1
|
Noonan HR, Thornock AM, Barbano J, Xifaras ME, Baron CS, Yang S, Koczirka K, McConnell AM, Zon LI. A chronic signaling TGFb zebrafish reporter identifies immune response in melanoma. eLife 2024; 13:e83527. [PMID: 38874379 PMCID: PMC11178360 DOI: 10.7554/elife.83527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 04/15/2024] [Indexed: 06/15/2024] Open
Abstract
Developmental signaling pathways associated with growth factors such as TGFb are commonly dysregulated in melanoma. Here we identified a human TGFb enhancer specifically activated in melanoma cells treated with TGFB1 ligand. We generated stable transgenic zebrafish with this TGFb Induced Enhancer driving green fluorescent protein (TIE:EGFP). TIE:EGFP was not expressed in normal melanocytes or early melanomas but was expressed in spatially distinct regions of advanced melanomas. Single-cell RNA-sequencing revealed that TIE:EGFP+ melanoma cells down-regulated interferon response while up-regulating a novel set of chronic TGFb target genes. ChIP-sequencing demonstrated that AP-1 factor binding is required for activation of chronic TGFb response. Overexpression of SATB2, a chromatin remodeler associated with tumor spreading, showed activation of TGFb signaling in early melanomas. Confocal imaging and flow cytometric analysis showed that macrophages localize to TIE:EGFP+ regions and preferentially phagocytose TIE:EGFP+ melanoma cells compared to TIE:EGFP- melanoma cells. This work identifies a TGFb induced immune response and demonstrates the need for the development of chronic TGFb biomarkers to predict patient response to TGFb inhibitors.
Collapse
Affiliation(s)
- Haley R Noonan
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
- Biological and Biomedical Sciences Program, Harvard Medical SchoolBostonUnited States
| | - Alexandra M Thornock
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
- Biological and Biomedical Sciences Program, Harvard Medical SchoolBostonUnited States
| | - Julia Barbano
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
| | - Michael E Xifaras
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
- Immunology Program, Harvard Medical SchoolBostonUnited States
| | - Chloe S Baron
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Katherine Koczirka
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
| | - Alicia M McConnell
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical InstituteBostonUnited States
- Stem Cell and Regenerative Biology Department, Harvard UniversityCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| |
Collapse
|
2
|
Wang C, Zhu Y, Pan D. Identifying the causal relationship between immune factors and osteonecrosis: a two-sample Mendelian randomization study. Sci Rep 2024; 14:9371. [PMID: 38654114 DOI: 10.1038/s41598-024-59810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
A wealth of evidence intimates a profound connection between the immune system and osteonecrosis, albeit the specific immune factors underlying this connection remain largely veiled. A bidirectional Mendelian randomization (MR) study was conducted based on genome-wide association study summary data to identify causal links between 731 immune factors and osteonecrosis including drug-induced osteonecrosis. Preliminary MR analysis was accomplished utilizing the inverse-variance weighted method under a multiplicative random effects model, and heterogeneity and potential horizontal pleiotropy were evaluated through Cochrane's Q-test, MR-Egger intercept test, MR-PRESSO global test, and leave-one-out analysis. Upon false discovery rate correction, the gene-predicted level of one immune factor (CD62L - monocyte %monocyte) exhibited a significant positive correlation with osteonecrosis, while eight immune traits associated with monocytes, dendritic cells, and NK cells demonstrated significant causal effects with drug-induced osteonecrosis. Reverse MR revealed no significant correlations. This MR research provides genetic evidence for the causal associations between a broad spectrum of immune factors and osteonecrosis. Such a study aids in unraveling the intricate interaction patterns between the immune and skeletal systems, elucidating the pathogenesis of osteonecrosis, and identifying potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Chao Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ding Pan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Yuan N, Zhang W, Yang W, Ji W, Li J. Exosomes derived from M2 macrophages prevent steroid-induced osteonecrosis of the femoral head by modulating inflammation, promoting bone formation and inhibiting bone resorption. J Orthop Surg Res 2024; 19:243. [PMID: 38622659 PMCID: PMC11020342 DOI: 10.1186/s13018-024-04711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Inflammatory reactions are involved in the development of steroid-induced osteonecrosis of the femoral head(ONFH). Studies have explored the therapeutic efficacy of inhibiting inflammatory reactions in steroid-induced ONFH and revealed that inhibiting inflammation may be a new strategy for preventing the development of steroid-induced ONFH. Exosomes derived from M2 macrophages(M2-Exos) display anti-inflammatory properties. This study aimed to examine the preventive effect of M2-Exos on early-stage steroid-induced ONFH and explore the underlying mechanisms involved. In vitro, we explored the effect of M2-Exos on the proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells(BMMSCs). In vivo, we investigated the role of M2-Exos on inflammation, osteoclastogenesis, osteogenesis and angiogenesis in an early-stage rat model of steroid-induced ONFH. We found that M2-Exos promoted the proliferation and osteogenic differentiation of BMMSCs. Additionally, M2-Exos effectively attenuated the osteonecrotic changes, inhibited the expression of proinflammatory mediators, promoted osteogenesis and angiogenesis, reduced osteoclastogenesis, and regulated the polarization of M1/M2 macrophages in steroid-induced ONFH. Taken together, our data suggest that M2-Exos are effective at preventing steroid-induced ONFH. These findings may be helpful for providing a potential strategy to prevent the development of steroid-induced ONFH.
Collapse
Affiliation(s)
- Na Yuan
- Department of Ultrasonography, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Weiying Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
- Xizang Minzu University, XianYang, Shaanxi Province, 712082, China
| | - Weizhou Yang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Wenchen Ji
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Jia Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China.
| |
Collapse
|
4
|
Zhang HR, Li TJ, Yu XJ, Liu C, Wu WD, Ye LY, Jin KZ. The GFPT2-O-GlcNAcylation-YBX1 axis promotes IL-18 secretion to regulate the tumor immune microenvironment in pancreatic cancer. Cell Death Dis 2024; 15:244. [PMID: 38575607 PMCID: PMC10995196 DOI: 10.1038/s41419-024-06589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Hui-Ru Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei-Ding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Kai-Zhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Siewe N, Friedman A. Treatment of leishmaniasis with chemotherapy and vaccine: a mathematical model. JOURNAL OF BIOLOGICAL DYNAMICS 2023; 17:2257746. [PMID: 37733407 DOI: 10.1080/17513758.2023.2257746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Leishmaniasis, an infectious disease, manifests itself mostly in two forms, cutaneous leishmaniasis (CL) and, a more severe and potentially deadly form, visceral leishmaniasis (VL). The current control strategy for leishmaniasis relies on chemotherapy drugs such as sodium antimony gluconate (SAG) and meglumine antimoniate (MA). However, all these chemotherapy compounds have poor efficacy, and they are associated with toxicity and other adverse effects, as well as drug resistance. While research in vaccine development for leishmaniasis is continuously progressing, no vaccine is currently available. However, some experimental vaccines such as LEISH-F1+MPL-SE (V) have demonstrated some efficacy when used as drugs for CL patients. In this paper we use a mathematical model to address the following question: To what extent vaccine shots can enhance the efficacy of standard chemotherapy treatment of leishmaniasis? Starting with standard MA treatment of leishmaniasis and combining it with three injections of V , we find, by Day 84, that efficacy increased from 29% to 65-91% depending on the amount of the vaccine. With two or just one injection of V , efficacy is still very high, but there is a definite resurgence of the disease by end-time.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Nakamoto Y, Nakamura T, Nakai R, Azuma T, Omori K. Transplantation of autologous bone marrow-derived mononuclear cells into cerebrospinal fluid in a canine model of spinal cord injury. Regen Ther 2023; 24:574-581. [PMID: 38028937 PMCID: PMC10654139 DOI: 10.1016/j.reth.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is associated with severe dysfunction of nervous tissue, and repair via the transplantation of bone marrow-derived mononuclear cells (BM-MNCs) into cerebrospinal fluid yields promising results. It is essential to understand the underlying mechanisms; therefore, this study aimed to evaluate the regenerative potential of autologous BM-MNC transplantation in a canine model of acute SCI. Methods Six dogs were included in this study, and SCI was induced using an epidural balloon catheter between L2 and L3, particularly in the area of the anterior longitudinal ligament. BM-MNC transplantation was performed, and T2-weighted magnetic resonance imaging (MRI) was conducted at specific time points (i.e., immediately after inducing SCI and at 1, 2, and 4 weeks after inducing SCI); moreover, the expression of growth-associated protein 43 (GAP-43) was evaluated. Results MRI revealed that the signal intensity reduced over time in both BM-MNC-treated and control groups. However, the BM-MNC-treated group exhibited a significantly faster reduction than the control group during the early stages of SCI induction (BM-MNC-treated group: 4.82 ± 0.135 cm [day 0], 1.71 ± 0.134 cm [1 week], 1.37 ± 0.036 cm [2 weeks], 1.21 cm [4 weeks]; control group: 4.96 ± 0.211 cm [day 0], 2.49 ± 0.570 cm [1 week], 1.56 ± 0.045 cm [2 weeks], 1.32 cm [4 weeks]). During the early stages of treatment, GAP-43 was significantly expressed at the proximal end of the injured spinal cord in the BM-MSC-treated group, whereas it was scarcely expressed in the control group. Conclusions In SCI, transplanted BM-MNCs can activate the expression of GAP-43, which is involved in axonal elongation (an important process in spinal cord regeneration). Thus, cell therapy with BM-MNCs can provide favorable outcomes in terms of better regenerative capabilities compared with other therapies.
Collapse
Affiliation(s)
- Yuya Nakamoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Neuro Vets Animal Neurology Clinic, Kyoto, Japan
- Laboratory of Veterinary Surgery, Department of Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- Veterinary Medical Center, Osaka Prefecture University, Osaka, Japan
| | - Tatsuo Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryusuke Nakai
- Institute for the Future of Human Society, Kyoto University, Kyoto, Japan
| | - Takashi Azuma
- Department of Regeneration Science and Engineering Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Gao Y, Xu X, Zhang X. Targeting different phenotypes of macrophages: A potential strategy for natural products to treat inflammatory bone and joint diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154952. [PMID: 37506402 DOI: 10.1016/j.phymed.2023.154952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Macrophages, a key class of immune cells, have a dual role in inflammatory responses, switching between anti-inflammatory M2 and pro-inflammatory M1 subtypes depending on the specific environment. Greater numbers of M1 macrophages correlate with increased production of inflammatory chemicals, decreased osteogenic potential, and eventually bone and joint disorders. Therefore, reversing M1 macrophages polarization is advantageous for lowering inflammatory factors. To better treat inflammatory bone disorders in the future, it may be helpful to gain insight into the specific mechanisms and natural products that modulate macrophage polarization. OBJECTIVE This review examines the impact of programmed cell death and different cells in the bone microenvironment on macrophage polarization, as well as the effects of natural products on the various phenotypes of macrophages, in order to suggest some possibilities for the treatment of inflammatory osteoarthritic disorders. METHODS Using 'macrophage polarization,' 'M1 macrophage' 'M2 macrophage' 'osteoporosis,' 'osteonecrosis of femoral head,' 'osteolysis,' 'gouty arthritis,' 'collagen-induced arthritis,' 'freund's adjuvant-induced arthritis,' 'adjuvant arthritis,' and 'rheumatoid arthritis' as search terms, the relevant literature was searched using the PubMed, the Cochrane Library and Web of Science databases. RESULTS Targeting macrophages through different signaling pathways has become a key mechanism for the treatment of inflammatory bone and joint diseases, including HIF-1α, NF-κB, AKT/mTOR, JAK1/2-STAT1, NF-κB, JNK, ERK, p-38α/β, p38/MAPK, PI3K/AKT, AMPK, AMPK/Sirt1, STAT TLR4/NF-κB, TLR4/NLRP3, NAMPT pathway, as well as the programmed cell death autophagy, pyroptosis and ERS. CONCLUSION As a result of a search of databases, we have summarized the available experimental and clinical evidence supporting herbal products as potential treatment agents for inflammatory osteoarthropathy. In this paper, we outline the various modulatory effects of natural substances targeting macrophages in various diseases, which may provide insight into drug options and directions for future clinical trials. In spite of this, more mechanistic studies on natural substances, as well as pharmacological, toxicological, and clinical studies are required.
Collapse
Affiliation(s)
- Yuhe Gao
- Graduate School, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| | - Xilin Xu
- The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, China.
| | - Xiaofeng Zhang
- Teaching and Research Section of Orthopedics and Traumatology, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, China.
| |
Collapse
|
8
|
Orvalho JM, Fernandes JCH, Moraes Castilho R, Fernandes GVO. The Macrophage’s Role on Bone Remodeling and Osteogenesis: a Systematic Review. Clin Rev Bone Miner Metab 2023. [DOI: 10.1007/s12018-023-09286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Xin X, Zhou Y, Li J, Zhang K, Qin C, Yin L. CXCL10-coronated thermosensitive "stealth" liposomes for sequential chemoimmunotherapy in melanoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102634. [PMID: 36462759 DOI: 10.1016/j.nano.2022.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/05/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022]
Abstract
The interplay of liposome-protein corona hinders the clinical application of liposomes due to active macrophage sequestration and rapid plasma clearance. Here we showed that, CXCL10 as a therapeutic protein was coronated the thermosensitive liposomes to form stealth-like nanocarriers (CXCL10/TSLs). Decoration of the corona layer of CXCL10/TSLs by hyaluronic acid conjugated oridonin (ORD/CXCL10/TSLs), overcame the "fluid barrier" built by biological proteins, drastically reduced capture by leukocytes in whole blood, allowed the specific targeting of tumor sites. Multifunctional medicine ORD/CXCL10/TSLs with hyperthermia drove the sustained cytokine-CXCL10 inflammatory loop to switch macrophage phenotype to M1-like, expand tumor-infiltrating natural killer cells and induce intratumoral levels of interferon-γ. Oridonin synergized with CXCL10 during ORD/CXCL10/TSLs treatment, downregulated PI3K/AKT and Raf/MEK signaling for M1-like polarization and migration inhibition. Furthermore, ORD/CXCL10/TSLs potently synergized with anti-PD-L1 antibody in mice bearing metastatic melanoma, induced sustained immunological memory and controlled metastatic spread.
Collapse
Affiliation(s)
- Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Yong Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jingjing Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Kai Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Qin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Ding MH, Xu PG, Wang Y, Ren BD, Zhang JL. Resveratrol Attenuates Ankylosing Spondylitis in Mice by Inhibiting the TLR4/NF-κB/NLRP3 Pathway and Regulating Gut Microbiota. Immunol Invest 2023; 52:194-209. [PMID: 36548483 DOI: 10.1080/08820139.2022.2154162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ankylosing spondylitis (AS) is an autoimmune disease associated with disturbed gut microbiota. Currently, the treatments and outcomes of AS are not satisfactory. It is reported that resveratrol (RES) is a major phytoalexin with anti-inflammatory, antibacterial and some other pharmacological effects. However, there are no studies on the role of RES in AS. Therefore, this study aimed to explore the effect and mechanism of RES on AS. Proteoglycan and complete freund's adjuvant were used to conduct an AS mouse model, and then the AS mice were gavaged with RES (20 mg/kg and 50 mg/kg) daily for 4 weeks. Subsequently, the effect of RES on AS mice was assessed by detecting disease severity, inflammatory cytokines, NLRP3 inflammasome, TLR4/NF-κB pathway, intestinal mucosal barrier function, intestinal microbial barrier function. The assessment results indicated that RES could significantly relieve progression and severity of AS, inhibit the expression of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6, interleukin-17A, interferon-γ), and promote the expression of anti-inflammatory cytokines (interleukin-4). RES intervention caused the inhibition of NLRP3 inflammasome and TLR4/NF-κB pathway. In terms of intestinal barrier function, experimental results found RES increased zonula occludens-1 and occludin expression, and additionally, changed the composition of the gut microbiota by increasing levels of Lactobacillus and Bifidobacterium and reducing levels of Enterococcus faecalis and Escherichia coli. Collectively, RES protects PG-induced AS mice by inhibiting inflammatory responses and TLR4/NF-κB/NLRP3 pathway, restoring intestinal mucosal barrier function, and regulating the composition of the gut microbiota. In other words, RES is a potential candidate for the treatment of AS.
Collapse
Affiliation(s)
- Ming-Hui Ding
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Peng-Gang Xu
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Ying Wang
- The Eighth Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Bao-di Ren
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| | - Jun-Li Zhang
- The Seventh Department of Rheumatology, Xi'an No.5 Hospital, Xi'an, China
| |
Collapse
|
11
|
Siewe N, Friedman A. Cancer therapy with immune checkpoint inhibitor and CSF-1 blockade: A mathematical model. J Theor Biol 2023; 556:111297. [PMID: 36228716 DOI: 10.1016/j.jtbi.2022.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
Immune checkpoint inhibitors (ICIs) introduced in recent years have revolutionized the treatment of many metastatic cancers. However, data suggest that treatment has benefits only in a limited percentage of patients, and that this is due to immune suppression of the tumor microenvironment (TME). Anti-tumor inflammatory macrophages (M1), which are attracted to the TME, are converted by tumor secreted cytokines, such as CSF-1, to pro-tumor anti-inflammatory macrophages (M2), or tumor associated macrophages (TAMs), which block the anti-tumor T cells. In the present paper we develop a mathematical model that represents the interactions among the immune cells and cancer in terms of differential equations. The model can be used to assess treatments of combination therapy of anti-PD-1 with anti-CSF-1. Examples are given in comparing the efficacy among different strategies for anti-CSF-1 dosing in a setup of clinical trials.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, USA.
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Zhang Q, Sun W, Li T, Liu F. Polarization Behavior of Bone Macrophage as Well as Associated Osteoimmunity in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. J Inflamm Res 2023; 16:879-894. [PMID: 36891172 PMCID: PMC9986469 DOI: 10.2147/jir.s401968] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a disabling disease with high mortality in China but the detailed molecular and cellular mechanisms remain to be investigated. Macrophages are considered the key cells in osteoimmunology, and the cross-talk between bone macrophages and other cells in the microenvironment is involved in maintaining bone homeostasis. M1 polarized macrophages launch a chronic inflammatory response and secrete a broad spectrum of cytokines (eg, TNF-α, IL-6 and IL-1β) and chemokines to initiate a chronic inflammatory state in GIONFH. M2 macrophage is the alternatively activated anti-inflammatory type distributed mainly in the perivascular area of the necrotic femoral head. In the development of GIONFH, injured bone vascular endothelial cells and necrotic bone activate the TLR4/NF-κB signal pathway, promote dimerization of PKM2 and subsequently enhance the production of HIF-1, inducing metabolic transformation of macrophage to the M1 phenotype. Considering these findings, putative interventions by local chemokine regulation to correct the imbalance between M1/M2 polarized macrophages by switching macrophages to an M2 phenotype, or inhibiting the adoption of an M1 phenotype appear to be plausible regimens for preventing or intervening GIONFH in the early stage. However, these results were mainly obtained by in vitro tissue or experimental animal model. Further studies to completely elucidate the alterations of the M1/M2 macrophage polarization and functions of macrophages in glucocorticoid-induced osteonecrosis of the femoral head are imperative.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Wei Sun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Tengqi Li
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, People's Republic of China.,Department of Orthopedics, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
| | - Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
13
|
Görtz GE, Philipp S, Bruderek K, Jesenek C, Horstmann M, Henning Y, Oeverhaus M, Daser A, Bechrakis NE, Eckstein A, Brandau S, Berchner-Pfannschmidt U. Macrophage-Orbital Fibroblast Interaction and Hypoxia Promote Inflammation and Adipogenesis in Graves' Orbitopathy. Endocrinology 2022; 164:6881427. [PMID: 36477465 DOI: 10.1210/endocr/bqac203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The inflammatory eye disease Graves' orbitopathy (GO) is the main complication of autoimmune Graves' disease. In previous studies we have shown that hypoxia plays an important role for progression of GO. Hypoxia can maintain inflammation by attracting inflammatory cells such as macrophages (MQ). Herein, we investigated the interaction of MQ and orbital fibroblasts (OF) in context of inflammation and hypoxia. We detected elevated levels of the hypoxia marker HIF-1α, the MQ marker CD68, and inflammatory cytokines TNFα, CCL2, CCL5, and CCL20 in GO biopsies. Hypoxia stimulated GO tissues to release TNFα, CCL2, and CCL20 as measured by multiplex enzyme-linked immunosorbent assay (ELISA). Further, TNFα and hypoxia stimulated the expression of HIF-1α, CCL2, CCL5, and CCL20 in OF derived from GO tissues. Immunofluorescence confirmed that TNFα-positive MQ were present in the GO tissues. Thus, interaction of M1-MQ with OF under hypoxia also induced HIF-1α, CCL2, and CCL20 in OF. Inflammatory inhibitors etanercept or dexamethasone prevented the induction of HIF-1α and release of CCL2 and CCL20. Moreover, co-culture of M1-MQ/OF under hypoxia enhanced adipogenic differentiation and adiponectin secretion. Dexamethasone and HIF-1α inhibitor PX-478 reduced this effect. Our findings indicate that GO fat tissues are characterized by an inflammatory and hypoxic milieu where TNFα-positive MQ are present. Hypoxia and interaction of M1-MQ with OF led to enhanced secretion of chemokines, elevated hypoxic signaling, and adipogenesis. In consequence, M1-MQ/OF interaction results in constant inflammation and tissue remodeling. A combination of anti-inflammatory treatment and HIF-1α reduction could be an effective treatment option.
Collapse
Affiliation(s)
- Gina-Eva Görtz
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Svenja Philipp
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Jesenek
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, 45147 Essen, Germany
| | - Mareike Horstmann
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, 45147 Essen, Germany
| | - Michael Oeverhaus
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Anke Daser
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Nikolaos E Bechrakis
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Anja Eckstein
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, 45147 Essen, Germany
| | - Utta Berchner-Pfannschmidt
- Department of Ophthalmology, Molecular Ophthalmology Group, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
14
|
Zheng J, Yao Z, Xue L, Wang D, Tan Z. The role of immune cells in modulating chronic inflammation and osteonecrosis. Front Immunol 2022; 13:1064245. [PMID: 36582244 PMCID: PMC9792770 DOI: 10.3389/fimmu.2022.1064245] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis occurs when, under continuous stimulation by adverse factors such as glucocorticoids or alcohol, the death of local bone and marrow cells leads to abnormal osteoimmune function. This creates a chronic inflammatory microenvironment, which interferes with bone regeneration and repair. In a variety of bone tissue diseases, innate immune cells and adaptive immune cells interact with bone cells, and their effects on bone metabolic homeostasis have attracted more and more attention, thus developing into a new discipline - osteoimmunology. Immune cells are the most important regulator of inflammation, and osteoimmune disorder may be an important cause of osteonecrosis. Elucidating the chronic inflammatory microenvironment regulated by abnormal osteoimmune may help develop potential treatments for osteonecrosis. This review summarizes the inflammatory regulation of bone immunity in osteonecrosis, explains the pathophysiological mechanism of osteonecrosis from the perspective of osteoimmunology, and provides new ideas for the treatment of osteonecrosis.
Collapse
Affiliation(s)
- Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhi Yao
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| |
Collapse
|
15
|
Wang S, Wang Z, Li Z, Xu J, Meng X, Zhao Z, Hou Y. A Catalytic Immune Activator Based on Magnetic Nanoparticles to Reprogram the Immunoecology of Breast Cancer from "Cold" to "Hot" State. Adv Healthc Mater 2022; 11:e2201240. [PMID: 36065620 DOI: 10.1002/adhm.202201240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Triple-negative breast cancer (TNBC) as "cold" tumor is characterized by severe immunosuppression of the tumor microenvironment (TME). To effectively activate the immune response of TNBC, a new kind of therapy strategy called cancer catalytic immunotherapy is proposed based on magnetic nanoparticles (NPs) as immune activators. Utilizing the weak acidity and excessive hydrogen peroxide of TME, these magnetic NPs can release ferrous ions to promote Fenton reaction, leading to abundant ·OH and reactive oxygen species (ROS) for ultimately killing cancer cells. Mechanistically, these magnetic NPs activate the ROS-related signaling pathway to generate more ROS. Meanwhile, these magnetic NPs with unique immunological properties can promote the maturation of dendritic cells and the polarization of macrophages from M2 to M1, resulting in the infiltration of more T cells to reprogram the immunoecology of TNBC from "cold" to "hot" state. Besides directly affecting immune cells, these magnetic NPs can also affect the secretion of some immune-related cytokines by cancer cells, to further indirectly activate the immune response. In conclusion, these catalytic immune activators are designed to achieve the synergistic treatment of chemodynamic therapy-enhanced immunotherapy guided by computed tomography (CT)/near-infrared region-II (NIR-II) dual-mode imaging, providing a new strategy for TNBC treatment.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China
| | - Zhiyi Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China
| | - Ziyuan Li
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, 100191, China.,Department of Biomedical Engineering, Peking University, Beijing, 100871, China
| | - Junjie Xu
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zijing Zhao
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
16
|
Sezen D, Barsoumian HB, He K, Hu Y, Wang Q, Abana CO, Puebla-Osorio N, Hsu EY, Wasley M, Masrorpour F, Wang J, Cortez MA, Welsh JW. Pulsed radiotherapy to mitigate high tumor burden and generate immune memory. Front Immunol 2022; 13:984318. [PMID: 36275767 PMCID: PMC9582356 DOI: 10.3389/fimmu.2022.984318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Radiation therapy (XRT) has a well-established role in cancer treatment. Given the encouraging results on immunostimulatory effects, radiation has been increasingly used with immune-check-point inhibitors in metastatic disease, especially when immunotherapy fails due to tumor immune evasion. We hypothesized that using high-dose stereotactic radiation in cycles (pulses) would increase T-cell priming and repertoire with each pulse and build immune memory in an incremental manner. To prove this hypothesis, we studied the combination of anti-CTLA-4 and Pulsed radiation therapy in our 344SQ non-small cell lung adenocarcinoma murine model. Primary and secondary tumors were bilaterally implanted in 129Sv/Ev mice. In the Pulsed XRT group, both primary and secondary tumors received 12Gyx2 radiation one week apart, and blood was collected seven days afterwards for TCR repertoire analysis. As for the delayed-Pulse group, primary tumors received 12Gyx2, and after a window of two weeks, the secondary tumors received 12Gyx2. Blood was collected seven days after the second cycle of radiation. The immunotherapy backbone for both groups was anti-CTLA-4 antibody to help with priming. Treatment with Pulsed XRT + anti-CTLA-4 led to significantly improved survival and resulted in a delayed tumor growth, where we observed enhanced antitumor efficacy at primary tumor sites beyond XRT + anti-CTLA-4 treatment group. More importantly, Pulsed XRT treatment led to increased CD4+ effector memory compared to single-cycle XRT. Pulsed XRT demonstrated superior efficacy to XRT in driving antitumor effects that were largely dependent on CD4+ T cells and partially dependent on CD8+ T cells. These results suggest that combinatorial strategies targeting multiple points of tumor immune evasion may lead to a robust and sustained antitumor response.
Collapse
Affiliation(s)
- Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kewen He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chike O. Abana
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ethan Y. Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mark Wasley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
17
|
Zhang Y, Sun W, Zhang L. Heparin-Binding Protein Aggravates Acute Lung Injury in Septic Rats by Promoting Macrophage M1 Polarization and NF- κB Signaling Pathway Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3315601. [PMID: 36225185 PMCID: PMC9550450 DOI: 10.1155/2022/3315601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Objective Heparin-binding protein (HBP) plays an important role in sepsis and is a prognostic biomarker in patients with sepsis, but the role of HBP in the pathogenesis of sepsis-associated acute lung injury (ALI) remains unclear. This study aimed to investigate the role of HBP in sepsis-induced ALI and its underlying molecular mechanisms. Methods The cecal ligation and puncture (CLP) model was used to induce ALI in mice and randomly divided into 4 groups: control group, CLP (rats treated with cecal ligation and puncture), HBP (rats treated with CLP and HBP injection), and HBP + UFH (rats treated with CLP and injection of HBP and unfractionated heparin). Subsequently, HBP expression in rat serum and lung tissues was detected by qRT-PCR, edema and pathological changes in lung tissue by lung wet-to-dry weight ratio (W/D) and HE staining, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities in lung tissues by detection kits. Additionally, ELISA and western blot were applied for the determination of IL-6, TNF-α, and IL-1β expression in rat bronchoalveolar lavage fluid, and iNOS, Arg-1, Mrc1, NF-κBp65, IKKα, IκBα, and p-IκBα expression in lung tissues. Results The expression levels of HBP in serum and lung tissues of rats in the HBP group were significantly increased, the lung tissues were severely injured, accompanied by a significant increase in MPO activity but a significant decrease in SOD activity, and the levels of IL-6, TNF-α, and IL-1β in bronchoalveolar lavage fluid were significantly increased. In addition, the expression levels of iNOS, NF-κB p65, IKKα, and p-IκBα in the lung tissues of rats in the HBP group were significantly increased, while the addition of unfractionated heparin reversed the above results. Conclusion HBP aggravates ALI in septic rats, and its mechanism may be related to the promotion of macrophage M1 polarization and activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Diagnostic Ultrasound, Southern War Zone General Hospital, Guangzhou, Guangdong, China
| | - Wenqiao Sun
- Minimally Invasive Interventional Oncology Department, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Licheng Zhang
- Minimally Invasive Interventional Oncology Department, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Chen AC, Fang TJ, Ho HH, Chen JF, Kuo YW, Huang YY, Tsai SY, Wu SF, Lin HC, Yeh YT. A multi-strain probiotic blend reshaped obesity-related gut dysbiosis and improved lipid metabolism in obese children. Front Nutr 2022; 9:922993. [PMID: 35990345 PMCID: PMC9386160 DOI: 10.3389/fnut.2022.922993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Background and aims Obese children are more prone to becoming obese adults, and excess adiposity consequently increases the risk of many complications, such as metabolic syndromes, non-alcoholic fatty liver disease, cardiovascular disease, etc. This study aimed to evaluate the effects of multi-strain probiotics on the gut microbiota and weight control in obese children. Methods A double-blind, randomized, placebo-controlled trial was carried out on overweight and obese children. Subjects received 12 weeks of treatment with supplementary probiotics that contained three strains: Lactobacillus salivarius AP-32, L. rhamnosus bv-77, and Bifidobacterium animalis CP-9, plus diet and exercise guidance. A total of 82 children were enrolled, and 53 children completed the study. Results The supplementation of multi-strain probiotics resulted in a significant effect demonstrating high-density lipoprotein (HDL) and adiponectin elevation. At the same time, body mass index (BMI) and serum total cholesterol, low-density lipoprotein (LDL), leptin, and tumor necrosis factor-alpha (TNF-α) levels were reduced. Lactobacillus spp. and B. animalis were particularly increased in subjects who received probiotic supplements. The abundance of Lactobacillus spp. was inversely correlated with the ether lipid metabolism pathway, while that of B. animalis was positively correlated with serum adiponectin levels. Conclusion Our results show that obesity-related gut dysbiosis can be reshaped by the supplementation of a multi-strain probiotic to improve lipid metabolism. The regular administration of a multi-strain probiotic supplement may be helpful for weight control and health management in overweight and obese children.
Collapse
Affiliation(s)
- An-Chyi Chen
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Tzu-Jung Fang
- College of Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.,Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Jui-Fen Chen
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Yen-Yu Huang
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shin-Yu Tsai
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan City, Taiwan
| | - Shu-Fen Wu
- Division of Pediatric Gastroenterology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Medicine, China Medical University, Taichung City, Taiwan
| | - Hung-Chih Lin
- Division of Neonatology, China Medical University Children's Hospital, Taichung City, Taiwan.,School of Chinese Medicine, China Medical University, Taichung City, Taiwan.,Asia University Hospital, Asia University, Taichung City, Taiwan
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung City, Taiwan
| |
Collapse
|
19
|
Tan Z, Wang Y, Chen Y, Liu Y, Ma M, Ma Z, Wang C, Zeng H, Xue L, Yue C, Wang D. The Dynamic Feature of Macrophage M1/M2 Imbalance Facilitates the Progression of Non-Traumatic Osteonecrosis of the Femoral Head. Front Bioeng Biotechnol 2022; 10:912133. [PMID: 35573242 PMCID: PMC9094367 DOI: 10.3389/fbioe.2022.912133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Non-traumatic osteonecrosis of the femoral head (NONFH) remains a common refractory disease with poorly understood pathogenesis. Macrophage M1/M2 imbalance and chronic inflammatory microenvironment have been suggested to be closely related to osteonecrosis. Here we describe direct visual evidence for the involvement of dynamic changes in macrophages and the chronic inflammatory microenvironment in human NONFH. Osteonecrosis induces inflammatory responses and macrophage enrichment in the reparative area, and the number of inflammatory cells and macrophages falls during progressive-to end-stage NONFH. Multiplex immunohistochemistry demonstrated that macrophage M1/M2 ratio increased from 3 to 10 during progressive-to end-stage. During the progressive-stage, new blood vessels formed in the reparative area, M2 macrophages accumulated in perivascular (M1/M2 ratio ∼0.05), while M1 macrophages were enriched in avascular areas (M1/M2 ratio ∼12). Furthermore, inflammatory cytokines were detected in synovial fluid and plasma using cytometric bead arrays. Interleukin (IL)-6 and IL-1β were persistently enriched in synovial fluid compared to plasma in patients with NONFH, and this difference was confirmed by immunohistochemistry staining. However, only IL-6 levels in plasma were higher in patients with progressive-stage NONFH than in osteoarthritis. Moreover, fibrosis tissues were observed in the necrotic area in progressive-stage and end-stage NONFH based on Sirius Red staining. Together, these findings indicate that macrophage M1/M2 imbalance facilitates the progression of NONFH, a chronic inflammatory disease characterized by chronic inflammation, osteonecrosis and tissue fibrosis in the local lesion. Inhibiting inflammation, promoting the resolution of inflammation, switching macrophages to an M2 phenotype, or inhibiting their adoption of an M1 phenotype may be useful therapeutic strategies against NONFH.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Yingqi Chen
- Department of Bone and Joint Surgery, National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Youwen Liu
- Department of Orthopedic, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Maoxiao Ma
- Department of Orthopedic, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Zetao Ma
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Chao Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Bone and Joint Surgery, National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Chen Yue, ; Deli Wang,
| | - Chen Yue
- Department of Orthopedic, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
- *Correspondence: Lixiang Xue, ; Chen Yue, ; Deli Wang,
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Bone and Joint Surgery, National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Lixiang Xue, ; Chen Yue, ; Deli Wang,
| |
Collapse
|
20
|
Moise N, Friedman A. A mathematical model of immunomodulatory treatment in myocardial infarction. J Theor Biol 2022; 544:111122. [DOI: 10.1016/j.jtbi.2022.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
21
|
Tong Y, Zhou Z, Tang J, Feng Q. MiR-29b-3p Inhibits the Inflammation Injury in Human Umbilical Vein Endothelial Cells by Regulating SEC23A. Biochem Genet 2022; 60:2000-2014. [PMID: 35190931 DOI: 10.1007/s10528-022-10194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022]
Abstract
This study aims to investigate the effects of miR-29b-3p on the inflammation injury of human umbilical vein endothelial cells (HUVECs) induced by lipopolysaccharide (LPS) and explore the underlying mechanisms. The effects of different concentrations of LPS (0, 1, 5 and 10 μg/mL) on inflammation injury in HUVECs are detected by ELISA, CCK-8, EdU, flow cytometry and western blot analyses to determine the optimal stimulus concentration. After stimulating HUVECs with 10 μg/mL LPS, the expression levels of miR-29b-3p are detected, and the effects of miR-29b-3p on inflammation injury are detected by ELISA, CCK-8, EdU, flow cytometry and western blot analyses. Bioinformatic analysis, luciferase reporter assay and confirmatory experiments are applied to identify the target gene bound with miR-29b-3p. Rescue experiments have verified the roles of miR-29b-3p and the target gene in inflammation injury. We found that pro-inflammatory factor was increased, apoptosis was promoted, and cell proliferation was inhibited after the treatment of LPS in HUVECs. Overexpression of miR-29b-3p inhibited LPS-induced inflammatory response and apoptosis while promoting proliferation in HUVECs. Besides, bioinformatics analysis indicated that SEC23A was the target gene of miR-29b-3p and the confirmatory experiments showed that SEC23A was negatively correlated with miR-29b-3p and positively correlated with LPS concentration. Rescue experiments revealed that overexpression of SEC23A partially enhanced the inflammation injury effects in LPS-induced HUVECs with overexpression of miR-29b-3p. Hence, miR-29b-3p repressed inflammatory response, cell apoptosis and promoted cell proliferation in LPS-induced HUVECs by targeting SEC23A, providing a potential target for treating sepsis.
Collapse
Affiliation(s)
- Yiqing Tong
- Emergency Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, People's Republic of China
| | - Ziyang Zhou
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, PR China.
| | - Qiming Feng
- Emergency Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
22
|
PCA-Assisted Raman Analysis of Osteonecrotic Human Femoral Heads. Methods Protoc 2022; 5:mps5010010. [PMID: 35076564 PMCID: PMC8788499 DOI: 10.3390/mps5010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) occurs frequently in adolescents and young adults and causes progressive deformation and destruction of the hip joint and impairs standing and walking, resulting in a significant decrease in the quality of life of patients. In addition, studies have shown that a history of corticosteroid administration and heavy alcohol consumption are closely related to the occurrence of ONFH. However, the detailed mechanism by which steroid administration and alcohol consumption are associated with the development of the disease is still unknown. With many researches still ongoing and without a clear biological pathway for osteonecrosis, effective preventive measures cannot be taken. Therefore, the current focus of ONFH treatment is to establish an early diagnosis and treatment strategy. We obtained the femoral heads of four patients with steroidal ONFH and three patients with alcoholic ONFH. We then compared the femoral heads of steroidal and alcoholic osteonecrosis by analyzing them at the molecular level by Raman spectroscopy. Crystallographic changes (deformations) in the mineral phase and fraction of organic material respect to the total mass were then plotted as a function. We found that changes in bone composition in ONFH were different in steroidal and alcoholic ONFH. We conclude that this suggests that the developmental mechanisms of steroidal and alcoholic ONFH may follow different paths. We also noticed that while steroid seem to lead to a more marked degradation of the tissue, alcohol seem to affect also the quality of the healthy tissue.
Collapse
|
23
|
Yuan T, Lv S, Zhang W, Tang Y, Chang H, Hu Z, Fang L, Du J, Wu S, Yang X, Guo Y, Guo R, Ge Z, Wang L, Zhang C, Wang R, Cheng W. PF-PLC micelles ameliorate cholestatic liver injury via regulating TLR4/MyD88/NF-κB and PXR/CAR/UGT1A1 signaling pathways in EE-induced rats. Int J Pharm 2022; 615:121480. [PMID: 35041917 DOI: 10.1016/j.ijpharm.2022.121480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022]
Abstract
Paeoniflorin (PF) has a certain therapeutic effect on cholestasis liver injury. To further improve the bioavailability of PF and play its pharmacological role in liver protection, PF-phospholipid complex micelles (PF-PLC micelles) were prepared based on our previous research on PF-PLC. The protective effects of PF and PF-PLC micelles on cholestasis liver injury induced by 17α-ethynylestradiol (EE) were compared, and the possible mechanisms were further explored. Herein, we showed that PF-PLC micelles effectively improved liver function, alleviated liver pathological damage, and localized infiltration of inflammatory cells. Mechanism studies indicated that PF-PLC micelles treatment could suppress the TLR4/MyD88/NF-κB pathway, and further reduce the levels of pro-inflammatory factors. Meanwhile, our experimental results demonstrated that the beneficial effect of PF-PLC micelles on EE-induced cholestasis may be achieved by the upregulation of nuclear receptors and metabolic enzymes (PXR/CAR/UGT1A1). All these results indicate that PF-PLC micelles have great potential in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Tengteng Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Shujie Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Yanan Tang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Hong Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Zihan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Liang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Jiaojiao Du
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Sifan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Xinli Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Yangfu Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Ruihan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Zongrui Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Caiyun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei 230012, Anhui, China.
| | - Rulin Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China.
| | - Weidong Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China.
| |
Collapse
|
24
|
Lv X, Yao T, He R, He Y, Li M, Han Y, Zhang Y, Long L, Jiang G, Cheng X, Xie Y, Huang L, Peng Z, Hu G, Li Q, Tao L, Meng J. Protective Effect of Fluorofenidone Against Acute Lung Injury Through Suppressing the MAPK/NF-κB Pathway. Front Pharmacol 2022; 12:772031. [PMID: 34987397 PMCID: PMC8721041 DOI: 10.3389/fphar.2021.772031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a severe disease that presents serious damage and excessive inflammation in lungs with high mortality without effective pharmacological therapy. Fluorofenidone (AKFPD) is a novel pyridone agent that has anti-fibrosis, anti-inflammation, and other pharmacological activities, while the effect of fluorofenidone on ALI is unclarified. Here, we elucidated the protective effects and underlying mechanism of fluorofenidone on lipopolysaccharide (LPS)-induced ALI. In this study, fluorofenidone alleviated lung tissue structure injury and reduced mortality, decreased the pulmonary inflammatory cell accumulation and level of inflammatory cytokines IL-1β, IL-6, and TNF-α in the bronchoalveolar lavage fluid, and attenuated pulmonary apoptosis in LPS-induced ALI mice. Moreover, fluorofenidone could block LPS-activated phosphorylation of ERK, JNK, and P38 and further inhibited the phosphorylation of IκB and P65. These results suggested that fluorofenidone can significantly contrast LPS-induced ALI through suppressing the activation of the MAPK/NF-κB signaling pathway, which indicates that fluorofenidone could be considered as a novel therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Yao
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rongling He
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yijun He
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengyu Li
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Han
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lingzhi Long
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guoliang Jiang
- Department of Respirology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun Cheng
- Department of Respirology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China
| | - Ling Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China.,National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Gaoyun Hu
- Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China.,Faculty of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qianbin Li
- Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China.,Faculty of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China.,National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Jie Meng
- Department of Respirology, Third Xiangya Hospital, Central South University, Changsha, China.,Organ Fibrosis Key Laboratory of Hunan Province, Changsha, China.,National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| |
Collapse
|
25
|
Affiliation(s)
- Maoxiao Ma
- Hunan University of Chinese Medicine, Changsha, China.,Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wuyin Li
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Hong Zhang
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Youwen Liu
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China
| | - Chen Yue
- Orthopedic Department, Luoyang Orthopedic Hospital of Henan Province, Luoyang, China.,Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Yang S, Li Y, Liu C, Wu Y, Wan Z, Shen D. Pathogenesis and treatment of wound healing in patients with diabetes after tooth extraction. Front Endocrinol (Lausanne) 2022; 13:949535. [PMID: 36213270 PMCID: PMC9538860 DOI: 10.3389/fendo.2022.949535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a common systematic chronic disease amongst dental patients. The elevated glucose microenvironment can prolong the healing of tooth extraction sockets. Therefore, the promotion of healing up tooth extraction sockets is of great clinical importance to the patients with diabetes mellitus. The current evidence indicates the mechanism of the recovery period of extraction sockets in hyperglycaemia conditions from physiological, inflammation, immune, endocrine and neural aspects. New advancements have been made in varied curative approaches and drugs in the management of wound healing of tooth extraction sockets in diabetes. However, most of the interventions are still in the stage of animal experiments, and whether it can be put into clinical application still needs further explorations. Specifically, our work showed topical administration of plasma-rich growth factor, advanced platelet-rich fibrin, leukocyte- and platelet-rich fibrin and hyaluronic acid as well as maxillary immediate complete denture is regarded as a promising approach for clinical management of diabetic patients requiring extractions. Overall, recent studies present a blueprint for new advances in novel and effective approaches for this worldwide health ailment and tooth extraction sockets healing.
Collapse
|
27
|
Reinhardt JW, Breuer CK. Fibrocytes: A Critical Review and Practical Guide. Front Immunol 2021; 12:784401. [PMID: 34975874 PMCID: PMC8718395 DOI: 10.3389/fimmu.2021.784401] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
Fibrocytes are hematopoietic-derived cells that directly contribute to tissue fibrosis by producing collagen following injury, during disease, and with aging. The lack of a fibrocyte-specific marker has led to the use of multiple strategies for identifying these cells in vivo. This review will detail how past studies were performed, report their findings, and discuss their strengths and limitations. The motivation is to identify opportunities for further investigation and promote the adoption of best practices during future study design.
Collapse
Affiliation(s)
- James W. Reinhardt
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Christopher K. Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Surgery, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
28
|
Chen H, Liu Q, Liu X, Jin J. Berberine attenuates septic cardiomyopathy by inhibiting TLR4/NF-κB signalling in rats. PHARMACEUTICAL BIOLOGY 2021; 59:121-128. [PMID: 33539718 PMCID: PMC8871679 DOI: 10.1080/13880209.2021.1877736] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Berberine (Ber) can increase the survival rate of septic mice and inhibit inflammation, but whether it has a protective effect on septic cardiomyopathy (SCM) is unclear. OBJECTIVE To investigate whether Ber ameliorates SCM in a rat model and its potential mechanism. MATERIALS AND METHODS Male SD rats were randomly divided into three groups: control (Con, n = 6) (DD H2O, 2 mL/100 g, ig, qd × 3 d, then saline, 10 mg/kg, ip); sepsis [LPS (lipopolysaccharide), n = 18] (LPS 10 mg/kg instead of saline, ip); and berberine intervention (Ber, n = 18) (Ber, 50 mg/kg instead of DD H2O, ig, qd × 3 d, LPS instead of saline, ip). Hemodynamics, HE staining, ELISA and western blot were performed at 6, 24, and 48 h after intraperitoneal injection of LPS to evaluate the effect of berberine in septic rats. RESULT Berberine could recover myocardial injury by partially increased ± dp/dt max (1151, 445 mmHg/s) and LVEDP levels (1.49 mmHg) with LPS-induced rats, as well as an ameliorated increase of cTnT (217.53 pg/mL) in the Ber group compared with that in the LPS group (at 24 h). In addition, HE staining results showed that berberine attenuated the myocardial cell swelling induced by LPS. In contrast to the LPS group, the up-regulation of TLR4, p65 TNF-α, and IL-1β were attenuated in the Ber group. DISCUSSION AND CONCLUSIONS Berberine showed a protective effect on septic cardiomyopathy rats possibly through inhibiting the activation of TLR4/NF-κB signalling pathway. Whether it improves SCM through other mechanisms is our ongoing research.
Collapse
Affiliation(s)
- Huiqi Chen
- Department of Ultrasonography, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Qian Liu
- Department of Cardiology, The Second Affiliated Hospital, University of South, Hengyang, China
| | - Xiangqi Liu
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinlan Jin
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
- CONTACT Jinlan Jin Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 North ring road, Shenzhen, China
| |
Collapse
|
29
|
Kharaziha M, Baidya A, Annabi N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100176. [PMID: 34251690 PMCID: PMC8489436 DOI: 10.1002/adma.202100176] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/03/2021] [Indexed: 05/03/2023]
Abstract
With all the advances in tissue engineering for construction of fully functional skin tissue, complete regeneration of chronic wounds is still challenging. Since immune reaction to the tissue damage is critical in regulating both the quality and duration of chronic wound healing cascade, strategies to modulate the immune system are of importance. Generally, in response to an injury, macrophages switch from pro-inflammatory to an anti-inflammatory phenotype. Therefore, controlling macrophages' polarization has become an appealing approach in regenerative medicine. Recently, hydrogels-based constructs, incorporated with various cellular and molecular signals, have been developed and utilized to adjust immune cell functions in various stages of wound healing. Here, the current state of knowledge on immune cell functions during skin tissue regeneration is first discussed. Recent advanced technologies used to design immunomodulatory hydrogels for controlling macrophages' polarization are then summarized. Rational design of hydrogels for providing controlled immune stimulation via hydrogel chemistry and surface modification, as well as incorporation of cell and molecules, are also dicussed. In addition, the effects of hydrogels' properties on immunogenic features and the wound healing process are summarized. Finally, future directions and upcoming research strategies to control immune responses during chronic wound healing are highlighted.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Avijit Baidya
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
30
|
He K, Barsoumian HB, Sezen D, Puebla-Osorio N, Hsu EY, Verma V, Abana CO, Chen D, Patel RR, Gu M, Cortez MA, Welsh JW. Pulsed Radiation Therapy to Improve Systemic Control of Metastatic Cancer. Front Oncol 2021; 11:737425. [PMID: 34497773 PMCID: PMC8419338 DOI: 10.3389/fonc.2021.737425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy (RT) is emerging as an interventional modality in the cancer-immunity cycle, augmenting the activation of an adaptive immune response against tumors. RT, particularly in combination with immunotherapy, can enhance immune memory effects and shape the tumor-directed T-cell populations. However, a single cycle of RT delivered to a limited number of polymetastatic lesions is rarely sufficient to achieve systemic control. We hypothesize that several rounds of RT, akin to several rounds of immunotherapeutic drugs, is likely to provide greater clinical benefit to patients with metastatic disease. We propose that the repeated exposure to tumor antigens released by “pulsed-RT” (i.e., treating 2-4 tumor lesions with 3 irradiation cycles given one month apart) may amplify the adaptive immune response by expanding the tumor-specific T-cell receptor repertoire, the production of high-affinity tumor antibodies, and the generation of memory lymphocytes and thereby improve immune control of systemic disease.
Collapse
Affiliation(s)
- Kewen He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Nahum Puebla-Osorio
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ethan Y Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Chike O Abana
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | | | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
31
|
Lee HR, Lee HY, Heo J, Jang JY, Shin YS, Kim CH. Liquid-type nonthermal atmospheric plasma enhanced regenerative potential of silk-fibrin composite gel in radiation-induced wound failure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112304. [PMID: 34474855 DOI: 10.1016/j.msec.2021.112304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022]
Abstract
Delayed wound healing in heavily irradiated areas is a serious clinical complication that makes widespread therapeutic use of radiation difficult. Efficient treatment strategies are urgently required for addressing radiation-induced wound failure. Herein, we applied liquid-type nonthermal atmospheric plasma (LTP) to a silk-fibrin (SF) composite gel to investigate whether controlled release of LTP from SF hydrogel not only induced favorable cellular events in an irradiated wound bed but also modulated the SF hydrogel microstructure itself, eventually facilitating the development of a regenerative microenvironment. Scanning electron microscopy and Fourier-transform infrared spectroscopy revealed that LTP modulated the microstructures and chemical bindings of the SF gel. Improved cell viability, morphology, and extracellular matrix depositions by the LTP-treated SF hydrogel were identified with wound-healing assays and immunofluorescence staining. An irradiated random-pattern skin-flap animal model was established in six-week-old C57/BL6 mice. Full-thickness skin was flapped from the dorsum and SF hydrogel was placed underneath the raised skin flap. Postoperative histological analysis of the irradiated random-pattern skin-flap mice model suggested that LTP-treated SF hydrogel much improved wound regeneration and the inflammatory response compared to the SF hydrogel- and sham-treated groups. These results support that LTP-treated SF hydrogel significantly enhanced irradiated wound healing. Cellular and tissue reactions to released LTP from the SF hydrogel were favorable for the regenerative process of the wound; furthermore, mechanochemical properties of the SF gel were improved by LTP.
Collapse
Affiliation(s)
- Hye Ran Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Hye-Young Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Jaesung Heo
- Department of Radiation Oncology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
32
|
Zhu XY, Klomjit N, Conley SM, Ostlie MM, Jordan KL, Lerman A, Lerman LO. Impaired immunomodulatory capacity in adipose tissue-derived mesenchymal stem/stromal cells isolated from obese patients. J Cell Mol Med 2021; 25:9051-9059. [PMID: 34418300 PMCID: PMC8435432 DOI: 10.1111/jcmm.16869] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 12/18/2022] Open
Abstract
Immune‐modulatory properties of adipose tissue‐derived mesenchymal stem/stromal cells (MSCs) might be susceptible to metabolic disturbances. We hypothesized that the immune‐modulatory function of MSCs might be blunted in obese human subjects. MSCs were collected from abdominal subcutaneous fat of obese and lean subjects during bariatric or kidney donation surgeries, respectively. MSCs were co‐cultured in vitro for 24 h with M1 macrophages, which were determined as M1or M2 phenotypes by flow cytometry, and cytokines measured in conditioned media. In vivo, lean or obese MSCs (5 × 105), or PBS, were injected into mice two weeks after unilateral renal artery stenosis (RAS) or sham surgeries (n = 6 each). Fourteen days later, kidneys were harvested and stained with M1 or M2 markers. Lean MSCs decreased macrophages M1 marker intensity, which remained elevated in macrophages co‐cultured with obese MSCs. TNF‐α levels were four‐fold higher in conditioned media collected from obese than from lean MSCs. RAS mouse kidneys were shrunk and showed increased M1 macrophage numbers and inflammatory cytokine expression compared with normal kidneys. Lean MSCs decreased M1 macrophages, M1/M2 ratio and inflammation in RAS kidneys, whereas obese MSCs did not. MSCs isolated from lean human subjects decrease inflammatory M1 macrophages both in vivo and in vitro, an immune‐modulatory function which is blunted in MSCs isolated from obese subjects.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Nattawat Klomjit
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sabena M Conley
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Megan M Ostlie
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Kyra L Jordan
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
Ding Z, Qiu M, Alharbi MA, Huang T, Pei X, Milovanova TN, Jiao H, Lu C, Liu M, Qin L, Graves DT. FOXO1 expression in chondrocytes modulates cartilage production and removal in fracture healing. Bone 2021; 148:115905. [PMID: 33662610 PMCID: PMC8106874 DOI: 10.1016/j.bone.2021.115905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023]
Abstract
Fracture healing is a multistage process characterized by inflammation, cartilage formation, bone deposition, and remodeling. Chondrocytes are important in producing cartilage that forms the initial anlagen for the hard callus needed to stabilize the fracture site. We examined the role of FOXO1 by selective ablation of FOXO1 in chondrocytes mediated by Col2α1 driven Cre recombinase. Experimental mice with lineage-specific FOXO1 deletion (Col2α1Cre+FOXO1L/L) and negative control littermates (Col2α1Cre-FOXO1L/L) were used for in vivo, closed fracture studies. Unexpectedly, we found that in the early phases of fracture healing, FOXO1 deletion significantly increased the amount of cartilage formed, whereas, in later periods, FOXO1 deletion led to a greater loss of cartilage. FOXO1 was functionally important as its deletion in chondrocytes led to diminished bone formation on day 22. Mechanistically, the early effects of FOXO1 deletion were linked to increased proliferation of chondrocytes through enhanced expression of cell cycle genes that promote proliferation and reduced expression of those that inhibit it and increased expression of cartilage matrix genes. At later time points experimental mice with FOXO1 deletion had greater loss of cartilage, enhanced formation of osteoclasts, increased IL-6 and reduced numbers of M2 macrophages. These results identify FOXO1 as a transcription factor that regulates chondrocyte behavior by limiting the early expansion of cartilage and preventing rapid cartilage loss at later phases.
Collapse
Affiliation(s)
- Zhenjiang Ding
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Qiu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Mohammed A Alharbi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tiffany Huang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiyan Pei
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; First Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, China
| | - Tatyana N Milovanova
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongli Jiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chanyi Lu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Zhang W, Hu Y, He J, Guo D, Zhao J, Li P. Structural Characterization and Immunomodulatory Activity of a Novel Polysaccharide From Lycopi Herba. Front Pharmacol 2021; 12:691995. [PMID: 34248640 PMCID: PMC8267152 DOI: 10.3389/fphar.2021.691995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022] Open
Abstract
Lycopi Herba has been broadly used as a traditional medicinal herb in Asia due to its ability to strengthen immunity. However, it is still obscure for its material basis and underlying mechanisms. Polysaccharide, as one of the most important components of most natural herbs, usually contributes to the immunomodulatory ability of herbs. Here, we aimed to detect polysaccharides from Lycopi Herba and examine their potential immunomodulatory activity. A novel polysaccharide (LHPW) was extracted from Lycopi Herba and purified by DEAE-52 cellulose chromatography and G-100 sephadex. According to physicochemical methods and monosaccharide composition analysis, LHPW was mainly composed of galactose, glucose, fructose, and arabinose. NMR and methylation analyses indicated that LHPW was a neutral polysaccharide with a backbone containing →3,6)-β-D-Galp-(1→, →4)-β-D-Galp-(1→ and →4)-α-D-Glcp-(1→, with the branches of →1)-β-D-Fruf-(2→ and →6)-α-D-Galp-(1→. Immunological tests indicated that LHPW could activate macrophage RAW264.7 and promote splenocyte proliferation. This study discovered a novel polysaccharide from Lycopi Herba and showed it was a potential immunomodulator.
Collapse
Affiliation(s)
- Wuxia Zhang
- Department of Basic Science, Shanxi Agricultural University, Jinzhong, China
| | - Yihua Hu
- Department of Basic Science, Shanxi Agricultural University, Jinzhong, China
| | - Jiaqi He
- Department of Basic Science, Shanxi Agricultural University, Jinzhong, China
| | - Dongdong Guo
- Department of Basic Science, Shanxi Agricultural University, Jinzhong, China
| | - Jinzhong Zhao
- Department of Basic Science, Shanxi Agricultural University, Jinzhong, China
| | - Peng Li
- Department of Basic Science, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
35
|
Abstract
Orofacial clefts are one of the most common congenital anomalies worldwide; however, morphopathogenesis of the clefts is not yet completely understood. Taking the importance of innate immunity into account, the aim of this work was to examine the appearance and distribution of macrophages (M) 1, M2, and TNF-α, as well as to deduce any possible intercorrelations between the three factors in cleft affected lip tissue samples. Twenty samples of soft tissue were collected from children during plastic surgery. Fourteen control tissue samples were obtained during labial frenectomy. Tissues were immunohistochemically stained, analysed by light microscopy using a semi-quantitative method, and the Mann–Whitney U and Spearman’s tests were used to evaluate statistical differences and correlations. A statistically significant difference in the distribution was observed only in regard to M1. A weak correlation was observed between M2 and TNF-α but a moderate one between M1 and M2 as well as M1 and TNF-α. However, only the correlation between M1 and M2 was statistically important. The rise in M1, alongside the positive correlation between M1 and TNF-α, suggested a more pro-inflammatory/inflammatory environment in the cleft affected lip tissue. The moderate positive correlation between M1 and M2 indicated an intensification of the protective mechanisms.
Collapse
|
36
|
Maeta N, Tamura K, Ezuka F, Takemitsu H. Comparative analysis of canine mesenchymal stem cells and bone marrow-derived mononuclear cells. Vet World 2021; 14:1028-1037. [PMID: 34083956 PMCID: PMC8167527 DOI: 10.14202/vetworld.2021.1028-1037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background and aim: Mesenchymal stem cells (MSCs), which have multi-lineage differentiation potentials, are a promising source for regenerative medicine. However, the focus of study of MSCs is shifting from the characterization of the differentiation potential to their secretion potential for cell transplantation. Tissue regeneration and the attenuation of immune responses are thought to be affected by the secretion of multiple growth factors and cytokines by MSCs. However, the secretion potential of MSCs profiling remains incompletely characterized. In this study, we focused on the secretion ability related and protein mRNA expression of dog adipose tissue-derived MSCs (AT-MSC), bone marrow (BM)-derived MSCs, and BM-derived mononuclear cells (BM-MNC). Materials and Methods: Real-time polymerase chain reaction analyses revealed mRNA expression of nine growth factors and seven interleukins in these types of cells and three growth factors protein expression were determined using Enzyme-linked immunosorbent assay. Results: For the BM-MNC growth factors, the mRNA expression of transforming growth factor-β (TGF-β) was the highest. For the BM-derived MSC (BM-MSC) and AT-MSC growth factors, the mRNA expression of vascular endothelial growth factor (VEGF) was highest. BM-MSCs and AT-MSCs showed similar expression profiles. In contrast, BM-MNCs showed unique expression profiles for hepatocyte growth factor and epidermal growth factor. The three types of cells showed a similar expression of TGF-β. Conclusion: We conclude that expression of cytokine proteins and mRNAs suggests involvement in tissue repair and protection.
Collapse
Affiliation(s)
- Noritaka Maeta
- Aikouishida Animal Hospital, Isehara, 1195-4 Takamori, Isehara, Kanagawa, 259-1114, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Katsutoshi Tamura
- Aikouishida Animal Hospital, Isehara, 1195-4 Takamori, Isehara, Kanagawa, 259-1114, Japan
| | - Fuuna Ezuka
- Science and Humanities Master's Programme, Graduate School of Science and the Humanities, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan
| | - Hiroshi Takemitsu
- Science and Humanities Master's Programme, Graduate School of Science and the Humanities, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan.,Department of Comparative Animal Science, College of Life Science, Kurashiki University of Science and The Arts, 2640 Nishinoura Tsurajima Kurashiki Okayama, 712-8505, Japan
| |
Collapse
|
37
|
Willems M, Vloeberghs V, Gies I, De Schepper J, Tournaye H, Goossens E, Van Saen D. Testicular immune cells and vasculature in Klinefelter syndrome from childhood up to adulthood. Hum Reprod 2021; 35:1753-1764. [PMID: 32649748 DOI: 10.1093/humrep/deaa132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
STUDY QUESTION Is the distribution of immune cells and the testicular vasculature altered in testicular biopsies from patients with Klinefelter syndrome (KS)? SUMMARY ANSWER Increased numbers of macrophages and mast cells, an increased expression of decorin and an increased blood vessel density were found in KS samples compared to controls. WHAT IS KNOWN ALREADY Most KS patients are infertile due to an early germ cell loss. From puberty onwards, testicular fibrosis can be detected. How this fibrotic process is initiated remains unknown. STUDY DESIGN, SIZE, DURATION In this study, the number of macrophages, mast cells and their secretory products were evaluated in KS, Sertoli cell only (SCO) and control patient samples. The association between immune cell numbers and level of fibrosis in KS tissue was examined. In addition, the vascularization within these testicular tissue biopsies was studied. For immunohistochemical evaluation, KS patients at different stages of testicular development were included: prepubertal (aged 4-7 years; n = 4), peripubertal (aged 11-17 years; n = 21) and adult (aged >18 years; n = 37) patients. In addition, testicular tissue biopsies of adult SCO (n = 33) and control samples for the three KS age groups (prepubertal n = 9; peripubertal n = 5; adult n = 25) were analysed. Gene expression analysis was performed on adult testicular tissue from KS (n = 5), SCO (n = 5) and control (n = 5) patients. PARTICIPANTS/MATERIALS, SETTING, METHODS Adult (>18 years) KS, SCO and control testicular tissue biopsies were obtained during a testicular sperm extraction procedure. KS peripubertal (11-18 years), prepubertal (<11 years) and age-matched control biopsies were obtained from the biobank of the university hospital. Immunohistochemistry was used to determine the tubular structure (H/PAS), the number of spermatogonia (MAGE-A4), macrophages (CD68) and mast cells (tryptase) and the blood vessel density (Von Willebrand factor). In addition, quantitative real-time polymerase chain reaction was used to determine the expression of secretory products of macrophages and mast cells (tryptase, tumour necrosis factor alpha and decorin). MAIN RESULTS AND THE ROLE OF CHANCE A significant increase in the number of macrophages (P < 0.0001) and mast cells (P = 0.0008) was found in the peritubular compartment of testes of adult KS patients compared to control samples. However, no association between the number of immune cells and the degree of fibrosis was observed. In adult SCO samples, a significant increase was seen for peritubular macrophage (P < 0.0001) and mast cell (P < 0.0001) numbers compared to control samples. In the interstitial compartment, a significant increase in mast cell number was found in adult SCO samples compared to KS (P < 0.0001) and control (P < 0.0001) tissue. A significant difference (P = 0.0431) in decorin expression could be detected in adult KS compared to control patients. Decorin expression was mostly seen in the walls of the seminiferous tubules. When comparing the vascularization between KS patients and age-matched controls, a significant increase (P = 0.0081) in blood vessel density could be observed only in prepubertal KS testicular tissue. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION As controls for this study, testicular tissue biopsies of men who underwent a vasectomy reversal or orchiectomy were used, but these men may not represent fertile controls. In addition, a high variability in immune cell numbers, secretory products expression and number of blood vessels could be observed amongst all patient samples. WIDER IMPLICATIONS OF THE FINDINGS Increased numbers of macrophages and mast cells have previously been described in non-KS infertile men. Our results show that these increased numbers can also be detected in KS testicular tissue. However, no association between the number of macrophages or mast cells and the degree of fibrosis in KS samples could be detected. Decorin has previously been described in relation to fibrosis, but it has not yet been associated with testicular fibrosis in KS. Our results suggest a role for this proteoglycan in the fibrotic process since an increased expression was observed in adult KS tissue compared to controls. Impaired vascularization in KS men was suggested to be responsible for the KS-related disturbed hormone levels. Our results show a significant difference in blood vessel density, especially for the smallest blood vessels, between prepubertal KS samples and age-matched controls. This is the first study to report differences between KS and control testicular tissue at prepubertal age. STUDY FUNDING/COMPETING INTEREST(S) The project was funded by grants from the Vrije Universiteit Brussel (E.G.) and the scientific Fund Willy Gepts from the UZ Brussel (D.V.S.). D.V.S. is a post-doctoral fellow of the Fonds voor Wetenschappelijk Onderzoek (FWO; 12M2819N). No conflict of interest is declared for this research project.
Collapse
Affiliation(s)
- Margo Willems
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Veerle Vloeberghs
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Inge Gies
- Division of Pediatric Endocrinology, Department of Pediatrics, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Jean De Schepper
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium.,Division of Pediatric Endocrinology, Department of Pediatrics, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Herman Tournaye
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium.,Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
| | - Ellen Goossens
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Dorien Van Saen
- Biology of the Testis (BITE) Laboratory, Department of Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
38
|
Adipocyte, Immune Cells, and miRNA Crosstalk: A Novel Regulator of Metabolic Dysfunction and Obesity. Cells 2021; 10:cells10051004. [PMID: 33923175 PMCID: PMC8147115 DOI: 10.3390/cells10051004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.
Collapse
|
39
|
Yin X, Yang C, Wang Z, Zhang Y, Li Y, Weng J, Feng B. Alginate/chitosan modified immunomodulatory titanium implants for promoting osteogenesis in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112087. [PMID: 33947577 DOI: 10.1016/j.msec.2021.112087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
The essentiality of macrophages for biomaterial-mediated osteogenesis has been increasingly recognized. However, it is still unclear what is the specific role and molecular mechanisms of macrophages and material properties in the regulation of osteogenesis. As an interdisciplinary field exploring the cross-talk between immune and skeletal systems, osteoimmunology has shifted the perspective of bone substitute materials from immunosuppressive materials to immunomodulatory materials. To fabricate an immunomodulatory Ti implant, alginate/chitosan multilayer films were fabricated on the surface of titania nanotubes (TNTs) to control the release of an anti-inflammatory cytokine interleukin (IL)-4 according to our previous work. The osteogenic effects and regulation mechanisms of the immunomodulatory Ti implants were investigated in vitro in different BMSCs culture modes. Alginate/chitosan multilayer-coated samples (with or without IL-4 loading) showed better direct osteogenic ability than TNTs by promoting biomineralization and up-regulating osteogenic gene expression (BMP1α, ALP, OPN, OCN) of BMSCs. Notably, material-induced macrophage polarization, M1 and M2, enhanced early and mid-stage osteogenesis of BMSCs via distinct pathways: M1 activated both BMP6/SMADs and Wnt10b/β-catenin pathways; while M2 activated TGF-β/SMADs pathway. Material surface properties dominated in regulating late osteogenesis probably due to the surface chemical composition (alginate, chitosan and Ca2+, etc.). Due to synergistic effects of material-induced inflammatory microenvironment and material surface properties, IL-4-loaded samples exhibited superior osteogenic capability through co-activation of three signaling pathways. The in vivo studies in rat bone defect model revealed that IL-4-loaded immunomodulatory implants successfully achieved macrophage phenotypic transition from pro-inflammatory M1 to anti-inflammatory M2 and subsequently improved new bone formation.
Collapse
Affiliation(s)
- Xianzhen Yin
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Congling Yang
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ziquan Wang
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yiting Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Weng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Feng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
40
|
Deenin W, Malakul W, Boonsong T, Phoungpetchara I, Tunsophon S. Papaya improves non-alcoholic fatty liver disease in obese rats by attenuating oxidative stress, inflammation and lipogenic gene expression. World J Hepatol 2021; 13:315-327. [PMID: 33815675 PMCID: PMC8006076 DOI: 10.4254/wjh.v13.i3.315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/30/2020] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a global health issue that is correlated with obesity and oxidative stress.
AIM To evaluate the anti-NAFLD effect of papaya in high fat diet induced obesity in rats.
METHODS Four-week-old male Sprague-Dawley rats were divided into four groups after 1 wk of acclimatization: Group 1 was the rats fed a normal diet (C); group 2 was the rats fed a high fat diet (HFD); group 3 was the rats fed a HFD with 0.5 mL of papaya juice/100 g body weight (HFL), and group 4 was the rats fed a HFD with 1 mL of papaya juice/100 g body weight (HFH) for 12 wk. At the end of the treatment, blood and tissue samples were collected for biochemical analyses and histological assessment.
RESULTS The results of the HFH group showed significantly reduced body weight (HFH vs HFD, P < 0.01), decreased NAFLD score (HFH vs HFD, P < 0.05), and reduced hepatic total cholesterol (HFL vs HFD, P < 0.01; HFH vs HFD, P < 0.001), hepatic triglyceride (HFH vs HFD, P < 0.05), malondialdehyde (HFL, HFH vs HFD, P < 0.001), tumour necrosis factor-α (HFH vs HFD, P < 0.05) and interleukin-6 (HFH vs HFD, P < 0.05) when compared to the HFD group. However, the liver weight showed no significant difference among the groups. The activities of catalase and superoxide dismutase significantly increased in HFH when compared with the HFD group (P < 0.05 and P < 0.001, respectively). The suppression of transcriptional factors of hepatic lipogenesis, including sterol regulatory element-binding protein 1c and fatty acid synthase, were observed in the papaya treated group (HFH vs HFD, P < 0.05). These beneficial effects of papaya against HFD-induced NAFLD are through lowering hepatic lipid accumulation, suppressing the lipogenic pathway, improving the balance of antioxidant status, and lowering systemic inflammation.
CONCLUSION These current results provide experimental-based evidence suggesting papaya is an efficacious medicinal fruit for use in the prevention or treatment of NAFLD.
Collapse
Affiliation(s)
- Wanwisa Deenin
- Department of Physiology, Faculty of Medical Science, Naresuan University, Muang 65000, Phitsanulok, Thailand
| | - Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Muang 65000, Phitsanulok, Thailand
| | - Tantip Boonsong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Muang 65000, Phitsanulok, Thailand
| | - Ittipon Phoungpetchara
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Muang 65000, Phitsanulok, Thailand
| | - Sakara Tunsophon
- Department of Physiology, Faculty of Medical Science, Naresuan University, Muang 65000, Phitsanulok, Thailand
- Centre of Excellence for Innovation in Chemistry, Naresuan University, Muang 65000, Phitsanulok, Thailand
| |
Collapse
|
41
|
Wang T, Gao L, Yang Z, Wang F, Guo Y, Wang B, Hua R, Shang H, Xu J. Restraint Stress in Hypertensive Rats Activates the Intestinal Macrophages and Reduces Intestinal Barrier Accompanied by Intestinal Flora Dysbiosis. J Inflamm Res 2021; 14:1085-1110. [PMID: 33790622 PMCID: PMC8007621 DOI: 10.2147/jir.s294630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Hypertension (HTN) is a major risk factor for cardiovascular disease. In recent years, there were numerous studies on the function of stress in HTN. However, the gut dysbiosis linked to hypertension in animal models under stress is still incompletely understood. Purpose of this study is to use multiple determination method to determine the juvenile stage intestinal bacteria, cytokines and changes in hormone levels. Methods Four groups of juvenile male spontaneously hypertensive rats (SHRs) and age-matched male Wistar-Kyoto (WKY) rats were randomly selected as control and experimental groups. Rats in the two stress groups were exposed to restraint stress for 3 hours per day for 7 consecutive days. In one day three times in the method of non-invasive type tail-cuff monitoring blood pressure. The detailed mechanism was illuminated based on the intestinal change using immunohistochemical and immunofluorescence staining and the stress-related hormone and inflammation factors were analyzed via ELISA method. The integrity of the epithelial barrier was assessed using FITC/HRP and the expression levels of proteins associated with the tight junction was detected by Western blot. The alteration of stress-related intestinal flora from ileocecal junction and distal colon were also analyzed using its 16S rDNA sequencing. Results The results indicate that acute stress rapidly increases mean arterial pressure which is positive correlation to hormone concentration, especially in SHR-stress group. Meanwhile, stress promoted the enhancement of epithelial permeability accompanied with a reduced expression of the tight junction-related protein and the macrophages (Mφ) aggregation to the lamina propria. There were remarkable significant increase of stress-related hormones and pro-inflammatory factor interleukin (IL)-6 along with a decrease in the diversity of intestinal flora and an imbalance in the F/B ratio. Conclusion Our results reveal that stress accompanied with HTN could significantly disrupt the domino effect between intestinal flora and homeostasis.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Zejun Yang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Feifei Wang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Yuexin Guo
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Boya Wang
- Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, 100081, People's Republic of China
| | - Rongxuan Hua
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing, 100069, People's Republic of China
| |
Collapse
|
42
|
Liu WC, Ou BH, Liang ZL, Zhang R, Zhao ZH. Algae-derived polysaccharides supplementation ameliorates heat stress-induced impairment of bursa of Fabricius via modulating NF-κB signaling pathway in broilers. Poult Sci 2021; 100:101139. [PMID: 34225200 PMCID: PMC8264154 DOI: 10.1016/j.psj.2021.101139] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the protective effects of dietary algae-derived polysaccharides (ADP) from Enteromorpha prolifera against heat stress (HS)-induced bursa of Fabricius injure in broilers, and to elucidate the molecular mechanisms underlying the protective effect. A total of 144 8-week-old male yellow-feathered broilers were randomly allocated into 3 treatments of 6 replicates each (8 broilers per replicate): thermoneutral zone group (TN, fed basal diet); heat stress group (HS, fed basal diet); heat stress + ADP group (HSA, basal diet supplemented with 1,000 mg/kg ADP). Broilers in TN group were raised at 23.6 ± 1.8°C during the whole study. Broilers in HS and HSA groups were exposed to 33.2 ± 1.5°C for 10 h/day. The experimental period lasted for four weeks. The results showed that HS and dietary ADP had no significant effects on bursa of Fabricius index (P > 0.05). HS exposure increased the apoptosis rate of bursa of Fabricius (P < 0.05), and the apoptosis rate was reduced by dietary ADP (P < 0.05). Besides, broilers in HS and HSA groups had a lower glutathione-S transferase (GST) activity and total anti-oxidation capacity (T-AOC), whereas had a higher malondialdehyde (MDA) levels of bursa of Fabricius than those in TN group (P < 0.05). HS exposure elevated the concentration of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-4, and IL-6, while decreased the concentration of interferon-γ (INF-γ) and IL-2 (P < 0.05), and dietary inclusion of ADP reduced the IL-1β level and increased the IL-2 level of bursa of Fabricius (P < 0.05). Compared with TN group, broilers in HS and HSA groups had lower relative mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and GSTT1 in bursa of Fabricius (P < 0.05). Additionally, HS exposure down-regulated the mRNA expression of inhibitor kappa B alpha (IκBα), IFN-γ, and IL-2, while up-regulated the mRNA expression of nuclear factor-kappa B (NF-κB) p65, TNF-α, IL-1β, and IL-6 in bursa of Fabricius (P < 0.05). However, dietary inclusion of ADP up-regulated the mRNA expression of IκBα and down-regulated the mRNA expression of NF-κB p65, TNF-α, and IL-6 in bursa of Fabricius (P < 0.05). Furthermore, HS exposure increased the relative protein expression levels of total and nuclear NF-κB p65 (P < 0.05), but dietary ADP supplementation reduced the relative protein expression levels of total and nuclear NF-κB p65 in bursa of Fabricius (P < 0.05). Collectively, dietary ADP ameliorated the impairment of histology, cell apoptosis and immune balance in bursa of Fabricius of heat stressed broilers, which is involved in modulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Bin-Huo Ou
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zi-Long Liang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Rui Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, PR China; College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, 518088, PR China; Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhi-Hui Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
43
|
Wu Z, Wen Y, Fan G, He H, Zhou S, Chen L. HEMGN and SLC2A1 might be potential diagnostic biomarkers of steroid-induced osteonecrosis of femoral head: study based on WGCNA and DEGs screening. BMC Musculoskelet Disord 2021; 22:85. [PMID: 33451334 PMCID: PMC7811219 DOI: 10.1186/s12891-021-03958-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (SONFH) is a chronic and crippling bone disease. This study aims to reveal novel diagnostic biomarkers of SONFH. METHODS The GSE123568 dataset based on peripheral blood samples from 10 healthy individuals and 30 SONFH patients was used for weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. The genes in the module related to SONFH and the DEGs were extracted for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Genes with |gene significance| > 0.7 and |module membership| > 0.8 were selected as hub genes in modules. The DEGs with the degree of connectivity ≥5 were chosen as hub genes in DEGs. Subsequently, the overlapping genes of hub genes in modules and hub genes in DEGs were selected as key genes for SONFH. And then, the key genes were verified in another dataset, and the diagnostic value of key genes was evaluated by receiver operating characteristic (ROC) curve. RESULTS Nine gene co-expression modules were constructed via WGCNA. The brown module with 1258 genes was most significantly correlated with SONFH and was identified as the key module for SONFH. The results of functional enrichment analysis showed that the genes in the key module were mainly enriched in the inflammatory response, apoptotic process and osteoclast differentiation. A total of 91 genes were identified as hub genes in the key module. Besides, 145 DEGs were identified by DEGs screening and 26 genes were identified as hub genes of DEGs. Overlapping genes of hub genes in the key module and hub genes in DEGs, including RHAG, RNF14, HEMGN, and SLC2A1, were further selected as key genes for SONFH. The diagnostic value of these key genes for SONFH was confirmed by ROC curve. The validation results of these key genes in GSE26316 dataset showed that only HEMGN and SLC2A1 were downregulated in the SONFH group, suggesting that they were more likely to be diagnostic biomarkers of SOFNH than RHAG and RNF14. CONCLUSIONS Our study identified that two key genes, HEMGN and SLC2A1, might be potential diagnostic biomarkers of SONFH.
Collapse
Affiliation(s)
- Zhixin Wu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan City, 430071, Hubei Province, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan City, 430071, Hubei Province, China.
| | - Guanlan Fan
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hangyuan He
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan City, 430071, Hubei Province, China
| | - Siqi Zhou
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan City, 430071, Hubei Province, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan City, 430071, Hubei Province, China.
| |
Collapse
|
44
|
Abstract
Hemophilia is caused by a lack of antihemophilic factor(s), for example, factor VIII (FVIII; hemophilia A) and factor IX (FIX; hemophilia B). Low bone mass is widely reported in epidemiological studies of hemophilia, and patients with hemophilia are at an increased risk of fracture. The detailed etiology of bone homeostasis imbalance in hemophilia is unclear. Clinical and experimental studies show that FVIII and FIX are involved in bone remodeling. However, it is likely that antihemophilic factors affect bone biology through thrombin pathways rather than via their own intrinsic properties. In addition, among patients with hemophilia, there are pathophysiological processes in several systems that might contribute to bone loss. This review summarizes studies on the association between hemophilia and bone remodeling, and might shed light on the challenges facing the care and prevention of osteoporosis and fracture in patients with hemophilia.
Collapse
Affiliation(s)
- Hanshi Wang
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xizhuang Bai
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
45
|
Moise N, Friedman A. A mathematical model of the multiple sclerosis plaque. J Theor Biol 2020; 512:110532. [PMID: 33152395 DOI: 10.1016/j.jtbi.2020.110532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis is an autoimmune disease that affects white matter in the central nervous system. It is one of the primary causes of neurological disability among young people. Its characteristic pathological lesion is called a plaque, a zone of inflammatory activity and tissue destruction that expands radially outward by destroying the myelin and oligodendrocytes of white matter. The present paper develops a mathematical model of the multiple sclerosis plaques. Although these plaques do not provide reliable information of the clinical disability in MS, they are nevertheless useful as a primary outcome measure of Phase II trials. The model consists of a system of partial differential equations in a simplified geometry of the lesion, consisting of three domains: perivascular space, demyelinated plaque, and white matter. The model describes the activity of various pro- and anti-inflammatory cells and cytokines in the plaque, and quantifies their effect on plaque growth. We show that volume growth of plaques are in qualitative agreement with reported clinical studies of several currently used drugs. We then use the model to explore treatments with combinations of such drugs, and with experimental drugs. We finally consider the benefits of early vs. delayed treatment.
Collapse
Affiliation(s)
- Nicolae Moise
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Biomedical Engineering, Ohio State University, Columbus, OH, USA
| | - Avner Friedman
- Mathematical Biosciences Institute & Department of Mathematics, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
46
|
Xenogeneic native decellularized matrix carrying PPARγ activator RSG regulating macrophage polarization to promote ligament-to-bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111224. [DOI: 10.1016/j.msec.2020.111224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
|
47
|
Intelligent H2S release coating for regulating vascular remodeling. Bioact Mater 2020; 6:1040-1050. [PMID: 33102945 PMCID: PMC7567040 DOI: 10.1016/j.bioactmat.2020.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 12/18/2022] Open
Abstract
Coronary atherosclerotic lesions exhibit a low-pH chronic inflammatory response. Due to insufficient drug release control, drug-eluting stent intervention can lead to delayed endothelialization, advanced thrombosis, and unprecise treatment. In this study, hyaluronic acid and chitosan were used to prepare pH-responsive self-assembling films. The hydrogen sulfide (H2S) releasing aspirin derivative ACS14 was used as drug in the film. The film regulates the release of the drug adjusted to the microenvironment of the lesion, and the drug balances the vascular function by releasing the regulating gas H2S, which comparably to NO promotes the self-healing capacity of blood vessels. Drug releasing profiles of the films at different pH, and other biological effects on blood vessels were evaluated through blood compatibility, cellular, and implantation experiments. This novel method of self-assembled films which H2S in an amount, which is adjusted to the condition of the lesion provides a new concept for the treatment of cardiovascular diseases. PH-responsive self-assembling films were used to intelligently release the drugs at atherosclerotic lesions. As a gaseous signaling molecule, H2S donor ACS14 was loaded into the films used in the field of cardiovascular disease treatment. H2S can help to regulate vascular remodeling and balance the vascular function.
Collapse
|
48
|
Shen H, Shi J, Zhi Y, Yang X, Yuan Y, Si J, Shen SGF. Improved BMP2-CPC-stimulated osteogenesis in vitro and in vivo via modulation of macrophage polarization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111471. [PMID: 33255051 DOI: 10.1016/j.msec.2020.111471] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
This study aimed to explore the in vitro and in vivo roles of macrophages in the osteogenesis stimulated by BMP2-CPC. In vitro, the alteration of macrophage polarization and cytokine secretion induced by BMP2-CPC or CPC was investigated. The influence of conditioned medium derived from BMP2-CPC- or CPC-stimulated macrophages on the migration and osteogenic differentiation of MSCs were evaluated. The in vivo relationship between macrophage polarization and osteogenesis was examined in a rabbit calvarial defect model. The in vitro results indicated that BMP2-CPC and CPC induced different patterns of macrophage polarization and subsequently resulted in distinct patterns of cytokine expression and secretion. Conditioned medium derived from BMP2-CPC- or CPC-stimulated macrophages both exhibited apparent osteogenic effect on MSCs. Notably, BMP2-CPC induced more M2-phenotype polarization and higher expression of anti-inflammatory cytokines and growth factors than did CPC, which led to the better osteogenic effect of conditioned medium derived from BMP2-CPC-stimulated macrophages. The rabbit calvarial defect model further confirmed that BMP2-CPC facilitated more bone regeneration than CPC did by enhancing M2-phenotype polarization in local macrophages and then alleviating inflammatory reaction. In conclusion, this study revealed that the favorable immunoregulatory property of BMP2-CPC contributed to the strong osteogenic capability of BMP2-CPC by modulating macrophage polarization.
Collapse
Affiliation(s)
- Hongzhou Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China; Laboratory for Digitized Stomatology, Research Center for Craniofacial Anomalies, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, People's Republic of China
| | - Jun Shi
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China; Laboratory for Digitized Stomatology, Research Center for Craniofacial Anomalies, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, People's Republic of China
| | - Yin Zhi
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Xiaoyan Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, People's Republic of China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiawen Si
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
| | - Steve G F Shen
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China; Laboratory for Digitized Stomatology, Research Center for Craniofacial Anomalies, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, People's Republic of China.
| |
Collapse
|
49
|
Zhao J, Bi W, Zhang J, Xiao S, Zhou R, Tsang CK, Lu D, Zhu L. USP8 protects against lipopolysaccharide-induced cognitive and motor deficits by modulating microglia phenotypes through TLR4/MyD88/NF-κB signaling pathway in mice. Brain Behav Immun 2020; 88:582-596. [PMID: 32335193 DOI: 10.1016/j.bbi.2020.04.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-specific protease 8 (USP8) regulates inflammation in vitro; however, the mechanisms by which USP8 inhibits neuroinflammation and its pathophysiological functions are not completely understood. In this study, we aimed to determine whether USP8 exerts neuroprotective effects in a mouse model of lipopolysaccharide (LPS)-induced cognitive and motor impairment. We commenced intracerebroventricular USP8 administration 7 days prior to i.p. injection of LPS (750 μg/kg). All treatments and behavioral experiments were performed once per day for 7 consecutive days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced hippocampal damage. USP8 attenuated LPS-induced cognitive and motor impairments in mice. Moreover, USP8 downregulated several pro-inflammatory cytokines [nitric oxide (NO), tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), and interleukin-1β (IL-1β)] in the serum and brain, and the relevant protein factors [inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)] in the brain. Furthermore, USP8 upregulated the anti-inflammatory mediators interleukin (IL)-4 and IL-10 in the serum and brain, and promoted a shift from pro-inflammatory to anti-inflammatory microglial phenotypes. The LPS-induced microglial pro-inflammatory phenotype was abolished by TLR4 inhibitor and in TLR4-/- mice; these effects were similar to those of USP8 treatment. Mechanistically, we found that USP8 increased the expression of neuregulin receptor degradation protein-1 (Nrdp1), potently downregulated the expression of TLR4 and myeloid differentiation primary response protein 88 (MyD88) protein, and inhibited the phosphorylation of IκB kinase (IKK) β and kappa B-alpha (IκBα), thereby reducing nuclear translocation of p65 by inhibiting the activation of the nuclear factor-kappaB (NF-κB) signaling pathway in LPS-induced mice. Our results demonstrated that USP8 exerts protective effects against LPS-induced cognitive and motor deficits in mice by modulating microglial phenotypes via TLR4/MyD88/NF-κB signaling.
Collapse
Affiliation(s)
- JiaYi Zhao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Wei Bi
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province 510630, China
| | - JiaWei Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Shu Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - RuiYi Zhou
- Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province 510630, China
| | - Chi Kwan Tsang
- Clinical Neuoscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province 510630, China
| | - DaXiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Lihong Zhu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China.
| |
Collapse
|
50
|
Nechama M, Makayes Y, Resnick E, Meir K, Volovelsky O. Rapamycin and dexamethasone during pregnancy prevent tuberous sclerosis complex-associated cystic kidney disease. JCI Insight 2020; 5:136857. [PMID: 32484794 DOI: 10.1172/jci.insight.136857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease is the main cause of mortality in patients with tuberous sclerosis complex (TSC) disease. The mechanisms underlying TSC cystic kidney disease remain unclear, with no available interventions to prevent cyst formation. Using targeted deletion of TSC1 in nephron progenitor cells, we showed that cysts in TSC1-null embryonic kidneys originate from injured proximal tubular cells with high mTOR complex 1 activity. Injection of rapamycin to pregnant mice inhibited the mTOR pathway and tubular cell proliferation in kidneys of TSC1-null offspring. Rapamycin also prevented renal cystogenesis and prolonged the life span of TSC newborns. Gene expression analysis of proximal tubule cells identified sets of genes and pathways that were modified secondary to TSC1 deletion and rescued by rapamycin administration during nephrogenesis. Inflammation with mononuclear infiltration was observed in the cystic areas of TSC1-null kidneys. Dexamethasone administration during pregnancy decreased cyst formation by not only inhibiting the inflammatory response, but also interfering with the mTORC1 pathway. These results reveal mechanisms of cystogenesis in TSC disease and suggest interventions before birth to ameliorate cystic disease in offspring.
Collapse
Affiliation(s)
| | | | | | - Karen Meir
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|