, NY
- Disney's Animals, Science and Environment, Lake Buena Vista, FL
| | | | | | | | | | | | | |
Collapse
|
7
|
Hu Y, Hu Y, Zhou W, Wei F. Conservation Genomics and Metagenomics of Giant and Red Pandas in the Wild. Annu Rev Anim Biosci 2024; 12:69-89. [PMID: 37863091 DOI: 10.1146/annurev-animal-021022-054730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Giant pandas and red pandas are endangered species with similar specialized bamboo diet and partial sympatric distribution in China. Over the last two decades, the rapid development of genomics and metagenomics research on these species has enriched our knowledge of their biology, ecology, physiology, genetics, and evolution, which is crucial and useful for their conservation. We describe the evolutionary history, endangerment processes, genetic diversity, and population structure of wild giant pandas and two species of red pandas (Chinese and Himalayan red pandas). In addition, we explore how genomics and metagenomics studies have provided insight into the convergent adaptation of pandas to the specialized bamboo diet. Finally, we discuss how these findings are applied to effective conservation management of giant and red pandas in the wild and in captivity to promote the long-term persistence of these species.
Collapse
Affiliation(s)
- Yisi Hu
- College of Forestry, Jiangxi Agricultural University, Nanchang, China;
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fuwen Wei
- College of Forestry, Jiangxi Agricultural University, Nanchang, China;
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Kuhar U, Tomášek O, Sós E, Mede J, Kastelic M, Jež N, Petrikova M, Jensen TH, Alex CE, Jamnikar-Ciglenecki U, Kvapil P. Prevalence of red panda amdoparvovirus infection in European zoos. Front Vet Sci 2023; 10:1276248. [PMID: 37954668 PMCID: PMC10634534 DOI: 10.3389/fvets.2023.1276248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Red panda amdoparvovirus (RPAV) was first described in captive red pandas (Ailurus fulgens) at a zoo in the United States in 2018. Subsequently, the prevalence of infection in zoos in the United States was reported to be 50%; however, RPAV prevalence outside the United States remains unstudied. This study was conducted to investigate the prevalence of RPAV in 134 red pandas from zoos in Europe. Overall, RPAV was detected with PCR in 21 of 62 zoos (33.9%), and the virus prevalence among individuals was estimated to be 24.2% (95% confidence interval, 17.4%-32.0%). Remarkably, adult females tested positive for RPAV more frequently than adult males. Zoos where RPAV was detected reported a significantly higher occurrence of alopecia (and clinical signs in general), whereas other commonly reported problems (fecal disorders and dental disease) showed no difference. A repeated pooled sampling of two positive individuals further showed that RPAV excretion in feces is intermittent, with the viral DNA being only detected on 8 out of 14 sampling days. The intermittent nature of excretion implies that RPAV prevalence may be higher than the estimated value.
Collapse
Affiliation(s)
- Urška Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Endre Sós
- Budapest Zoo and Botanical Garden/Budapest University of Veterinary Science, Budapest, Hungary
- University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Jana Mede
- Veterinary Department of the Ljubljana Zoo, Ljubljana, Slovenia
| | - Marjan Kastelic
- Veterinary Department of the Ljubljana Zoo, Ljubljana, Slovenia
| | - Nuša Jež
- Veterinary Department of the Ljubljana Zoo, Ljubljana, Slovenia
| | - Michaela Petrikova
- Avian and Exotic Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | | | - Charles Everett Alex
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California–Davis, Davis, CA, United States
- Zoological Health Program, Wildlife Conservation Society, Bronx Zoo, Bronx, NY, United States
| | - Urška Jamnikar-Ciglenecki
- Institute of Food Safety, Feed, and Environment, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Pavel Kvapil
- Veterinary Department of the Ljubljana Zoo, Ljubljana, Slovenia
| |
Collapse
|
9
|
Gola C, Kvapil P, Kuhar U, Diaz-Delgado J, Alex CE, Shotton J, Smith SJ, Fingerhood S. Fatal cerebrovascular accident in a captive red panda (Ailurus fulgens fulgens) with concurrent amdoparvovirus infection. J Comp Pathol 2023; 205:11-16. [PMID: 37506667 DOI: 10.1016/j.jcpa.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
We report the pathological and molecular findings in an adult male Himalayan red panda (Ailurus fulgens fulgens) whose death was attributed to parenchymal brain haemorrhage (PBH) of the thalamus. Post-mortem examination revealed severe, acute PBH and intraventricular haemorrhage with major involvement of the thalamus, as well as scattered chronic microinfarctions. Vascular disease in the brain and other organs was suggestive of systemic hypertension. Histological lesions included arteriolar hyalinosis and varying degrees of arteriosclerosis, arterial tunica media hypertrophy and hyperplasia and infiltration of arterial walls by lipid-laden macrophages. Other relevant findings included marked myocardial fibrosis, lymphoplasmacytic tubulointerstitial nephritis, lymphoplasmacytic meningoencephalitis and chronic mitral valve degeneration. The changes in the cerebral vasculature were consistent with hypertensive encephalopathy and a cerebrovascular accident, specifically PBH, which has not been previously reported in this species. Additionally, polymerase chain reaction analysis for red panda amdoparvovirus (RPAV) was positive in the brain and kidneys. Preceded by hypertensive vascular changes and brain microinfarctions, sudden death in this animal likely resulted from fatal PBH with intraventricular haemorrhage. The clinicopathological role of RPAV infection is unknown in this case, although its contribution to the chronic renal disease is considered possible in the context of our current understanding of RPAV-associated pathology.
Collapse
Affiliation(s)
- Cecilia Gola
- Veterinary Pathology Centre, University of Surrey, Francis Crick Road, Guildford GU2 7AQ, Surrey, UK
| | - Pavel Kvapil
- Veterinary Department, Ljubljana Zoo, Večna Pot 70, 1000 Ljubljana, Slovenia
| | - Urska Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Josué Diaz-Delgado
- Veterinary Pathology Centre, University of Surrey, Francis Crick Road, Guildford GU2 7AQ, Surrey, UK
| | - Charles E Alex
- Wildlife Conservation Society, Zoological Health Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| | - Justine Shotton
- Veterinary Department, Marwell Wildlife Zoological Park, Thompson's Lane, Colden Common, Winchester S021 1HJ, Hampshire, UK
| | - Sarah J Smith
- Veterinary Department, Marwell Wildlife Zoological Park, Thompson's Lane, Colden Common, Winchester S021 1HJ, Hampshire, UK
| | - Sai Fingerhood
- Veterinary Pathology Centre, University of Surrey, Francis Crick Road, Guildford GU2 7AQ, Surrey, UK.
| |
Collapse
|
10
|
Alex CE, Watson KD, Schlesinger M, Jackson K, Mete A, Chu P, Pesavento PA. Amdoparvovirus-associated disease in striped skunks ( Mephitis mephitis). Vet Pathol 2023; 60:438-442. [PMID: 37199486 PMCID: PMC11245168 DOI: 10.1177/03009858231173468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Disease caused by the archetypical amdoparvovirus (APV), Aleutian mink disease virus (AMDV), has been well studied, but APV infections in other carnivores are poorly understood. Skunk amdoparvovirus (SKAV), one of a handful of newly discovered APVs, is apparently species-specific in striped skunks (Mephitis mephitis) and has a high prevalence across North America. We have evaluated the infection status and viral tissue distribution in a cohort of 26 free-ranging California skunks from a single rehabilitation facility who were euthanized due to poor prognosis for recovery from neurologic disease. SKAV was detected in the majority of this cohort, and virus was associated with a spectrum of lesions including tubulointerstitial nephritis, meningoencephalitis, myocarditis, and arteritis. Affected tissue and patterns of inflammation were partially overlapping with those of AMDV infection but were notably distinct in the kidney.
Collapse
Affiliation(s)
| | | | | | | | - Asli Mete
- University of California, Davis, Davis, CA
| | - Peter Chu
- University of California, Davis, Davis, CA
| | | |
Collapse
|
11
|
Kaiser FK, de le Roi M, Jo WK, Gerhauser I, Molnár V, Osterhaus ADME, Baumgärtner W, Ludlow M. First Report of Skunk Amdoparvovirus (Species Carnivore amdoparvovirus 4) in Europe in a Captive Striped Skunk ( Mephitis mephitis). Viruses 2023; 15:v15051087. [PMID: 37243173 DOI: 10.3390/v15051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Skunk amdoparvovirus (Carnivore amdoparvovirus 4, SKAV) is closely related to Aleutian mink disease virus (AMDV) and circulates primarily in striped skunks (Mephitis mephitis) in North America. SKAV poses a threat to mustelid species due to reported isolated infections of captive American mink (Neovison vison) in British Columbia, Canada. We detected SKAV in a captive striped skunk in a German zoo by metagenomic sequencing. The pathological findings are dominated by lymphoplasmacellular inflammation and reveal similarities to its relative Carnivore amdoparvovirus 1, the causative agent of Aleutian mink disease. Phylogenetic analysis of the whole genome demonstrated 94.80% nucleotide sequence identity to a sequence from Ontario, Canada. This study is the first case description of a SKAV infection outside of North America.
Collapse
Affiliation(s)
- Franziska K Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Wendy K Jo
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | | | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
12
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
13
|
Kamani J, González-Miguel J, Msheliza EG, Goldberg TL. Straw-Colored Fruit Bats ( Eidolon helvum) and Their Bat Flies ( Cyclopodia greefi) in Nigeria Host Viruses with Multifarious Modes of Transmission. Vector Borne Zoonotic Dis 2022; 22:545-552. [DOI: 10.1089/vbz.2022.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Joshua Kamani
- Parasitology Division, National Veterinary Research Institute (NVRI), Vom, Nigeria
| | - Javier González-Miguel
- Laboratory of Parasitology, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
- Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland
| | - Emmanuel G. Msheliza
- Parasitology Division, National Veterinary Research Institute (NVRI), Vom, Nigeria
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Canuti M, Pénzes JJ, Lang AS. A new perspective on the evolution and diversity of the genus Amdoparvovirus (family Parvoviridae) through genetic characterization, structural homology modeling, and phylogenetics. Virus Evol 2022; 8:veac056. [PMID: 35783582 PMCID: PMC9242002 DOI: 10.1093/ve/veac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Amdoparvoviruses (genus Amdoparvovirus, family Parvoviridae) are primarily viruses of carnivorans, but recent studies have indicated that their host range might also extend to rodents and chiropterans. While their classification is based on the full sequence of the major nonstructural protein (NS1), several studies investigating amdoparvoviral diversity have been focused on partial sequences, leading to difficulties in accurately determining species demarcations and leaving several viruses unclassified. In this study, while reporting the complete genomic sequence of a novel amdoparvovirus identified in an American mink (British Columbia amdoparvovirus, BCAV), we studied the phylogenetic relationships of all amdoparvovirus-related sequences and provide a comprehensive reevaluation of their diversity and evolution. After excluding recombinant sequences, phylogenetic and pairwise sequence identity analyses allowed us to define fourteen different viruses, including the five currently classified species, BCAV, and four additional viruses that fulfill the International Committee on Taxonomy of Viruses criteria to be classified as species. We show that the group of viruses historically known as Aleutian mink disease virus (species Carnivore amdoparvovirus 1) should be considered as a cluster of at least four separate viral species that have been co-circulating in mink farms, facilitating the occurrence of inter-species recombination. Genome organization, splicing donor and acceptor sites, and protein sequence motifs were surprisingly conserved within the genus. The sequence of the major capsid protein virus protein 2 (VP2) was significantly more conserved between and within species compared to NS1, a phenomenon possibly linked to antibody-dependent enhancement (ADE). Homology models suggest a remarkably high degree of conservation of the spikes located near the icosahedral threefold axis of the capsid, comprising the surface region associated with ADE. A surprisingly high number of divergent amino acid positions were found in the luminal threefold and twofold axes of the capsid, regions of hitherto unknown function. We emphasize the importance of complete genome analyses and, given the marked phylogenetic inconsistencies across the genome, advise to obtain the complete coding sequences of divergent strains. Further studies on amdoparvovirus biology and structure as well as epidemiological and virus discovery investigations are required to better characterize the ecology and evolution of this important group of viruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s NL A1C 5S7, Canada
| | - Judit J Pénzes
- Institute for Quantitative Biomedicine, Rutgers the State University of New Jersey, 174 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 45 Arctic Ave., St. John’s NL A1C 5S7, Canada
| |
Collapse
|
15
|
Alex CE, Canuti M, Schlesinger MS, Jackson KA, Needle D, Jardine C, Nituch L, Bourque L, Lang AS, Pesavento PA. Natural disease and evolution of an amdoparvovirus endemic in striped skunks (
Mephitis mephitis
). Transbound Emerg Dis 2022; 69:e1758-e1767. [DOI: 10.1111/tbed.14511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Charles E. Alex
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - Marta Canuti
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Maya S. Schlesinger
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - Kenneth A. Jackson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| | - David Needle
- New Hampshire Veterinary Diagnostic Laboratory, College of Life Sciences and Agriculture University of New Hampshire Durham NH USA
| | - Claire Jardine
- Department of Pathobiology, Canadian Wildlife Health Cooperative University of Guelph Guelph ON Canada
| | - Larissa Nituch
- Ontario Ministry of Northern Development Mines, Natural Resources and Forestry Peterborough ON Canada
| | - Laura Bourque
- Canadian Wildlife Health Cooperative – Atlantic Region University of Prince Edward Island 550 University Ave Charlottetown PE C1A4P3 Canada
| | - Andrew S. Lang
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine University of California‐Davis Davis CA USA
| |
Collapse
|
16
|
Alex CE, Kubiski SV, Jackson KA, Wack RF, Pesavento PA. AMDOPARVOVIRUS INFECTIONS ARE PREVALENT, PERSISTENT, AND GENETICALLY DIVERSE IN ZOO-HOUSED RED PANDAS ( AILURUS FULGENS). J Zoo Wildl Med 2022; 53:83-91. [PMID: 35339152 PMCID: PMC9219412 DOI: 10.1638/2021-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2021] [Indexed: 11/21/2022] Open
Abstract
Red pandas (Ailurus fulgens) are a globally endangered small carnivoran species and subjects of a robust ex situ conservation effort that includes animals housed in zoos. In 2018, red panda amdoparvovirus (RPAV) was discovered by metagenomics analyses of tissues from two geriatric red pandas, and in one case it was associated with significant lesions. Because RPAV was discovered in a single zoo cohort, it was unclear whether these infections represented a widely distributed, enzootic virus of red pandas or a localized 'spillover' from a different host species into this collection. The first goal of this study was to estimate the prevalence of RPAV in US zoos. The authors amplified RPAV from feces of 104 individual red pandas from 37 US zoos, and the virus was detected in 52/104 samples (50.0%). Next, to establish persistence of infection in individual animals, the authors tested serial samples in a single cohort over a 4.5-yr period, and virus was consistently shed by infected animals throughout the sampling period. Finally, full viral coding sequences were amplified and sequenced from three cases, and partial sequences of both the nonstructural and capsid genes were obtained for an additional 19 cases. RPAV is a genetically diverse but monophyletic viral species, and multiple viral lineages are present in US zoo-housed red pandas. The authors do not know how red pandas were originally infected, but RPAV is very common in red pandas in the United States, and infections are persistent-presumably for the lifetime of the animal.
Collapse
Affiliation(s)
- Charles E Alex
- University of California, Davis (UC Davis) School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA
| | - Steven V Kubiski
- University of California, Davis (UC Davis) School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA
- San Diego Zoo Wildlife Alliance, San Diego, CA 92112, USA
| | - Kenneth A Jackson
- University of California, Davis (UC Davis) School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA
| | - Raymund F Wack
- Karen C. Drayer Wildlife Health Center, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA, and Sacramento Zoo, Sacramento, CA 95822
| | - Patricia A Pesavento
- University of California, Davis (UC Davis) School of Veterinary Medicine, Department of Pathology, Microbiology, and Immunology, Davis, CA 95616, USA,
| |
Collapse
|
17
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Virtanen J, Zalewski A, Kołodziej-Sobocińska M, Brzeziński M, Smura T, Sironen T. Diversity and transmission of Aleutian mink disease virus in feral and farmed American mink and native mustelids. Virus Evol 2021; 7:veab075. [PMID: 34548930 PMCID: PMC8449508 DOI: 10.1093/ve/veab075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Aleutian mink disease virus (AMDV), which causes Aleutian disease, is widely spread both in farmed mink and wild mustelids. However, only limited data are available on the role of wild animals in AMDV transmission and spread. Our aim was to shed light on AMDV transmission among wild mustelids and estimate the effect of intense farming practices on the virus circulation by studying AMDV prevalence and genetic diversity among wild mustelids in Poland. We compared AMDV seroprevalence and proportion of PCR-positive individuals in American mink, polecats, otters, stone martens, and pine martens and used the phylogenetic analysis of the NS1 region to study transmission. In addition, we used a metagenomic approach to sequence complete AMDV genomes from tissue samples. In eastern Poland, AMDV seroprevalence in wild mustelids varied from 22 per cent in otters to 62 per cent and 64 per cent in stone martens and feral mink, respectively. All studied antibody-positive mink were also PCR positive, whereas only 10, 15, and 18 per cent of antibody-positive polecats, pine martens, and stone martens, respectively, were PCR positive, suggesting lower virus persistence among these animal species as compared to feral mink. In phylogenetic analysis, most sequences from feral mink formed region-specific clusters that have most likely emerged through multiple introductions of AMDV to feral mink population over decades. However, virus spread between regions was also observed. Virus sequences derived from farmed and wild animals formed separate subclusters in the phylogenetic tree, and no signs of recent virus transmission between farmed and wild animals were observed despite the frequent inflow of farmed mink escapees to wild populations. These results provide new information about the role of different mustelid species in AMDV transmission and about virus circulation among the wild mustelids. In addition, we pinpoint gaps of knowledge, where more studies are needed to achieve a comprehensive picture of AMDV transmission.
Collapse
Affiliation(s)
| | | | | | - Marcin Brzeziński
- Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, Warszawa 02-096, Poland
| | - Teemu Smura
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki 00290, Finland
| | - Tarja Sironen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki 00790, Finland
- Department of Virology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki 00290, Finland
| |
Collapse
|
19
|
Karki S, Maraseni T, Mackey B, Bista D, Lama ST, Gautam AP, Sherpa AP, Koju U, Shrestha A, Cadman T. Reaching over the gap: A review of trends in and status of red panda research over 193 years (1827-2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146659. [PMID: 33794452 DOI: 10.1016/j.scitotenv.2021.146659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The red panda is a unique species taxonomically known for its peculiar biological and ecological characteristics, and extreme attractiveness. Despite being highly significant from conservation, scientific and economic perspectives, this species has experienced a declining population in the wild. Thus, to direct further research priorities and conservation actions and assess gaps in the current research trend of this species, a systematic literature review was conducted covering 175 journal articles published in English over 193 years (1827-2020). This review revealed that (1) the biological aspect was highly studied compared to other thematic areas of red panda (2) captive-based studies are relatively higher than the studies based in wild populations (3) China is leading the red panda studies amongst all red panda range (4) The universities were found contributing more to red panda studies than other institutions. Surprisingly, we found that the researchers from the non-range country were leading red panda study than those from range countries. Our review highlighted the need of prioritising studies in underrepresented locations and understudied thematic areas focusing on the assessment of climate change impact, bamboo distribution status, ecosystem services of red panda habitat, behavior and movement ecology, population estimation, and metapopulation dynamics. We urge landscape-level studies and long-term population monitoring. Besides, we also suggest the documentation and evaluation of the effectiveness of ongoing red panda-focused conservation programs. We also stress the need for strengthening the capacity of institutions and people from range countries.
Collapse
Affiliation(s)
- Sikha Karki
- Cities Research Institute, Griffith University, Australia.
| | | | - Brendan Mackey
- Griffith Climate Action Beacon, Griffith University, Australia
| | - Damber Bista
- School of Agriculture and Food Sciences, The University of Queensland, Australia
| | | | | | | | - Upama Koju
- Kathmandu Forestry College, Kathmandu, Nepal
| | | | - Tim Cadman
- Institute for Ethics, Governance and Law, Griffith University, Australia
| |
Collapse
|
20
|
Yang S, He Y, Chen X, Kalim U, Wang Y, Yang S, Qi H, Cheng H, Lu X, Wang X, Shen Q, Zhang W. Viral Metagenomics Reveals Diverse Viruses in the Feces Samples of Raccoon Dogs. Front Vet Sci 2021; 8:693564. [PMID: 34322538 PMCID: PMC8311183 DOI: 10.3389/fvets.2021.693564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Raccoon dogs as an ancient species of Canidae are the host of many viruses, including rabies virus, canine distemper virus, severe acute respiratory syndrome coronavirus, and so on. With the development of raccoon dog breeding in recent years, some viruses which infected poultry or pigs were also detected from raccoon dogs. At present, the fecal virome of raccoon dogs has been rarely studied. Using an unbiased viral metagenomic approach, we investigated the fecal virome in raccoon dogs collected from one farm of Jilin Province, China. Many DNA or RNA viruses identified in those fecal samples were mainly from seven families, including Circoviridae, Smacoviridae, Genomoviridae, Parvoviridae, Picornaviridae, Astroviridae, and Hepeviridae. This study increased our understanding of the fecal virome in raccoon dog and provided valuable information for the monitoring, prevention, and treatment of viral diseases of these animals.
Collapse
Affiliation(s)
- Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yumin He
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ullah Kalim
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shuyu Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Haifeng Qi
- School of Medicine, Jiangsu University, Zhenjiang, China
| | | | - Xiang Lu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Canuti M, McDonald E, Graham SM, Rodrigues B, Bouchard É, Neville R, Pitcher M, Whitney HG, Marshall HD, Lang AS. Multi-host dispersal of known and novel carnivore amdoparvoviruses. Virus Evol 2020; 6:veaa072. [PMID: 36158990 PMCID: PMC9492287 DOI: 10.1093/ve/veaa072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Amdoparvoviruses (family Parvoviridae) are ssDNA viruses that cause an immune complex-mediated wasting syndrome in carnivores. They are multi-host pathogens and cross-species infection is facilitated by the fact that viral entry is mediated by cellular Fc receptors recognizing antibody-coated viruses. We developed a pan-amdoparvovirus PCR and screened tissue samples from 666 wild carnivores (families Felidae, Canidae, and Mustelidae) from Newfoundland or Labrador (Canada) and molecularly characterized the identified strains. Fifty-four out of 666 (8.1%) animals were amdoparvovirus-positive. Infection rate was the highest in American mink (34/47, 72.3%), followed by foxes (Arctic and red foxes, 13/311, 4.2%), lynx (2/58, 3.5%), and American martens (5/156, 3.4%). No virus was detected in samples from 87 coyotes and 17 ermines. Viruses from Newfoundland were classified as Aleutian mink disease virus (AMDV). Mink harvested near AMDV-affected fur farms had higher prevalence (24/24, 100%) than other mink (10/23, 43.5%; P < 0.001) and their viruses were phylogenetically closely related to those from farms, while most viruses from other mink were in other clades. Strains from three foxes and two lynx were highly related to mink strains. This proves that farms disperse AMDV that subsequently spreads among wild mink (maintenance host) and transmits to other spillover carnivore hosts. In Labrador two novel viruses were identified, Labrador amdoparvovirus 1 (LaAV-1) found in foxes (9/261, 3.5%) and martens (5/156, 3.4%), and LaAV-2 found in one fox (0.4%). LaAV-1 fulfills all requirements to be classified as a novel species. LaAV-1 was most similar to viruses of mink and skunks (AMDV and skunk amdoparvovirus (SKAV)) while LaAV-2 was more closely related to other viruses infecting canids. LaAV-1 capsid proteins were almost indistinguishable from those of AMDV in some regions, suggesting that LaAV-1 could be a virus of mustelids that can infect foxes. While intensive farming practices provide occasions for inter-species transmission in farms, niche overlap or predation could explain cross-species transmission in the wild, but competition among sympatric species reduces the chances of direct contacts, making this an infrequent event. Pan-amdoparvovirus detection methods in wide epidemiological investigations can play a crucial role in defining amdoparvoviral ecology and evolution and discovering novel viruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| | - Emily McDonald
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| | - Stephanie M Graham
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| | - Bruce Rodrigues
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry, and Agriculture, PO Box 2007, Corner Brook, Newfoundland and Labrador A2H 7S1 Canada
| | - Émilie Bouchard
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Richard Neville
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry, and Agriculture, PO Box 3014, Stn. B, Happy Valley-Goose Bay, Newfoundland and Labrador A0P 1E0, Canada
| | - Mac Pitcher
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry, and Agriculture, PO Box 2007, Corner Brook, Newfoundland and Labrador A2H 7S1 Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| | - H Dawn Marshall
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave, St. John’s, Newfoundland and Labrador A1B 3X9, Canada
| |
Collapse
|
22
|
Pénzes JJ, Söderlund-Venermo M, Canuti M, Eis-Hübinger AM, Hughes J, Cotmore SF, Harrach B. Reorganizing the family Parvoviridae: a revised taxonomy independent of the canonical approach based on host association. Arch Virol 2020; 165:2133-2146. [PMID: 32533329 DOI: 10.1007/s00705-020-04632-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Parvoviridae, a diverse family of small single-stranded DNA viruses was established in 1975. It was divided into two subfamilies, Parvovirinae and Densovirinae, in 1993 to accommodate parvoviruses that infect vertebrate and invertebrate animals, respectively. This relatively straightforward segregation, using host association as the prime criterion for subfamily-level classification, has recently been challenged by the discovery of divergent, vertebrate-infecting parvoviruses, dubbed "chapparvoviruses", which have proven to be more closely related to viruses in certain Densovirinae genera than to members of the Parvovirinae. Viruses belonging to these genera, namely Brevi-, Hepan- and Penstyldensovirus, are responsible for the unmatched heterogeneity of the subfamily Densovirinae when compared to the Parvovirinae in matters of genome organization, protein sequence homology, and phylogeny. Another genus of Densovirinae, Ambidensovirus, has challenged traditional parvovirus classification, as it includes all newly discovered densoviruses with an ambisense genome organization, which introduces genus-level paraphyly. Lastly, current taxon definition and virus inclusion criteria have significantly limited the classification of certain long-discovered parvoviruses and impedes the classification of some potential family members discovered using high-throughput sequencing methods. Here, we present a new and updated system for parvovirus classification, which includes the introduction of a third subfamily, Hamaparvovirinae, resolves the paraphyly within genus Ambidensovirus, and introduces new genera and species into the subfamily Parvovirinae. These proposals were accepted by the ICTV in 2020 March.
Collapse
Affiliation(s)
- Judit J Pénzes
- Center for Structural Biology, Department of Biochemistry and Molecular Biology, The McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | - Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada
| | | | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Susan F Cotmore
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06520-8035, USA
| | - Balázs Harrach
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Budapest, Hungary
| |
Collapse
|
23
|
Canuti M, Todd M, Monteiro P, Van Osch K, Weir R, Schwantje H, Britton AP, Lang AS. Ecology and Infection Dynamics of Multi-Host Amdoparvoviral and Protoparvoviral Carnivore Pathogens. Pathogens 2020; 9:pathogens9020124. [PMID: 32075256 PMCID: PMC7168296 DOI: 10.3390/pathogens9020124] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
Amdoparvovirus and Protoparvovirus are monophyletic viral genera that infect carnivores. We performed surveillance for and sequence analyses of parvoviruses in mustelids in insular British Columbia to investigate parvoviral maintenance and cross-species transmission among wildlife. Overall, 19.1% (49/256) of the tested animals were parvovirus-positive. Aleutian mink disease virus (AMDV) was more prevalent in mink (41.6%, 32/77) than martens (3.1%, 4/130), feline panleukopenia virus (FPV) was more prevalent in otters (27.3%, 6/22) than mink (5.2%, 4/77) or martens (2.3%, 3/130), and canine parvovirus 2 (CPV-2) was found in one mink, one otter, and zero ermines (N = 27). Viruses were endemic and bottleneck events, founder effects, and genetic drift generated regional lineages. We identified two local closely related AMDV lineages, one CPV-2 lineage, and five FPV lineages. Highly similar viruses were identified in different hosts, demonstrating cross-species transmission. The likelihood for cross-species transmission differed among viruses and some species likely represented dead-end spillover hosts. We suggest that there are principal maintenance hosts (otters for FPV, raccoons for CPV-2/FPV, mink for AMDV) that enable viral persistence and serve as sources for other susceptible species. In this multi-host system, viral and host factors affect viral persistence and distribution, shaping parvoviral ecology and evolution, with implications for insular carnivore conservation.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada
- Correspondence: (M.C.); (A.S.L.); Tel.: +1-709-864-8761 (M.C.); +1-709-864-7517 (A.S.L.)
| | - Melissa Todd
- British Columbia Ministry of Forests, Lands, Natural Resource Operations, and Rural Development, Coast Area Research Section, Suite 103-2100 Labieux Rd., Nanaimo, BC V9T 6E9, Canada; (M.T.); (P.M.); (K.V.O.)
| | - Paige Monteiro
- British Columbia Ministry of Forests, Lands, Natural Resource Operations, and Rural Development, Coast Area Research Section, Suite 103-2100 Labieux Rd., Nanaimo, BC V9T 6E9, Canada; (M.T.); (P.M.); (K.V.O.)
| | - Kalia Van Osch
- British Columbia Ministry of Forests, Lands, Natural Resource Operations, and Rural Development, Coast Area Research Section, Suite 103-2100 Labieux Rd., Nanaimo, BC V9T 6E9, Canada; (M.T.); (P.M.); (K.V.O.)
| | - Richard Weir
- British Columbia Ministry of Environment and Climate Change Strategy, PO Box 9338 STN Prov Govt, Victoria, BC V8W 9M2, Canada;
| | - Helen Schwantje
- British Columbia Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Wildlife Health Program, Wildlife and Habitat Branch, 2080 Labieux Rd., Nanaimo, BC V9T 6J9, Canada;
| | - Ann P. Britton
- Animal Health Center, British Columbia Ministry of Agriculture, 1767 Angus Campbell Rd., Abbotsford, BC V3G 2M3, Canada;
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada
- Correspondence: (M.C.); (A.S.L.); Tel.: +1-709-864-8761 (M.C.); +1-709-864-7517 (A.S.L.)
| |
Collapse
|
24
|
Wu YH, Wei T, Zhang XT, Zhao YQ, Wang JK, Cong L, Xu BZ, Shao XQ. Development and evaluation of a direct TaqMan qPCR assay for the rapid detection of diverse carnivore amdoparvoviruses. Mol Cell Probes 2019; 48:101448. [PMID: 31521579 DOI: 10.1016/j.mcp.2019.101448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
Abstract
Amdoparvoviruses infect carnivore species, including mink, raccoon dog, fox, skunk, and red panda. Amdoparvovirus infection is a major cause of morbidity and mortality in farmed minks. Here, we developed a direct TaqMan qPCR assay for detection and quantification of carnivore amdoparvoviruses by using three primers and one probe based on the conserved VP2 gene. The detection limit for Aleutian mink disease virus (AMDV) and Raccoon dog and arctic fox amdoparvovirus (RFAV) were 4.06 × 101 copies/μl and 2.93 × 101 copies/μl, respectively. Both intra- and inter-assay variability were less than 2%. Among 74 carnivore samples, the positive rates for amdoparvoviruses were 62.2% (46/74) by direct TaqMan qPCR, while only 40.5% (30/74) by SYBR Green I qPCR. This result suggests that the direct TaqMan qPCR was more sensitive than the SYBR Green I qPCR. Additionally, the direct TaqMan qPCR is a rapid and sensitive method for liquid samples at microliter level as the assay employed the direct alkaline lysis method to obtain viral DNA and, therefore, eliminated the cumbersome steps in extracting DNA. Overall, the direct TaqMan qPCR assay possessed high specificity, sensitivity, and reproducibility, indicating that it can be used as a powerful tool for detection and quantification of various carnivore amdoparvoviruses in epidemiological and pathogenesis studies.
Collapse
Affiliation(s)
- Yan-Hong Wu
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Tao Wei
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Xiu-Ting Zhang
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yong-Qiang Zhao
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jian-Ke Wang
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Li Cong
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Bao-Zeng Xu
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Xi-Qun Shao
- State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
25
|
Pénzes JJ, Marsile-Medun S, Agbandje-McKenna M, Gifford RJ. Endogenous amdoparvovirus-related elements reveal insights into the biology and evolution of vertebrate parvoviruses. Virus Evol 2018; 4:vey026. [PMID: 30443409 PMCID: PMC6232428 DOI: 10.1093/ve/vey026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Amdoparvoviruses (family Parvoviridae: genus Amdoparvovirus) infect carnivores, and are a major cause of morbidity and mortality in farmed animals. In this study, we systematically screened animal genomes to identify endogenous parvoviral elements (EPVs) disclosing a high degree of similarity to amdoparvoviruses, and investigated their genomic, phylogenetic and protein structural features. We report the first examples of full-length, amdoparvovirus-derived EPVs in the genome of the Transcaucasian mole vole (Ellobius lutescens). We also identify four EPVs in mammal and reptile genomes that are intermediate between amdoparvoviruses and their sister genus (Protoparvovirus) in terms of their phylogenetic placement and genomic features. In particular, we identify a genome-length EPV in the genome of a pit viper (Protobothrops mucrosquamatus) that is more similar to a protoparvovirus than an amdoparvovirus in terms of its phylogenetic placement and the structural features of its capsid protein (as revealed by homology modeling), yet exhibits characteristically amdoparvovirus-like genome features including: (1) a putative middle ORF gene; (2) a capsid gene that lacks a phospholipase A2 domain; (3) a genome structure consistent with an amdoparvovirus-like mechanism of capsid gene expression. Our findings indicate that amdoparvovirus host range extends to rodents, and that parvovirus lineages possessing a mixture of proto- and amdoparvovirus-like characteristics have circulated in the past. In addition, we show that EPV sequences in the mole vole and pit viper encode intact, expressible replicase genes that have potentially been co-opted or exapted in these host species.
Collapse
Affiliation(s)
- Judit J Pénzes
- University of Florida McKnight Brain Institute, 1149 Newell Dr, Gainesville, USA
| | - Soledad Marsile-Medun
- Agrocampus Ouest, 65 Rue de Saint-Brieuc, Rennes, France
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, UK
| | | | - Robert James Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, UK
| |
Collapse
|