1
|
Zhang C, Zang T, Zhao T. KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery. Brief Bioinform 2024; 25:bbae043. [PMID: 38348746 PMCID: PMC10939374 DOI: 10.1093/bib/bbae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
The prediction of molecular interactions is vital for drug discovery. Existing methods often focus on individual prediction tasks and overlook the relationships between them. Additionally, certain tasks encounter limitations due to insufficient data availability, resulting in limited performance. To overcome these limitations, we propose KGE-UNIT, a unified framework that combines knowledge graph embedding (KGE) and multi-task learning, for simultaneous prediction of drug-target interactions (DTIs) and drug-drug interactions (DDIs) and enhancing the performance of each task, even when data availability is limited. Via KGE, we extract heterogeneous features from the drug knowledge graph to enhance the structural features of drug and protein nodes, thereby improving the quality of features. Additionally, employing multi-task learning, we introduce an innovative predictor that comprises the task-aware Convolutional Neural Network-based (CNN-based) encoder and the task-aware attention decoder which can fuse better multimodal features, capture the contextual interactions of molecular tasks and enhance task awareness, leading to improved performance. Experiments on two imbalanced datasets for DTIs and DDIs demonstrate the superiority of KGE-UNIT, achieving high area under the receiver operating characteristics curves (AUROCs) (0.942, 0.987) and area under the precision-recall curve ( AUPRs) (0.930, 0.980) for DTIs and high AUROCs (0.975, 0.989) and AUPRs (0.966, 0.988) for DDIs. Notably, on the LUO dataset where the data were more limited, KGE-UNIT exhibited a more pronounced improvement, with increases of 4.32$\%$ in AUROC and 3.56$\%$ in AUPR for DTIs and 6.56$\%$ in AUROC and 8.17$\%$ in AUPR for DDIs. The scalability of KGE-UNIT is demonstrated through its extension to protein-protein interactions prediction, ablation studies and case studies further validate its effectiveness.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianyi Zang
- Department of Computer Science, Harbin Institute of Technology, Harbin, 150001, China
| | - Tianyi Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
2
|
Suresh V, Behera P, Parida D, Mohapatra AP, Das SK, Kumari S, Avula K, Mohapatra A, Syed GH, Senapati S. Therapeutic role of N-acetyl cysteine (NAC) for the treatment and/or management of SARS-CoV-2-induced lung damage in hamster model. Eur J Pharmacol 2023; 938:175392. [PMID: 36400163 PMCID: PMC9663386 DOI: 10.1016/j.ejphar.2022.175392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Oxidative stress by reactive oxygen species (ROS) has been hypothesized to be the major mediator of SARS-CoV-2-induced pathogenesis. During infection, the redox homeostasis of cells is altered as a consequence of virus-induced cellular stress and inflammation. In such scenario, high levels of ROS bring about the production of pro-inflammatory molecules like IL-6, IL-1β, etc. that are believed to be the mediators of severe COVID-19 pathology. Based on the known antioxidant, anti-inflammatory, mucolytic and antiviral properties of NAC, it has been hypothesized that NAC will have beneficial effects in COVID-19 patients. In the current study efforts have been made to evaluate the protective effect of NAC in combination with remdesivir against SARS-CoV-2 induced lung damage in the hamster model. The SARS-CoV-2 infected animals were administered with high (500 mg/kg/day) and low (150 mg/kg/day) doses of NAC intraperitoneally with and without remdesivir. Lung viral load, pathology score and expression of inflammatory molecules were checked by using standard techniques. The findings of this study show that high doses of NAC alone can significantly suppress the SARS-CoV-2 mediated severe lung damage (2 fold), but on the contrary, it fails to restrict viral load. Moreover, high doses of NAC with and without remdesivir significantly suppressed the expression of pro-inflammatory genes including IL-6 (4.16 fold), IL-1β (1.96 fold), and TNF-α (5.55 fold) in lung tissues. Together, results of this study may guide future preclinical and clinical attempts to evaluate the efficacy of different doses and routes of NAC administration with or without other drugs against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Voddu Suresh
- Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Padmanava Behera
- Institute of Life Sciences, Bhubaneswar, Odisha, India; Department of Microbiology, SOA University, Bhubaneswar, Odisha, India
| | - Deepti Parida
- Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Amlan Priyadarshee Mohapatra
- Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | - Sneha Kumari
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Kiran Avula
- Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | |
Collapse
|
3
|
Clark NF, Taylor-Robinson AW, Heimann K. Could chlorophyllins improve the safety profile of beta-d-N4-hydroxycytidine versus N-hydroxycytidine, the active ingredient of the SARS-CoV-2 antiviral molnupiravir? Ther Adv Drug Saf 2022; 13:20420986221107753. [PMID: 35898799 PMCID: PMC9309465 DOI: 10.1177/20420986221107753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Could natural plant pigment (chlorophyll) derivatives (chlorophyllins) improve the
safety of the antiviral Molnupiravir, used to treat COVID-19 disease?
Molnupiravir, a specific SARS-CoV-2 antiviral, may cause adverse genetic changes and
thereby create potential host cell damage (through genotoxicity and DNA stressors). In our
opinion, this side effect of treatment could be reduced if the antiviral was taken as a
combined therapy with chlorophyllins. Specifically, we hypothesise that chlorophyllins
might improve the overall effectiveness of molnupiravir, typically used to treat patients
suffering from COVID-19. Chlorophyllins, antioxidants derived from natural plant
chlorophyll, are safe, effective and non-toxic antioxidants that could combat possible
genotoxic flow-on effects of molnupiravir. In addition, as they possess antiviral
properties, treatment with chlorophyllins may enhance the overall antiviral effect via a
mechanism different to molnupiravir.
Collapse
Affiliation(s)
- Nicole F Clark
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA, 5042 Australia
| | | | - Kirsten Heimann
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
4
|
Caceres CJ, Seibert B, Cargnin Faccin F, Cardenas‐Garcia S, Rajao DS, Perez DR. Influenza antivirals and animal models. FEBS Open Bio 2022; 12:1142-1165. [PMID: 35451200 PMCID: PMC9157400 DOI: 10.1002/2211-5463.13416] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A and B viruses are among the most prominent human respiratory pathogens. About 3-5 million severe cases of influenza are associated with 300 000-650 000 deaths per year globally. Antivirals effective at reducing morbidity and mortality are part of the first line of defense against influenza. FDA-approved antiviral drugs currently include adamantanes (rimantadine and amantadine), neuraminidase inhibitors (NAI; peramivir, zanamivir, and oseltamivir), and the PA endonuclease inhibitor (baloxavir). Mutations associated with antiviral resistance are common and highlight the need for further improvement and development of novel anti-influenza drugs. A summary is provided for the current knowledge of the approved influenza antivirals and antivirals strategies under evaluation in clinical trials. Preclinical evaluations of novel compounds effective against influenza in different animal models are also discussed.
Collapse
Affiliation(s)
- C. Joaquin Caceres
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Brittany Seibert
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Flavio Cargnin Faccin
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | | | - Daniela S. Rajao
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Daniel R. Perez
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
5
|
Singh S, Kola P, Kaur D, Singla G, Mishra V, Panesar PS, Mallikarjunan K, Krishania M. Therapeutic Potential of Nutraceuticals and Dietary Supplements in the Prevention of Viral Diseases: A Review. Front Nutr 2021; 8:679312. [PMID: 34604272 PMCID: PMC8484310 DOI: 10.3389/fnut.2021.679312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nowadays, despite enormous scientific advances, viral diseases remain the leading cause of morbidity worldwide, and their potential to spread is escalating, eventually turning into pandemics. Nutrition can play a major role in supporting the immune system of the body and for the optimal functioning of the cells of the immune system. A healthy diet encompassing vitamins, multi-nutrient supplements, functional foods, nutraceuticals, and probiotics can play a pivotal role in combating several viral invasions in addition to strengthening the immune system. This review provides comprehensive information on diet-based scientific recommendations, evidence, and worldwide case studies in light of the current pandemic and also with a particular focus on virus-induced respiratory tract infections. After reviewing the immune potential of nutraceuticals based on the lab studies and on human studies, it was concluded that bioactive compounds such as nutraceuticals, vitamins, and functional foods (honey, berries, etc.) with proven antiviral efficacy, in addition to pharmaceutical medication or alone as dietary supplements, can prove instrumental in treating a range of virus-induced infections in addition to strengthening the immune system. Milk proteins and peptides can also act as adjuvants for the design of more potent novel antiviral drugs.
Collapse
Affiliation(s)
- Saumya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Prithwish Kola
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Dalveer Kaur
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Gisha Singla
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India.,Food Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology Longowal, Longowal, India
| | - Vibhu Mishra
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Parmjit S Panesar
- Food Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology Longowal, Longowal, India
| | - Kumar Mallikarjunan
- Food Science and Nutrition Department, University of Minnesota, Minneapolis, MN, United States
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| |
Collapse
|
6
|
Abstract
There is a possible role for oxidative stress, a state characterized by an altered balance between the production of free radicals or reactive oxygen species (ROS) and antioxidant defences, in coronavirus disease 2019 (COVID-19), the genesis of which is quite complex. Excessive oxidative stress could be responsible for the alveolar damage, thrombosis, and red blood cell dysregulation observed in COVID-19. Apparently, deficiency of glutathione (GSH), a low-molecular-weight thiol that is the most important non-enzymatic antioxidant molecule and has the potential to keep the cytokine storm in check, is a plausible explanation for the severe manifestations and death in COVID-19 patients. Thiol drugs, which are considered mucolytic, also possess potent antioxidant and anti-inflammatory properties. They exhibit antibacterial activity against a variety of medically important bacteria and may be an effective strategy against influenza virus infection. The importance of oxidative stress during COVID-19 and the various pharmacological characteristics of thiol-based drugs suggest a possible role of thiols in the treatment of COVID-19. Oral and intravenous GSH, as well as GSH precursors such as N-acetylcysteine (NAC), or drugs containing the thiol moiety (erdosteine) may represent a novel therapeutic approach to block NF-kB and address the cytokine storm syndrome and respiratory distress observed in COVID-19 pneumonia patients
Collapse
|
7
|
Wong KK, Lee SWH, Kua KP. N-Acetylcysteine as Adjuvant Therapy for COVID-19 - A Perspective on the Current State of the Evidence. J Inflamm Res 2021; 14:2993-3013. [PMID: 34262324 PMCID: PMC8274825 DOI: 10.2147/jir.s306849] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
The looming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a long-lasting pandemic of coronavirus disease 2019 (COVID-19) around the globe with substantial morbidity and mortality. N-acetylcysteine, being a nutraceutical precursor of an important antioxidant glutathione, can perform several biological functions in mammals and microbes. It has consequently garnered a growing interest as a potential adjunctive therapy for coronavirus disease. Here, we review evidence concerning the effects of N-acetylcysteine in respiratory viral infections based on currently available in vitro, in vivo, and human clinical investigations. The repurposing of a known drug such as N-acetylcysteine may significantly hasten the deployment of a novel approach for COVID-19. Since the drug candidate has already been translated into the clinic for several decades, its established pharmacological properties and safety and side-effect profiles expedite preclinical and clinical assessment for the treatment of COVID-19. In vitro data have depicted that N-acetylcysteine increases antioxidant capacity, interferes with virus replication, and suppresses expression of pro-inflammatory cytokines in cells infected with influenza viruses or respiratory syncytial virus. Furthermore, findings from in vivo studies have displayed that, by virtue of immune modulation and anti-inflammatory mechanism, N-acetylcysteine reduces the mortality rate in influenza-infected mice animal models. The promising in vitro and in vivo results have prompted the initiation of human subject research for the treatment of COVID-19, including severe pneumonia and acute respiratory distress syndrome. Albeit some evidence of benefits has been observed in clinical outcomes of patients, precision nanoparticle design of N-acetylcysteine may allow for greater therapeutic efficacy.
Collapse
Affiliation(s)
- Kon Ken Wong
- Department of Microbiology and Immunology, Hospital Canselor Tuanku Muhriz UKM, Cheras, Kuala Lumpur, Malaysia.,Faculty of Medicine, The National University of Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University, Bandar Sunway, Selangor, Malaysia.,Asian Centre for Evidence Synthesis in Population, Implementation, and Clinical Outcomes (PICO), Health and Well-being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University, Bandar Sunway, Selangor, Malaysia.,Gerontechnology Laboratory, Global Asia in the 21st Century (GA21) Platform, Monash University, Bandar Sunway, Selangor, Malaysia.,Faculty of Health and Medical Sciences, Taylor's University, Bandar Sunway, Selangor, Malaysia
| | - Kok Pim Kua
- Puchong Health Clinic, Petaling District Health Office, Ministry of Health Malaysia, Petaling, Selangor, Malaysia
| |
Collapse
|
8
|
Effect of N-Acetylcysteine Administration on 30-Day Mortality in Critically Ill Patients with Septic Shock Caused by Carbapenem-Resistant Klebsiella pneumoniae and Acinetobacter baumannii: A Retrospective Case-Control Study. Antibiotics (Basel) 2021; 10:antibiotics10030271. [PMID: 33800296 PMCID: PMC8001571 DOI: 10.3390/antibiotics10030271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) and Acinetobacter baumannii (CR-Ab) represent important cause of severe infections in intensive care unit (ICU) patients. N-Acetylcysteine (NAC) is a mucolytic agent with antioxidant and anti-inflammatory properties, showing also in-vitro antibacterial activity. Aim was to evaluate the effect on 30-day mortality of the addition of intravenous NAC to antibiotics in ICU patients with CR-Kp or CR-Ab septic shock. A retrospective, observational case:control study (1:2) in patients with septic shock caused by CR-Kp or CR-Ab hospitalized in two different ICUs was conducted. Cases included patients receiving NAC plus antimicrobials, controls included patients not receiving NAC. Cases and controls were matched for age, SAPS II, causative agent and source of infection. No differences in age, sex, SAPS II score or time to initiate definitive therapy were observed between cases and controls. Pneumonia and bacteremia were the leading infections. Overall, mortality was 48.9% (33.3% vs. 56.7% in cases and controls, p = 0.05). Independent risk factors for mortality were not receiving NAC (p = 0.002) and CR-Ab (p = 0.034) whereas therapy with two in-vitro active antibiotics (p = 0.014) and time to initial definite therapy (p = 0.026) were protective. NAC plus antibiotics might reduce the 30-day mortality rate in ICU patients with CR-Kp and CR-Ab septic shock.
Collapse
|
9
|
Walther C, Döring K, Schmidtke M. Comparative in vitro analysis of inhibition of rhinovirus and influenza virus replication by mucoactive secretolytic agents and plant extracts. BMC Complement Med Ther 2020; 20:380. [PMID: 33357221 PMCID: PMC7757078 DOI: 10.1186/s12906-020-03173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/02/2020] [Indexed: 01/23/2023] Open
Abstract
Background Rhinoviruses and influenza viruses cause millions of acute respiratory infections annually. Symptoms of mild acute respiratory infections are commonly treated with over-the-counter products like ambroxol, bromhexine, and N-acetyl cysteine, as well as of thyme and pelargonium extracts today. Because the direct antiviral activity of these over-the-counter products has not been studied in a systematic way, the current study aimed to compare their inhibitory effect against rhinovirus and influenza virus replication in an in vitro setting. Methods The cytotoxicity of ambroxol, bromhexine, and N-acetyl cysteine, as well as of thyme and pelargonium extracts was analyzed in Madin Darby canine kidney (MDCK) and HeLa Ohio cells. The antiviral effect of these over-the-counter products was compared by analyzing the dose-dependent inhibition (i) of rhinovirus A2- and B14-induced cytopathic effect in HeLa Ohio cells and (ii) of influenza virus A/Hong Kong/68 (subtype H3N2)- and A/Jena/8178/09 (subtype H1N1, pandemic)-induced cytopathic effect in MDCK cells at non-cytotoxic concentrations. To get insights into the mechanism of action of pelargonium extract against influenza virus, we performed time-of-addition assays as well as hemagglutination and neuraminidase inhibition assays. Results N-acetyl cysteine, thyme and pelargonium extract showed no or only marginal cytotoxicity in MDCK and HeLa Ohio cells in the tested concentration range. The 50% cytotoxic concentration of ambroxol and bromhexine was 51.85 and 61.24 μM, respectively. No anti-rhinoviral activity was detected at non-cytotoxic concentrations in this in vitro study setting. Ambroxol, bromhexine, and N-acetyl cysteine inhibited the influenza virus-induced cytopathic effect in MDCK cells no or less than 50%. In contrast, a dose-dependent anti-influenza virus activity of thyme and pelargonium extracts was demonstrated. The time-of addition assays revealed an inhibition of early and late steps of influenza virus replication by pelargonium extract whereas zanamivir acted on late steps only. The proven block of viral neuraminidase activity might explain the inhibition of influenza virus replication when added after viral adsorption. Conclusion The study results indicate a distinct inhibition of influenza A virus replication by thyme and pelargonium extract which might contribute to the beneficial effects of these plant extracts on acute respiratory infections symptoms.
Collapse
Affiliation(s)
- Christin Walther
- Department Medical Microbiology, Section Experimental Virology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Kristin Döring
- Department Medical Microbiology, Section Experimental Virology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany
| | - Michaela Schmidtke
- Department Medical Microbiology, Section Experimental Virology, Jena University Hospital, Hans-Knöll-Str. 2, D-07745, Jena, Germany.
| |
Collapse
|
10
|
Atefi N, Behrangi E, Mozafarpoor S, Seirafianpour F, Peighambari S, Goodarzi A. N-acetylcysteine and coronavirus disease 2019: May it work as a beneficial preventive and adjuvant therapy? A comprehensive review study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2020; 25:109. [PMID: 33824674 PMCID: PMC8019127 DOI: 10.4103/jrms.jrms_777_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/11/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Coronaviruses are major pathogens of respiratory system causing different disorders, including the common cold, Middle East respiratory syndrome, and severe acute respiratory syndrome. Today's global pandemic coronavirus disease 2019 (COVID-19) has high mortality rate, with an approximate of 20% in some studies, and is 30-60 times more fatal than the common annual influenza, However, there is still no gold standard treatment for it. N-acetylcysteine (NAC) is a well-known multi-potential drug with hypothetically probable acceptable effect on COVID-related consequences, which we completely focused in this comprehensive review. MATERIALS AND METHODS PubMed, Scopus, Science Direct, and Google Scholar have been searched. Study eligibility criteria: efficacy of NAC in various subclasses of pathogenic events which may occur during COVID-19 infection. Efficacy of NAC for managing inflammatory or any symptoms similar to symptoms of COVID-19 was reviewed and symptom improvements were assessed. RESULTS Randomized clinical trials introduced NAC as an antioxidant glutathione analog and detoxifying agent promoted for different medical conditions and pulmonary disorders to alleviate influenza and reduce mortality by 50% in influenza-infected animals. The beneficial effects of NAC on viral disorders, including Epstein-Barr virus, HIV and hepatitis, and well-known vital organ damages were also exist and reported. CONCLUSION We classified the probable effects of NAC as oxidative-regulatory and apoptotic-regulatory roles, antiviral activities, anti-inflammatory roles, preventive and therapeutic roles in lung disorders and better oxygenation functions, supportive roles in intensive care unit admitted patients and in sepsis, positive role in other comorbidities and nonpulmonary end-organ damages or failures and even in primary COVID-associated cutaneous manifestations. Based on different beneficial effects of NAC, it could be administered as a potential adjuvant therapy for COVID-19 considering patient status, contraindications, and possible drug-related adverse events.
Collapse
Affiliation(s)
- Najmolsadat Atefi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Behrangi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mozafarpoor
- Department of Dermatology, Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnoosh Seirafianpour
- Department of General Medicine, Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran
| | - Shadi Peighambari
- Department of Internal Medicine, San Joaquin General Hospital, CA, USA
| | - Azadeh Goodarzi
- Department of Dermatology, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, Gasmi Benahmed A, Bjørklund G. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol 2020; 220:108545. [PMID: 32710937 PMCID: PMC7833875 DOI: 10.1016/j.clim.2020.108545] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 rapidly turned to a global pandemic posing lethal threats to overwhelming health care capabilities, despite its relatively low mortality rate. The clinical respiratory symptoms include dry cough, fever, anosmia, breathing difficulties, and subsequent respiratory failure. No known cure is available for COVID-19. Apart from the anti-viral strategy, the supports of immune effectors and modulation of immunosuppressive mechanisms is the rationale immunomodulation approach in COVID-19 management. Diet and nutrition are essential for healthy immunity. However, a group of micronutrients plays a dominant role in immunomodulation. The deficiency of most nutrients increases the individual susceptibility to virus infection with a tendency for severe clinical presentation. Despite a shred of evidence, the supplementation of a single nutrient is not promising in the general population. Individuals at high-risk for specific nutrient deficiencies likely benefit from supplementation. The individual dietary and nutritional status assessments are critical for determining the comprehensive actions in COVID-19.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Torsak Tippairote
- Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand; Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok, Thailand
| | | | | | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
12
|
De Flora S, Balansky R, La Maestra S. Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19. FASEB J 2020; 34:13185-13193. [PMID: 32780893 PMCID: PMC7436914 DOI: 10.1096/fj.202001807] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
COVID‐19 may cause pneumonia, acute respiratory distress syndrome, cardiovascular alterations, and multiple organ failure, which have been ascribed to a cytokine storm, a systemic inflammatory response, and an attack by the immune system. Moreover, an oxidative stress imbalance has been demonstrated to occur in COVID‐19 patients. N‐ Acetyl‐L‐cysteine (NAC) is a precursor of reduced glutathione (GSH). Due to its tolerability, this pleiotropic drug has been proposed not only as a mucolytic agent, but also as a preventive/therapeutic agent in a variety of disorders involving GSH depletion and oxidative stress. At very high doses, NAC is also used as an antidote against paracetamol intoxication. Thiols block the angiotensin‐converting enzyme 2 thereby hampering penetration of SARS‐CoV‐2 into cells. Based on a broad range of antioxidant and anti‐inflammatory mechanisms, which are herein reviewed, the oral administration of NAC is likely to attenuate the risk of developing COVID‐19, as it was previously demonstrated for influenza and influenza‐like illnesses. Moreover, high‐dose intravenous NAC may be expected to play an adjuvant role in the treatment of severe COVID‐19 cases and in the control of its lethal complications, also including pulmonary and cardiovascular adverse events.
Collapse
Affiliation(s)
- Silvio De Flora
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | |
Collapse
|
13
|
Boccanegra B, Verhaart IEC, Cappellari O, Vroom E, De Luca A. Safety issues and harmful pharmacological interactions of nutritional supplements in Duchenne muscular dystrophy: considerations for Standard of Care and emerging virus outbreaks. Pharmacol Res 2020; 158:104917. [PMID: 32485610 PMCID: PMC7261230 DOI: 10.1016/j.phrs.2020.104917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
At the moment, little treatment options are available for Duchenne muscular dystrophy (DMD). The absence of the dystrophin protein leads to a complex cascade of pathogenic events in myofibres, including chronic inflammation and oxidative stress as well as altered metabolism. The attention towards dietary supplements in DMD is rapidly increasing, with the aim to counteract pathology-related alteration in nutrient intake, the consequences of catabolic distress or to enhance the immunological response of patients as nowadays for the COVID-19 pandemic emergency. By definition, supplements do not exert therapeutic actions, although a great confusion may arise in daily life by the improper distinction between supplements and therapeutic compounds. For most supplements, little research has been done and little evidence is available concerning their effects in DMD as well as their preventing actions against infections. Often these are not prescribed by clinicians and patients/caregivers do not discuss the use with their clinical team. Then, little is known about the real extent of supplement use in DMD patients. It is mistakenly assumed that, since compounds are of natural origin, if a supplement is not effective, it will also do no harm. However, supplements can have serious side effects and also have harmful interactions, in terms of reducing efficacy or leading to toxicity, with other therapies. It is therefore pivotal to shed light on this unclear scenario for the sake of patients. This review discusses the supplements mostly used by DMD patients, focusing on their potential toxicity, due to a variety of mechanisms including pharmacodynamic or pharmacokinetic interactions and contaminations, as well as on reports of adverse events. This overview underlines the need for caution in uncontrolled use of dietary supplements in fragile populations such as DMD patients. A culture of appropriate use has to be implemented between clinicians and patients' groups.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Duchenne Parent Project, the Netherlands
| | - Ornella Cappellari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elizabeth Vroom
- Duchenne Parent Project, the Netherlands; World Duchenne Organisation (UPPMD), the Netherlands
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
14
|
Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020; 20:214. [PMID: 32689931 PMCID: PMC7370268 DOI: 10.1186/s12866-020-01890-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.
Collapse
Affiliation(s)
- Ker-Kong Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Densitory, Kaohisung University Hospital, Kaohisung, 807, Taiwan
| | - Moeko Minakuchi
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
- Saito Laboratory of Cell Technology Institute, Yalta, Tochigi, 329-1471, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan.
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
15
|
Abuo-Rahma GEDA, Mohamed MFA, Ibrahim TS, Shoman ME, Samir E, Abd El-Baky RM. Potential repurposed SARS-CoV-2 (COVID-19) infection drugs. RSC Adv 2020; 10:26895-26916. [PMID: 35515773 PMCID: PMC9055522 DOI: 10.1039/d0ra05821a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023] Open
Abstract
The global outbreak of COVID-19 viral infection is associated with the absence of specific drug(s) for fighting this viral infection. About 10 million people are already infected, about 500 000 deaths all over the world to date. Great efforts have been made to find solutions for this viral infection, either vaccines, monoclonal antibodies, or small molecule drugs; this can stop the spread of infection to avoid the expected human, economic and social catastrophe associated with this infection. In the literature and during clinical trials in hospitals, several FDA approved drugs for different diseases have the potential to treat or reduce the severity of COVID-19. Repurposing of these drugs as potential agents to treat COVID-19 reduces the time and cost to find effective COVID-19 agents. This review article summarizes the present situation of transmission, pathogenesis and statistics of COVID-19 in the world. Moreover, it includes chemistry, mechanism of action at the molecular level of the possible drug molecules which are liable for redirection as potential COVID-19 therapeutic agents. This includes polymerase inhibitors, protease inhibitors, malaria drugs, lipid lowering statins, rheumatoid arthritis drugs and some miscellaneous agents. We offer research data and knowledge about the chemistry and biology of potential COVID-19 drugs for the research community in this field.
Collapse
Affiliation(s)
- Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20 1003069431
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University 82524 Sohag Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University 61519 Minia Egypt +20 1003069431
| | - Ebtihal Samir
- Physical Chemistry, Department of Analytical Chemistry, Faculty of Pharmacy, Deraya University Minia 11566 Egypt
| | - Rehab M Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University Minia 11566 Egypt
| |
Collapse
|
16
|
Hussain S, Xie YJ, Li D, Malik SI, Hou JC, Leung ELH, Fan XX. Current strategies against COVID-19. Chin Med 2020; 15:70. [PMID: 32665783 PMCID: PMC7344049 DOI: 10.1186/s13020-020-00353-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently was declared a pandemic by world health organization (WHO) Due to sudden outbreaks, currently, no completely effective vaccine or drug is clinically approved. Several therapeutic strategies can be envisaged to prevent further mortality and morbidity. Based on the past contribution of traditional Chinese medicines (TCM) and immune-based therapies as a treatment option in crucial pathogen outbreaks, we aimed to summarize potential therapeutic strategies that could be helpful to stop further spread of SARS-CoV-2 by effecting its structural components or modulation of immune responses. Several TCM with or without modification could be effective against the structural protein, enzymes, and nucleic acid should be tested from available libraries or to identify their immune-stimulatory activities to enhance several antiviral biological agents for effective elimination of SARS-CoV-2 from the host. TCM is not only effective in the direct inhibition of virus attachment and internalization in a cell but can also prevent their replication and can also help to boost up host immune response. Immune-modulatory effects of TCMs may lead to new medications and can guide us for the scientific validity of drug development. Besides, we also summarized the effective therapies in clinical for controlling inflammation. This review will be not only helpful for the current situation of COVID-19, but can also play a major role in such epidemics in the future.
Collapse
Affiliation(s)
- Shahid Hussain
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Ya-Jia Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
| | - Dan Li
- Beijing Wante’er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Jin-cai Hou
- Beijing Wante’er Biological Pharmaceutical Co., Ltd., No. 32 Yard, East 2nd Road, Yanqi Economic Development Zone, Huairou District, Beijing, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR China
| |
Collapse
|
17
|
Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, Nencioni L. Redox-Modulating Agents in the Treatment of Viral Infections. Int J Mol Sci 2020; 21:E4084. [PMID: 32521619 PMCID: PMC7312898 DOI: 10.3390/ijms21114084] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses use cell machinery to replicate their genome and produce viral proteins. For this reason, several intracellular factors, including the redox state, might directly or indirectly affect the progression and outcome of viral infection. In physiological conditions, the redox balance between oxidant and antioxidant species is maintained by enzymatic and non-enzymatic systems, and it finely regulates several cell functions. Different viruses break this equilibrium and induce an oxidative stress that in turn facilitates specific steps of the virus lifecycle and activates an inflammatory response. In this context, many studies highlighted the importance of redox-sensitive pathways as novel cell-based targets for therapies aimed at blocking both viral replication and virus-induced inflammation. In the review, we discuss the most recent findings in this field. In particular, we describe the effects of natural or synthetic redox-modulating molecules in inhibiting DNA or RNA virus replication as well as inflammatory pathways. The importance of the antioxidant transcription factor Nrf2 is also discussed. Most of the data reported here are on influenza virus infection. We believe that this approach could be usefully applied to fight other acute respiratory viral infections characterized by a strong inflammatory response, like COVID-19.
Collapse
Affiliation(s)
- Paola Checconi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy; (A.F.); (M.M.)
| | - Anna Teresa Palamara
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; (P.C.); (A.T.P.)
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy; (M.D.A.); (M.E.M.)
| |
Collapse
|
18
|
McCarty MF, DiNicolantonio JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis 2020; 63:383-385. [PMID: 32061635 PMCID: PMC7130854 DOI: 10.1016/j.pcad.2020.02.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, United States of America
| | | |
Collapse
|
19
|
Redox Biology of Respiratory Viral Infections. Viruses 2018; 10:v10080392. [PMID: 30049972 PMCID: PMC6115776 DOI: 10.3390/v10080392] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Respiratory viruses cause infections of the upper or lower respiratory tract and they are responsible for the common cold—the most prevalent disease in the world. In many cases the common cold results in severe illness due to complications, such as fever or pneumonia. Children, old people, and immunosuppressed patients are at the highest risk and require fast diagnosis and therapeutic intervention. However, the availability and efficiencies of existing therapeutic approaches vary depending on the virus. Investigation of the pathologies that are associated with infection by respiratory viruses will be paramount for diagnosis, treatment modalities, and the development of new therapies. Changes in redox homeostasis in infected cells are one of the key events that is linked to infection with respiratory viruses and linked to inflammation and subsequent tissue damage. Our review summarizes current knowledge on changes to redox homeostasis, as induced by the different respiratory viruses.
Collapse
|
20
|
Hui DS, Lee N, Chan PK, Beigel JH. The role of adjuvant immunomodulatory agents for treatment of severe influenza. Antiviral Res 2018; 150:202-216. [PMID: 29325970 PMCID: PMC5801167 DOI: 10.1016/j.antiviral.2018.01.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/31/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022]
Abstract
A severe inflammatory immune response with hypercytokinemia occurs in patients hospitalized with severe influenza, such as avian influenza A(H5N1), A(H7N9), and seasonal A(H1N1)pdm09 virus infections. The role of immunomodulatory therapy is unclear as there have been limited published data based on randomized controlled trials (RCTs). Passive immunotherapy such as convalescent plasma and hyperimmune globulin have some studies demonstrating benefit when administered as an adjunctive therapy for severe influenza. Triple combination of oseltamivir, clarithromycin, and naproxen for severe influenza has one study supporting its use, and confirmatory studies would be of great interest. Likewise, confirmatory studies of sirolimus without concomitant corticosteroid therapy should be explored as a research priority. Other agents with potential immunomodulating effects, including non-immune intravenous immunoglobulin, N-acetylcysteine, acute use of statins, macrolides, pamidronate, nitazoxanide, chloroquine, antiC5a antibody, interferons, human mesenchymal stromal cells, mycophenolic acid, peroxisome proliferator-activated receptors agonists, non-steroidal anti-inflammatory agents, mesalazine, herbal medicine, and the role of plasmapheresis and hemoperfusion as rescue therapy have supportive preclinical or observational clinical data, and deserve more investigation preferably by RCTs. Systemic corticosteroids administered in high dose may increase the risk of mortality and morbidity in patients with severe influenza and should not be used, while the clinical utility of low dose systemic corticosteroids requires further investigation.
Collapse
Affiliation(s)
- David S Hui
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Nelson Lee
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Division of Infectious Diseases, University of Alberta, Edmonton, Canada
| | - Paul K Chan
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - John H Beigel
- Leidos Biomedical Research Inc, Support to National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Liu M, Chen F, Liu T, Chen F, Liu S, Yang J. The role of oxidative stress in influenza virus infection. Microbes Infect 2017; 19:580-586. [PMID: 28918004 DOI: 10.1016/j.micinf.2017.08.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
Abstract
Virus-induced oxidative stress plays an important role in the regulation of the host immune system. In this review, we provide backgrounds of the pathogenic mechanism of oxidative stress induced by influenza virus and the specific oxidant-sensitive pathways, and highlight that antioxidant is one of the effective strategies against influenza virus infection.
Collapse
Affiliation(s)
- Miaomiao Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fangzhao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Teng Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Feimin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
22
|
Lai YN, Li Y, Fu LC, Zhao F, Liu N, Zhang FX, Xu PP. Combinations of 1,8-cineol and oseltamivir for the treatment of influenza virus A (H3N2) infection in mice. J Med Virol 2017; 89:1158-1167. [DOI: 10.1002/jmv.24755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Yan-ni Lai
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Yun Li
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Lin-chun Fu
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Fang Zhao
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Ni Liu
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Feng-xue Zhang
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Pei-ping Xu
- Institute of Tropical Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| |
Collapse
|
23
|
Zeng LY, Yang J, Liu S. Investigational hemagglutinin-targeted influenza virus inhibitors. Expert Opin Investig Drugs 2016; 26:63-73. [PMID: 27918208 DOI: 10.1080/13543784.2017.1269170] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Seasonal influenza and pandemic outbreaks typically result in high mortality and morbidity associated with severe economic burdens. Vaccines and anti-influenza drugs have made great contributions to control the infection. However, antigenic drifts and shifts allow influenza viruses to easily escape immune neutralization and antiviral drug activity. Hemagglutinin (HA)is an important envelope protein for the entry of influenza viruses into host cells, thus, HA-targeted agents may be potential anti-influenza drugs. Areas covered: In this review, we describe arbidol, a unique licensed drug targeting HA; discuss and summarize HA-targeted anti-influenza agents been tested before or being tested currently in clinical trials, including monoclonal antibodies, small molecule inhibitors, proteins and peptides. Other small molecule inhibitors are also briefly introduced. Expert opinion: Exploring new clinical applications for existing drugs can provide additional anti-influenza candidates with promising safety and bioavailability, and largely shortened time and costs. To enhance therapeutic efficacy and avoid drug-resistance, combination therapy involving in HA-targeted anti-influenza agent is reasonable and attractive. For drug discovery, it is helpful to keep an eye on the development of methodology in organic synthesis and probe into the co-crystal structure of HA in complex with small molecule.
Collapse
Affiliation(s)
- Li-Yan Zeng
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Jie Yang
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Shuwen Liu
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China.,b State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology , Southern Medical University , Guangzhou , China
| |
Collapse
|
24
|
Söderholm S, Fu Y, Gaelings L, Belanov S, Yetukuri L, Berlinkov M, Cheltsov AV, Anders S, Aittokallio T, Nyman TA, Matikainen S, Kainov DE. Multi-Omics Studies towards Novel Modulators of Influenza A Virus-Host Interaction. Viruses 2016; 8:v8100269. [PMID: 27690086 PMCID: PMC5086605 DOI: 10.3390/v8100269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Human influenza A viruses (IAVs) cause global pandemics and epidemics. These viruses evolve rapidly, making current treatment options ineffective. To identify novel modulators of IAV–host interactions, we re-analyzed our recent transcriptomics, metabolomics, proteomics, phosphoproteomics, and genomics/virtual ligand screening data. We identified 713 potential modulators targeting 199 cellular and two viral proteins. Anti-influenza activity for 48 of them has been reported previously, whereas the antiviral efficacy of the 665 remains unknown. Studying anti-influenza efficacy and immuno/neuro-modulating properties of these compounds and their combinations as well as potential viral and host resistance to them may lead to the discovery of novel modulators of IAV–host interactions, which might be more effective than the currently available anti-influenza therapeutics.
Collapse
Affiliation(s)
- Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Lana Gaelings
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Sergey Belanov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Laxman Yetukuri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Mikhail Berlinkov
- Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg 620083, Russia.
| | - Anton V Cheltsov
- Q-Mol L.L.C. in Silico Pharmaceuticals, San Diego, CA 92037, USA.
| | - Simon Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
- Department of Mathematics and Statistics, University of Turku, Turku 20014, Finland.
| | | | - Sampsa Matikainen
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
- Department of Rheumatology, Helsinki University Hospital, University of Helsinki, Helsinki 00015, Finland.
| | - Denis E Kainov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
25
|
Virus-inhibiting activity of dihydroquercetin, a flavonoid from Larix sibirica, against coxsackievirus B4 in a model of viral pancreatitis. Arch Virol 2016; 161:929-38. [PMID: 26780775 DOI: 10.1007/s00705-016-2749-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/30/2015] [Indexed: 01/06/2023]
Abstract
Members of the family Picornaviridae, in particular, enteroviruses, represent a serious threat to human health. They are responsible for numerous pathologies ranging from mild disease to fatal outcome. Due to the limited number of safe and effective antivirals against enteroviruses, there is a need for search and development of novel drugs with various mechanisms of activity against enteroviruses-induced pathologies. We studied the effect of dihydroquercetin (DHQ), a flavonoid from larch wood, on the course of pancreatitis of white mice caused by coxsackievirus B4 (CVB4). DHQ was applied intraperitoneally at doses of 75 or 150 mg/kg/day once a day for 5 days postinfection (p.i.) starting on day 1 p.i., and its effect was compared to that of the reference compound ribavirin. The application of DHQ resulted in a dose-dependent decrease in the virus titer in pancreatic tissue, reaching, at the highest dose, 2.4 logs on day 5 p.i. Also, the application of DHQ led to restoration of antioxidant activity of pancreatic tissue that was impaired in the course of pancreatitis. Morphologically, pancreatic tissue of DHQ-treated animals demonstrated less infiltration with inflammatory cells and no signs of tissue destruction compared to placebo-treated mice. Both ribavirin- and DHQ-treated animals developed fewer foci of pancreatic inflammation per mouse, and these foci contained fewer infiltrating cells than those in placebo-treated mice. The effect of DHQ was comparable to or exceeded that of ribavirin. Taken together, our results suggest high antiviral activity of DHQ and its promising potential in complex treatment of viral pancreatitis.
Collapse
|
26
|
Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 2016; 13:3-10. [PMID: 26189369 PMCID: PMC4711683 DOI: 10.1038/cmi.2015.74] [Citation(s) in RCA: 496] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/28/2015] [Accepted: 06/28/2015] [Indexed: 12/25/2022] Open
Abstract
Severe influenza remains unusual in its virulence for humans. Complications or ultimately death arising from these infections are often associated with hyperinduction of proinflammatory cytokine production, which is also known as 'cytokine storm'. For this disease, it has been proposed that immunomodulatory therapy may improve the outcome, with or without the combination of antiviral agents. Here, we review the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts. We also review some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza, including corticosteroids, peroxisome proliferator-activated receptor agonists, sphingosine-1-phosphate receptor 1 agonists, cyclooxygenase-2 inhibitors, antioxidants, anti-tumour-necrosis factor therapy, intravenous immunoglobulin therapy, statins, arbidol, herbs, and other potential therapeutic strategies.
Collapse
Affiliation(s)
- Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang 443000, China
| | - Yuan-hong Zhou
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang 443000, China
| | - Zhan-qiu Yang
- State Key Laboratory of Virology/Institute of Medical Virology, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
27
|
Sgarbanti R, Amatore D, Celestino I, Marcocci ME, Fraternale A, Ciriolo MR, Magnani M, Saladino R, Garaci E, Palamara AT, Nencioni L. Intracellular redox state as target for anti-influenza therapy: are antioxidants always effective? Curr Top Med Chem 2015; 14:2529-41. [PMID: 25478883 PMCID: PMC4435240 DOI: 10.2174/1568026614666141203125211] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/29/2014] [Accepted: 11/02/2014] [Indexed: 12/12/2022]
Abstract
Influenza virus infections represent a big issue for public health since effective treatments are still lacking. In particular, the emergence of strains resistant to drugs limits the effectiveness of anti-influenza agents. For this reason, many efforts have been dedicated to the identification of new therapeutic strategies aimed at targeting the virus-host cell interactions. Oxidative stress is a characteristic of some viral infections including influenza. Because antioxidants defend cells from damage caused by reactive oxygen species induced by different stimuli including pathogens, they represent interesting molecules to fight infectious diseases. However, most of the available studies have found that these would-be panaceas could actually exacerbate the diseases they claim to prevent, and have thus revealed "the dark side" of these molecules. This review article discusses the latest opportunities and drawbacks of the antioxidants used in anti-influenza therapy and new perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
28
|
Mathys L, Balzarini J. The role of cellular oxidoreductases in viral entry and virus infection-associated oxidative stress: potential therapeutic applications. Expert Opin Ther Targets 2015; 20:123-43. [PMID: 26178644 DOI: 10.1517/14728222.2015.1068760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Cellular oxidoreductases catalyze thiol/disulfide exchange reactions in susceptible proteins and contribute to the cellular defense against oxidative stress. Oxidoreductases and oxidative stress are also involved in viral infections. In this overview, different aspects of the role of cellular oxidoreductases and oxidative stress during viral infections are discussed from a chemotherapeutic viewpoint. AREAS COVERED Entry of enveloped viruses into their target cells is triggered by the interaction of viral envelope glycoproteins with cellular (co)receptor(s) and depends on obligatory conformational changes in these viral envelope glycoproteins and/or cellular receptors. For some viruses, these conformational changes are mediated by cell surface-associated cellular oxidoreductases, which mediate disulfide bridge reductions in viral envelope glycoprotein(s). Therefore, targeting these oxidoreductases using oxidoreductase inhibitors might yield an interesting strategy to block viral entry of these viruses. Furthermore, since viral infections are often associated with systemic oxidative stress, contributing to disease progression, the enhancement of the cellular antioxidant defense systems might have potential as an adjuvant antiviral strategy, slowing down disease progression. EXPERT OPINION Promising antiviral data were obtained for both strategies. However, potential pitfalls have also been identified for these strategies, indicating that it is important to carefully assess the benefits versus risks of these antiviral strategies.
Collapse
Affiliation(s)
- Leen Mathys
- a 1 Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10 blok x - bus 1030, Leuven, Belgium
| | - Jan Balzarini
- b 2 Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10 blok x - bus 1030, Leuven, Belgium +32 16 3 37352 ; +32 16 3 37340 ;
| |
Collapse
|
29
|
Kelesidis T, Mastoris I, Metsini A, Tsiodras S. How to approach and treat viral infections in ICU patients. BMC Infect Dis 2014; 14:321. [PMID: 25431007 PMCID: PMC4289200 DOI: 10.1186/1471-2334-14-321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/11/2014] [Indexed: 12/21/2022] Open
Abstract
Patients with severe viral infections are often hospitalized in intensive care units (ICUs) and recent studies underline the frequency of viral detection in ICU patients. Viral infections in the ICU often involve the respiratory or the central nervous system and can cause significant morbidity and mortality especially in immunocompromised patients. The mainstay of therapy of viral infections is supportive care and antiviral therapy when available. Increased understanding of the molecular mechanisms of viral infection has provided great potential for the discovery of new antiviral agents that target viral proteins or host proteins that regulate immunity and are involved in the viral life cycle. These novel treatments need to be further validated in animal and human randomized controlled studies.
Collapse
Affiliation(s)
| | | | | | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens School of Medicine, 1 Rimini Street, GR-12462 Haidari, Athens, Greece.
| |
Collapse
|
30
|
Guerrero CA, Paula Pardo VR, Rafael Guerrero OA. Inhibition of rotavirus ECwt infection in ICR suckling mice by N-acetylcysteine, peroxisome proliferator-activated receptor gamma agonists and cyclooxygenase-2 inhibitors. Mem Inst Oswaldo Cruz 2014; 108:741-54. [PMID: 24037197 PMCID: PMC3970679 DOI: 10.1590/0074-0276108062013011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/21/2013] [Indexed: 01/01/2023] Open
Abstract
Live attenuated vaccines have recently been introduced for preventing rotavirus
disease in children. However, alternative strategies for prevention and
treatment of rotavirus infection are needed mainly in developing countries where
low vaccine coverage occurs. In the present work, N-acetylcysteine (NAC),
ascorbic acid (AA), some nonsteroidal anti-inflammatory drugs (NSAIDs) and
peroxisome proliferator-activated receptor gamma (PPARγ) agonists were tested
for their ability to interfere with rotavirus ECwt infectivity as detected by
the percentage of viral antigen-positive cells of small intestinal villi
isolated from ECwt-infected ICR mice. Administration of 6 mg NAC/kg every 8 h
for three days following the first diarrhoeal episode reduced viral infectivity
by about 90%. Administration of AA, ibuprofen, diclofenac, pioglitazone or
rosiglitazone decreased viral infectivity by about 55%, 90%, 35%, 32% and 25%,
respectively. ECwt infection of mice increased expression of cyclooxygenase-2,
ERp57, Hsc70, NF-κB, Hsp70, protein disulphide isomerase (PDI) and PPARγ in
intestinal villus cells. NAC treatment of ECwt-infected mice reduced Hsc70 and
PDI expression to levels similar to those observed in villi from uninfected
control mice. The present results suggest that the drugs tested in the present
work could be assayed in preventing or treating rotaviral diarrhoea in children
and young animals.
Collapse
|
31
|
Abstract
Observational data suggest that the treatment of influenza infection with neuraminidase inhibitors decreases progression to more severe illness, especially when treatment is started soon after symptom onset. However, even early treatment might fail to prevent complications in some patients, particularly those infected with novel viruses such as the 2009 pandemic influenza A H1N1, avian influenza A H5N1 virus subtype, or the avian influenza A H7N9 virus subtype. Furthermore, treatment with one antiviral drug might promote the development of antiviral resistance, especially in immunocompromised hosts and critically ill patients. An obvious strategy to optimise antiviral therapy is to combine drugs with different modes of action. Because host immune responses to infection might also contribute to illness pathogenesis, improved outcomes might be gained from the combination of antiviral therapy with drugs that modulate the immune response in an infected individual. We review available data from preclinical and clinical studies of combination antiviral therapy and of combined antiviral-immunomodulator therapy for influenza. Early-stage data draw attention to several promising antiviral combinations with therapeutic potential in severe infections, but there remains a need to substantiate clinical benefit. Combination therapies with favourable experimental data need to be tested in carefully designed aclinical trials to assess their efficacy.
Collapse
|
32
|
Zhang RH, Li CH, Wang CL, Xu MJ, Xu T, Wei D, Liu BJ, Wang GH, Tian SF. N-acetyl-l-cystine (NAC) protects against H9N2 swine influenza virus-induced acute lung injury. Int Immunopharmacol 2014; 22:1-8. [PMID: 24968347 PMCID: PMC7106131 DOI: 10.1016/j.intimp.2014.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 12/16/2022]
Abstract
The antioxidant N-acetyl-l-cysteine (NAC) had been shown to inhibit replication of seasonal human influenza A viruses. Here, the effects of NAC on H9N2 swine influenza virus-induced acute lung injury (ALI) were investigated in mice. BALB/c mice were inoculated intranasally with 107 50% tissue culture infective doses (TCID50) of A/swine/HeBei/012/2008/(H9N2) viruses with or without NAC treatments to induce ALI model. The result showed that pulmonary inflammation, pulmonary edema, MPO activity, total cells, neutrophils, macrophages, TNF-α, IL-6, IL-1β and CXCL-10 in BALF were attenuated by NAC. Moreover, our data showed that NAC significantly inhibited the levels of TLR4 protein and TLR4 mRNA in the lungs. Pharmacological inhibitors of TLR4 (E5564) exerted similar effects like those determined for NAC in H9N2 swine influenza virus-infected mice. These results suggest that antioxidants like NAC represent a potential additional treatment option that could be considered in the case of an influenza A virus pandemic. NAC protects against H9N2 swine influenza virus-induced acute lung injury (ALI). NAC protects against acute lung injury by inactivation of TLR4. Eritoran (E5564), a TLR4 antagonist, also protects against acute lung injury.
Collapse
Affiliation(s)
- Rui-Hua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Chun-Hong Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Cun-Lian Wang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Ming-Ju Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China.
| | - Dong Wei
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Bao-Jian Liu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Guo-Hua Wang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| | - Shu-Fei Tian
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075131, PR China
| |
Collapse
|
33
|
Hui DSC, Lee N. Adjunctive therapies and immunomodulating agents for severe influenza. Influenza Other Respir Viruses 2014; 7 Suppl 3:52-9. [PMID: 24215382 PMCID: PMC6492653 DOI: 10.1111/irv.12171] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The value of adjunctive immunomodulatory therapies in treating severe influenza and other respiratory viral infections remains uncertain. Although often used, systemic corticosteroids may increase the risk of mortality and morbidity (e.g. secondary infections) in severe influenza and other viral infections, especially if there is delay or lack of effective antiviral therapy. Non‐randomized studies suggest that convalescent plasma appears useful as add‐on therapy for patients with severe acute respiratory syndrome, avian influenza A(H5N1), and influenza A (H1N1) 2009 pandemic [A(H1N1)pdm09), but it is limited by its availability. A recent randomized controlled trial (RCT) comparing hyperimmune globulin prepared from convalescent plasma against normal intravenous gammaglobulin (IVIG) manufactured before 2009 as control in patients with severe A(H1N1)pdm09 infection on standard antiviral treatment has shown that the hyperimmune globulin group who received treatment within 5 days of symptom onset had a lower viral load and reduced mortality compared with the controls. A number of agents with immunomodulatory effects (e.g. acute use of statins, N‐acetylcysteine, macrolides, PPAR agonists, IVIG, celecoxib, mesalazine) have been proposed for influenza management. However, more animal and detailed human observational studies and preferably RCTs controlling for the effects of antiviral therapy and disease severity are needed for evaluating these agents. The role of plasmapheresis and hemoperfusion as rescue therapy also merits more investigation.
Collapse
Affiliation(s)
- David S C Hui
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | |
Collapse
|
34
|
Simeonova L, Galabov A. Chemotherapy of Influenza: Current and Novel Approach. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Abstract
Reactive oxygen species (ROS) formation is part of normal cellular aerobic metabolism, due to respiration and oxidation of nutrients in order to generate energy. Low levels of ROS are involved in cellular signaling and are well controlled by the cellular antioxidant defense system. Elevated levels of ROS generation due to pollutants, toxins and radiation exposure, as well as infections, are associated with oxidative stress causing cellular damage. Several respiratory viruses, including respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and influenza, induce increased ROS formation, both intracellularly and as a result of increased inflammatory cell recruitment at the site of infection. They also reduce antioxidant enzyme (AOE) levels and/or activity, leading to unbalanced oxidative-antioxidant status and subsequent oxidative cell damage. Expression of several AOE is controlled by the activation of the nuclear transcription factor NF-E2-related factor 2 (Nrf2), through binding to the antioxidant responsive element (ARE) present in the AOE gene promoters. While exposure to several pro-oxidant stimuli usually leads to Nrf2 activation and upregulation of AOE expression, respiratory viral infections are associated with inhibition of AOE expression/activity, which in the case of RSV and hMPV is associated with reduced Nrf2 nuclear localization, decreased cellular levels and reduced ARE-dependent gene transcription. Therefore, administration of antioxidant mimetics or Nrf2 inducers represents potential viable therapeutic approaches to viral-induced diseases, such as respiratory infections and other infections associated with decreased cellular antioxidant capacity.
Collapse
Affiliation(s)
- Narayana Komaravelli
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA ; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA ; Department of Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
36
|
Abstract
Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.
Collapse
|
37
|
Redox-active protein thioredoxin-1 administration ameliorates influenza A virus (H1N1)-induced acute lung injury in mice. Crit Care Med 2013; 41:171-81. [PMID: 23222257 DOI: 10.1097/ccm.0b013e3182676352] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Influenza virus infections can cause severe acute lung injury leading to significant morbidity and mortality. Thioredoxin-1 is a redox-active defensive protein induced in response to stress conditions. Animal experiments have revealed that thioredoxin-1 has protective effects against various severe disorders. This study was undertaken to evaluate the protective effects of recombinant human thioredoxin-1 administration on influenza A virus (H1N1)-induced acute lung injury in mice. DESIGN Prospective animal trial. SETTING Research laboratory. SUBJECTS Nine-week-old male C57BL/6 mice inoculated with H1N1. INTERVENTION The mice were divided into a vehicle-treated group and recombinant human thioredoxin-1-treated group. For survival rate analysis, the vehicle or recombinant human thioredoxin-1 was administered intraperitoneally every second day from day -1 to day 13. For lung lavage and pathological analyses, vehicle or recombinant human thioredoxin-1 was administered intraperitoneally on days -1, 1, and 3. MEASUREMENTS AND MAIN RESULTS Lung lavage and pathological analyses were performed at 24, 72, and 120 hrs after inoculation. The recombinant human thioredoxin-1 treatment significantly improved the survival rate of H1N1-inoculated mice, although the treatment did not affect virus propagation in the lung. The treatment significantly attenuated the histological changes and neutrophil infiltration in the lung of H1N1-inoculated mice. The treatment significantly attenuated the production of tumor necrosis factor-α and chemokine (C-X-C motif) ligand 1 in the lung and oxidative stress enhancement, which were observed in H1N1-inoculated mice. H1N1 induced expressions of tumor necrosis factor-α and chemokine (C-X-C motif) ligand 1 in murine lung epithelial cells MLE-12, which were inhibited by the addition of recombinant human thioredoxin-1. The recombinant human thioredoxin-1 treatment started 30 mins after H1N1 inoculation also significantly improved the survival of the mice. CONCLUSIONS Exogenous administration of recombinant human thioredoxin-1 significantly improved the survival rate and attenuated lung histological changes in the murine model of influenza pneumonia. The protective mechanism of thioredoxin-1 might be explained by its potent antioxidative and anti-inflammatory actions. Consequently, recombinant human thioredoxin-1 might be a possible pharmacological strategy for severe influenza virus infection in humans.
Collapse
|
38
|
Hayden FG. Newer influenza antivirals, biotherapeutics and combinations. Influenza Other Respir Viruses 2013; 7 Suppl 1:63-75. [PMID: 23279899 PMCID: PMC5978626 DOI: 10.1111/irv.12045] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This summary provides an overview of investigational antiviral agents for influenza and of future directions for development of influenza therapeutics. While progress in developing clinically useful antiviral agents for influenza has been generally slow, especially with respect to seriously ill and high-risk patients, important clinical studies of intravenous neuraminidase inhibitors, antibodies and drug combinations are currently in progress. The current decade offers the promise of developing small molecular weight inhibitors with novel mechanisms of action, including host-directed therapies, new biotherapeutics and drug combinations, that should provide more effective antiviral therapies and help mitigate the problem of antiviral resistance. Immunomodulatory interventions also offer promise but need to be based on better understanding of influenza pathogenesis, particularly in seriously ill patients. The development of combination interventions, immunomodulators and host-directed therapies presents unique clinical trial design and regulatory hurdles that remain to be addressed.
Collapse
Affiliation(s)
- Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
39
|
Guerrero CA, Guererero CA, Murillo A, Acosta O. Inhibition of rotavirus infection in cultured cells by N-acetyl-cysteine, PPARγ agonists and NSAIDs. Antiviral Res 2012; 96:1-12. [PMID: 22842004 DOI: 10.1016/j.antiviral.2012.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 12/30/2022]
Abstract
Although the current rotavirus vaccines have shown good tolerance and significant efficacy, it would be useful to develop alternative or complementary strategies aimed at preventing or treating acute diarrhoeal disease caused by this viral agent. A variety of antiviral strategies other than vaccines have been assayed for rotavirus infection management. The recently demonstrated sensitivity of rotavirus infectivity to thiol/disulfide reagents prompted assays for screening drugs that potentially affect cellular redox reactions. MA104 or Caco-2 cells were inoculated with the rotavirus strains RRV, Wa, Wi or M69 and then incubated with different concentrations of drugs belonging to a selected group of 60 drugs that are currently used in humans for purposes other than rotavirus infection treatment. Eighteen of these drugs were able to inhibit rotavirus infectivity to different extents. A more systematic evaluation was performed with drugs that could be used in children such as N-acetylcysteine and ascorbic acid, in addition to ibuprofen, pioglitazone and rosiglitazone, all of which affecting cellular pathways potentially needed by the rotavirus infection process. Evidence is provided here that rotavirus infectivity is significantly inhibited by NAC in different cell-culture systems. These findings suggest that NAC has the potential to be used as a therapeutic tool for treatment and prevention of rotavirus disease in children.
Collapse
Affiliation(s)
- Carlos A Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina-Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, DC, Colombia.
| | | | | | | |
Collapse
|
40
|
Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral Res 2011; 93:23-9. [PMID: 22027648 DOI: 10.1016/j.antiviral.2011.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/30/2011] [Accepted: 10/10/2011] [Indexed: 01/23/2023]
Abstract
The highly lethal filoviruses, Ebola and Marburg cause severe hemorrhagic fever in humans and non-human primates. To date there are no licensed vaccines or therapeutics to counter these infections. Identifying novel pathways and host targets that play an essential role during infection will provide potential targets to develop therapeutics. Small molecule chemical screening for Ebola virus inhibitors resulted in identification of a compound NSC 62914. The compound was found to exhibit anti-filovirus activity in cell-based assays and in vivo protected mice following challenge with Ebola or Marburg viruses. Additionally, the compound was found to inhibit Rift Valley fever virus, Lassa virus and Venezuelan equine encephalitis virus in cell-based assays. Investigation of the mechanism of action of the compound revealed that it had antioxidant properties. Specifically, compound NSC 62914 was found to act as a scavenger of reactive oxygen species, and to up-regulate oxidative stress-induced genes. However, four known antioxidant compounds failed to inhibit filovirus infection, thus suggesting that the mechanistic basis of the antiviral function of the antioxidant NSC 62914 may involve modulation of multiple signaling pathways/targets.
Collapse
|
41
|
Vlahos R, Stambas J, Selemidis S. Suppressing production of reactive oxygen species (ROS) for influenza A virus therapy. Trends Pharmacol Sci 2011; 33:3-8. [PMID: 21962460 DOI: 10.1016/j.tips.2011.09.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 12/01/2022]
Abstract
Influenza A viral infections claim millions of lives worldwide and continue to impose a major burden on healthcare systems. Current pharmacological strategies to control influenza A virus-induced lung disease are problematic owing to antiviral resistance and the requirement for strain-specific vaccination. The production of reactive oxygen species (ROS), particularly superoxide, is an important host defence mechanism for killing invading pathogens. However, excessive superoxide may be detrimental following influenza A virus infection. Indeed, suppression of superoxide production by targeting the primary enzymatic source of superoxide in mammalian inflammatory cells, NADPH oxidase 2 (Nox2), markedly alleviates influenza A virus-induced lung injury and virus replication, irrespective of the infecting strain. Therefore, we propose that Nox2 oxidase inhibitors, in combination with current therapeutics (i.e. antivirals and vaccines), could be useful for suppression of influenza A virus-induced lung disease.
Collapse
Affiliation(s)
- Ross Vlahos
- Respiratory Research Group, Department of Pharmacology, The University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
42
|
Zhirnov OP, Klenk HD, Wright PF. Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Res 2011; 92:27-36. [PMID: 21802447 DOI: 10.1016/j.antiviral.2011.07.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/24/2011] [Accepted: 07/18/2011] [Indexed: 02/06/2023]
Abstract
Efforts to develop new antiviral chemotherapeutic approaches are focusing on compounds that target either influenza virus replication itself or host factor(s) that are critical to influenza replication. Host protease mediated influenza hemagglutinin (HA) cleavage is critical for activation of virus infectivity and as such is a chemotherapeutic target. Influenza pathogenesis involves a "vicious cycle" in which host proteases activate progeny virus which in turn amplifies replication and stimulates further protease activities which may be detrimental to the infected host. Aprotinin, a 58 amino acid polypeptide purified from bovine lung that is one of a family of host-targeted antivirals that inhibit serine proteases responsible for influenza virus activation. This drug and similar agents, such as leupeptin and camostat, suppress virus HA cleavage and limit reproduction of human and avian influenza viruses with a single arginine in the HA cleavage site. Site-directed structural modifications of aprotinin are possible to increase its intracellular targeting of cleavage of highly virulent H5 and H7 hemagglutinins possessing multi-arginine/lysine cleavage site. An additional mechanism of action for serine protease inhibitors is to target a number of host mediators of inflammation and down regulate their levels in virus-infected hosts. Aprotinin is a generic drug approved for intravenous use in humans to treat pancreatitis and limit post-operative bleeding. As an antiinfluenzal compound, aprotinin might be delivered by two routes: (i) a small-particle aerosol has been approved in Russia for local respiratory application in mild-to-moderate influenza and (ii) a proposed intravenous administration for severe influenza to provide both an antiviral effect and a decrease in systemic pathology and inflammation.
Collapse
Affiliation(s)
- O P Zhirnov
- D.I. Ivanovsky Institute of Virology, Moscow 123098, Russia.
| | | | | |
Collapse
|
43
|
N-acetylcysteine lacks universal inhibitory activity against influenza A viruses. J Negat Results Biomed 2011; 10:5. [PMID: 21554703 PMCID: PMC3104374 DOI: 10.1186/1477-5751-10-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/09/2011] [Indexed: 01/23/2023] Open
Abstract
N-acetylcysteine (NAC) has been recently proposed as an adjuvant therapeutic drug for influenza pneumonia in humans. This proposal is based on its ability to restrict influenza virus replication in vitro and to attenuate the severity of the disease in mouse models. Although available studies were made with different viruses (human and avian), published information related to the anti-influenza spectrum of NAC is scarce. In this study, we show that NAC is unable to alter the course of a fatal influenza pneumonia caused by inoculation of a murinized swine H1N1 influenza virus. NAC was indeed able to inhibit the swine virus in vitro but far less than reported for other strains. Therefore, susceptibility of influenza viruses to NAC appears to be strain-dependent, suggesting that it cannot be considered as a universal treatment for influenza pneumonia.
Collapse
|
44
|
Uchide N, Toyoda H. Antioxidant therapy as a potential approach to severe influenza-associated complications. MOLECULES (BASEL, SWITZERLAND) 2011; 16. [PMID: 21358592 PMCID: PMC6259602 DOI: 10.3390/molecules23100000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the appearance of the novel influenza A (H1N1) virus 2009 strain we have experienced a new influenza pandemic and many patients have died from severe complications associated with this pandemic despite receiving intensive care. This suggests that a definitive medical treatment for severe influenza-associated complications has not yet been established. Many studies have shown that superoxide anion produced by macrophages infiltrated into the virus-infected organs is implicated in the development of severe influenza-associated complications. Selected antioxidants, such as pyrrolidine dithiocabamate, N-acetyl-L-cysteine, glutathione, nordihydroguaiaretic acid, thujaplicin, resveratrol, (+)-vitisin A, ambroxol, ascorbic acid, 5,7,4-trihydroxy-8-methoxyflavone, catechins, quercetin 3-rhamnoside, iso- quercetin and oligonol, inhibit the proliferation of influenza virus and scavenge superoxide anion. The combination of antioxidants with antiviral drugs synergistically reduces the lethal effects of influenza virus infections. These results suggest that an agent with antiviral and antioxidant activities could be a drug of choice for the treatment of patients with severe influenza-associated complications. This review article updates knowledge of antioxidant therapy as a potential approach to severe influenza-associated complications.
Collapse
Affiliation(s)
- Noboru Uchide
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | |
Collapse
|
45
|
Antioxidant Therapy as a Potential Approach to Severe Influenza-Associated Complications. Molecules 2011; 16:2032-52. [DOI: 10.3390/molecules16032032] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 12/24/2022] Open
|
46
|
Abstract
Reactive oxygen species and thiol antioxidants, including glutathione (GSH), regulate innate immunity at various levels. This review outlines the redox-sensitive steps of the cellular mechanisms implicated in inflammation and host defense against infection, and describes how GSH is not only important as an antioxidant but also as a signaling molecule. There is an extensive literature of the role of GSH in immunity. Most reviews are biased by an oversimplified picture where “bad” free radicals cause all sorts of diseases and “good” antioxidants protect from them and prevent oxidative stress. While this may be the case in certain fields (eg, toxicology), the role of thiols (the topic of this review) in immunity certainly requires wearing scientist’s goggles and being prepared to accept a more complex picture. This review aims at describing the role of GSH in the lung in the context of immunity and inflammation. The first part summarizes the history and basic concepts of this picture. The second part focuses on GSH metabolism/levels in pathology, the third on the role of GSH in innate immunity and inflammation, and the fourth gives 4 examples describing the importance of GSH in the response to infections.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Brighton and Sussex Medical School, Trafford Centre, Falmer, Brighton, UK.
| |
Collapse
|
47
|
Govorkova EA, Webster RG. Combination chemotherapy for influenza. Viruses 2010; 2:1510-1529. [PMID: 21994692 PMCID: PMC3185732 DOI: 10.3390/v2081510] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 12/30/2022] Open
Abstract
The emergence of pandemic H1N1 influenza viruses in April 2009 and the continuous evolution of highly pathogenic H5N1 influenza viruses underscore the urgency of novel approaches to chemotherapy for human influenza infection. Anti-influenza drugs are currently limited to the neuraminidase inhibitors (oseltamivir and zanamivir) and to M2 ion channel blockers (amantadine and rimantadine), although resistance to the latter class develops rapidly. Potential targets for the development of new anti-influenza agents include the viral polymerase (and endonuclease), the hemagglutinin, and the non-structural protein NS1. The limitations of monotherapy and the emergence of drug-resistant variants make combination chemotherapy the logical therapeutic option. Here we review the experimental data on combination chemotherapy with currently available agents and the development of new agents and therapy targets.
Collapse
Affiliation(s)
| | - Robert G. Webster
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1 901-595-3400; Fax: +1 901-595-8559
| |
Collapse
|
48
|
Geiler J, Michaelis M, Naczk P, Leutz A, Langer K, Doerr HW, Cinatl J. N-acetyl-L-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochem Pharmacol 2009; 79:413-20. [PMID: 19732754 DOI: 10.1016/j.bcp.2009.08.025] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 02/08/2023]
Abstract
The antioxidant N-acetyl-L-cysteine (NAC) had been shown to inhibit replication of seasonal human influenza A viruses. Here, the effects of NAC on virus replication, virus-induced pro-inflammatory responses and virus-induced apoptosis were investigated in H5N1-infected lung epithelial (A549) cells. NAC at concentrations ranging from 5 to 15 mM reduced H5N1-induced cytopathogenic effects (CPEs), virus-induced apoptosis and infectious viral yields 24 h post-infection. NAC also decreased the production of pro-inflammatory molecules (CXCL8, CXCL10, CCL5 and interleukin-6 (IL-6)) in H5N1-infected A549 cells and reduced monocyte migration towards supernatants of H5N1-infected A549 cells. The antiviral and anti-inflammatory mechanisms of NAC included inhibition of activation of oxidant sensitive pathways including transcription factor NF-kappaB and mitogen activated protein kinase p38. Pharmacological inhibitors of NF-kappaB (BAY 11-7085) or p38 (SB203580) exerted similar effects like those determined for NAC in H5N1-infected cells. The combination of BAY 11-7085 and SB203580 resulted in increased inhibitory effects on virus replication and production of pro-inflammatory molecules relative to either single treatment. NAC inhibits H5N1 replication and H5N1-induced production of pro-inflammatory molecules. Therefore, antioxidants like NAC represent a potential additional treatment option that could be considered in the case of an influenza A virus pandemic.
Collapse
Affiliation(s)
- Janina Geiler
- Institute of Medical Virology, Johann Wolfgang Goethe-University Frankfurt, Paul-Ehrlich-Strasse 40, 60596 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
McCarty MF, Barroso-Aranda J, Contreras F. Practical strategies for targeting NF-kappaB and NADPH oxidase may improve survival during lethal influenza epidemics. Med Hypotheses 2009; 74:18-20. [PMID: 19573997 DOI: 10.1016/j.mehy.2009.04.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 01/04/2023]
Abstract
The most foolproof way to promote survival in epidemics of potentially lethal influenza is to target, not highly mutable viral proteins, but rather intracellular signaling pathways which promote viral propagation or lung inflammation. NF-kappaB, activated in influenza-infected lung epithelial cells and macrophages, is one likely target in this regard, as it plays a role both in viral replication and in the excessive lung inflammation often evoked by influenza infection. Indeed, salicylates, which suppress NF-kappaB activation, have been shown to reduce the lethality of H5N1 avian-type influenza in mice. Another potential target is NADPH oxidase, as this may be a major source of influenza-evoked oxidant stress in lung epithelial cells as well as in phagocytes attracted to lung parenchyma. A number of studies demonstrate that oxidant stress contributes to overexuberant lung inflammation and lethality in influenza-infected mice. The documented utility of N-acetylcysteine, a glutathione precursor, for promoting survival in influenza-infected mice, and diminishing the severity of influenza-like infections in elderly humans, presumably reflects a key role for oxidative stress in influenza. The lethality of influenza is also reduced in mice pretreated with adenovirus carrying the gene for heme oxygenase-1; this benefit may be mediated, at least in part, by the ability of bilirubin to inhibit NADPH oxidase. It may be feasible to replicate this benefit clinically by administering biliverdin or its homolog phycocyanobilin, richly supplied by spirulina. If this latter speculation can be confirmed in rodent studies, a practical and inexpensive regimen consisting of high-dose salicylates, spirulina, and N-acetylcysteine, initiated at the earliest feasible time, may prove to have life-saving efficacy when the next killer influenza pandemic strikes.
Collapse
|
50
|
Pathogenesis of 1918 pandemic and H5N1 influenza virus infections in a guinea pig model: antiviral potential of exogenous alpha interferon to reduce virus shedding. J Virol 2009; 83:2851-61. [PMID: 19144714 DOI: 10.1128/jvi.02174-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the increasing genetic diversity among these viruses and continued outbreaks in avian species underscore the need for more effective measures for the control and prevention of human H5N1 virus infection. Additional small animal models with which therapeutic approaches against virulent influenza viruses can be evaluated are needed. In this study, we used the guinea pig model to evaluate the relative virulence of selected avian and human influenza A viruses. We demonstrate that guinea pigs can be infected with avian and human influenza viruses, resulting in high titers of virus shedding in nasal washes for up to 5 days postinoculation (p.i.) and in lung tissue of inoculated animals. However, other physiologic indicators typically associated with virulent influenza virus strains were absent in this species. We evaluated the ability of intranasal treatment with human alpha interferon (alpha-IFN) to reduce lung and nasal wash titers in guinea pigs challenged with the reconstructed 1918 pandemic H1N1 virus or a contemporary H5N1 virus. IFN treatment initiated 1 day prior to challenge significantly reduced or prevented infection of guinea pigs by both viruses, as measured by virus titer determination and seroconversion. The expression of the antiviral Mx protein in lung tissue correlated with the reduction of virus titers. We propose that the guinea pig may serve as a useful small animal model for testing the efficacy of antiviral compounds and that alpha-IFN treatment may be a useful antiviral strategy against highly virulent strains with pandemic potential.
Collapse
|