1
|
Murashiki TC, Mazhandu AJ, Zinyama-Gutsire RBL, Mutingwende I, Mazengera LR, Duri K. Association between anaemia and aflatoxin B 1 and fumonisin B 1 exposure in HIV-infected and HIV-uninfected pregnant women from Harare, Zimbabwe. Mycotoxin Res 2025; 41:147-161. [PMID: 39549138 DOI: 10.1007/s12550-024-00571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are poisons that contaminate poorly stored staple foods in resource-limited settings. Antenatal AFB1 and FB1 exposure may cause anaemia. We aimed to determine the associations of urinary aflatoxin M1 (AFM1) and FB1, biomarkers of AFB1 and FB1 exposure, respectively, with erythrocyte parameters and anaemia. A retrospective cross-sectional study was conducted in 68 HIV-infected and 61 HIV-uninfected pregnant women ≥ 20 weeks gestational age in Harare, Zimbabwe. AFM1 and FB1 were measured in urine via competitive ELISA, and levels were grouped into tertiles. The erythrocyte parameters assessed were haemoglobin (Hb), mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell (RBC), haematocrit (HCT), and red blood cell distribution width. Associations of urinary AFM1 and FB1 with erythrocyte parameters, and anaemia were assessed in a multiple regression controlled for potential confounders. The presence of FB1 in urine decreased Hb levels in all women (β= -0.98, 95% CI: -1.94, 0.02) and HIV-uninfected (β= -1.99, 95% CI: -3.71, -0.26). FB1 tertile 3 decreased Hb levels (β= -0.88, 95% CI: -1.74, 0.01) and HCT levels (β= -2.65, 95% CI: -5.26, 0.03) in HIV-infected. AFM1 tertile 2 decreased RBC levels in HIV-infected (β= -0.34, 95% CI: -0.71, -0.03). The presence of FB1 in urine increased anaemia risk in HIV-uninfected (OR: 10.68 95% CI: 1.02, 112.34). AFM1 tertile 2 increased macrocytic anaemia risk in HIV-infected (OR: 13.72, 95% CI: 0.92, 203.55). There is need to ensure food safety through monitoring and nutritional interventions to improve maternal-infant health outcomes.
Collapse
Affiliation(s)
- Tatenda Clive Murashiki
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe.
| | - Arthur John Mazhandu
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rutendo B L Zinyama-Gutsire
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Isaac Mutingwende
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Lovemore Ronald Mazengera
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kerina Duri
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
2
|
Pareek A, Singhal R, Pareek A, Ghazi T, Kapoor DU, Ratan Y, Singh AK, Jain V, Chuturgoon AA. Retinoic acid in Parkinson's disease: Molecular insights, therapeutic advances, and future prospects. Life Sci 2024; 355:123010. [PMID: 39181315 DOI: 10.1016/j.lfs.2024.123010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Parkinson's disease (PD) is a common and progressively worsening neurodegenerative disorder characterized by abnormal protein homeostasis and the degeneration of dopaminergic neurons, particularly in the substantia nigra pars compacta. The prevalence of PD has doubled in the past 25 years, now affecting over 8.5 million individuals worldwide, underscoring the need for effective management strategies. While current pharmacological therapies provide symptom relief, they face challenges in treating advanced PD stages. Recent research highlights the therapeutic benefits of retinoic acid (RA) in PD, demonstrating its potential to mitigate neuroinflammation and oxidative stress, regulate brain aging, promote neuronal plasticity, and influence circadian rhythm gene expression and retinoid X receptor heterodimerization. Additionally, RA helps maintain intestinal homeostasis and modulates the enteric nervous system, presenting significant therapeutic potential for managing PD. This review explores RA as a promising alternative to conventional therapies by summarizing the molecular mechanisms underlying its role in PD pathophysiology and presenting up-to-date insights into both preclinical and clinical studies of RA in PD treatment. It also delves into cutting-edge formulations incorporating RA, highlighting ongoing efforts to refine therapeutic strategies by integrating RA into novel treatments. This comprehensive overview aims to advance progress in the field, contribute to the development of effective, targeted treatments for PD, and enhance patient well-being. Further research is essential to fully explore RA's therapeutic potential and validate its efficacy in PD treatment.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India.
| | - Runjhun Singhal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | | | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India
| | - Arun Kumar Singh
- Department of Pharmacy, Vivekananda Global University, Jaipur 303012, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur 313001, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa.
| |
Collapse
|
3
|
Olarotimi OJ, Gbore FA, Adu OA, Oloruntola OD, Jimoh OA. Ameliorative effects of Sida acuta and vitamin C on serum DNA damage, pro-inflammatory and anti-inflammatory cytokines in roosters fed aflatoxin B 1 contaminated diets. Toxicon 2023; 236:107330. [PMID: 37944826 DOI: 10.1016/j.toxicon.2023.107330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
The ameliorative effects of Sida acuta leaf meal (SALM) and vitamin C on the serum pro-inflammatory and anti-inflammatory cytokines as well as DNA damage of cocks fed aflatoxin B1 (AFB1) contaminated diets were examined. The experiment was a completely randomized design with a total of 250 sexually mature Isa White cocks aged 24 weeks, randomly allotted into five experimental diets; each diet contained 5 replicates with 10 roosters. The diets were A (control/basal diet), B (A + 1 mg/kg AFB1), C (B + 200 mg/kg vitamin C), D (B + 2.5 g/kg SALM) and E (B + 5.0 g/kg SALM). Fresh and clean water was also provided for the whole experimental period of twelve weeks. Inclusion of 1 mg/kg AFB1 without vitamin C or SALM increased TNF-α and IL-1β as well as 8-OHdG and NF-κB in the serum significantly (P < 0.05) among the cocks on diet B. However, the fortification of AFB1 contaminated diets with vitamin C and SALM depressed serum TNF-α, IL-1β, 8-OHdG and NF-κB concentrations of the cocks significantly (P < 0.05). Conversely, serum IL-4 and IL-10 in birds given 1 mg/kg AFB1 without vitamin C or SALM decreased significantly (P < 0.05) in comparison with the roosters on the control. However, improvements (P < 0.05) in IL-4 and IL-10 concentrations with corresponding reduction (P < 0.05) in TNF-α, IL-1β, 8-OHdG and NF-κB concentrations were recorded among cocks fed Diets C, D and E, respectively. Therefore, dietary addition of SALM at the level used in this study was beneficial and has comparable effects with inorganic antioxidant (C vitamin) by significantly reducing the inflammatory cytokines and oxidative damage biomarkers as well as enhancing the anti-inflammatory cytokines thereby promoting the health status of the cocks fed AFB1 contaminated ration.
Collapse
Affiliation(s)
- Olumuyiwa Joseph Olarotimi
- Department of Animal Science, Faculty of Agriculture, Adekunle Ajasin University, P.M.B. 001, Akungba-Akoko, Nigeria.
| | - Francis Ayodeji Gbore
- Department of Animal Science, Faculty of Agriculture, Adekunle Ajasin University, P.M.B. 001, Akungba-Akoko, Nigeria
| | - Olufemi Adesanya Adu
- Department of Animal Production and Health, School of Agriculture and Agricultural Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Olugbenga David Oloruntola
- Department of Animal Science, Faculty of Agriculture, Adekunle Ajasin University, P.M.B. 001, Akungba-Akoko, Nigeria
| | - Olatunji Abubakar Jimoh
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
4
|
Chen X, F. Abdallah M, Chen X, Rajkovic A. Current Knowledge of Individual and Combined Toxicities of Aflatoxin B1 and Fumonisin B1 In Vitro. Toxins (Basel) 2023; 15:653. [PMID: 37999516 PMCID: PMC10674195 DOI: 10.3390/toxins15110653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/15/2023] [Accepted: 09/05/2023] [Indexed: 11/25/2023] Open
Abstract
Mycotoxins are considered the most threating natural contaminants in food. Among these mycotoxins, aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are the most prominent fungal metabolites that represent high food safety risks, due to their widespread co-occurrence in several food commodities, and their profound toxic effects on humans. Considering the ethical and more humane animal research, the 3Rs (replacement, reduction, and refinement) principle has been promoted in the last few years. Therefore, this review aims to summarize the research studies conducted up to date on the toxicological effects that AFB1 and FB1 can induce on human health, through the examination of a selected number of in vitro studies. Although the impact of both toxins, as well as their combination, were investigated in different cell lines, the majority of the work was carried out in hepatic cell lines, especially HepG2, owing to the contaminants' liver toxicity. In all the reviewed studies, AFB1 and FB1 could invoke, after short-term exposure, cell apoptosis, by inducing several pathways (oxidative stress, the mitochondrial pathway, ER stress, the Fas/FasL signaling pathway, and the TNF-α signal pathway). Among these pathways, mitochondria are the primary target of both toxins. The interaction of AFB1 and FB1, whether additive, synergistic, or antagonistic, depends to great extent on FB1/AFB1 ratio. However, it is generally manifested synergistically, via the induction of oxidative stress and mitochondria dysfunction, through the expression of the Bcl-2 family and p53 proteins. Therefore, AFB1 and FB1 mixture may enhance more in vitro toxic effects, and carry a higher significant risk factor, than the individual presence of each toxin.
Collapse
Affiliation(s)
- Xiangrong Chen
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| | - Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| | - Xiangfeng Chen
- Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, China;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.F.A.); (A.R.)
| |
Collapse
|
5
|
Jobe MC, Mthiyane DMN, Dludla PV, Mazibuko-Mbeje SE, Onwudiwe DC, Mwanza M. Pathological Role of Oxidative Stress in Aflatoxin-Induced Toxicity in Different Experimental Models and Protective Effect of Phytochemicals: A Review. Molecules 2023; 28:5369. [PMID: 37513242 PMCID: PMC10386527 DOI: 10.3390/molecules28145369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Aflatoxin B1 is a secondary metabolite with a potentially devastating effect in causing liver damage in broiler chickens, and this is mainly facilitated through the generation of oxidative stress and malonaldehyde build-up. In the past few years, significant progress has been made in controlling the invasion of aflatoxins. Phytochemicals are some of the commonly used molecules endowed with potential therapeutic effects to ameliorate aflatoxin, by inhibiting the production of reactive oxygen species and enhancing intracellular antioxidant enzymes. Experimental models involving cell cultures and broiler chickens exposed to aflatoxin or contaminated diet have been used to investigate the ameliorative effects of phytochemicals against aflatoxin toxicity. Electronic databases such as PubMed, Science Direct, and Google Scholar were used to identify relevant data sources. The retrieved information reported on the link between aflatoxin B1-included cytotoxicity and the ameliorative potential/role of phytochemicals in chickens. Importantly, retrieved data showed that phytochemicals may potentially protect against aflatoxin B1-induced cytotoxicity by ameliorating oxidative stress and enhancing intracellular antioxidants. Preclinical data indicate that activation of nuclear factor erythroid 2-related factor 2 (Nrf2), together with its downstream antioxidant genes, may be a potential therapeutic mechanism by which phytochemicals neutralize oxidative stress. This highlights the need for more research to determine whether phytochemicals can be considered a useful therapeutic intervention in controlling mycotoxins to improve broiler health and productivity.
Collapse
Affiliation(s)
- Martha Cebile Jobe
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Doctor M N Mthiyane
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | | | - Damian C Onwudiwe
- Department of Chemistry, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Department of Animal Health, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
6
|
Behl T, Kaur D, Sehgal A, Singla RK, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Therapeutic insights elaborating the potential of retinoids in Alzheimer’s disease. Front Pharmacol 2022; 13:976799. [PMID: 36091826 PMCID: PMC9453874 DOI: 10.3389/fphar.2022.976799] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer’s disease (AD) is perceived with various pathophysiological characteristics such oxidative stress, senile plaques, neuroinflammation, altered neurotransmission immunological changes, neurodegenerative pathways, and age-linked alterations. A great deal of studies even now are carried out for comprehensive understanding of pathological processes of AD, though many agents are in clinical trials for the treatment of AD. Retinoids and retinoic acid receptors (RARs) are pertinent to such attributes of the disease. Retinoids support the proper functioning of the immunological pathways, and are very potent immunomodulators. The nervous system relies heavily on retinoic acid signaling. The disruption of retinoid signaling relates to several pathogenic mechanisms in the normal brain. Retinoids play critical functions in the neuronal organization, differentiation, and axonal growth in the normal functioning of the brain. Disturbed retinoic acid signaling causes inflammatory responses, mitochondrial impairment, oxidative stress, and neurodegeneration, leading to Alzheimer’s disease (AD) progression. Retinoids interfere with the production and release of neuroinflammatory chemokines and cytokines which are located to be activated in the pathogenesis of AD. Also, stimulating nuclear retinoid receptors reduces amyloid aggregation, lowers neurodegeneration, and thus restricts Alzheimer’s disease progression in preclinical studies. We outlined the physiology of retinoids in this review, focusing on their possible neuroprotective actions, which will aid in elucidating the critical function of such receptors in AD pathogenesis.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- *Correspondence: Tapan Behl, ; Simona Bungau,
| | - Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rajeev K. Singla
- Institutes for Sytems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
- *Correspondence: Tapan Behl, ; Simona Bungau,
| |
Collapse
|
7
|
Mathieu S, Soubrier M, Peirs C, Monfoulet LE, Boirie Y, Tournadre A. A Meta-Analysis of the Impact of Nutritional Supplementation on Osteoarthritis Symptoms. Nutrients 2022; 14:1607. [PMID: 35458170 PMCID: PMC9025331 DOI: 10.3390/nu14081607] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Conflicting evidence exists concerning the effects of nutrient intake in osteoarthritis (OA). A systematic literature review and meta-analysis were performed using PubMed, EMBASE, and Cochrane Library up to November 2021 to assess the effects of nutrients on pain, stiffness, function, quality of life, and inflammation markers. We obtained 52 references including 50 on knee OA. Twelve studies compared 724 curcumin patients and 714 controls. Using the standardized mean difference, improvement was significant with regard to pain and function in the curcumin group compared to placebo, but not with active treatment (i.e., nonsteroidal anti-inflammatory drugs, chondroitin, or paracetamol). Three studies assessed the effects of ginger on OA symptoms in 166 patients compared to 164 placebo controls. Pain was the only clinical parameter that significantly decreased. Vitamin D supplementation caused a significant decrease in pain and function. Omega-3 and vitamin E caused no changes in OA parameters. Herbal formulations effects were significant only for stiffness compared to placebo, but not with active treatment. A significant decrease in inflammatory markers was found, especially with ginger. Thus, curcumin and ginger supplementation can have a favorable impact on knee OA symptoms. Other studies are needed to better assess the effects of omega-3 and vitamin D.
Collapse
Affiliation(s)
- Sylvain Mathieu
- Service de Rhumatologie, Centre Hospitalier Universitaire Gabriel Montpied, F-63000 Clermont-Ferrand, France; (M.S.); (A.T.)
- Neuro-Dol, Inserm, CHU Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Martin Soubrier
- Service de Rhumatologie, Centre Hospitalier Universitaire Gabriel Montpied, F-63000 Clermont-Ferrand, France; (M.S.); (A.T.)
| | - Cedric Peirs
- Neuro-Dol, Inserm, CHU Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Laurent-Emmanuel Monfoulet
- CRNH Auvergne, Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (L.-E.M.); (Y.B.)
| | - Yves Boirie
- CRNH Auvergne, Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (L.-E.M.); (Y.B.)
- Service de Nutrition Clinique, CHU Gabriel Montpied, F-63000 Clermont-Ferrand, France
| | - Anne Tournadre
- Service de Rhumatologie, Centre Hospitalier Universitaire Gabriel Montpied, F-63000 Clermont-Ferrand, France; (M.S.); (A.T.)
- CRNH Auvergne, Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (L.-E.M.); (Y.B.)
| |
Collapse
|
8
|
Yaseen A, Hussain T, Hameed A, Shahzad M, Mazhar MU. Flavonoid enriched supplementation abrogates prenatal stress and enhances goat kids performance reared in a sub-tropical environment. Res Vet Sci 2022; 146:70-79. [DOI: 10.1016/j.rvsc.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
|
9
|
ESPARZA-ESPINOZA DM, PLASCENCIA-JATOMEA M, LÓPEZ-SAIZ CM, PARRA-VERGARA NV, CARBONELL-BARRACHINA AA, CÁRDENAS-LÓPEZ J, EZQUERRA-BRAUER JM. Improving the shelf life of chicken burgers using Octopus vulgaris and Dosidicus gigas skin pigment extracts. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.18221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Akash MSH, Haq MEU, Qader A, Rehman K. Biochemical investigation of human exposure to aflatoxin M1 and its association with risk factors of diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62907-62918. [PMID: 34216342 DOI: 10.1007/s11356-021-14871-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Recently, aflatoxin M1 (AFM1) has emerged as a major health concern owing to its exposure to human being via consumption of milk, dairy products, and food commodities, and this has a strong association with risk factors that may lead to the onset of type 2 diabetes mellitus (T2DM) and various other associated metabolic disorders. This study was conducted to investigate the exposure to AFM1 and its association with sociodemographic features and risk factors of T2DM. Urine and blood samples from 672 participants were collected to investigate the concentration of AFM1 in urine and glucose, glycosylated hemoglobin (HbA1c), insulin, α-amylase, dipeptidyl peptidase-IV (DPP-IV), free fatty acids (FFAs), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-chol), interleukine-6 (IL-6), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), creatinine, uric acid, blood urea nitrogen (BUN), aspartate aminotransferase (AST), and alanine transaminase (ALT) from the blood of study participants. Association of exposure to AFM1 with sociodemographic features and risk factors of T2DM was determined using person correlation coefficient (r), coefficient of determination (R2), and 95% confidence interval, and the level of significance (P<0.05) was measured by Student's unpaired t-test. Among the participants in which AFM1 was detected, 62.91% of participants were found to be diabetic and 37.09% of participants were found to be non-diabetic. Further to this, it was also found that concentration of AFM1 in the urine of diabetic participants was found to be higher (P<0.05) as compared to that in non-diabetic participants. Association of AFM1 exposure with risk factors of T2MD exhibits that exposure to AFM1 was responsible for the induction of inflammatory responses and oxidative stress that may lead to the onset of impaired insulin secretion and metabolism of carbohydrates and ultimately the onset of T2DM and associated metabolic disorders. Hence, it can be summarized that exposure to AFM1 is one of the causative factors that may lead to potentiate the several risk factors notably inflammatory responses and oxidative stress that ultimately induce the pathogenesis of T2DM and associated metabolic disorders. The key findings of this study suggest that human population who are at greater risk of AFM1 exposure can develop T2DM and other associated metabolic risk factors.
Collapse
Affiliation(s)
| | - Muhammad Ejaz Ul Haq
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdul Qader
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
11
|
Shahba S, Mehrzad J, Malvandi AM. Neuroimmune disruptions from naturally occurring levels of mycotoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14146-4. [PMID: 33932215 DOI: 10.1007/s11356-021-14146-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Substantial pieces of evidence support the potential of exogenous toxins in disrupting neuroimmune homeostasis. It appears that mycotoxins are one of the noticeable sources of naturally occurring substances dysregulating the immune system, which involves the physiology of many organs, such as the central nervous system (CNS). The induction of inflammatory responses in microglial cells and astrocytes, the CNS resident cells with immunological characteristics, could interrupt the hemostasis upon even with low-level exposure to mycotoxins. The inevitable widespread occurrence of a low level of mycotoxins in foods and feed is likely increasing worldwide, predisposing individuals to potential neuroimmunological dysregulations. This paper reviews the current understanding of mycotoxins' neuro-immunotoxic features under low-dose exposure and the possible ways for detoxification and clearance as a perspective.
Collapse
Affiliation(s)
- Sara Shahba
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Amir Mohammad Malvandi
- Science and Technology Pole, IRCCS Multimedica, Via Gaudenzio Fantoli, 16/15, 20138, Milan, Italy.
| |
Collapse
|
12
|
Jiang Y, Ogunade IM, Vyas D, Adesogan AT. Aflatoxin in Dairy Cows: Toxicity, Occurrence in Feedstuffs and Milk and Dietary Mitigation Strategies. Toxins (Basel) 2021; 13:toxins13040283. [PMID: 33920591 PMCID: PMC8074160 DOI: 10.3390/toxins13040283] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins are poisonous carcinogens produced by fungi, mainly Aspergillus flavus and Aspergillus parasiticus. Aflatoxins can contaminate a variety of livestock feeds and cause enormous economic losses, estimated at between US$52.1 and US$1.68 billion annually for the U.S. corn industry alone. In addition, aflatoxin can be transferred from the diet to the milk of cows as aflatoxin M1 (AFM1), posing a significant human health hazard. In dairy cows, sheep and goats, chronic exposure to dietary aflatoxin can reduce milk production, impair reproduction and liver function, compromise immune function, and increase susceptibility to diseases; hence, strategies to lower aflatoxin contamination of feeds and to prevent or reduce the transfer of the toxin to milk are required for safeguarding animal and human health and improving the safety of dairy products and profitability of the dairy industry. This article provides an overview of the toxicity of aflatoxin to ruminant livestock, its occurrence in livestock feeds, and the effectiveness of different strategies for preventing and mitigating aflatoxin contamination of feeds.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.J.); (D.V.)
| | - Ibukun M. Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506, USA;
| | - Diwakar Vyas
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.J.); (D.V.)
| | - Adegbola T. Adesogan
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA; (Y.J.); (D.V.)
- Correspondence:
| |
Collapse
|
13
|
Afshar P, Roozbeh Nasiraie L, Shokrzadeh M, Ghorbani HasanSaraei A, Naghizadeh Raeisi S. Bio-protective effects of Lactobacillus plantarum subsp. plantarum against aflatoxin b1 genotoxicity on human blood lymphocytes: a native probiotic strain isolated from Iranian camel milk. Curr Med Mycol 2021; 6:54-61. [PMID: 34195461 PMCID: PMC8226050 DOI: 10.18502/cmm.6.4.5438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background and Purpose Aflatoxin B1 is one of the main poisonous substances in certain kinds of fungi all over the world. The toxin is a serious health threat to humans and livestock, particularly via DNA damage, and induces multiple cancers. Probiotic agents have confirmed positive beneficial effects in DNA protection against various toxic compounds. In this regard, the present study aimed to investigate the bio-protective effects of a native Lactobacillus plantarum subsp. plantarumNIMBB003 strain isolated from Iranian one-humped camel milk against AflatoxinB1 (AFB1)-induced genotoxicity damage, based on the micronucleus test as a genotoxicity monitoring method. Materials and Methods In this study, a human male blood sample was treated and incubated with107, 109, and 1011CFU/mL of viable L. plantarum and IC50 dose ofAFB1alone and in combination. Afterward, assessed the rate of production of the micronucleus in bi-nucleated lymphocytes. It must be noted that a p-value of less than0.05 was considered significantly significant. Results Based on the findings, the combined treatment of the L. plantarum at 1011 and109CFU/mL dose with 5.33±0.57% of the micronuclei fragments had protective effects and significantly decreased the genotoxicity of AFB1 by 76%. Conclusion According to the findings, it can be concluded that L. plantarum in 109 CFU/mL had high protective potency against AFB1 genotoxicity. Consequently, the use of local, natural, and native protected compounds with antioxidant effects, such as probiotics agents, is one of the objectives of developing a green strategy in macro-management policies for the discovery and production of new medicines and functional foods with protective/therapeutic effects against nutritional and endogenous DNA toxins.
Collapse
Affiliation(s)
- Parvaneh Afshar
- Department of Food Science and Technology, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran.,Research and Development Unit of Referral Laboratory, Deputy of Health Management, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Roozbeh Nasiraie
- Department of Food Science and Technology, Islamic Azad University, Nour Branch, Nour, Iran.,Department of Research and Development, Shams Bavaran Salamat Nour Company, Tehran, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Shahram Naghizadeh Raeisi
- Department of Food Science and Technology, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
| |
Collapse
|
14
|
Effects of Some New Antioxidants on Apoptosis and ROS Production in AFB1 Treated Chickens. THE 1ST INTERNATIONAL E-CONFERENCE ON ANTIOXIDANTS IN HEALTH AND DISEASE 2020. [DOI: 10.3390/cahd2020-08640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Abdel-Salam AM, Badr AN, Zaghloul AH, Farrag ARH. Functional yogurt aims to protect against the aflatoxin B1 toxicity in rats. Toxicol Rep 2020; 7:1412-1420. [PMID: 33102145 PMCID: PMC7578531 DOI: 10.1016/j.toxrep.2020.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 01/05/2023] Open
Abstract
Recently, the rise of mycotoxin contamination in food materials was found to be due to several factors, including climatic changes' impact. Therefore, the aim of this study was to provide a novel food product that allows the reduction of aflatoxin impact in animal tissues. Chicory root-extract (CRE) was evaluated for its active components, antioxidant potency, and antimicrobial activity. The CRE was utilized to produce functional yogurt (FY) that was evaluated in-vivo using experimental rats. The CRE showed high antioxidant activity and recorded valuable content of the active components. Results also showed a high antimicrobial effect against toxigenic fungal strains. The results have reflected the efficiency of the FY to suppress aflatoxin impacts in the animal tissues and biochemical parameters of rats-serum. An enhancement was recorded inliver and kidney functions for rats taking FY with the presence of aflatoxin. It was concluded that consumption of the FY assisted in suppression of the oxidative stress in rats-tissues.
Collapse
Affiliation(s)
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Ahmed H. Zaghloul
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
16
|
Orta Yilmaz B, Yildizbayrak N, Aydin Y. Vitamin C inhibits glycidamide-induced genotoxicity and apoptosis in Sertoli cells. J Biochem Mol Toxicol 2020; 34:e22545. [PMID: 32632975 DOI: 10.1002/jbt.22545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/21/2020] [Accepted: 06/05/2020] [Indexed: 11/06/2022]
Abstract
Exposure to the food contaminant acrylamide and its reactive epoxide metabolite glycidamide (GA) induces reactive oxygen species (ROS)-mediated oxidative stress and subsequent cellular death. Recent studies have revealed that the toxic effects of acrylamide may be due to GA, especially on male reproductive system cells. In this regard, it is important to determine the effects of GA on Sertoli cells, which are essential cells for the male reproductive system. Antioxidants should be consumed in sufficient quantities to minimise the effects of environmental pollutants. This study aimed to determine the direct toxic effects of GA and protective effects of vitamin C (VitC) against GA-induced damage in Sertoli cells by measuring cell viability, cytotoxicity, lipid peroxidation, ROS, antioxidant enzyme levels, apoptosis and DNA damage. Sertoli cells were exposed to GA for 24 hours at four different concentrations (ranging between 1 and 1000 μM) and in addition to these GA concentrations to VitC (50 μM). The results of cytotoxicity markers, such as cell viability and lactate dehydrogenase (LDH) showed that GA significantly reduced cell viability and increased LDH levels. We also found that GA induced overproduction of intracellular ROS, increased lipid peroxidation in cellular membrane and triggered cell apoptosis and genotoxicity. In addition, VitC supplementation ameliorated the adverse effects of GA on Sertoli cells. Consequently, these findings suggest that GA may damage the cell function in Sertoli cells, depending on the concentration. Additionally, it was evidenced that VitC has an ameliorative effect on toxicity caused by GA.
Collapse
Affiliation(s)
- Banu Orta Yilmaz
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Nebahat Yildizbayrak
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Yasemin Aydin
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Chen SJ, Gan L, Guo YC, Tian LX, Liu YJ. Changes in growth performance, aflatoxin B1 residues, immune response and antioxidant status of Litopenaeus vannamei fed with AFB1-contaminated diets and the regulating effect of dietary myo-inositol supplementation. Food Chem 2020; 324:126888. [DOI: 10.1016/j.foodchem.2020.126888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
|
18
|
Li H, Yang H, Li P, Li M, Yao Q, Min L, Zhang Y, Wang J, Zheng N. Maillard reaction products with furan ring, like furosine, cause kidney injury through triggering ferroptosis pathway. Food Chem 2020; 319:126368. [DOI: 10.1016/j.foodchem.2020.126368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
|
19
|
Wang X, Li L, Zhang G. Quercetin protects the buffalo rat liver (BRL-3A) cells from aflatoxin B1-induced cytotoxicity via activation of Nrf2-ARE pathway. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin widely presented in agricultural products, and the protective effect of quercetin (QUE), a natural antioxidant, against AFB1-induced cytotoxicity to the buffalo rat liver (BRL-3A) cells was investigated. With an IC50 of 23 μM, AFB1 induced a significant oxidative stress to BRL-3A cells evidenced by a dose-dependent reduction of mitochondria membrane potential (MMP), ATP content, and activities of endogenous antioxidant enzymes along with increased levels of reactive oxygen species (ROS) and lipid peroxidation biomarker of malondialdehyde (MDA). The activity of CYP1A2, the key enzyme to convert AFB1 to reactive AFB1 exo-8,9- epoxide, was also increased, which, probably in together with ROS, led to cell apoptosis with DNA fragmentation, chromatin condensation and increased lactate dehydrogenase release. After the BRL cells were pre-treated by low level QUE (2.5 and/or 5 μM) for 24 h and then exposed to AFB1, the activities of antioxidant enzymes including haeme oxygenase-1, glutathione S-transferase, superoxide dismutase, and the ratio of reduced to oxidised glutathione were significantly increased whereas the levels of intracellular ROS and MDA were reduced. The QUE pre-treatment also increased the levels of MMP, ATP and DNA integrity, and reduced the expression of apoptosis related genes of Bax and Caspase-3. The Western blotting study revealed increased content of phosphorylated Akt and nuclear NF-E2-related factor 2 (Nrf2), indicating an activation of Nrf2-ARE pathway in counteracting oxidative stress and cytotoxicity of AFB1. Thus, the QUE pre-treatment enhanced the anti-stress capacity of the cells through the activation of the Nrf2-ARE pathway, and QUE-based measures could be developed to ameliorate the toxicity caused by AFB1.
Collapse
Affiliation(s)
- X. Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, China P.R
| | - L. Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, China P.R
| | - G. Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu, China P.R
| |
Collapse
|
20
|
Saad-Hussein A, Moubarz G, Mohgah SA, Wafaa GS, Aya HM. Role of antioxidant supplementation in oxidant/antioxidant status and hepatotoxic effects due to aflatoxin B1 in wheat miller workers. ACTA ACUST UNITED AC 2019; 16:/j/jcim.ahead-of-print/jcim-2018-0218/jcim-2018-0218.xml. [DOI: 10.1515/jcim-2018-0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/12/2019] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Aflatoxin B1 (AFB1) is classified as a Group I carcinogen. A Previous study found that oxidative stress from the metabolism of AFB1 induced hepatotoxic effects in wheat miller workers. Zinc and vitamin C may play a significant role in the activation of detoxification and overcoming the oxidative stress of AFB1.
Objectives
A prospective clinical trial was designed to evaluate the role of zinc and vitamin C oral supplementation on the oxidant-antioxidant status and the hepatotoxic effects of AFB1 in wheat miller workers.
Methods
Liver enzymes (ALT, AST, ALP, and GGT), P53 protein, malondialdehyde (MDA), glutathione S transferase (GST), Superoxide dismutase (SOD), zinc and vitamin C were estimated in 35 wheat miller workers before and after zinc and vitamin C supplementation for 1 month.
Results
The results revealed that zinc and vitamin C were significantly increased after the one-month supplementation, while liver enzymes (AST, ALP, and GGT), MDA, and GST of the workers were significantly decreased. SOD and P53 were also decreased but not to a significant level; SOD was decreased in 56% and P53 was decreased in 58% of the total workers.
Conclusions
Zinc and vitamin C oral supplementation for 1 month had an ameliorative effect on the hepatotoxicity of AFB1 in wheat miller workers, through decreasing MDA, SOD, and GST levels that in turn led to an improvement in their liver enzymes. Further study on a larger scale is needed to confirm these results.
Collapse
|
21
|
Badr AN, Naeem MA. Protective efficacy using Cape- golden berry against pre-carcinogenic aflatoxins induced in rats. Toxicol Rep 2019; 6:607-615. [PMID: 31312606 PMCID: PMC6609784 DOI: 10.1016/j.toxrep.2019.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
Vacuum drying saves the CGB bioactive components. Addition of CGB to rats’ diet presents good health effects. Aflatoxins caused vigorous impacts for rats’ biochemical parameters and tissues. CGB showed an ability for AF–precarcinogenicity reduction in liver tissues. CGB recorded enhancing the liver enzymes and blood parameters of AFs-rats.
Aflatoxins are harmful compounds that induced carcinogenic impacts on tissues. It could generate oxidative stress causing cells damage. Bioactive substances from natural plants could avoid mycotoxins’ bad impacts. Cape-goldenberry (CGB), a source of active substances, was vacuum-dried at 30 °C then milled. Fresh and dried CGB-powder properties were estimated. Animal experiment was designed using six rat-groups to evaluate CBG effect to reduce harmful effect of aflatoxins. Rats treated groups were orally administrated by aflatoxins (AFs) with or without CGB in diets. Blood parameters, liver and kidney functions, serum lipids, and liver histological changes were estimated. The CGB powder showed several time doubles of phenolics, flavonoids, and antioxidants than fresh fruits. Diet supplementation by CGB of AFs-treated rats showed enhancement in final weight, food efficiency, and weight gain compared to AFs treatment only. Also, liver and kidney functions, liver enzymes, iron level, tumors indicator, and serum lipids of AFs- rats. Moreover, total protein, albumin, and globulin reduction by AFs have been improved by CGB presence in diets. Histopathological studies for AFs-rats liver showed dilated blood sinusoids with aggregation of inflammatory, Kupffer cell hyperplasia, degenerated hepatocytes, and apoptotic cells. However, in AFs-rat groups fed CGB in diets, liver hepatocytes appeared to be almost normal similar to the control. Results pointed out that CGB recorded a corrective action for aflatoxin B1 and G1 toxicity. This was recorded for the blood and serum parameters, and liver enzymes. This CGB action avoiding AFs-toxicity was more clearly declared in the liver tissues.
Collapse
Affiliation(s)
- Ahmed Noah Badr
- Food Toxicology and Contaminants Dept., National Research Centre, Dokki 12622, Cairo, Egypt
| | - Mohamed Ahmed Naeem
- Ain Shams Specialized Hospital, Ain Shams University, Cairo 16096, Egypt
- Corresponding author.
| |
Collapse
|
22
|
Li H, Li S, Yang H, Wang Y, Wang J, Zheng N. l-Proline Alleviates Kidney Injury Caused by AFB1 and AFM1 through Regulating Excessive Apoptosis of Kidney Cells. Toxins (Basel) 2019; 11:toxins11040226. [PMID: 30995739 PMCID: PMC6521284 DOI: 10.3390/toxins11040226] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
The toxicity and related mechanisms of aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1) in the mouse kidney were studied, and the role of l-proline in alleviating kidney damage was investigated. In a 28-day toxicity mouse model, thirty mice were divided into six groups: control (without treatment), l-proline group (10 g/kg body weight (b.w.)), AFB1 group (0.5 mg/kg b.w.), AFM1 (3.5 mg/kg b.w.), AFB1 + l-proline group and AFM1 + l-proline group. Kidney index and biochemical indicators were detected, and pathological staining was observed. Using a human embryonic kidney 293 (HEK 293) cell model, cell apoptosis rate and apoptotic proteins expressions were detected. The results showed that AFB1 and AFM1 activated pathways related with oxidative stress and caused kidney injury; l-proline significantly alleviated abnormal expressions of biochemical parameters and pathological kidney damage, as well as excessive cell apoptosis in the AF-treated models. Moreover, proline dehydrogenase (PRODH) was verified to regulate the levels of l-proline and downstream apoptotic factors (Bax, Bcl-2, and cleaved Caspase-3) compared with the control (p < 0.05). In conclusion, l-proline could protect mouse kidneys from AFB1 and AFM1 through alleviating oxidative damage and decreasing downstream apoptosis, which deserves further research and development.
Collapse
Affiliation(s)
- Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Songli Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huaigu Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yizhen Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
23
|
Xiong J, Wang Y, Zhou H, Liu J. Effects of dietary adsorbent on milk aflatoxin M1 content and the health of lactating dairy cows exposed to long-term aflatoxin B1 challenge. J Dairy Sci 2018; 101:8944-8953. [DOI: 10.3168/jds.2018-14645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022]
|
24
|
Defo MA, Bernatchez L, Campbell PGC, Couture P. Temporal variations in kidney metal concentrations and their implications for retinoid metabolism and oxidative stress response in wild yellow perch (Perca flavescens). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:26-35. [PMID: 30007152 DOI: 10.1016/j.aquatox.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to determine if temporal variations in tissue metal concentrations are related to biomarkers of retinoid metabolism and oxidative stress responses in juvenile yellow perch (Perca flavescens). To this end, kidney metal (Cd, Cu and Zn) concentrations were measured in fish sampled in spring and fall 2012 in four lakes representing a wide range of water and sediment metal contamination in the Rouyn-Noranda (Quebec) region. Lakes Opasatica and Hélène were considered as reference lakes while lakes Dufault and Marlon were metal-contaminated. Kidney concentrations of Cd, Cu and Zn varied widely between spring and fall in fish from both clean and metal-contaminated lakes. An inter-lake difference in renal metal concentrations was only observed for Cd, with fish from Lake Marlon consistently displaying higher concentrations. In the spring, the concentrations of liver dehydroretinol, dehydroretinyl palmitate and total vitamin A esters were higher in fish sampled in the most contaminated lake. Strong temporal variations in the concentrations of these metabolites, as well as in the percentage of liver free dehydroretinol and the epidermal retinol dehydrogenase 2 transcription levels, were observed in fish living in the most metal-impacted lake, with generally higher values in the spring. In contrast to liver, in muscle, no clear seasonal variations in the concentrations of dehydroretinol, dehydroretinyl stearate or in the percentage of free dehydroretinol were observed in fish captured in the most contaminated lake. Temporal variations of traditional biomarkers of oxidative stress response were also observed in the most metal-impacted lake. For example, the transcription level of the gene encoding Cu/Zn superoxide dismutase-1 in liver and muscle catalase activity of perch sampled in the most contaminated lake were higher in spring than in fall. Positive relationships were found between kidney Cd concentrations and the transcription level of the gene encoding glucose 6-phosphate dehydrogenase, and all forms of retinoid concentrations in liver in spring, except with the percentage of free dehydroretinol where the correlation was negative. Our results translate to a state of stress caused by Cd and illustrate that temporal variations in tissue metal concentrations affect retinoid metabolism and antioxidant capacities in juvenile wild yellow perch. Overall this study contributes to highlight the importance of considering temporal variations when investigating the consequences of metal contamination on the physiology of wild fish.
Collapse
Affiliation(s)
- Michel A Defo
- Environnement et Changement Climatique Canada, 105 Rue McGill, Montréal, QC, H2Y 2E7, Canada
| | - Louis Bernatchez
- Institut de Biologie intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Peter G C Campbell
- Institut national de la Recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Patrice Couture
- Institut national de la Recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
25
|
Riol CD, Dietrich R, Märtlbauer E, Jessberger N. Consumed Foodstuffs Have a Crucial Impact on the Toxic Activity of Enteropathogenic Bacillus cereus. Front Microbiol 2018; 9:1946. [PMID: 30174669 PMCID: PMC6107707 DOI: 10.3389/fmicb.2018.01946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Enteropathogenic Bacillus cereus cause diarrhea due to the production of enterotoxins in the intestine. To start this process, spores have to be ingested together with contaminated food and survive the stomach passage. In this study, the influence of consumed foodstuffs on spore survival as well as on cytotoxicity toward colon epithelial cells was investigated. Spore survival of 20 enteropathogenic and apathogenic B. cereus strains during simulated stomach passage was highly strain-specific and did not correlate with the toxic potential. Survival of three tested strains was strain-specifically altered by milk products. Whereas milk, a follow-on formula and rice pudding had only little influence, spores seemed to be protected by milk products with high fat content such as whipped cream and mascarpone. Furthermore, tested milk products decreased the toxic activity of three B. cereus strains toward CaCo-2 cells. Investigating the individual components, lactoferrin, a skim milk powder and vitamins C, B5 and A showed the most inhibiting effects. On the other hand, biotin, vitamin B3 and another skim milk powder even enhanced cytotoxicity. Further studies suggested that these inhibiting effects result only partially from inhibiting cell binding, but rather from blocking the interaction between the single enterotoxin components.
Collapse
Affiliation(s)
- Claudia Da Riol
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nadja Jessberger
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
26
|
The Toxic Effects of Aflatoxin B1 and Aflatoxin M1 on Kidney through Regulating L-Proline and Downstream Apoptosis. BIOMED RESEARCH INTERNATIONAL 2018. [PMID: 30159329 DOI: 10.1155/2018%2f9074861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The toxic effects and potential mechanisms of aflatoxin B1 (AFB1), aflatoxin M1 (AFM1), and AFB1+AFM1 in the kidney were studied and compared in HEK 293 cells model and CD-1 mice model. The 35-day subacute toxicity mice model was constructed, biochemical indicators and kidney pathological staining were detected, kidney metabonomics detection was performed, and the metabolites were analyzed, and then the related toxicity mechanism was validated. Results showed that AFB1 (0.5 mg/kg), AFM1 (3.5 mg/kg), and AFB1 (0.5 mg/kg)+AFM1 (3.5 mg/kg) activated oxidative stress and caused renal damage. The relative concentration of the metabolite L-proline was found to be lower in aflatoxins treatment groups when compared with the control (P < 0.05). Moreover, with the treatment of aflatoxins, proline dehydrogenase (PRODH) and proapoptotic factors (Bax, Caspase-3) were upregulated, while the inhibitor of apoptosis Bcl-2 was downregulated, at both the mRNA and the protein levels, comparing with the control (P < 0.05). In addition, the combined effect of AFB1 and AFM1 was validated, for the toxicity of the combination was stronger than the other two groups. In conclusion, AFB1 and AFM1 caused kidney toxicity by activating oxidative stress through altering expression of PRODH and L-proline levels, which then induced downstream apoptosis.
Collapse
|
27
|
The Toxic Effects of Aflatoxin B1 and Aflatoxin M1 on Kidney through Regulating L-Proline and Downstream Apoptosis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9074861. [PMID: 30159329 PMCID: PMC6109566 DOI: 10.1155/2018/9074861] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 11/22/2022]
Abstract
The toxic effects and potential mechanisms of aflatoxin B1 (AFB1), aflatoxin M1 (AFM1), and AFB1+AFM1 in the kidney were studied and compared in HEK 293 cells model and CD-1 mice model. The 35-day subacute toxicity mice model was constructed, biochemical indicators and kidney pathological staining were detected, kidney metabonomics detection was performed, and the metabolites were analyzed, and then the related toxicity mechanism was validated. Results showed that AFB1 (0.5 mg/kg), AFM1 (3.5 mg/kg), and AFB1 (0.5 mg/kg)+AFM1 (3.5 mg/kg) activated oxidative stress and caused renal damage. The relative concentration of the metabolite L-proline was found to be lower in aflatoxins treatment groups when compared with the control (P < 0.05). Moreover, with the treatment of aflatoxins, proline dehydrogenase (PRODH) and proapoptotic factors (Bax, Caspase-3) were upregulated, while the inhibitor of apoptosis Bcl-2 was downregulated, at both the mRNA and the protein levels, comparing with the control (P < 0.05). In addition, the combined effect of AFB1 and AFM1 was validated, for the toxicity of the combination was stronger than the other two groups. In conclusion, AFB1 and AFM1 caused kidney toxicity by activating oxidative stress through altering expression of PRODH and L-proline levels, which then induced downstream apoptosis.
Collapse
|
28
|
Khatoon A, Abidin ZU. Mycotoxicosis – diagnosis, prevention and control: past practices and future perspectives. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1485701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Aisha Khatoon
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
29
|
Physicochemical Characterization, Microbiological Quality and Safety, and Pharmacological Potential of Hancornia speciosa Gomes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2976985. [PMID: 30050651 PMCID: PMC6046125 DOI: 10.1155/2018/2976985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
Hancornia speciosa Gomes is a fruit tree, commonly known as the mangaba tree, which is widespread throughout Brazil. The leaves of this plant are used in traditional medicine for medicinal purposes. Thus, the objective of this study was to perform a physicochemical characterization, identify the lipophilic antioxidants and fatty acids, and determine the microbiological quality and safety of H. speciosa leaves. In addition, the antioxidant, antimutagenic, and inhibitory activities of the ethanolic extract of H. speciosa leaves (EEHS) against enzymes related to neurodegenerative diseases, inflammation, obesity, and diabetes were investigated. Furthermore, this study aimed at assessing the in vivo effects of the EEHS on the glycemia of normoglycemic and diabetic Wistar rats. Physicochemical characterization was performed by colorimetry and gas-liquid chromatography with flame ionization detection (GC-FID). The total number of colonies of aerobic mesophiles, molds, and yeasts was determined. The total coliforms and Escherichia coli were counted using the SimPlates kit, and sulphite-reducing Clostridium spores were quantified using the sulphite-polymyxin-sulfadiazine agar method. Salmonella spp. were detected using the 1-2 Test. The antioxidant activity of the EEHS was measured by its inhibition of 2,2'-azobis(2-amidinopropane) dihydrochloride- (AAPH-) induced oxidative hemolysis of human erythrocytes. The antimutagenic activity was determined using the Ames test. The acetylcholinesterase, butyrylcholinesterase, tyrosinase, hyaluronidase, lipase, α-amylase, and α-glycosidase enzyme-inhibiting activities were assessed and compared with commercial controls. The in vivo effects of the EEHS were assessed using the oral glucose tolerance test in normoglycemic Wistar rats and measuring the blood glucose levels in diabetic rats. The results demonstrated physical-chemical parameters of microbiological quality and safety in the leaves of H. speciosa, as well as antioxidant and antimutagenic activities and inhibition of enzymes related to neurodegenerative diseases, inflammation, obesity, and diabetes. In in vivo assays, it was shown that the normoglycemic rats challenged with glucose overload show significantly decreased blood glucose levels when treated with the EEHS. Taken together, the results ensure the microbiological quality and safety as well as showing the contents of carotenoids and polyunsaturated fatty acids of H. speciosa leaves. Additionally, the antioxidant, antimutagenic, anti-inflammatory, anti-Alzheimer's disease, anti-Parkinson's disease, antiobesity, and antihyperglycemic activities of the EEHS were demonstrated.
Collapse
|
30
|
Abstract
Mycotoxins are the most common contaminants of food and feed worldwide and are considered an important risk factor for human and animal health. Oxidative stress occurs in cells when the concentration of reactive oxygen species exceeds the cell’s antioxidant capacity. Oxidative stress causes DNA damage, enhances lipid peroxidation, protein damage and cell death. This review addresses the toxicity of the major mycotoxins, especially aflatoxin B1, deoxynivalenol, nivalenol, T-2 toxin, fumonisin B1, ochratoxin, patulin and zearalenone, in relation to oxidative stress. It summarises the data associated with oxidative stress as a plausible mechanism for mycotoxin-induced toxicity. Given the contamination caused by mycotoxins worldwide, the protective effects of a variety of natural compounds due to their antioxidant capacities have been evaluated. We review data on the ability of vitamins, flavonoids, crocin, curcumin, green tea, lycopene, phytic acid, L-carnitine, melatonin, minerals and mixtures of anti-oxidants to mitigate the toxic effect of mycotoxins associated with oxidative stress.
Collapse
Affiliation(s)
- E.O. da Silva
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - A.P.F.L. Bracarense
- Universidade Estadual de Londrina, Laboratory of Animal Pathology, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná 86051-990, Brazil
| | - I.P. Oswald
- Université de Toulouse, Toxalim, Research Center in Food Toxicology, INRA, UMR 1331 ENVT, INP-PURPAN, 31076 Toulouse, France
| |
Collapse
|
31
|
Qiu T, Shen X, Tian Z, Huang R, Li X, Wang J, Wang R, Sun Y, Jiang Y, Lei H, Zhang H. IgY Reduces AFB 1-Induced Cytotoxicity, Cellular Dysfunction, and Genotoxicity in Human L-02 Hepatocytes and Swan 71 Trophoblasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1543-1550. [PMID: 29325416 DOI: 10.1021/acs.jafc.7b05385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aflatoxin B1 (AFB1) causes hepatotoxic, genotoxic, and immunotoxic effects in a variety of species. Although various neutralizing agents of AFB1 toxicity have been studied, the egg yolk immunoglobulin (IgY) detoxification of small molecular toxins and the mechanisms underlying such effects have not yet been reported. In this investigation, anti-AFB1 IgY against AFB1 was successfully raised, and a competitive indirect enzyme-linked immunosorbent assay was established with a sensitive half-maximal inhibitory concentration (IC50, 2.4 ng/mL) and dynamic working range (0.13-43.0 ng/mL). The anti-AFB1 IgY obtained reduced AFB1-induced cytotoxicity, cellular dysfunction, and genotoxicity by protecting cells against apoptotic body formation and DNA strand breaks, preventing G2/M phase cell cycle arrest, reducing AFB1-DNA adduct and reactive oxygen species production and maintaining cell migration and invasion and the mitochondrial membrane potential. Anti-AFB1 IgY significantly inhibited the AFB1-induced expression of proteins related to antioxidative, pro-apoptotic, and antiapoptotic processes in a strong dose-dependent manner. These experiments demonstrated that the anti-AFB1 IgY-bound AFB1 could not enter cells. This is the first time that IgY has been found to reduce the effects of small molecular toxins, which will be beneficial for the development of antibodies as detoxication agents.
Collapse
Affiliation(s)
- Taotao Qiu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University , No. 17 People's South Road, Chengdu 610041, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Zhen Tian
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University , No. 17 People's South Road, Chengdu 610041, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Rong Wang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University , No. 17 People's South Road, Chengdu 610041, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao , Panyu District, Guangzhou 510000, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University , Guangzhou 510642, China
| | - Huidong Zhang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University , No. 17 People's South Road, Chengdu 610041, China
| |
Collapse
|
32
|
Rahmouni F, Saoudi M, Amri N, El-Feki A, Rebai T, Badraoui R. Protective effect of Teucrium polium on carbon tetrachloride induced genotoxicity and oxidative stress in rats. Arch Physiol Biochem 2018; 124:1-9. [PMID: 28714319 DOI: 10.1080/13813455.2017.1347795] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to investigate the protective effects of Teucrium polium (TP) on carbon tetrachloride (CCl4) induced spleen, erythrocyte's oxidative stress, and genotoxicity in rats. TP was found to contain large amounts of polyphenols (150 mg GAE/G of dry plant) and flavonoids (60 mg QE/g of quercetin dry plant). The CCl4 (0.5 ml/kg) treated rats exhibited significant reductions in serum vitamin A (VA), vitamin E (VE) and total antioxidant status (TAS). Thiobarbituric acid reactive substances (TBARS) and conjugated dienes (CD) were significantly high in the CCl4 group compared to controls. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were significantly decreased in CCl4 rats. Cytogenetic trials revealed remarkable increases in the frequency of chromosomal aberrations (CAs) and sister chromatid exchange (SCE) following CCl4 administration. Pretreatment with TP prevented damages caused by CCl4. Spleen characterised by necrosis was detected in CCl4 as compared to controls. Pretreatment with TP considerably decreased the perturbation.
Collapse
Affiliation(s)
- Fatma Rahmouni
- a Laboratory of Histology , Medicine Faculty of Sfax University , Sfax , Tunisia
| | - Mongi Saoudi
- b Laboratory of Animal Physiology , Sciences Faculty of Sfax University , Sfax , Tunisia
| | - Nahed Amri
- a Laboratory of Histology , Medicine Faculty of Sfax University , Sfax , Tunisia
| | - Abdelfattah El-Feki
- b Laboratory of Animal Physiology , Sciences Faculty of Sfax University , Sfax , Tunisia
| | - Tarek Rebai
- a Laboratory of Histology , Medicine Faculty of Sfax University , Sfax , Tunisia
| | - Riadh Badraoui
- a Laboratory of Histology , Medicine Faculty of Sfax University , Sfax , Tunisia
- c Laboratory of Histology , Medicine College of Tunis El-Manar University , Tunis , Tunisia
| |
Collapse
|
33
|
Limaye A, Yu RC, Chou CC, Liu JR, Cheng KC. Protective and Detoxifying Effects Conferred by Dietary Selenium and Curcumin against AFB1-Mediated Toxicity in Livestock: A Review. Toxins (Basel) 2018; 10:E25. [PMID: 29301315 PMCID: PMC5793112 DOI: 10.3390/toxins10010025] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1), among other aflatoxins of the aflatoxin family, is the most carcinogenic and hazardous mycotoxin to animals and human beings with very high potency leading to aflatoxicosis. Selenium is an essential trace mineral possessing powerful antioxidant functions. Selenium is widely reported as an effective antioxidant against aflatoxicosis. By preventing oxidative liver damage, suppressing pro-apoptotic proteins and improving immune status in AFB1 affected animals; selenium confers specific protection against AFB1 toxicity. Meticulous supplementation of animal feed by elemental selenium in the organic and inorganic forms has proven to be effective to ameliorate AFB1 toxicity. Curcumin is another dietary agent of importance in tackling aflatoxicosis. Curcumin is one of the major active ingredients in the tubers of a spice Curcuma longa L., a widely reported antioxidant, anticarcinogenic agent with reported protective potential against aflatoxin-mediated liver damage. Curcumin restricts the aflatoxigenic potential of Aspergillusflavus. Curcumin inhibits cytochrome P450 isoenzymes, particularly CYP2A6 isoform; thereby reducing the formation of AFB1-8, 9-epoxide and other toxic metabolites causing aflatoxicosis. In this review, we have briefly reviewed important aflatoxicosis symptoms among animals. With the main focus on curcumin and selenium, we have reviewed their underlying protective mechanisms in different animals along with their extraction and production methods for feed applications.
Collapse
Affiliation(s)
- Aniket Limaye
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Roch-Chui Yu
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Cheng-Chun Chou
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
34
|
Zhang L, Bai K, Zhang J, Xu W, Huang Q, Wang T. Dietary effects of Bacillus subtilis fmbj on the antioxidant capacity of broilers at an early age. Poult Sci 2017; 96:3564-3573. [DOI: 10.3382/ps/pex172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
|
35
|
Mohammadzadeh Honarvar N, Saedisomeolia A, Abdolahi M, Shayeganrad A, Taheri Sangsari G, Hassanzadeh Rad B, Muench G. Molecular Anti-inflammatory Mechanisms of Retinoids and Carotenoids in Alzheimer's Disease: a Review of Current Evidence. J Mol Neurosci 2016; 61:289-304. [PMID: 27864661 DOI: 10.1007/s12031-016-0857-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is considered as one of the most prevalent neurodegenerative disorders characterized by progressive loss of mental function and ability to learn. AD is a multifactorial disorder. Various hypotheses are suggested for the pathophysiology of AD including "Aβ hypothesis," "tau hypothesis," and "cholinergic hypothesis." Recently, it has been demonstrated that neuroinflammation is involved in the pathogenesis of AD. Neuroinflammation causes synaptic dysfunction and neuronal death within the brain. Excessive production of pro-inflammatory mediators induces Aβ peptide production/accumulation and hyperphosphorylated tau generating inflammatory molecules and cytokines. These inflammatory molecules disrupt blood-brain barrier integrity and increase the production of Aβ42 oligomers. Retinoids and carotenoids are potent antioxidants and anti-inflammatory agents having neuroprotective properties. They are able to prevent disease progression through several mechanisms such as suppression of Aβ peptide production/accumulation, oxidative stress, and pro-inflammatory mediator's secretion as well as improvement of cognitive performance. These observations, therefore, confirm the neuroprotective role of retinoids and carotenoids through multiple pathways. Therefore, the administration of these nutrients is considered as a promising approach to the prevention and/or treatment of AD in the future. The aim of this review is to present existing evidences regarding the beneficial effects of retinoids and carotenoids on AD's risk and outcomes, seeking the mechanism of their action.
Collapse
Affiliation(s)
- Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Pharmacology, School of Medicine, Western Sydney University, NSW, Australia. .,School of Molecular Bioscience, Charles Perkins Centre, University of Sydney, NSW, Australia.
| | - Mina Abdolahi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shayeganrad
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Gerald Muench
- Department of Pharmacology, School of Medicine, Western Sydney University, NSW, Australia
| |
Collapse
|
36
|
Murakami S, Miyazaki I, Asanuma M. Neuroprotective effect of fermented papaya preparation by activation of Nrf2 pathway in astrocytes. Nutr Neurosci 2016; 21:176-184. [PMID: 27841081 DOI: 10.1080/1028415x.2016.1253171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Nuclear factor erythroid 2-related factor (Nrf2) in astrocyte plays important roles in brain homeostasis. Fermented papaya preparation (FPP) has anti-oxidative, anti-inflammatory, immunoregulatory properties. The present study investigated the effects of FPP on activation of Nrf2 and release of Nrf2-regulated neuroprotective antioxidants and detoxifying molecules. METHODS Primary cultured astrocytes from rat embryos were treated with FPP for 6 or 24 hours. The expression levels of nuclear Nrf2 and cytoplasmic Nrf2-regulated molecules were determined by western blot analysis and immunohistochemistry. Glutathione levels were measured in cells and medium. Dopaminergic neurons were exposed 6-hydroxydopamine (6-OHDA) with/without pre-treatment with FPP astrocytes. Mice were treated orally with FPP for 2 weeks. RESULTS FPP increased nuclear translocation of Nrf2 in striatal astrocytes, induced up-regulation of NAD(P)H quinine oxidoreductase-1, glutathione-S transferase and hemeoxygenase-1, and increased glutathione level and the percentage of metallothionein-expressing astrocytes. Moreover, FPP suppressed 6-OHDA-induced dopaminergic neuronal loss in not only neuron-astrocyte mixed culture, but also neuron-rich cultures pre-treated with glial conditioned medium. Two-week oral treatment of mice with FPP resulted in Nrf2 activation and increase in glutathione level in striatum. DISCUSSION The results indicated that FPP enhances the anti-oxidative capacity through activation of Nrf2 in astrocytes, suggesting it may provide neuroprotection in oxidative stress-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Shinki Murakami
- a Department of Medical Neurobiology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,b SAIDO Corporation , Fukuoka , Japan
| | - Ikuko Miyazaki
- a Department of Medical Neurobiology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Masato Asanuma
- a Department of Medical Neurobiology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| |
Collapse
|
37
|
Antioxidant and antigenotoxic potencies of Sempervivum armenum on human lymphocytes in vitro. Cytotechnology 2016; 68:2355-2361. [PMID: 27752841 DOI: 10.1007/s10616-016-0030-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
In this research, the genotoxic and antigenotoxic effects of methanol extract of Sempervivum armenum (MSA) were studied using micronucleus (MN) test and sister chromatid exchange (SCE) test systems in cultured human peripheral blood cells. According to the SCE and MN tests results, MSA reduced the genotoxic effects of aflatoxin B1. In order to explain the reason for the antigenotoxic effects of MSA, antioxidants levels were determined. Cotreatments of 5, 10, 20 mg/mL concentrations of MSA with aflatoxin B1 decreased the frequencies of SCE, MN and the malondialdehyde level and increased the amount of superoxide dismutase, glutathione and glutathione peroxidase which were decreased by aflatoxin. The results of this experiment showed that MSA has strong antioxidative and antigenotoxic effects and this antigenotoxic activities of MSA can be due to the antioxidant activities.
Collapse
|
38
|
Miao H. The Research on the Impact of Maca Polypeptide on Sport Fatigue. Open Biomed Eng J 2015; 9:322-5. [PMID: 26998182 PMCID: PMC4774384 DOI: 10.2174/1874120701509010322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/14/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022] Open
Abstract
In order to study the effect of maca polypeptide on sport fatigue, this paper selected 40 male mice, and they were randomly divided into group A, B, C and D. group A, B and C were fed food with different concentrations of maca polypeptide, and group D was control group. After two weeks of feeding, measured physiological indexes of mice, including blood glucose, urea nitrogen and creatinine. At last gived the experimental results, as well as the analysis. Experimental results show that maca polypeptide can improve the ability of anti-fatigue mice, and in a certain concentration range, the higher the concentration, the better the resistance to fatigue.
Collapse
Affiliation(s)
- Hua Miao
- Physical Education Department of Xi'an University of Post and Telecommunications, Shaanxi, China
| |
Collapse
|
39
|
Xiong JL, Wang YM, Nennich TD, Li Y, Liu JX. Transfer of dietary aflatoxin B1 to milk aflatoxin M1 and effect of inclusion of adsorbent in the diet of dairy cows. J Dairy Sci 2015; 98:2545-54. [PMID: 25648809 DOI: 10.3168/jds.2013-7842] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/21/2014] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to investigate the transfer of aflatoxin from feed to milk and to evaluate the effects of Solis Mos (SM; Novus International Inc., St. Charles, MO) on milk aflatoxin M1, plasma biochemical parameters, and ruminal fermentation of dairy cows fed varying doses of aflatoxin B1 (AFB1). Three groups of 8 multiparous Holstein cows in late lactation (days in milk = 271 ± 29; milk yield = 21.6 ± 3.1 kg/d) were assigned to 1 of 3 experiments in a crossover design. Cows in experiment 1 received no aflatoxin, cows in experiment 2 received 20 µg of AFB1/kg of dry matter, and cows in experiment 3 received 40 µg of AFB1/kg of dry matter. Cows in each experiment were assigned to 1 of 2 treatments: control or 0.25% SM. Each experiment consisted of 2 consecutive periods with the first 4 d (d 1 to 4) as adaptation, followed by AFB1 challenge for 7 d (d 5 to 11), and finally clearance for 5 d (d 12 to 16) in each period. Samples of total mixed ration and milk were collected on d 1, 2, and 10 to 14 of each period. Blood samples were collected from the coccygeal vein on d 1, 11, and 14 of each period. Rumen fluid was collected by oral stomach tube 2 h after the morning feeding on d 1 and 11 of each period. Adding SM to basal or AFB1-contaminated diets at 0.25% had no effect on lactation performance, liver function, or immune response. However, addition of SM improved antioxidative status, as indicated by increased plasma concentrations of superoxide dismutase and reduced malondialdehyde regardless of dietary AFB1 level. Addition of SM to the AFB1-free diet eliminated the background AFM1 in milk and increased total ruminal volatile fatty acid (99.6 vs. 94.2 mM) concentrations. Adding SM to the AFB1-contaminated diet in experiment 2 decreased the AFM1 concentration (88.4 vs. 105.3 ng/L) and the transfer of aflatoxin to milk (0.46 vs. 0.56%), and increased total volatile fatty acid concentration (99.8 vs. 93.4 mM). Adding SM to diets with 40 µg/kg of AFB1 did not elicit changes in rumen parameters or AFM1 output. These results indicated that adding SM to diets containing 0 or 20 µg of AFB1/kg decreased milk AFM1 concentration, improved antioxidative status, and altered rumen fermentation, whereas adding SM to a diet containing 40 µg of AFB1/kg did not reduce AFB1 transfer but did increase the antioxidant status of the liver.
Collapse
Affiliation(s)
- J L Xiong
- Institute of Dairy Science, Zhejiang University, Hangzhou 310058, P. R. China; School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Y M Wang
- Novus International Trading (Shanghai) Co., Ltd., Shanghai 200001, P. R. China
| | - T D Nennich
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Y Li
- Department of Animal Science, Zhoukou Vocational and Technical College, Zhoukou 466001, P. R. China
| | - J X Liu
- Institute of Dairy Science, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
40
|
Qi L, Ying L. The Research on the Impact of Green Beans Sports Drinks on Relieving Fatigue in Sports Training. Open Biomed Eng J 2015; 9:318-21. [PMID: 26998181 PMCID: PMC4774396 DOI: 10.2174/1874120701509010318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/14/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022] Open
Abstract
For researching the function of relieving fatigue of green beans sports drinks, this paper selected 60 mice as subjects. They were randomly divided into four groups (low dose group, middle dose group, high dose group and physiological saline group). Each time they were respectively feed 10g 20g/L, 40g/L, 80 g/L green beans sports drinks and 15ml/(kg.d) physiological saline. The experiment lasted for a month. We recorded weight of mice, swimming time and blood urea nitrogen indicators. The results show that green beans sports drinks can significantly prolong swimming time of mice (p <0.05). For serum urea the results show no effect. So green beans sports drinks have a certain function of relieving physical fatigue.
Collapse
Affiliation(s)
- Li Qi
- Shenyang Jianzhu University, China
| | - Liu Ying
- Shenyang Jianzhu University, China
| |
Collapse
|
41
|
Protective roles of sodium selenite against aflatoxin B1-induced apoptosis of jejunum in broilers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:13130-43. [PMID: 25526081 PMCID: PMC4276667 DOI: 10.3390/ijerph111213130] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022]
Abstract
The effects of aflatoxin B1 (AFB1) exposure and sodium selenite supplementation on cell apoptosis of jejunum in broilers were studied. A total of 240 one-day-old male AA broilers were randomly assigned four dietary treatments containing 0 mg/kg of AFB1 (control), 0.3 mg/kg AFB1 (AFB1), 0.4 mg/kg supplement Se (+ Se) and 0.3 mg/kg AFB1 + 0.4 mg/kg supplement Se (AFB1 + Se), respectively. Compared with the control broilers, the number of apoptotic cells, the expression of Bax and Caspase-3 mRNA were significantly increased, while the expression of Bcl-2 mRNA and the Bcl-2/Bax ratio were significantly decreased in AFB1 broilers. The number of apoptotic cells and the expression of Caspase-3 mRNA in AFB1 + Se broilers were significantly higher than those in the control broilers, but significantly lower than those in AFB1 broilers. There were no significant changes in the expression of Bax mRNA between AFB1 + Se and control broilers; the expression of Bcl-2 mRNA and the Bcl-2/Bax ratio in AFB1 + Se broilers were significantly lower than those in the control broilers, but significantly higher than those in AFB1 broilers. In conclusion, 0.3 mg/kg AFB1 in the diet can increase cell apoptosis, decrease Bcl-2 mRNA expression, and increase of Bax and Caspase-3 mRNA expression in broiler’s jejunum. However, supplementation of dietary sodium selenite at the concentration of 0.4 mg/kg Se may ameliorate AFB1-induced apoptosis by increasing Bcl-2 mRNA expression, and decreasing Bax and Caspase-3 mRNA expression.
Collapse
|
42
|
Ceker S, Agar G, Alpsoy L, Nardemir G, Kizil HE. Antagonistic effects of Satureja hortensis essential oil against AFB, on human lymphocytes in vitro. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714050028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Fidaleo M, Fracassi A, Zuorro A, Lavecchia R, Moreno S, Sartori C. Cocoa protective effects against abnormal fat storage and oxidative stress induced by a high-fat diet involve PPARα signalling activation. Food Funct 2014; 5:2931-9. [DOI: 10.1039/c4fo00616j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Saad-Hussein A, Abdalla MS, Shousha WG, Moubarz G, Mohamed AH. Oxidative Role of Aflatoxin B1 on the Liver of Wheat Milling Workers. Open Access Maced J Med Sci 2014. [DOI: 10.3889/oamjms.2014.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim: The study aimed to estimate oxidative role of aflatoxin B1 (AFB1) on the liver in wheat milling workers. Materials and Methods: Case-control study was conducted to compare between the levels of AFB1/albumin (AFB1/alb), liver enzymes (ALT, AST, GGT, and ALP), P53, MDA, GST, SOD, zinc and vitamin C in 35 wheat milling workers and 40 control subjects. Results: Statistical analysis revealed that ALT, AST, GGT, ALP, P53, MDA, GST and SOD in workers were significantly elevated compared to their controls. In the milling workers, there were significant correlations between MDA levels and the levels of AST, GGT, and P53, while, P53 was inversely correlated with GST and SOD activities. There were significant correlations between Zn levels and GGT, GST and SOD activities, between vitamin C and GST activities, and vitamin C inversely correlated with MDA. Conclusion: The present study concluded that the oxidative stress of AFB1 elevated the MDA and the liver enzymes in wheat milling workers. GST has a crucial role in the detoxification of aflatoxin and SOD as a scavenger antioxidant increased in the workers to overcome the oxidative toxic effects of AFB1 on the liver of the workers, and roles of Zn and vitamin C were significant in activation of these processes.
Collapse
|
45
|
Antimutagenic compounds and their possible mechanisms of action. J Appl Genet 2014; 55:273-85. [PMID: 24615570 PMCID: PMC3990861 DOI: 10.1007/s13353-014-0198-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/20/2014] [Accepted: 01/31/2014] [Indexed: 12/23/2022]
Abstract
Mutagenicity refers to the induction of permanent changes in the DNA sequence of an organism, which may result in a heritable change in the characteristics of living systems. Antimutagenic agents are able to counteract the effects of mutagens. This group of agents includes both natural and synthetic compounds. Based on their mechanism of action among antimutagens, several classes of compounds may be distinguished. These are compounds with antioxidant activity; compounds that inhibit the activation of mutagens; blocking agents; as well as compounds characterized with several modes of action. It was reported previously that several antitumor compounds act through the antimutagenic mechanism. Hence, searching for antimutagenic compounds represents a rapidly expanding field of cancer research. It may be observed that, in recent years, many publications were focused on the screening of both natural and synthetic compounds for their beneficial muta/antimutagenicity profile. Thus, the present review attempts to give a brief outline on substances presenting antimutagenic potency and their possible mechanism of action. Additionally, in the present paper, a screening strategy for mutagenicity testing was presented and the characteristics of the most widely used antimutagenicity assays were described.
Collapse
|
46
|
Chen K, Peng X, Fang J, Cui H, Zuo Z, Deng J, Chen Z, Geng Y, Lai W, Tang L, Yang Q. Effects of dietary selenium on histopathological changes and T cells of spleen in broilers exposed to aflatoxin B1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:1904-13. [PMID: 24518648 PMCID: PMC3945576 DOI: 10.3390/ijerph110201904] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/16/2014] [Accepted: 01/26/2014] [Indexed: 12/21/2022]
Abstract
Aflatoxin B1 (AFB1), which causes hepatocellular carcinoma and immune-suppression, is commonly found in feedstuffs. To evaluate the ability of selenium (Se) to counteract the deleterious effects of AFB1, two hundred 1-day-old male avian broilers, divided into five groups, were fed with basal diet (control group), 0.3 mg/kg AFB1 (AFB1 group), 0.3 mg/kg AFB1+0.2 mg/kg Se (+Se group I), 0.3 mg/kg AFB1+0.4 mg/kg Se (+Se group II) and 0.3 mg/kg AFB1+0.6 mg/kg Se (+Se group III), respectively. Compared with control group, the relative weight of spleen in the AFB1 group was decreased at 21 days of age. The relative weight of spleen in the three +Se groups was higher than that in the AFB1 group. By pathological observation, the major spleen lesions included congestion in red pulp and vacuoles appeared in the lymphatic nodules and periarterial lymphatic sheath in the AFB1 group. In +Se groups II and III, the incidence of major splenic lesions was decreased. The percentages of CD3+, CD3+CD4+ and CD3+CD8+ T cells in the AFB1 group were lower than those in control group from 7 to 21 days of age, while there was a marked increase in the three +Se groups compared to the AFB1 group. The results indicated that sodium selenite could improve the cellular immune function impaired by AFB1 through increasing the relative weight of spleen and percentages of splenic T cell subsets, and alleviating histopathological spleen damage.
Collapse
Affiliation(s)
- Kejie Chen
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Xi Peng
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Jing Fang
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Hengmin Cui
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Zhicai Zuo
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Junliang Deng
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Zhengli Chen
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Yi Geng
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Weimin Lai
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Li Tang
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| | - Qingqiu Yang
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
47
|
Deficient glutathione in the pathophysiology of mycotoxin-related illness. Toxins (Basel) 2014; 6:608-23. [PMID: 24517907 PMCID: PMC3942754 DOI: 10.3390/toxins6020608] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 12/27/2022] Open
Abstract
Evidence for the role of oxidative stress in the pathophysiology of mycotoxin-related illness is increasing. The glutathione antioxidant and detoxification systems play a major role in the antioxidant function of cells. Exposure to mycotoxins in humans requires the production of glutathione on an “as needed” basis. Research suggests that mycotoxins can decrease the formation of glutathione due to decreased gene expression of the enzymes needed to form glutathione. Mycotoxin-related compromise of glutathione production can result in an excess of oxidative stress that leads to tissue damage and systemic illness. The review discusses the mechanisms by which mycotoxin-related deficiency of glutathione may lead to both acute and chronic illnesses.
Collapse
|
48
|
Consequences of metal exposure on retinoid metabolism in vertebrates: a review. Toxicol Lett 2013; 225:1-11. [PMID: 24291063 DOI: 10.1016/j.toxlet.2013.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 11/21/2022]
Abstract
What we generally refer to as 'vitamin A' is a group of naturally-occurring molecules structurally similar to retinol that are capable of exerting biological activity. These retinoids are essential to diverse physiological functions including vision, immune response, bone mineralization, reproduction, cell differentiation, and growth. As well, some retinoids have antioxidant properties. Independent studies published over the last few decades have revealed that many fish and wildlife populations living in highly polluted environments have altered retinoid status possibly associated with retinoid metabolic or homeostatic mechanisms. Substantial evidence links organic contaminant exposure with changes in retinoid status in animal populations, but only a few detailed studies have been published implicating inorganic contaminants such as metals. This mini-review selectively deals with field and laboratory studies reporting associations between environmental contaminants, especially trace metals, and alterations in retinoid status. Both essential and non-essential trace metals have been reported to affect retinoid status. This review focuses on metabolic imbalances of retinoids in relation to metal contamination and illustrates possible modes of action. The role of retinoids as antioxidants and their potential as biomarkers of metal contamination are discussed.
Collapse
|
49
|
Anar M, Orhan F, Alpsoy L, Gulluce M, Aslan A, Agar G. The antioxidant and antigenotoxic potential of methanol extract of Cladonia foliacea (Huds.) Willd. Toxicol Ind Health 2013; 32:721-9. [DOI: 10.1177/0748233713504805] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this article, the genotoxic and antigenotoxic effects of methanol extract of of Cladonia foliacea (Huds.) Willd. (CME) were studied using WP2, Ames (TA1535 and TA1537), and sister chromatid exchange (SCE) test systems. The results of our studies showed that 5 µM concentration of aflatoxin B1(AFB1) changed the frequencies of SCE and malondialdehyde (MDA) levels, superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GPx) activities. When 5 and 10 µg/mL concentrations of CME was added to AFB1, the frequencies of SCE and MDA level were decreased and SOD, GSH, and GPx levels were increased. The extract CME did not show any mutagenicity on Ames (Salmonella typhimurium TA1535, TA1537) and WP2 (Escherichia coli) test systems. On the other hand, CME has antimutagenicity on the mentioned test systems. The results of this experiment have clearly shown that CME has a significant antioxidative and antigenotoxic effect, which is thought to be due to the antigenotoxic activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Mustafa Anar
- Department of Biology Education, Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, Turkey
| | - Furkan Orhan
- Central Research and Application Laboratories, Agri Ibrahim Cecen University, Agri, Turkey
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Lokman Alpsoy
- Department of Biology, Faculty of Science, Fatih University, Istanbul, Turkey
| | - Medine Gulluce
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ali Aslan
- Department of Biology Education, Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, Turkey
| | - Guleray Agar
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
50
|
Chen J, Chen K, Yuan S, Peng X, Fang J, Wang F, Cui H, Chen Z, Yuan J, Geng Y. Effects of aflatoxin B1 on oxidative stress markers and apoptosis of spleens in broilers. Toxicol Ind Health 2013; 32:278-84. [PMID: 24097364 DOI: 10.1177/0748233713500819] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of the present study was to investigate the oxidative damage and apoptosis induced by aflatoxin B1 (AFB1) in spleen of broilers. A total of 200 one-day-old avian male broilers were randomly divided into 4 equal groups of 50 each and were fed for 21 days as follows: a control diet and three AFB1 diets containing 0.15, 0.3, and 0.6 mg AFB1/kg diet. Consumption of AFB1 diets induced oxidative stress in the spleen of chicken as evidenced by reduced glutathione peroxidase, glutathione reductase, and catalase activities, decreased glutathione contents, and increased malondialdehyde contents in explaining the pathogenesis. Flow cytometer method and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling assay revealed that the apoptotic splenocytes were increased in AFB1 groups. The results suggest that AFB1 induced excessive apoptosis of splenic lymphocytes, which is correlated with increased oxidative stress. The present results may be helpful for explaining the pathogenesis of AFB1-induced immunosuppression.
Collapse
Affiliation(s)
- Jin Chen
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
| | - Kejie Chen
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
| | - Shibin Yuan
- Institute of Rare Animals and Plants, College of Life Sciences, China West Normal University, Nanchong, Sichuan, People's Republic of China
| | - Xi Peng
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
| | - Jing Fang
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
| | - Fengyuan Wang
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
| | - Hengmin Cui
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
| | - Zhengli Chen
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
| | - Jingxin Yuan
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
| | - Yi Geng
- Department of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
| |
Collapse
|