1
|
Thiel KL, da Silva J, Wolfarth M, Vanini J, Henriques JAP, de Oliveira IM, da Silva FR. Assessment of cytotoxic and genotoxic effects of glyphosate-based herbicide on glioblastoma cell lines: Role of p53 in cellular response and network analysis. Toxicology 2024; 508:153902. [PMID: 39094917 DOI: 10.1016/j.tox.2024.153902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Glyphosate, the world's most widely used herbicide, has a low toxicity rating despite substantial evidence of adverse health effects. Furthermore, glyphosate-based formulations (GBFs) contain several other chemicals, some of which are known to be harmful. Additionally, chronic, and acute exposure to GBFs among rural workers may lead to health impairments, such as neurodegenerative diseases and cancer. P53 is known as a tumor suppressor protein, acting as a key regulator of the cellular response to stress and DNA damage. Therefore, mutations in the TP53 gene, which encodes p53, are common genetic alterations found in various types of cancer. Therefore, this study aimed to evaluate the cytotoxicity and genotoxicity of GBF in two glioblastoma cell lines: U87MG (TP53-proficient) and U251MG (TP53-mutant). Additionally, the study aimed to identify the main proteins involved in the response to GBF exposure using Systems Biology in a network containing p53 and another network without p53. The MTT assay was used to study the toxicity of GBF in the cell lines, the clonogenic assay was used to investigate cell survival, and the Comet Assay was used for genotoxicity evaluation. For data analysis, bioinformatics tools such as String 12.0 and Stitch 5.0 were applied, serving as a basis for designing binary networks in the Cytoscape 3.10.1 program. From the in vitro test analyses, it was observed a decrease in cell viability at doses starting from 10 ppm. Comet Assay at concentrations of 10 ppm and 30 ppm for the U251MG and U87MG cell lines, respectively observed DNA damage. The network generated with systems biology showed that the presence of p53 is important for the regulation of biological processes involved in genetic stability and neurotoxicity, processes that did not appear in the TP53-mutant network.
Collapse
Affiliation(s)
- Kelly Louise Thiel
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil
| | - Juliana da Silva
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil; Laboratory of Genetic Toxicology, Lutheran University of Brazil, Av. Farroupilha 8001, Canoas, RS 92425-900, Brazil.
| | - Micaele Wolfarth
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil; Laboratory of Genetic Toxicology, Lutheran University of Brazil, Av. Farroupilha 8001, Canoas, RS 92425-900, Brazil
| | - Julia Vanini
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Antonio Pêgas Henriques
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós-Graduação em Biotecnologia e em Ciências Médicas, Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| | | | - Fernanda Rabaioli da Silva
- Laboratory of Genetics Toxicology, La Salle University, Av. Victor Barreto, 2288, Canoas, RS 92010-000, Brazil.
| |
Collapse
|
2
|
Yang Q, Li G, Jin N, Zhang D. Synergistic/antagonistic toxicity characterization and source-apportionment of heavy metals and organophosphorus pesticides by the biospectroscopy-bioreporter-coupling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167057. [PMID: 37709080 DOI: 10.1016/j.scitotenv.2023.167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Many anthropogenic chemicals are manufactured and eventually enter the surrounding environment, threatening food security and human health. Considering the additive or synergistic effects of pollutant mixtures, there is an expanding need for rapid, cost-effective and field-portable screening methods in environmental monitoring. This study used a recently developed biospectroscopy-bioreporter-coupling (BBC) approach to investigate the binary toxicity of Ag(I), Cr(VI) and four organophosphorus pesticides (dichlorvos, parathion, omethoate and monocrotophos). Ag(I) and Cr(VI) altered the toxicity mechanisms of pesticides, explained by the synergistic or antagonistic effect of Ag/Cr-induced cytotoxicity and pesticide-induced genotoxicity. The discriminating Raman spectral peaks associated with organophosphorus pesticides were 1585 and 1682 cm-1, but 750, 1004, 1306 and 1131 cm-1 were found in heavy metal and pesticide mixtures. More spectral alterations were related to pesticides rather than Ag(I) or Cr(VI), hinting at the dominant toxicity mechanisms of pesticides in mixtures. Ag(I) supplement significantly increased the levels of reactive oxygen species induced by organophosphorus pesticides, attributing to the increased permeability of cell membrane and entrance of toxic substances into the cells by the oligodynamic actions. This study lends deeper insights into the interactions between microbes and pollutant mixtures, offering clues to assess the cocktail effects of multiple pollutants comprehensively.
Collapse
Affiliation(s)
- Qiuyuan Yang
- School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
3
|
Sasikala S, Minu Jenifer M, Velavan K, Sakthivel M, Sivasamy R, Fenwick Antony ER. Predicting the relationship between pesticide genotoxicity and breast cancer risk in South Indian women in in vitro and in vivo experiments. Sci Rep 2023; 13:9712. [PMID: 37322018 PMCID: PMC10272204 DOI: 10.1038/s41598-023-35552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Breast cancer is the third most common cancer in women after skin and lung cancer. Pesticides are of interest in etiologic studies of breast cancer because many pesticides mimic estrogen, a known breast cancer risk factor. In this study, we discerned the toxic role of the pesticides atrazine, dichlorvos, and endosulfan in inducing breast cancer. Various experimental studies, such as biochemical profiling of pesticide-exposed blood samples, comet assays, karyotyping analysis, pesticide and DNA interaction analysis by molecular docking, DNA cleavage, and cell viability assays, have been carried out. Biochemical profiling showed an increased level of blood sugar, WBC, hemoglobin, and blood urea in the patient exposed to pesticides for more than 15 years. The comet assay for DNA damage performed on patients exposed to pesticides and pesticide-treated blood samples revealed more DNA damage at the 50 ng concentration of all three pesticides. Karyotyping analysis showed enlargements in the heterochromatin region and 14pstk+, and 15pstk+in the exposed groups. In molecular docking analysis, atrazine had the highest glide score (- 5.936) and glide energy (- 28.690), which reveals relatively high binding capability with the DNA duplex. The DNA cleavage activity results showed that atrazine caused higher DNA cleavage than the other two pesticides. Cell viability was the lowest at 50 ng/ml (72 h). Statistical analysis performed using SPSS software unveiled a positive correlation (< 0.05) between pesticide exposure and breast cancer. Our findings support attempts to minimize pesticide exposure.
Collapse
Affiliation(s)
- S Sasikala
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - M Minu Jenifer
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - K Velavan
- Erode Cancer Center Hospital, Perundurai Road, Thindal, Erode, Tamil Nadu, 638012, India
| | - M Sakthivel
- Department of Statistics, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - R Sivasamy
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| | - E R Fenwick Antony
- Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| |
Collapse
|
4
|
Kempuraj D, Zhang E, Gupta S, Gupta RC, Sinha NR, Mohan RR. Carbofuran pesticide toxicity to the eye. Exp Eye Res 2023; 227:109355. [PMID: 36572166 PMCID: PMC9918712 DOI: 10.1016/j.exer.2022.109355] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Pesticide exposure to eyes is a major source of ocular morbidities in adults and children all over the world. Carbofuran (CF), N-methyl carbamate, pesticide is most widely used as an insecticide, nematicide, and acaricide in agriculture, forestry, and gardening. Contact or ingestion of carbofuran causes high morbidity and mortality in humans and pets. Pesticides are absorbed in the eye faster than other organs of the body and damage ocular tissues very quickly. Carbofuran exposure to eye causes blurred vision, pain, loss of coordination, anti-cholinesterase activities, weakness, sweating, nausea and vomiting, abdominal pain, endocrine, reproductive, and cytotoxic effects in humans depending on amount and duration of exposure. Pesticide exposure to eye injures cornea, conjunctiva, lens, retina, and optic nerve and leads to abnormal ocular movement and vision impairment. Additionally, anticholinesterase pesticides like carbofuran are known to cause salivation, lacrimation, urination, and defecation (SLUD). Carbofuran and its two major metabolites (3-hydroxycarbofuran and 3-ketocarbofuran) are reversible inhibitors of acetylcholinesterase (AChE) which regulates acetylcholine (ACh), a neurohumoral chemical that plays an important role in corneal wound healing. The corneal epithelium contains high levels of ACh whose accumulation by AChE inhibition after CF exposure overstimulates muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs). Hyper stimulation of mAChRs in the eye causes miosis (excessive constriction of the pupil), dacryorrhea (excessive flow of tears), or chromodacryorrhea (red tears). Recent studies reported alteration of autophagy mechanism in human cornea in vitro and ex vivo post carbofuran exposure. This review describes carbofuran toxicity to the eye with special emphasis on corneal morbidities and blindness.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Eric Zhang
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Suneel Gupta
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Ramesh C Gupta
- Toxicology Department, Murray State University, Hopkinsville, KY, USA
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA; One-Health One-Medicine Vision Research Program, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Correlation between in vitro toxicity of pesticides and in vivo risk guidelines in support of complex operating site risk management: A meta-analysis. Food Chem Toxicol 2022; 170:113502. [DOI: 10.1016/j.fct.2022.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
|
6
|
Allemang A, Mahony C, Pfuhler S. The in vitro genotoxicity potency of mixtures of pyrrolizidine alkaloids can be explained by dose addition of the individual mixture components. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:400-407. [PMID: 36258291 DOI: 10.1002/em.22512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plant-based 1,2-unsaturated Pyrrolizidine Alkaloids (PAs) are responsible for liver genotoxicity/carcinogenicity following metabolic activation, making them a relevant concern for safety assessment. Due to 21st century toxicology approaches, risk of PAs can be better discerned though an understanding of differing toxic potencies, but it is often mixtures of PAs that are found as contaminants in foods, for example, herbal teas and honey, food supplements and herbal medicines. Our study investigated whether genotoxicity potency of PAs dosed individually or in mixtures differed when measured using micronuclei formation in vitro in HepaRG human liver cells, which we and others have shown to be suitable for observing genotoxic potency differences across different PA structural classes. When equipotent concentrations of up to six different PAs representing a wide range of potencies in vitro were tested as mixtures, the observed genotoxic potency aligned favorably with results for single PAs. Similarly, when the BMD confidence intervals of these equipotent mixtures were compared with the confidence intervals of the individual PAs, only minimal variation was observed. These data support a conclusion that for this class of plant impurities, all acting via the same DNA-reactive mode of action, genotoxic potency can be regarded as additive when assessing the risk of mixtures of PAs.
Collapse
Affiliation(s)
- Ashley Allemang
- Global Product Stewardship, Human Safety, The Procter & Gamble Company, Mason, USA
| | - Catherine Mahony
- Global Product Stewardship, Human Safety, Procter & Gamble Technical Center Ltd., Reading, UK
| | - Stefan Pfuhler
- Global Product Stewardship, Human Safety, The Procter & Gamble Company, Mason, USA
| |
Collapse
|
7
|
Dias R, D'Costa A, Praveen Kumar MK, Shyama SK. DNA damage and biochemical responses in estuarine bivalve Donax incarnatus (Gmelin, 1791) exposed to sub-lethal concentrations of an organophosphate pesticide monocrotophos. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:317. [PMID: 33942176 DOI: 10.1007/s10661-021-09103-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Monocrotophos (MCP) is a highly toxic and broad-spectrum pesticide extensively used for agricultural and household purposes. The present study was aimed to evaluate the genotoxicity and alterations in the biochemical and physiological conditions induced by monocrotophos in a non-target organism, an estuarine bivalve, Donax incarnatus. The bivalves were exposed to three sub-lethal concentrations (6.8, 13.7, and 27.45 ppm) of MCP for a period of 72 h. DNA damage was assessed using the comet assay. Oxidative stress was analyzed using catalase, glutathione peroxidase, and superoxide dismutase. Neurotoxicity was evaluated using the acetylcholinesterase assay (AChE) and the physiological condition was assessed using the condition index (CI). A significant concentration-dependent increase of DNA damage was observed as well as a decline in the activities of the antioxidant enzymes. However, a decrease in DNA damage was observed with advancing time. A significant decrease of AChE activity and CI was observed in the bivalves exposed to MCP. Positive correlations were also observed between DNA damage and the antioxidant enzymes whereas negative correlations were observed between AChE and the antioxidant enzymes indicating MCP toxicity mediated by oxidative stress.
Collapse
Affiliation(s)
- Ruella Dias
- Department of Zoology, Goa University, University Road, Taleigao, Goa, 403206, India
| | - Avelyno D'Costa
- Department of Zoology, Goa University, University Road, Taleigao, Goa, 403206, India.
| | - M K Praveen Kumar
- Department of Zoology, Goa University, University Road, Taleigao, Goa, 403206, India
| | - S K Shyama
- Department of Zoology, Goa University, University Road, Taleigao, Goa, 403206, India
| |
Collapse
|
8
|
Ilyushina NA, Egorova OV, Masaltsev GV, Averianova NS, Revazova YA, Rakitskii VN, Goumenou M, Vardavas A, Stivaktakis P, Tsatsakis A. Genotoxicity of mixture of imidacloprid, imazalil and tebuconazole. Toxicol Rep 2020; 7:1090-1094. [PMID: 32953461 PMCID: PMC7484519 DOI: 10.1016/j.toxrep.2020.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022] Open
Abstract
Genotoxicity of the mixture of generic pesticides imidacloprid + imazalil + tebuconazole in a ratio of 14.0/1.7/1.0 by weight was assessed using Ames test (Salmonella typhimurium) and micronucleus test in vivo on mammalian bone marrow erythrocytes (CD-1 mice) supporting the data creation for the Real Life Risk Simulation (RLRS) approach. This pesticides' combination is used in the commercial formulation for seed treatment in advance of or immediately before sowing. Tested pesticides' technical grade active ingredients (TGAIs) showed no evidence of genotoxicity upon separate treatments. In combination, the three pesticides demonstrated negative results in the Ames test but induced a statistically significant, dose-depended increase in MN-PCEs in mice bone marrow at doses lower than those used separately. The observed effect may be mediated by the synergistic action of the tested TGAIs, their metabolites or impurities.
Collapse
Affiliation(s)
- Nataliya A. Ilyushina
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Olga V. Egorova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Gleb V. Masaltsev
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Nataliya S. Averianova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Yulia A. Revazova
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Valerii N. Rakitskii
- The Federal Budgetary Establishment of Science “Federal Scientific Center of Hygiene named after F. F. Erisman” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Region, 141014, Russian Federation
| | - Marina Goumenou
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Alexander Vardavas
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Polychronis Stivaktakis
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Aristidis Tsatsakis
- Centre of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
9
|
Paz-Trejo C, Gómez-Arroyo S. Genotoxic evaluation of common commercial pesticides in human peripheral blood lymphocytes. Toxicol Ind Health 2017; 33:938-945. [DOI: 10.1177/0748233717736121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aims to evaluate the genotoxic potential of four commercial pesticides with diverse health categorizations by different world associations currently in use. We tested the fungicide mancozeb and the insecticides pirimicarb, monocrotophos and permethrin. The research was done with in vitro human peripheral blood lymphocytes using the DNA single gel electrophoresis assay and the cytokinesis-block micronucleus (MN) test, where we analysed common parameters such as the tail moment and the frequency of MN formation. We also measured other parameters like frequency of nucleoplasmic bridges, nuclear buds, apoptosis and necrosis with the MN test. Each pesticide induced significant differences in all of these parameters when compared with the negative control and showed different behaviours in the concentration-dependent response. This could be attributed to their genotoxic potential where mancozeb and monocrotophos induced the highest genetic damage, permethrin caused mainly cell death and pirimicarb had the least impact upon cells. This research provides valuable data about the harmful effects of these pesticides on human cells and may be an important contribution in the construction of a unique international classification of health and to reinforce the use of genotoxic analyses to regulate the use of pesticides.
Collapse
Affiliation(s)
- Cynthia Paz-Trejo
- Laboratorio de Genotoxicología Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
10
|
GSTP1 and XRCC1 polymorphisms and DNA damage in agricultural workers exposed to pesticides. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017. [DOI: 10.1016/j.mrgentox.2017.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Fox MA, Brewer LE, Martin L. An Overview of Literature Topics Related to Current Concepts, Methods, Tools, and Applications for Cumulative Risk Assessment (2007-2016). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040389. [PMID: 28387705 PMCID: PMC5409590 DOI: 10.3390/ijerph14040389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 11/26/2022]
Abstract
Cumulative risk assessments (CRAs) address combined risks from exposures to multiple chemical and nonchemical stressors and may focus on vulnerable communities or populations. Significant contributions have been made to the development of concepts, methods, and applications for CRA over the past decade. Work in both human health and ecological cumulative risk has advanced in two different contexts. The first context is the effects of chemical mixtures that share common modes of action, or that cause common adverse outcomes. In this context two primary models are used for predicting mixture effects, dose addition or response addition. The second context is evaluating the combined effects of chemical and nonchemical (e.g., radiation, biological, nutritional, economic, psychological, habitat alteration, land-use change, global climate change, and natural disasters) stressors. CRA can be adapted to address risk in many contexts, and this adaptability is reflected in the range in disciplinary perspectives in the published literature. This article presents the results of a literature search and discusses a range of selected work with the intention to give a broad overview of relevant topics and provide a starting point for researchers interested in CRA applications.
Collapse
Affiliation(s)
- Mary A Fox
- Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - L Elizabeth Brewer
- Office of the Science Advisor, U.S. Environmental Protection Agency, Oak Ridge Institute for Science and Education (ORISE), Washington, DC 20004, USA.
| | - Lawrence Martin
- Office of the Science Advisor, U.S. Environmental Protection Agency, Washington, DC 20004, USA.
| |
Collapse
|
12
|
García-Gutierrez AR, Poblano-Bata R, Flores-Merino MV, Castillo-Cadena J. In vitro evaluation of the mutagenic and cytostatic effect of Tamaron, Lannate and Manzate alone and in mixture. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:731-735. [PMID: 27385630 DOI: 10.1080/03601234.2016.1198636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pesticides are often used in agriculture, especially in floriculture. They are frequently applied in binary or ternary mixtures. Nevertheless, their impact on the genetic material has been scarcely explored. In this study, the mutagenic and cytostatic effect of three widely used pesticides, alone and combined, were analyzed. Briefly, lymphocytes cultures were obtained from peripheral blood samples of five healthy donors to determine the sister chromatid exchange and the replicative index (RI). Then, lymphocytes were exposed to Tamaron (100 ppm), Lannate (200 ppm) and Manzate (300 ppm) alone and combined. For the binary mixtures, the concentrations used were 50 ppm of Tamaron, 100 ppm of Lannate and 150 ppm of Manzate. For the ternary mixtures the following concentrations were used: Tamaron (33 ppm), Lannate (70 ppm) and Manzate (100 ppm). Finally, differential staining was performed. It was found that the frequency of SCE/cell showed a significant difference (P ≤ 0.05) between the control (2.66) and the individual treatments of Tamaron (4.87), Lannate: (5.12) and Manzate (4.23). Also, the values of the SCE in the binary mixture of Tamaron+Lannate (5.57), Tamaron+Manzate (6.06) and Lannate+Manzate (6.22) and the ternary mixture (6.63) were statistically different compared to the control. In the RI there was a significant difference between the control (1.98) and the Manzate (1.87). RI differences were also statistically significant (P ≤ 0.05) in mixtures of Tamaron+Lannate (1.64), Tamaron+Manzate (1.63), Lannate+Manzate (1.69) and total mixture (1.53). Therefore, it is suggested that these pesticides alone and in mixtures have both mutagenic and cytostatic synergistic effect in human lymphocytes in vitro.
Collapse
Affiliation(s)
- Amparo R García-Gutierrez
- a Faculty of Chemistry, Autonomous National University of Mexico , Mexico City , Mexico
- b Cell and Biology Molecular Lab, Research Center in Biomedical Science, Autonomous University of the State of Mexico , Toluca , Mexico
| | - Reyes Poblano-Bata
- b Cell and Biology Molecular Lab, Research Center in Biomedical Science, Autonomous University of the State of Mexico , Toluca , Mexico
| | - Miriam V Flores-Merino
- b Cell and Biology Molecular Lab, Research Center in Biomedical Science, Autonomous University of the State of Mexico , Toluca , Mexico
| | - Julieta Castillo-Cadena
- b Cell and Biology Molecular Lab, Research Center in Biomedical Science, Autonomous University of the State of Mexico , Toluca , Mexico
| |
Collapse
|
13
|
Sebastian R, Raghavan SC. Induction of DNA damage and erroneous repair can explain genomic instability caused by endosulfan. Carcinogenesis 2016; 37:929-40. [PMID: 27492056 DOI: 10.1093/carcin/bgw081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/30/2016] [Indexed: 12/15/2022] Open
Abstract
Endosulfan (ES) is an organochlorine pesticide, speculated to be associated with chromosomal abnormalities and diseases in humans. However, very little is known about the mechanism of its genotoxicity. Using in vivo, ex vivo and in vitro model systems, we show that exposure to ES induces reactive oxygen species (ROS) in a concentration and time-dependent manner. The generation of ROS results in DNA double-strand breaks either directly or in a replication-dependent manner, both in mice and human cells. Importantly, ES-induced DNA damage evokes DNA damage response, resulting in elevated levels of classical non-homologous DNA endjoining (NHEJ), the predominant double-strand break repair pathway in higher eukaryotes. Sequence analyses of NHEJ junctions revealed that ES treatment results in extensive processing of broken DNA, culminating in increased and long junctional deletions, thereby favoring erroneous repair. We also find that exposure to ES leads to significant increase in microhomology-mediated end joining (MMEJ), a LIGASE III-dependent alternative repair pathway. Therefore, we demonstrate that ES induces DNA damage and genomic instability, alters DNA damage response thereby promoting erroneous DNA repair.
Collapse
Affiliation(s)
- Robin Sebastian
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
14
|
Tumer TB, Savranoglu S, Atmaca P, Terzioglu G, Sen A, Arslan S. Modulatory role of GSTM1 null genotype on the frequency of micronuclei in pesticide-exposed agricultural workers. Toxicol Ind Health 2016; 32:1942-1951. [PMID: 26381689 DOI: 10.1177/0748233715599876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we aimed to investigate the extent of genotoxic risk and the association between null GSTM1/GSTT1 and GSTP1 Ile105Val variants and cellular DNA damage, as measured by micronucleus (MN) assay in a group of agricultural workers from Denizli, Turkey. Peripheral blood samples were collected from 116 subjects, including 58 workers who were occupationally exposed to pesticides and 58 healthy unexposed controls. The MN frequencies of each individual were assessed by cytokinesis-blocked micronuclei assays on lymphocytes. Genotypes for different GST variants were determined using polymerase chain reaction-based methods. A significant 3.4-fold increase in MN frequency was observed in workers compared with the controls ( p < 0.001). Among the GST genotypes, only the GSTM1 null genotype was found to be significantly associated with an increased MN frequency in workers ( p = 0.01). Individuals with a concomitant null GSTM1/GSTT1 genotype demonstrated a significant ( p = 0.01) increase in MN frequency compared with those with functional isozymes in the exposed worker group. The association of the GSTM1 null genotype with higher MN frequency suggests that it may be a modifier of genotoxic risk in individuals exposed to pesticides and may thus be a candidate susceptibility biomarker for human biomonitoring studies.
Collapse
Affiliation(s)
- Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Seda Savranoglu
- Graduate Program of Biology, Institute of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Pelin Atmaca
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, Denizli, Turkey
| | - Gulsum Terzioglu
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, Denizli, Turkey
| | - Alaattin Sen
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, Denizli, Turkey
| | - Sevki Arslan
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, Denizli, Turkey
| |
Collapse
|
15
|
Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chem Biol Interact 2016; 254:231-46. [DOI: 10.1016/j.cbi.2016.06.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/18/2016] [Accepted: 06/03/2016] [Indexed: 11/23/2022]
|
16
|
Arteaga-Gómez E, Rodríguez-Levis A, Cortés-Eslava J, Arenas-Huertero F, Valencia-Quintana R, Gómez-Arroyo S. Cytogenotoxicity of selected organophosphate insecticides on HaCaT keratinocytes and NL-20 human bronchial cells. CHEMOSPHERE 2016; 145:174-184. [PMID: 26688254 DOI: 10.1016/j.chemosphere.2015.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/14/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Organophosphate insecticides (OI) are widely used. To humans the main routes of exposure are skin and inhalation. For this, keratinocytes (HaCaT) and bronchial cells (NL-20) were used as cell culture models to evaluate the effects of OI. The aim of this study was to evaluate the effect of four OI on HaCaT and NL-20 cells: azinphos-methyl, (AM); parathion-methyl (PM); omethoate (OM); and methamidophos (MET). Cells were exposed to 0.1, 1 and 10 μg/μL of each. Results showed a decrease in cell viability in both cell lines. Viability of the NL-20 cell line decreased with the three concentrations of OM. All differences were significant (p < 0.05). Genotoxic damage, evaluated through the comet assay, was observed in both cell lines with AM. NL-20 cell line was more sensitive than HaCaT. Higher concentrations of the insecticides except MET, induced cell death. MET caused DNA damage in HaCaT cells at all concentrations. Differences were significant (p < 0.05). Both cell lines revealed the presence of single membrane vacuoles of different sizes when exposed to 1 μg/μL of each insecticide. Quantitative real time-polymerase chain reaction (RT-qPCR) showed an increase of BN1 gene in HaCaT by effect of AM and MET at 1 μg/μL. In conclusion, all the insecticides induced different levels of cyto and genotoxic effects in both cell lines.
Collapse
Affiliation(s)
- Eduardo Arteaga-Gómez
- Laboratorio de Investigación en Patología Experimental, Departamento de Patología, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Colonia Doctores, 06720, México, D.F., Mexico
| | - Alejandra Rodríguez-Levis
- Laboratorio de Microscopía Electrónica, Departamento de Patología, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Colonia Doctores, 06720, México, D.F., Mexico
| | - Josefina Cortés-Eslava
- Laboratorio de Genotoxicología Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, México, D.F., Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Departamento de Patología, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Colonia Doctores, 06720, México, D.F., Mexico
| | - Rafael Valencia-Quintana
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Col. La Loma X, Tlaxcala, Mexico
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, 04510, México, D.F., Mexico.
| |
Collapse
|
17
|
Bianchi J, Mantovani MS, Marin-Morales MA. Analysis of the genotoxic potential of low concentrations of Malathion on the Allium cepa cells and rat hepatoma tissue culture. J Environ Sci (China) 2015; 36:102-111. [PMID: 26456612 DOI: 10.1016/j.jes.2015.03.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 06/05/2023]
Abstract
Based on the concentration of Malathion used in the field, we evaluated the genotoxic potential of low concentrations of this insecticide on meristematic and F1 cells of Allium cepa and on rat hepatoma tissue culture (HTC cells). In the A. cepa, chromosomal aberrations (CAs), micronuclei (MN), and mitotic index (MI) were evaluated by exposing the cells at 1.5, 0.75, 0.37, and 0.18mg/mL of Malathion for 24 and 48hr of exposure and 48hr of recovery time. The results showed that all concentrations were genotoxic to A. cepa cells. However, the analysis of the MI has showed non-relevant effects. Chromosomal bridges were the CA more frequently induced, indicating the clastogenic action of Malathion. After the recovery period, the higher concentrations continued to induce genotoxic effects, unlike the observed for the lowest concentrations tested. In HTC cells, the genotoxicity of Malathion was evaluated by the MN test and the comet assay by exposing the cells at 0.09, 0.009, and 0.0009mg/5mL culture medium, for 24hr of exposure. In the comet assay, all the concentrations induced genotoxicity in the HTC cells. In the MN test, no significant induction of MN was observed. The genotoxicity induced by the low concentrations of Malathion presented in this work highlights the importance of studying the effects of low concentrations of this pesticide and demonstrates the efficiency of these two test systems for the detection of genetic damage promoted by Malathion.
Collapse
Affiliation(s)
- Jaqueline Bianchi
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, Brazil.
| | - Mario Sérgio Mantovani
- Department of General Biology, Biological Science Centre, Univ Estadual de Londrina, 86061990, Londrina, PR, 6001, Brazil
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, Brazil.
| |
Collapse
|
18
|
Richter CH, Custer B, Steele JA, Wilcox BA, Xu J. Intensified food production and correlated risks to human health in the Greater Mekong Subregion: a systematic review. Environ Health 2015; 14:43. [PMID: 26006733 PMCID: PMC4446077 DOI: 10.1186/s12940-015-0033-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/18/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Intensified food production, i.e. agricultural intensification and industrialized livestock operations may have adverse effects on human health and promote disease emergence via numerous mechanisms resulting in either direct impacts on humans or indirect impacts related to animal and environmental health. For example, while biodiversity is intentionally decreased in intensive food production systems, the consequential decrease in resilience in these systems may in turn bear increased health risks. However, quantifying these risks remains challenging, even if individual intensification measures are examined separately. Yet, this is an urgent task, especially in rapidly developing areas of the world with few regulations on intensification measures, such as in the Greater Mekong Subregion (GMS). METHODS We systematically searched the databases PubMed and Scopus for recent studies conducted on the association between agricultural (irrigation, fertilization, pesticide application) and livestock (feed additives, animal crowding) intensification measures and human health risks in the GMS. The search terms used were iteratively modified to maximize the number of retrieved studies with relevant quantitative data. RESULTS We found that alarmingly little research has been done in this regard, considering the level of environmental contamination with pesticides, livestock infection with antibiotic resistant pathogens and disease vector proliferation in irrigated agroecosystems reported in the retrieved studies. In addition, each of the studies identified focused on specific aspects of intensified food production and there have been no efforts to consolidate the health risks from the simultaneous exposures to the range of hazardous chemicals utilized. CONCLUSIONS While some of the studies identified already reported environmental contamination bearing considerable health risks for local people, at the current state of research the actual consolidated risk from regional intensification measures cannot be estimated. Efforts in this area of research need to be rapidly and considerably scaled up, keeping pace with the current level of regional intensification and the speed of pesticide and drug distribution to facilitate the development of agriculture related policies for regional health promotion.
Collapse
Affiliation(s)
- Carsten H Richter
- Center for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Benjamin Custer
- World Agroforestry Centre (ICRAF), East and Central Asia Region, Kunming, 650201, China.
| | - Jennifer A Steele
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA.
| | - Bruce A Wilcox
- Global Health Asia, Integrative Education and Research Programme, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand.
| | - Jianchu Xu
- World Agroforestry Centre (ICRAF), East and Central Asia Region, Kunming, 650201, China.
| |
Collapse
|
19
|
Sonchieu J, Benoit Ngassoum M, Bosco Tchatchueng J, Srivastava AK, Srivastava LP. Survey of pesticide residues in maize, cowpea and millet from northern Cameroon: part I. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2014; 3:178-84. [PMID: 24779572 DOI: 10.1080/19393210.2010.503329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In northern Cameroon, the misuse of pesticides for pest control is common among small-scale farmers. Therefore, monitoring of pesticide residues was carried out on stored maize, cowpea and millet from eight localities. The determination of residues of organochlorines (lindane, α-endosulfan and β-endosulfan), organophosphorus compounds (malathion and pirimiphos-methyl), synthetic pyrethroids (permethrin) and carbamates (carbufuran) was performed using GC-ECD/NPD and GC-MS for confirmation. Organochlorine pesticides were detected more frequently and in higher concentrations, ranging from 0.02 ± 0.01 mg kg(-1) for β-endosulfan in millet to 9.53 ± 4.00 mg kg(-1) lindane in maize, than organophosphorus compounds, with concentrations varying from 0.04 ± 0.03 mg kg(-1) for pirimiphos methyl to 0.23 ± 0.38 mg kg(-1) for malathion in maize. Permethrin was found only in maize at 0.39 ± 0.23 mg kg(-1). No carbofuran was found. More than 75% of samples contained pesticide residues above the maximum residue limit (MRL); showing a potential human dietary risk related to consumption of these grains.
Collapse
Affiliation(s)
- Jean Sonchieu
- a Department of Food Sciences and Nutrition , ENSAI, University of Ngaoundere , PO Box 455 , Cameroon
| | | | | | | | | |
Collapse
|
20
|
Ben Amara I, Ben Saad H, Cherif B, Elwej A, Lassoued S, Kallel C, Zeghal N. Methyl-thiophanate increases reactive oxygen species production and induces genotoxicity in rat peripheral blood. Toxicol Mech Methods 2014; 24:679-87. [DOI: 10.3109/15376516.2014.961217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Jang Y, Kim JE, Jeong SH, Cho MH. Towards a strategic approaches in alternative tests for pesticide safety. Toxicol Res 2014; 30:159-68. [PMID: 25343009 PMCID: PMC4206742 DOI: 10.5487/tr.2014.30.3.159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 01/23/2023] Open
Abstract
Pesticides have provided significant benefits including plant disease control and increased crop yields since people developed and utilized them. However, pesticide use is associated with many adverse effects, which necessitate precise toxicological tests and risk assessment. Most of these methods are based on animal studies, but considerations of animal welfare and ethics require the development of alternative methods for the evaluation of pesticide toxicity. Although the usage of laboratory animals is inevitable in scientific evaluation and alternative approaches have limitations in the whole coverage, continuous effort is necessary to minimize animal use and to develop reliable alternative tests for pesticide evaluation. This review discusses alternative approaches for pesticide toxicity tests and hazard evaluation that have been used in peer-reviewed reports and could be applied in future studies based on the critical animal research principles of reduction, replacement, and refinement.
Collapse
Affiliation(s)
- Yoonjeong Jang
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sang-Hee Jeong
- Department of Bio Applied Toxicology, Hoseo Toxicology Research Center, Hoseo University, Asan, Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea
- Graduate Group of Tumor Biology, Seoul National University, Seoul, Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Korea
| |
Collapse
|
22
|
Differentiating neurons derived from human umbilical cord blood stem cells work as a test system for developmental neurotoxicity. Mol Neurobiol 2014; 51:791-807. [DOI: 10.1007/s12035-014-8716-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/11/2014] [Indexed: 01/19/2023]
|
23
|
Gbadegesin MA, Owumi SE, Akinseye V, Odunola OA. Evaluation of hepatotoxicity and clastogenicity of carbofuran in male Wistar rats. Food Chem Toxicol 2014; 65:115-9. [DOI: 10.1016/j.fct.2013.12.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/10/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022]
|
24
|
Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 2013; 11:315-35. [PMID: 24179466 PMCID: PMC3648782 DOI: 10.2174/1570159x11311030006] [Citation(s) in RCA: 1413] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 01/04/2013] [Accepted: 02/02/2013] [Indexed: 12/12/2022] Open
Abstract
Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer's disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.
Collapse
Affiliation(s)
- Mirjana B Čolović
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Danijela Z Krstić
- University School of Medicine, Institute of Medical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara D Lazarević-Pašti
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Aleksandra M Bondžić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vesna M Vasić
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Sharma RK, Upadhyay G, Siddiqi NJ, Sharma B. Pesticides-induced biochemical alterations in occupational North Indian suburban population. Hum Exp Toxicol 2013; 32:1213-27. [DOI: 10.1177/0960327112474835] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pesticides are used in agriculture to protect crops from insects–pests. Most of the field workers of North Indian population are exposed to commonly used insecticides. In the present study, pesticides induced oxidative stress as well as alterations in the level of acetylcholinesterase (AChE) in a total of 70 male healthy agricultural sprayers, exposed to pesticides for about 5 years, were studied and the results were compared with 70 controls. The levels of antioxidant enzymes (superoxide dismutase, CAT, glutathione- S-transferase and glutathione peroxidase), AChE, lipid peroxidation and glutathione (GSH) contents were determined in their blood erythrocytes (red blood cells (RBCs)). The results indicated significant increase in the levels of malondialdehyde as well as the activities of antioxidant enzymes in pesticide-exposed individuals. The levels of GSH, RBC-AChE activity and plasma antioxidant potential were sharply decreased when compared with control subjects. The ferric-reducing ability of plasma (FRAP) assay was carried out to evaluate the antioxidant potential of pesticide in exposed as well as healthy controls. A significant positive correlation was observed between plasma FRAP value and the activity of AChE from RBCs in pesticides sprayers. Furthermore, these results were supported by enhanced messenger RNA expressions of cytochrome P450 isoform 2E1 (CYP2E1) and gutathione- S-transferase isoform pi (GST-pi) in the white blood cells of the randomly selected pesticide-exposed individuals. The decreased GSH level in human red blood cells accompanied by increase in the levels of the activities of antioxidative enzymes and over expressions of CYP2E1 and GST-pi is an indicative of oxidative stress in pesticides-exposed individuals. The reduced activity of AChE indicates possible occurrence of perturbations in blood as well as neurotoxicity in pesticide sprayers.
Collapse
Affiliation(s)
- RK Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, Uttar Pradesh, India
| | - G Upadhyay
- Department of Biology, City College of New York, New York, NY, USA
| | - NJ Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - B Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
26
|
Graillot V, Takakura N, Hegarat LL, Fessard V, Audebert M, Cravedi JP. Genotoxicity of pesticide mixtures present in the diet of the French population. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:173-184. [PMID: 22389207 DOI: 10.1002/em.21676] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
Consumers may be simultaneously exposed to several pesticide residues in their diet. A previous study identified the seven most common pesticide mixtures to which the French population was exposed through food consumption in 2006. The aim of this study was to investigate if the seven mixtures are potentially cytotoxic and genotoxic and if so, whether compounds in a same mixture have a combined effect. The cytotoxicity and genotoxicity of the seven mixtures were investigated with a new assay (γ-H2AX) using four human cell lines (ACHN, SH-SY5Y, LS-174T, and HepG2). Mixtures were tested at equimolar concentrations and also at concentrations reflecting their actual proportion in the diet. Irrespective of the cell line tested, parallel cytotoxicity of the seven mixtures was observed. Only one mixture was genotoxic for the HepG2 cells at concentrations = 3 μM in equimolar proportion and at 30 μM in actual proportion. Caspase 3/7 activity, the comet assay, and reactive oxygen species production were also investigated using the same mixture and HepG2 cells. Our results suggest that pesticide metabolites from the mixture generated by HepG2 cells were responsible for the observed damage to DNA. Among the five compounds in the genotoxic mixture, only fludioxonil and cyprodinil were genotoxic for HepG2 cells alone at concentrations = 4 and 20 μM, respectively. Our data suggest a combined genotoxic effect of the mixture at low concentrations with a significantly higher effect of the mixture of pesticides than would be expected from the response to the individual compounds. Environ. Mol. Mutagen. 2012. © 2012 Wiley Periodicals, Inc.
Collapse
|
27
|
Lu XT, Ma Y, Wang C, Zhang XF, Jin DQ, Huang CJ. Cytotoxicity and DNA damage of five organophosphorus pesticides mediated by oxidative stress in PC12 cells and protection by vitamin E. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:445-454. [PMID: 22424070 DOI: 10.1080/03601234.2012.663312] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Previous studies have demonstrated that pesticides could induce cytotoxicity and genotoxicity in vivo and in vitro, and that oxidative stress may be an important factor involved. However, investigations comparing the capability of different organophosphorous (OP) compounds to induce cytotoxicity, genotoxicity and oxidative stress are limited. Hence, the aim of this paper was to access the cytotoxic and genotoxic effects of five OPs or metabolites, Acephate (ACE), Methamidophos (MET), Chloramidophos (CHL), Malathion (MAT) and Malaoxon (MAO), and to clarify the role of oxidative stress, using PC12 cells. The results demonstrated that MET, MAT and MAO caused significant inhibition of cell viability and increased DNA damage in PC12 cells at 40 mg L(-1). MAO was more toxic than the other OPs. ACE, MET, MAT and MAO increased the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), and decreased the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) at 20 mg L(-1) and 40 mg L(-1) to different degrees. Pre-treatment with vitamin E(600 μM)caused a significant attenuation in the cytotoxic and genotoxic effect; pre-treatment reversed subsequent OP-induced elevation of peroxidation products and the decline of anti-oxidant enzyme activities. These results indicate that oxidative damage is likely to be an initiating event that contributes to the OP-induced cytotoxicity.
Collapse
Affiliation(s)
- Xian T Lu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
28
|
Sandal S, Yilmaz B. Genotoxic effects of chlorpyrifos, cypermethrin, endosulfan and 2,4-D on human peripheral lymphocytes cultured from smokers and nonsmokers. ENVIRONMENTAL TOXICOLOGY 2011; 26:433-442. [PMID: 20196147 DOI: 10.1002/tox.20569] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/02/2010] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
Pesticides often cause environmental pollution and adverse effects on human health. We have chosen four structurally different pesticides (endosulfan, an organochlorine pesticide; chlorpyrifos, an organophosphate insecticide; cypermethrin, type II pyrethroid insecticide, and 2,4-dichlorophenoxyacetic acid, a chlorinated aromatic hydrocarbon acid pesticide) to examine and compare their effects on DNA damage in acutely cultured human lymphocytes by the comet assay. In addition, possible differences in response between smoking and nonsmoking subjects were also investigated. Venous blood samples were obtained from healthy male nonsmoker (n = 7) and smoker (n = 8) donors. Primary cultures of lymphocytes were prepared and test groups were treated with three different concentrations (1, 5, and 10 μM) of endosulfan, chlorpyrifos, cypermehrin, and 2,4-D. DNA damage was assessed by alkaline comet assay. We determined an increase in the ratio of DNA migration in human lymphocyte cell cultures as a result of treatment with cypermethrin, 2,4-D and chlorpyrifos at high concentration. Endosulfan had no significant genotoxic effect even at 10 μM concentration. We suggest that chlorpyrifos and cypermethrin are more potentially genotoxic than endosulfan and 2,4-D. Our findings also indicate that the only significant DNA damage between smokers and nonsmokers was observed in the 2,4-D-treated group.
Collapse
Affiliation(s)
- Suleyman Sandal
- Department of Physiology, Faculty of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | | |
Collapse
|
29
|
Ahmed T, Pathak R, Mustafa MD, Kar R, Tripathi AK, Ahmed RS, Banerjee BD. Ameliorating effect of N-acetylcysteine and curcumin on pesticide-induced oxidative DNA damage in human peripheral blood mononuclear cells. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 179:293-299. [PMID: 21049288 DOI: 10.1007/s10661-010-1736-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/04/2010] [Indexed: 05/30/2023]
Abstract
Endosulfan, malathion, and phosphamidon are widely used pesticides. Subchronic exposure to these contaminants commonly affects the central nervous system, immune, gastrointestinal, renal, and reproductive system. There effects have been attributed to increased oxidative stress. This study was conducted to examine the role of oxidative stress in genotoxicity following pesticide exposure using peripheral blood mononuclear cells (PBMC) in vitro. Further possible attenuation of genotoxicity was studied using N-acetylcysteine (NAC) and curcumin as known modulators of oxidative stress. Cultured mononuclear cells was isolated from peripheral blood of healthy volunteers, and exposed to varying concentrations of different pesticides: endosulfan, malathion, and phosphamidon for 6, 12, and 24 h. Lipid peroxidation was assessed by cellular malondialdehyde (MDA) level and DNA damage was quantified by measuring 8-hydroxy-2'-deoxyguanosine (8-OH-dG) using ELISA. Both MDA and 8-OH-dG were significantly increased in a dose-dependent manner following treatment with these pesticides. There was a significant decrease in MDA and 8-OH-dG levels in PBMC when co-treated with NAC or/and curcumin as compared to pesticide alone. These results indicate that pesticide-induced oxidative stress is probably responsible for the DNA damage, and NAC or curcumin attenuate this effect by counteracting the oxidative stress.
Collapse
Affiliation(s)
- Tanzeel Ahmed
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital (University of Delhi), Dilshad Garden, Delhi, 110 095, India
| | | | | | | | | | | | | |
Collapse
|
30
|
Ünal F, Yüzbaşıoğlu D, Yılmaz S, Akıncı N, Aksoy H. Genotoxic effects of chlorophenoxy herbicide diclofop-methyl in micein vivoand in human lymphocytesin vitro. Drug Chem Toxicol 2011; 34:390-5. [DOI: 10.3109/01480545.2010.538695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Kashyap MP, Singh AK, Siddiqui MA, Kumar V, Tripathi VK, Khanna VK, Yadav S, Jain SK, Pant AB. Caspase Cascade Regulated Mitochondria Mediated Apoptosis in Monocrotophos Exposed PC12 Cells. Chem Res Toxicol 2010; 23:1663-72. [DOI: 10.1021/tx100234m] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. P. Kashyap
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - A. K. Singh
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - M. A. Siddiqui
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - V. Kumar
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - V. K. Tripathi
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - V. K. Khanna
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - S. Yadav
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - S. K. Jain
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| | - A. B. Pant
- Indian Institute of Toxicology Research, Lucknow, India, Council of Scientific & Industrial Research, New Delhi, India, and Department of Biotechnology, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
32
|
Sutiaková I, Kovalkovicová N, Legáth J, Sutiak V. Micronucleus frequency in sheep lymphocytes after in vitro exposure to fungicide tolylfluanid. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2010; 45:606-611. [PMID: 20803363 DOI: 10.1080/03601234.2010.502401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The fungicide tolylfluanid (N -dichlorofluoromethylthio-N', N -dimethyl -N -p -tolylsulfamide), was investigated by cytokinesis-block micronucleus assay. Tolylfluanid at the lowest concentration (1 x 10(- 6)mol L(- 1))did not influence significantly the frequency of micronuclei in sheep lymphocyte cultures in comparison with control (32.33 +/- 3.51/1000 binucleated cells versus 30.33 +/- 2.82/1000 binucleated cells in dimethylsulfoxide (DMSO) control, P = 0.44). Higher tolylfluanid concentrations (1 x 10(- 4) and, 1 x 10(- 5) mol L(- 1)) resulted in a significant dose-dependent increase in the number of micronuclei in comparison with control (74.00 +/- 13.00/1000 binucleated cells and 52.67 +/- 10.12/1000 binucleated cells versus 30.33 +/- 2. 82/1000 binucleated cells in DMSO control, P = 0.005 and 0.02, respectively, ANOVA followed by Tukey test P < 0.05). Many of the treated cells also possessed multiple micronuclei. Tolylfluanid did not affect the nuclear division index at all treatment concentrations. Our in vitro results thus demonstrate that tolylfluanid had a significant genotoxic effect at only the highest concentration tested.
Collapse
Affiliation(s)
- Irena Sutiaková
- Department of Biology, University of Presov, Presov, Slovakia.
| | | | | | | |
Collapse
|
33
|
Holmstrup M, Bindesbøl AM, Oostingh GJ, Duschl A, Scheil V, Köhler HR, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ. Interactions between effects of environmental chemicals and natural stressors: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:3746-62. [PMID: 19922980 DOI: 10.1016/j.scitotenv.2009.10.067] [Citation(s) in RCA: 478] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/19/2009] [Accepted: 10/26/2009] [Indexed: 05/06/2023]
Abstract
Ecotoxicological effect studies often expose test organisms under optimal environmental conditions. However, organisms in their natural settings rarely experience optimal conditions. On the contrary, during most of their lifetime they are forced to cope with sub-optimal conditions and occasionally with severe environmental stress. Interactions between the effects of a natural stressor and a toxicant can sometimes result in greater effects than expected from either of the stress types alone. The aim of the present review is to provide a synthesis of existing knowledge on the interactions between effects of "natural" and chemical (anthropogenic) stressors. More than 150 studies were evaluated covering stressors including heat, cold, desiccation, oxygen depletion, pathogens and immunomodulatory factors combined with a variety of environmental pollutants. This evaluation revealed that synergistic interactions between the effects of various natural stressors and toxicants are not uncommon phenomena. Thus, synergistic interactions were reported in more than 50% of the available studies on these interactions. Antagonistic interactions were also detected, but in fewer cases. Interestingly, about 70% of the tested chemicals were found to compromise the immune system of humans as judged from studies on human cell lines. The challenge for future studies will therefore be to include aspects of combined stressors in effect and risk assessment of chemicals in the environment.
Collapse
Affiliation(s)
- Martin Holmstrup
- National Environmental Research Institute, Aarhus University, Department of Terrestrial Ecology, Vejlsøvej 25, DK-8600 Silkeborg, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sharaf S, Khan A, Khan MZ, Aslam F, Saleemi MK, Mahmood F. Clinico-hematological and micronuclear changes induced by cypermethrin in broiler chicks: Their attenuation with vitamin E and selenium. ACTA ACUST UNITED AC 2010; 62:333-41. [DOI: 10.1016/j.etp.2009.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 10/20/2022]
|
35
|
Kocaman AY, Topaktaş M. Genotoxic effects of a particular mixture of acetamiprid and alpha-cypermethrin on chromosome aberration, sister chromatid exchange, and micronucleus formation in human peripheral blood lymphocytes. ENVIRONMENTAL TOXICOLOGY 2010; 25:157-168. [PMID: 19319990 DOI: 10.1002/tox.20485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The genotoxic effects of a particular mixture of acetamiprid (Acm, neonicotinoid insecticide) and alpha-cypermethrin (alpha-cyp, pyrethroid insecticide) on human peripheral lymphocytes were examined in vitro by chromosomal aberrations (CAs), sister chromatid exchange (SCE), and micronucleus (MN) tests. The human peripheral lymphocytes were treated with 12.5 + 2.5, 15 + 5, 17.5 + 7.5, and 20 + 10 microg/mL of Acm+alpha-cyp, respectively, for 24 and 48 h. The mixture of Acm+alpha-cyp induced the CAs and SCEs at all concentrations and treatment times when compared with both the control and solvent control and these increases were concentration-dependent in both treatment times. MN formation was significantly induced at 12.5 + 2.5, 15 + 5, 17.5 + 7.5, microg/mL of Acm+alpha-cyp when compared with both controls although these increases were not concentration-dependent. Binuclear cells could not be detected sufficiently in the highest concentration of the mixture (20 + 10 microg/mL) for both the 24- and 48-h treatment times. Mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) significantly decreased because of the cytotoxic and cytostatic effects of the mixture, at all concentrations for two treatment periods. Significant decreases in MI and PI were concentration dependent at both treatment times. The decrease in NDI was also concentration-dependent at 48-h treatment period. In general, Acm+alpha-cyp inhibited nuclear division more than positive control, mitomycin C (MMC) and showed a higher cytostatic effect than MMC. Furthermore, in this article, the results of combined effects of Acm+alpha-cyp were compared with the results of single effects of Acm or alpha-cyp (Kocaman and Topaktas,2007,2009, respectively). In conclusion, the particular mixture of Acm+alpha-cyp synergistically induced the genotoxicity/cytotoxicity in human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Ayşe Yavuz Kocaman
- Department of Biology, Faculty of Science and Letters, Mustafa Kemal University, Hatay, Turkey.
| | | |
Collapse
|
36
|
Colović M, Krstić D, Petrović S, Leskovac A, Joksić G, Savić J, Franko M, Trebse P, Vasić V. Toxic effects of diazinon and its photodegradation products. Toxicol Lett 2009; 193:9-18. [PMID: 19948211 DOI: 10.1016/j.toxlet.2009.11.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/13/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
The toxic effects of diazinon and its irradiated solutions were investigated using cultivated human blood cells (lymphocytes and erythrocytes) and skin fibroblasts. Ultra Performance Liquid Chromatography (UPLC)-UV/VIS system was used to monitor the disappearance of starting diazinon during 115-min photodegradation and formation of its by-products (diazoxon and 2-isopropyl-6-methyl-4-pyrimidinol (IMP)) as a function of time. Dose-dependent AChE and Na(+)/K(+)-ATPase inhibition by diazinon was obtained for all investigated cells. Calculated IC(50) (72 h) values, in M, were: 7.5x10(-6)/3.4x10(-5), 8.7x10(-5)/6.6x10(-5), and 3.0x10(-5)/4.6x10(-5) for fibroblast, erythrocyte and lymphocyte AChE/Na(+)/K(+)-ATPase, respectively. Results obtained for reference commercially purified target enzymes indicate similar sensitivity of AChE towards diazinon (IC(50) (20 min)-7.8x10(-5)M), while diazinon concentrations below 10mM did not noticeably affect Na(+)/K(+)-ATPase activity. Besides, diazinon and IMP induced increasing incidence of micronuclei (via clastogenic mode of action) in a dose-dependent manner up to 2x10(-6)M and significant inhibition of cell proliferation and increased level of malondialdehyde at all investigated concentrations. Although after 15-min diazinon irradiation formed products do not affect purified commercial enzymes activities, inhibitory effect of irradiated solutions on cell enzymes increased as a function of time exposure to UV light and resulted in significant reduction of AChE (up to 28-45%) and Na(+)/K(+)-ATPase (up to 35-40%) at the end of irradiation period. Moreover, photodegradation treatment strengthened prooxidative properties of diazinon as well as its potency to induce cytogenetic damage.
Collapse
Affiliation(s)
- Mirjana Colović
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences, Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mladinic M, Perkovic P, Zeljezic D. Characterization of chromatin instabilities induced by glyphosate, terbuthylazine and carbofuran using cytome FISH assay. Toxicol Lett 2009; 189:130-7. [PMID: 19477249 DOI: 10.1016/j.toxlet.2009.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 11/16/2022]
Abstract
Possible clastogenic and aneugenic effects of pesticides on human lymphocytes at concentrations likely to be encountered in residential and occupational exposure were evaluated with (and without) the use of metabolic activation (S9). To get a better insight into the content of micronuclei (MN) and other chromatin instabilities, lymphocyte preparations were hybridized using pancentromeric DNA probes. Frequency of the MN, nuclear buds (NB) and nucleoplasmic bridges (NPB) in cultures treated with glyphosate slightly increased from 3.5microg/ml onward. Presence of S9 significantly elevated cytome assay parameters only at 580microg/ml. No concentration-related increase of centromere (C+) and DAPI signals (DAPI+) was observed for glyphosate treatment. Terbuthylazine treatment showed a dose dependent increase in the number of MN without S9 significant at 0.0008microg/ml and higher. At concentration lower than 1/16 LD50 occurrence of C+MN was significantly elevated regardless of S9, but not dose related, and in the presence of S9 only NBs containing centromere signals were observed. Carbofuran treatment showed concentration-dependent increase in the number of MN. The frequency of C+MN was significant from 0.008microg/ml onward regardless of S9. Results suggest that lower concentrations of glyphosate have no hazardous effects on DNA, while terbuthylazine and carbofuran revealed a predominant aneugenic potential.
Collapse
Affiliation(s)
- Marin Mladinic
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia.
| | | | | |
Collapse
|