1
|
Wang H, Wang X, Cao Y, Chen Y, Zou Z, Lu X, Shan F, Tu J, Liu J, Liu J, Sa J, Zhou N, Peng SM, Zou JJ, Shen X, Zhai J, Chen Z, Holmes EC, Chen W, Shen Y. Identification of Corynebacterium ulcerans and Erysipelothrix sp. in Malayan pangolins-a potential threat to public health? mSphere 2024; 9:e0055124. [PMID: 39345123 PMCID: PMC11520285 DOI: 10.1128/msphere.00551-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The discovery of severe acute respiratory syndrome-coronavirus-2-like and Middle East respiratory syndrome-coronavirus-like viruses in Malayan pangolins has raised concerns about their potential role in the spread of zoonotic diseases. Herein, we describe the isolation and whole-genome sequencing of potentially zoonotic two bacterial pathogens from diseased Malaysian pangolins (Manis javanica)-Corynebacterium ulcerans and Erysipelothrix sp. The newly identified species were designated as C. ulcerans P69 and Erysipelothrix sp. P66. C. ulcerans P69 exhibited 99.2% whole-genome nucleotide identity to human bacterial isolate 4940, suggesting that it might have zoonotic potential. Notably, C. ulcerans P69 lacked the diphtheria toxin (tox) gene that is widely used in vaccines to protect humans from corynebacterial infection, which suggests that the current vaccine may be of limited efficacy against this pangolin strain. C. ulcerans P69 also contains other known virulence-associated genes such as pld and exhibits resistance to several antibiotics (erythromycin, clindamycin, penicillin G, gentamicin, tetracycline), which may affect its effective control. Erysipelothrix sp. P66 was closely related to Erysipelothrix sp. strain 2-related strains, exhibiting 98.8% whole-genome nucleotide identity. This bacterium is lethal in mice, and two commercial vaccines failed to protect its challenge, such that it could potentially pose a threat to the swine industry. Overall, this study highlights that, in addition to viruses, pangolins harbor bacteria that may pose a potential threat to humans and domestic animals, and which merit attention. IMPORTANCE This study firstly reports the presence of two potentially zoonotic bacteria, Corynebacterium ulcerans and Erysipelothrix sp., in diseased Malaysian pangolins collected in 2019. The pangolin C. ulcerans is lethal in mice and resists many antibiotics. It clustered with a lethal human strain but lacked the diphtheria toxin gene. Diphtheria toxin is widely used as a vaccine around the world to protect humans from the infection of corynebacteria. The lack of the tox gene suggests that the current vaccine may be of limited efficacy against this pangolin strain. The pangolin Erysipelothrix sp. is the sister clade of Erysipelothrix rhusiopathiae. It is lethal in mice, and two commercial vaccines failed to protect the mice against challenge with the pangolin Erysipelothrix sp., such that this strain could potentially pose a threat to the swine industry. These findings emphasize the potential threat of pangolin bacteria.
Collapse
Affiliation(s)
- Hai Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yilin Cao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiting Chen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zanjian Zou
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xingbang Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fen Shan
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Jieying Tu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China
| | - Jianhua Liu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China
| | - Jiameng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jiaqi Sa
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Niu Zhou
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Shi-Ming Peng
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Jie-Jian Zou
- Guangdong Provincial Wildlife Monitoring and Rescue Center, Guangzhou, China
| | - Xuejuan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junqiong Zhai
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Zujin Chen
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Edward C. Holmes
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Wu Chen
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Yongyi Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Chen S, Shang K, Chen J, Yu Z, Wei Y, He L, Ding K. Global distribution, cross-species transmission, and receptor binding of canine parvovirus-2: Risks and implications for humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172307. [PMID: 38599392 DOI: 10.1016/j.scitotenv.2024.172307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
For canine parvovirus -2 (CPV-2), a zoonotic virus capable of cross-species transmission in animals, the amino acid changes of capsid protein VP2 are key factors when binding to other species' transferrin receptors (TfR). CPV-2 variants can spread from felines and canines, for example, to Carnivora, Artiodactyla, and Pholidota species, and CPV-2c variants are essential to spread from Carnivora to Artiodactyla and Pholidota species in particular. In our study, a CPV-2a variant maintained a relatively stable trend, and the proportion of CPV-2c gradually rose from 1980 to 2021. The VP2 amino acid sequence analysis showed that five amino acid mutations at 426E/D, 305H/D, and 297S may be necessary for the virus to bind to different host receptors. Meanwhile, receptor-binding loop regions and amino acid sites 87 L, 93 N, 232I, and 305Y were associated with CPV-2 cross-species transmission. The homology of TfRs in different hosts infected with CPV-2 ranged from 77.2 % to 99.0 %, and from pig to feline, canine, and humans was 80.7 %, 80.4 %, and 77.2 %, respectively. The amino acid residues of TfRs involved in the viral binding in those hosts are highly conserved, which suggests that CPV-2 may be capable of pig-to-human transmission. Our analysis of the origin, evolutionary trend, cross-species transmission dynamics, and genetic characteristics of CPV-2 when binding to host receptors provides a theoretical basis for further research on CPV-2's mechanism of cross-species transmission and for establishing an early warning and monitoring mechanism for the possible threat of CPV-2 to animal-human public security.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Wei
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei He
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China.
| |
Collapse
|
3
|
Chen S, Liu F, Yang A, Shang K. For better or worse: crosstalk of parvovirus and host DNA damage response. Front Immunol 2024; 15:1324531. [PMID: 38464523 PMCID: PMC10920228 DOI: 10.3389/fimmu.2024.1324531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Parvoviruses are a group of non-enveloped DNA viruses that have a broad spectrum of natural infections, making them important in public health. NS1 is the largest and most complex non-structural protein in the parvovirus genome, which is indispensable in the life cycle of parvovirus and is closely related to viral replication, induction of host cell apoptosis, cycle arrest, DNA damage response (DDR), and other processes. Parvovirus activates and utilizes the DDR pathway to promote viral replication through NS1, thereby increasing pathogenicity to the host cells. Here, we review the latest progress of parvovirus in regulating host cell DDR during the parvovirus lifecycle and discuss the potential of cellular consequences of regulating the DDR pathway, targeting to provide the theoretical basis for further elucidation of the pathogenesis of parvovirus and development of new antiviral drugs.
Collapse
Affiliation(s)
- Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Feifei Liu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Aofei Yang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Wang X, Xu X, An F, Ren Z, Li Y, Wang K, Hua Y. Infantile hemangioma in a subadult Chinese pangolin: a case report. BMC Vet Res 2024; 20:31. [PMID: 38267947 PMCID: PMC10807128 DOI: 10.1186/s12917-023-03832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Hemangiomas are a relatively common type of tumor in humans and animals. Various subtypes of hemangiomas have been described in the literature. The classification methods for hemangiomas differ between human and veterinary medicine, and the basis for tumor classification can be found in the literature. CASE PRESENTATION This study describes a tumor in the subcutaneous tissue of the right dorsum of an artificially rescued juvenile Chinese pangolin. Computed tomography (CT) examination yielded the preliminary diagnosis of a vascular malformation, and surgery was performed to resect the tumor. Histopathological examination showed that the tumor mainly was consisted of adipose tissue, capillaries, and spindle cells in the fibrous stroma. Immunohistochemistry showed the positive expression of CD31, CD34, α-SMA, GLUT1 and WT-1 in the tumor tissue, and the tumor was eventually diagnosed as an infantile haemangioma. CONCLUSION The final diagnosis of infantile hemangioma was depended on the histopathological immunohistochemical and CT examination of the neoplastic tissue. This is the first report of infantile hemangioma in a critically endangered species Chinese pangolin.
Collapse
Affiliation(s)
- Xianghe Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510550, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Xuelin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Fuyu An
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Zhengyu Ren
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Yongzheng Li
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
5
|
An F, Wang K, Wei S, Yan H, Xu X, Xu J, Sun S, Zou J, Hou F, Hua Y. First case report of pustules associated with Escherichia fergusonii in the chinese pangolin (Manis pentadactyla aurita). BMC Vet Res 2023; 19:69. [PMID: 37147672 PMCID: PMC10163759 DOI: 10.1186/s12917-023-03622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Escherichia fergusonii is a common conditionally pathogenic bacterium that infects humans and animals. E. fergusonii has been reported to cause diarrhea, respiratory disease, and septicemia, but it is rarely reported to cause skin infections in animals. E. fergusonii has been isolated from the skin and muscular tissue of Chinese pangolin (Manis pentadactyla aurita). To date, there have been no reports of Chinese pangolins with clinical signs of skin diseases. CASE PRESENTATION This case report describes the clinical case of a subadult (bodyweight: 1.1 kg) female Chinese pangolin from wild rescue with pustules and subcutaneous suppurative infection due to E. fergusonii in the abdominal skin. Bacterial culture, Biochemical analysis, PCR and histopathology were utilized to identify the bacteria in the pustule puncture fluid and infected tissue. To the best of our knowledge, this is the first report of E. fergusonii-related pustules on a Chinese pangolin. CONCLUSION This case report presents the first observed skin infection in a Chinese pangolin. E. fergusonii infection should be considered as a possible differential diagnosis of pustules and subcutaneous suppurative skin conditions in Chinese pangolins, and we also provide several recommendations for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Fuyu An
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Shichao Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Hongmei Yan
- College of Wildlife and Natural Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Xuelin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Jinqian Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Song Sun
- College of Wildlife and Natural Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Jiejian Zou
- Guangdong Wildlife Rescue Monitoring Center, Guang Zhou, 510520, China
- Pangolin Conservation Research Center of National Forestry and Grassland Administration, Guang Zhou, 510520, China
| | - Fanghui Hou
- Guangdong Wildlife Rescue Monitoring Center, Guang Zhou, 510520, China
- Pangolin Conservation Research Center of National Forestry and Grassland Administration, Guang Zhou, 510520, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
6
|
Shi YN, Li LM, Zhou JB, Hua Y, Zeng ZL, Yu YP, Liu P, Yuan ZG, Chen JP. Detection of a novel Pestivirus strain in Java ticks (Amblyomma javanense) and the hosts Malayan pangolin (Manis javanica) and Chinese pangolin (Manis pentadactyla). Front Microbiol 2022; 13:988730. [PMID: 36118205 PMCID: PMC9479695 DOI: 10.3389/fmicb.2022.988730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pangolins are endangered animals and are listed in the CITES Appendix I of the Convention International Trade Endangered Species of Wild Fauna and Flora as well as being the national first-level protected wild animal in China. Based on a few reports on pangolins infected with pestiviruses of the Flaviviridae family, Pestivirus infections in pangolins have attracted increasing attention. Pangolin pestivirus is a pathogen that may cause diseases such as acute diarrhea and acute hemorrhagic syndrome. To better understand the epidemiology and genomic characterization of pestiviruses carried by pangolins, we detected pestiviruses in dead Malayan pangolin using metavirome sequencing technology and obtained a Pestivirus sequence of 12,333 nucleotides (named Guangdong pangolin Pestivirus, GDPV). Phylogenetic tree analysis based on the entire coding sequence, NS3 gene or RdRp gene sequences, showed that GDPV was closely related to previously reported pangolin-derived Pestivirus and clustered into a separate branch. Molecular epidemiological investigation revealed that 15 Pestivirus-positive tissues from two pangolins individuals with a positivity rate of 5.56%, and six Amblyomma javanense carried pestiviruses with a positivity rate of 19.35%. Moreover, the RdRp gene of the Pestivirus carried by A. javanense showed a high similarity to that carried by pangolins (93–100%), indicating A. javanense is likely to represent the vector of Pestivirus transmission. This study expands the diversity of viruses carried by pangolins and provides an important reference value for interrupting the transmission route of the virus and protecting the health of pangolins.
Collapse
Affiliation(s)
- Yuan-Ni Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Lin-Miao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jia-Bin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, Guangdong, China
| | - Zhi-Liao Zeng
- Shenzhen Management Bureau of Natural Reserve, Shenzhen, Guangdong, China
| | - Ye-Pin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- *Correspondence: Zi-Guo Yuan,
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Jin-Ping Chen,
| |
Collapse
|
7
|
Temeeyasen G, Sharafeldin TA, Lin CM, Hause BM. Spillover of Canine Parvovirus Type 2 to Pigs, South Dakota, USA, 2020. Emerg Infect Dis 2022; 28:471-473. [PMID: 35076011 PMCID: PMC8798709 DOI: 10.3201/eid2802.211681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In 1978, canine parvovirus type 2 originated from spillover of a feline panleukopenia–like virus, causing a worldwide pandemic of enteritis and myocarditis among canids. In 2020, the virus was identified in pigs in South Dakota, USA, by PCR, sequencing, in situ hybridization, and serology. Genetic analysis suggests spillover from wildlife.
Collapse
|
8
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
9
|
Mira F. From molecular surveillance to electronic health data and back: creating virtual biobanks for infectious diseases of companion animals. Vet Rec 2021; 189:241-243. [PMID: 34558712 DOI: 10.1002/vetr.998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia 'A Mirri', Palermo, Italy
| |
Collapse
|
10
|
Cocchi M, Danesi P, De Zan G, Leati M, Gagliazzo L, Ruggeri M, Palei M, Bremini A, Rossmann MC, Lippert-Petscharnig M, Mansfeld MD, Deotto S, Leardini S, Gobbo F, Zucca P, De Benedictis P. A Three-Year Biocrime Sanitary Surveillance on Illegally Imported Companion Animals. Pathogens 2021; 10:1047. [PMID: 34451511 PMCID: PMC8399716 DOI: 10.3390/pathogens10081047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/04/2022] Open
Abstract
The illegal trade of companion animals in the European Union poses several legal, ethical and health issues to the entire community. In the framework of the Biocrime Interreg project between Italy and Austria, we surveyed puppies and kittens confiscated at the borders to identify the most frequent pathogens associated with (i) the risk of spread within the shelter, (ii) the development of fatal disease and (iii) the zoonotic potential. From January 2018 to December 2020, we examined a total of 613 puppies and 62 kittens coming from 44 requisitions. Feces, skin specimens and blood sera from confiscated animals were tested to verify the presence of major infections and to assess the rabies post-vaccination immunity. Out of the total of individuals under investigation, necropsies and laboratory investigations were also performed on 79 puppies and three kittens that had died during the observation period. Results indicated a high prevalence of Canine Parvovirus (CPV) and Giardia spp. infections, CPV as the most likely cause of fatal gastroenteritis in puppies and Salmonella and Microsporum canis as major zoonotic pathogens. Conversely, both extended spectrum beta lactamases Escherichia coli and methicillin resistant Staphylococcus pseudintermedius strains as rare findings. Results highlighted that illegal animal trade could expose the human population to potential zoonotic risk and naïve animal population to potentially disrupting epidemic waves, both of these issues being largely underestimated when buying companion animals.
Collapse
Affiliation(s)
- Monia Cocchi
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione territoriale di Udine, 33030 Basaldella di Campoformido, Italy; (M.C.); (G.D.Z.); (S.D.)
| | - Patrizia Danesi
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy; (P.D.); (S.L.); (F.G.)
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Gabrita De Zan
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione territoriale di Udine, 33030 Basaldella di Campoformido, Italy; (M.C.); (G.D.Z.); (S.D.)
| | - Marta Leati
- National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratory of Parasitology, 35020 Legnaro, Italy;
| | - Laura Gagliazzo
- Istituto Zooprofilattico Sperimentale Delle Venezie, Epidemiology and Biostatistics, 35020 Legnaro, Italy; (L.G.); (M.R.)
| | - Margherita Ruggeri
- Istituto Zooprofilattico Sperimentale Delle Venezie, Epidemiology and Biostatistics, 35020 Legnaro, Italy; (L.G.); (M.R.)
| | - Manlio Palei
- Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, 34123 Trieste, Italy; (M.P.); (A.B.); (P.Z.)
| | - Alessandro Bremini
- Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, 34123 Trieste, Italy; (M.P.); (A.B.); (P.Z.)
- Biocrime Veterinary Medical Intelligence Centre, c/o International Police and Custom Cooperation Centre, Thörl-Maglern, 9602 Arnoldstein, Austria;
| | - Marie-Christin Rossmann
- Biocrime Veterinary Medical Intelligence Centre, c/o International Police and Custom Cooperation Centre, Thörl-Maglern, 9602 Arnoldstein, Austria;
- Agiculture, Forestry, Rural Areas Veterinary Department, Land Carinthia, 9020 Klagenfurt, Austria
| | - Melanie Lippert-Petscharnig
- Amt der Kärntner Landesregierung, Institut für Lebensmittelsicherheit, Veterinärmedizin und Umwelt (ILV Kärnten), Laborbereichsleitung Serologie/PCR/Fischdiagnostik, 9020 Klagenfurt, Austria;
| | - Michael-Dieter Mansfeld
- Amt der Kärntner Landesregierung, Institut für Lebensmittelsicherheit, Veterinärmedizin und Umwelt (ILV Kärnten), Laborbereichsleitung Bakteriologie/Hämatologie, 9020 Klagenfurt, Austria;
| | - Silvia Deotto
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione territoriale di Udine, 33030 Basaldella di Campoformido, Italy; (M.C.); (G.D.Z.); (S.D.)
| | - Sofia Leardini
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy; (P.D.); (S.L.); (F.G.)
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratory of Special Virology, 35020 Legnaro, Italy
| | - Federica Gobbo
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy; (P.D.); (S.L.); (F.G.)
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratory of Special Virology, 35020 Legnaro, Italy
| | - Paolo Zucca
- Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, 34123 Trieste, Italy; (M.P.); (A.B.); (P.Z.)
- Biocrime Veterinary Medical Intelligence Centre, c/o International Police and Custom Cooperation Centre, Thörl-Maglern, 9602 Arnoldstein, Austria;
| | - Paola De Benedictis
- National Reference Centre/OIE Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy; (P.D.); (S.L.); (F.G.)
- National and FAO Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| |
Collapse
|