1
|
Wang Y, Wang D, Hao H, Cui J, Huang L, Liang Q. The association between cadmium exposure and the risk of chronic obstructive pulmonary disease: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133828. [PMID: 38412643 DOI: 10.1016/j.jhazmat.2024.133828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
According to the World Health Organization, chronic obstructive pulmonary disease (COPD) was one of the top ten causes of death worldwide in 2019. The ratio of forced expiratory volume in the first second to forced vital capacity (FEV1/FVC) provides a useful indicator for the diagnosis of COPD. Existing data have demonstrated that cadmium (Cd) exposure is associated with COPD. However, data concerning the incidence and progression of cadmium-induced COPD is inconsistent. To explore the relationship between cadmium exposure and the risk of COPD in humans, through January 12, 2023, we conducted a thorough search of the PubMed, Cochrane, Web of Science, Embase and Scopus databases for relevant material. In this study, a meta-analysis was conducted to evaluate the association between cadmium and COPD. This meta-analysis indicated that exposure to cadmium (per 1 μg/L increase) was associated with reduced FEV1/FVC (% change = -47.54%, 95% CI: -54.99% to -40.09%). Subgroup analysis showed that the combined effect estimates were significantly higher in the COPD patient group (% change = -54.66%, 95% CI: -83.32% to -26.00%) than in the general population (% change = -52.11%, 95%CI: -60.53% to -43.70%). Therefore, we conclude that cadmium exposure is associated with reduced FEV1/FVC, which suggests a risk for COPD.
Collapse
Affiliation(s)
- Yali Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Donglei Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Hongyu Hao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Jinjin Cui
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| | - Qingqing Liang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| |
Collapse
|
2
|
Kashlan OB, Wang XP, Sheng S, Kleyman TR. Epithelial Na + Channels Function as Extracellular Sensors. Compr Physiol 2024; 14:1-41. [PMID: 39109974 PMCID: PMC11309579 DOI: 10.1002/cphy.c230015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The epithelial Na + channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members. It also reviews our understanding of the role of ENaC regulation by the extracellular environment in physiology and disease. After familiarizing the reader with the channel's physiological roles and structure, we describe the central role protein allostery plays in ENaC's sensitivity to the external environment. We then discuss each of the extracellular factors that directly regulate the channel: proteases, cations and anions, shear stress, and other regulators specific to particular extracellular compartments. For each regulator, we discuss the initial observations that led to discovery, studies investigating molecular mechanism, and the physiological and pathophysiological implications of regulation. © 2024 American Physiological Society. Compr Physiol 14:5407-5447, 2024.
Collapse
Affiliation(s)
- Ossama B. Kashlan
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xue-Ping Wang
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaohu Sheng
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Thomas R. Kleyman
- Department of Medicine, Renal-Electrolyte Division,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh,
Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Yuan TY, Wan DJ, Yang WJ, Gu JF, Zhou H, Zeng P, Liao BH. Tartaric acid coupled with gibberellin improves remediation efficiency and ensures safe production of crops: A new strategy for phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168319. [PMID: 37949124 DOI: 10.1016/j.scitotenv.2023.168319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Phytoremediation is the direct use of living green plants and it is an effective, inexpensive, non-invasive, and environmentally friendly technique used to transfer or stabilize all the toxic metals and environmental pollutants in polluted soil or ground water. To study the effect of tartaric acid, gibberellin, and tartaric acid coupled with gibberellin on rape-kenaf or rape-sweet sorghum rotation, a field experiment was carried out on a farmland combined polluted with Cd and Pb in eastern Hunan Province, China. The results showed that these two rotation systems coupled with superposition measure has potential to enhance yield and biomass of rape (Brassica napus L.), kenaf (Hibiscus cannabinus) and sweet sorghum (Sorghum dochna (F.) Snowden), as well as to increase Cd and Pb uptake of the three crops, thus accelerating phytoextraction. The Cd and Pb annual removal by rape-kenaf rotation in one year under different treatments were 269-438 and 112-149 g·hm-2, respectively. And the Cd and Pb annual removal by rape-sweet sorghum rotation in one year under different treatments were 68.0-111 and 43.8-92.3 g·hm-2, respectively. Under the two rotation systems, these integrated management measures can remove Cd and Pb up to 438 g·hm-2·year-1 and 149 g·hm-2·year-1, respectively. The Cd and Pb content in rape seeds or sweet sorghum stems and leaves were lower than the food or forage standard, indicating that we can use this rotation system for both remediation and safety production. Furthermore, the two rotation systems also generated considerable economic value. These results showed that the combination of phytoremediation and agricultural production is a feasible technical mode in the field of Cd and Pb co-contamination, and also provides useful information for further study of the interaction mechanism between rotation crops and enhancement measures. In subsequent experiments we can set concentration gradients for tartaric acid and gibberellin, and we can also select other crops for rotation, with a view to finding the optimal auxiliary measure and crop rotation modern.
Collapse
Affiliation(s)
- Teng-Yue Yuan
- School of Geographical Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Da-Juan Wan
- School of Geographical Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Wen-Jun Yang
- College of Environment Science and Engineering, Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, Changsha 410004, China
| | - Jiao-Feng Gu
- College of Environment Science and Engineering, Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, Changsha 410004, China.
| | - Hang Zhou
- College of Environment Science and Engineering, Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, Changsha 410004, China
| | - Peng Zeng
- College of Environment Science and Engineering, Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, Changsha 410004, China
| | - Bo-Han Liao
- College of Environment Science and Engineering, Hunan Engineering Laboratory for Control of Rice Quality and Safety, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Provincial Key Laboratory of Wetland and Soil Ecological Remediation, Changsha 410004, China
| |
Collapse
|
4
|
Akram Z, Mahjabeen I, Batool M, Kanwal S, Nawaz F, Kayani MA, Rizwan M. Expression deregulation of genes related to DNA repair and lead toxicity in occupationally exposed industrial workers. Int Arch Occup Environ Health 2023; 96:1333-1347. [PMID: 37804366 DOI: 10.1007/s00420-023-02012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/24/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE Globally millions of people working in various industries and are exposed to different toxins which may affect their genetic stability and DNA integrity. Present study was designed to estimate the expression variation of genes related to DNA repair (XRCC1, PARP1) and lead toxicity (ALAD) in exposed industrial workers. METHODS About 200 blood samples were collected from workers of brick kiln, welding, furniture and paint industry (50/industry) along with age and gender matched controls. mRNA expression of genes was measured using RT-PCR. Serum levels of total ROS, POD, TBAR activity was calculated. Blood lead levels were estimated by atomic absorption spectrometer. RESULTS Relative expression of XRCC1 and PARP1 gene was significantly (P < 0.001) upregulated, while ALAD gene expression was downregulated in exposed group compared to control. Expression of XRCC1 and PARP1 was increased (P < 0.001) in exposed workers with > 30 year age compared to control with > 30 year age. Same was observed when < 30 year age group of control and exposed was compared. Likewise, XRCC1 and PARP1 expression was increased (P < 0.001) in exposed workers with > 30 year age compared to workers with < 30 year age. Whereas, ALAD gene showed significant (P < 0.01) decrease in > 30 year age workers compared to control of same age and exposed with < 30 year of age. Relative expression of XRCC1 and PARP1 was increased (P < 0.001) in exposed smokers compared to exposed non-smokers and control smokers. Whereas, ALAD gene expression reduced (P < 0.001) significantly in both groups. Blood lead content was higher (P < 0.001) in exposed group compared to control. Strong correlation was observed between XRCC1, PARP1 and ALAD gene versus age, total exposure duration, exposure per day and lead deposition. ROS, TBARS and POD activity was higher (P < 0.01) in exposed group compared to control group. CONCLUSION Present study suggested deregulation of genes related to DNA repair and lead intoxication in exposed group compared to controls. Strong correlation was observed between selected genes and demographic parameters. Present results revealed altered activity of oxidative stress markers which would induce oxidative damage to DNA integrity and limit the function of repair enzymes.
Collapse
Affiliation(s)
- Zertashia Akram
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mariam Batool
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Kanwal
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Fatima Nawaz
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Rizwan
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
5
|
Liu YF, Tang MM, Sun J, Li JF, Jiang YL, Zhao H, Fu L. Arsenic exposure and lung function decline in chronic obstructive pulmonary disease patients: The mediating influence of systematic inflammation and oxidative stress. Food Chem Toxicol 2023; 181:114044. [PMID: 37777081 DOI: 10.1016/j.fct.2023.114044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
Lung tissue is one of the target sites of arsenic (As). The goal of this investigation was to assess the associations of blood As concentration with pulmonary function indicators in patients with chronic obstructive pulmonary disease (COPD), as well as the roles of systemic inflammation and oxidative stress in this relationship. All 791 COPD patients were selected. Blood As concentration, and tumour necrosis factor-α (TNF-α) and 8-iso-prostaglandin-F2α (8-iso-PGF2α) were detected in the serum of COPD cases. Blood As was robustly related to pulmonary function parameters in an inverse dose-dependent manner. Multivariate linear regression analyses verified that a 1-unit increase of blood As was linked to declines of 0.263 L in FVC, 0.288 L in FEV1, 3.454 in FEV1/FVC%, and 0.538 in predicted FEV1%, respectively. The potential for pulmonary function decline gradually increased across the elevated tertiles of blood As. Nonsmokers were susceptible to As-induced pulmonary function reduction. Blood As was positively linked to the levels of TNF-α and 8-iso-PGF2α. Increased TNF-α and 8-iso-PGF2α partially mediated As-induced the reductions in FEV1 and FVC among COPD patients. As exposure is intensely linked to pulmonary function reduction. Systematic inflammation and oxidative stress partially mediate such associations in COPD patients.
Collapse
Affiliation(s)
- Yun-Feng Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Min-Min Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Jia-Fei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Chuzhou, Chuzhou, Anhui, 239001, China
| | - Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People's Hospital, Bozhou, Anhui, 236800, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| |
Collapse
|
6
|
Irshad MK, Noman A, Wang Y, Yin Y, Chen C, Shang J. Goethite modified biochar simultaneously mitigates the arsenic and cadmium accumulation in paddy rice (Oryza sativa) L. ENVIRONMENTAL RESEARCH 2022; 206:112238. [PMID: 34688646 DOI: 10.1016/j.envres.2021.112238] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/24/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and arsenic (As) contamination of paddy soils is a serious global issue because of the opposite geochemical behavior of Cd and As in paddy soils. Rice plant (Oryza sativa L.) cultivation in Cd- and As- contaminated paddy soil is regarded as one of the main dietary cause of Cd and As entry in human beings. This study aimed to determine the impact of goethite-modified biochar (GB) on bioavailability of both Cd and As in Cd- and As- polluted paddy soil. Contrary to control and biochar (BC) amendments, the application of GB amendments significantly impeded the accumulation of both Cd and As in rice plants. The results confirmed an obvious reduction in Cd and As content of rice grains by 85% and 77%, respectively after soil supplementation with GB 2% amendment. BC 3% application minimized the Cd uptake by 59% in the rice grains as compared to the control but exhibited a little impact on As accumulation in rice grains. Sequential extraction results displayed an increase in immobile Cd and As fractions of the soil by decreasing the bioavailable fractions of both elements after GB treatments. Fe-plaque formation on the root surfaces was significantly variable (P ˂ 0.05) among all the amendments. GB 2% treatment significantly increased the Fe content (10 g kg-1) of root Fe-plaque by 48%, which ultimately enhanced the sequestration of Cd and As by Fe-plaque and minimized the transport of Cd and As in rice plants. Moreover, GB treatments significantly changed the relative abundance of the microbial community in the rice rhizosphere and minimized the metal(loid)s mobility in the soil. The relative abundance of Acidobacteria, Firmicutes and Verrucomicrobia increased with GB 2% treatment while those of Bacteroidetes and Choloroflexi decreased. Our findings confirmed improvement in the rice grains quality regarding enhanced amino acid contents with GB application. Overall, the results of this study demonstrated that GB amendment simultaneously alleviated the Cd and As concentrations in edible parts of rice plant and provided a new valuable method to protect the public health by effectively remediating the co-occurrence of Cd and As in paddy soils.
Collapse
Affiliation(s)
- Muhammad Kashif Irshad
- College of Land Science and Technology, China Agricultural University, Beijing, China; Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Pakistan
| | - Yang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Yingjie Yin
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Chong Chen
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Dev M, Bhardwaj A. Respiratory symptoms and spirometric abnormalities among welders in the welding workplace of the Indian unorganized sector. Work 2021; 69:885-894. [PMID: 34180459 DOI: 10.3233/wor-213521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Welding is one of the most hazardous professions across the globe. Several risk factors are associated with Indian unorganized welding units such as welding gases, fumes and dust particles resulting in various respiratory health problems. OBJECTIVE The objective of the present study is to examine the prevalence of respiratory symptoms, their associated factors and lung function impairment amongst the welders of the unorganized sector in India. METHODS A cross-sectional study was conducted across 283 welders of age group 18-55 years from Punjab, India who responded to the interviewer-administrated respiratory symptoms questionnaire. Also, the lung function parameters of 50 male welders (exposed group) and 50 male non-welders (control group) working in the same environment were evaluated. RESULTS The prevalence of respiratory symptoms such as chronic cough (38.86%), phlegm (38.86%), shortness of breath (33.56%), wheezing (32.15%), chest tightness (36.40%,) and sputum (34.27%) was reported by the welders. The observed mean values of forced vital capacity (FVC), forced expiratory volume in 1s (FEV1) and FEV1/FVC ratio of welders were (3.37±0.175), (2.59±0.16) and (76.63±6.16) respectively and that of non-welders were (3.70±0.15), (3.05±0.25) and (82.49±7.62) respectively. CONCLUSIONS The welders were found to be at significant risk of developing pulmonary diseases. Long working hours, low level of education, hazardous working conditions, lack of implementation of safety laws make welders more vulnerable to health risks. The welders of Indian unorganized sector work without any technical training related to welding and safety. Proper orientation sessions about the workplace hazards and to maintain hygiene at their workplace should be organized. Welders must be provided with Personal Protective Equipment (PPE). Welders should take proper health check-up and medication to sustain healthiness.
Collapse
Affiliation(s)
- Manish Dev
- Department of Industrial and Production Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, India
| | - Arvind Bhardwaj
- Department of Industrial and Production Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, India
| |
Collapse
|
8
|
Zhang D, Li T, Ding A, Wu X. Effects of an additive (hydroxyapatite-bentonite-biochar) on Cd and Pb stabilization and microbial community composition in contaminated vegetable soil. RSC Adv 2021; 11:12200-12208. [PMID: 35423762 PMCID: PMC8697084 DOI: 10.1039/d1ra00565k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
A two-year pot experiment was conducted with a pimiento-celery cabbage (Capsicum annuum L.-Brassica pekinensis) rotation in acidic soil contaminated with Cd and Pb, which was amended with 0.0, 1.0, 2.5, 5.0 and 10.0% (w/w) premixtures of hydroxyapatite, bentonite and biochar combinations (HTB, in a ratio of 1 : 2 : 2). The results showed that the application of HTB at 2.5-10.0% significantly increased soil pH and organic carbon by an average of 10.38-17.60% and 35.60-55.34% during the two years, respectively. Compared to the control treatment, 1.0-10.0% HTB decreased the available Cd and Pb concentrations by 40.92-77.53% and 41.60-82.79% on average, respectively. In addition, the diversity and richness of the soil bacterial community improved after the two-year application of HTB. The relative abundances of Acidobacteria, Bacteroidetes and Chloroflexi increased under the HTB treatments, while those of Proteobacteria and Actinobacteria decreased. Redundancy analysis (RDA) and regression analysis indicated that soil pH and Cd and Pb availability were important factors shaping the soil bacterial community. The Cd and Pb concentrations in the edible parts of pimiento and celery cabbage decreased as the HTB application rate increased and met the Food Quality Standard in each season when the HTB application rate was 5.0% or higher. Higher rates of HTB (5.0% and 10.0%) not only ensured the quality of vegetables, but also significantly promoted pimiento and celery cabbage growth. Overall, these results indicated that the application of HTB, especially at a rate of 5.0%, could be an effective way to immobilize Cd and Pb, improve soil quality and ensure vegetables produced in acidic contaminated soil are safe for human consumption.
Collapse
Affiliation(s)
- Di Zhang
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| | - Ting Li
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| | - Aifang Ding
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| | - Xiaoxia Wu
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| |
Collapse
|
9
|
Yang D, Liu Y, Liu S, Li C, Zhao Y, Li L, Lu S. Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China. CHEMOSPHERE 2020; 250:126289. [PMID: 32114348 DOI: 10.1016/j.chemosphere.2020.126289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Burning municipal waste produces a great deal of harmful heavy metals, which may lead to elevated exposure in incinerator workers and residents living nearby. However, relevant human exposure studies remain scarce, especially in China. This study aimed to determine the concentrations of ten heavy metals in urine of incinerator workers (n = 119, as the exposed group) and residents living nearby (n = 215, as the control group) from Shenzhen (China), and explore the associations between heavy metal exposure and DNA oxidative stress (indicated by 8-hydroxy-2'-deoxyguanosine or 8-OHdG) in humans. The median urinary concentrations of manganese (Mn), iron (Fe), chromium (Cr), arsenic (As), selenium (Se) and 8-OHdG in the exposed group were significantly higher than those in the control group (p < 0.05), suggesting occupational exposure elevated heavy metal intake for the incinerator workers. Nevertheless, there is no correlation statistically significant between the concentrations of any heavy metal and 8-OHdG in urine in the exposed group, indicating heavy metals releasing from waste incineration were not important factors to induce DNA oxidative stress. To our knowledge, this study firstly reported the concentrations of heavy metal in urine and their associations with DNA oxidative damage in waste incinerator workers in Shenzhen, China.
Collapse
Affiliation(s)
- Dongfeng Yang
- School of Public Health, University of South China, Hengyang, 421001, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yanling Liu
- Nanshan District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Shan Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Le Li
- School of Public Health, University of South China, Hengyang, 421001, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
10
|
Freire C, Vrhovnik P, Fiket Ž, Salcedo-Bellido I, Echeverría R, Martín-Olmedo P, Kniewald G, Fernández MF, Arrebola JP. Adipose tissue concentrations of arsenic, nickel, lead, tin, and titanium in adults from GraMo cohort in Southern Spain: An exploratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137458. [PMID: 32112946 DOI: 10.1016/j.scitotenv.2020.137458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/31/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Adipose tissue has been acknowledged as a potential target for obesogenic pollutants, including toxic metal(loid)s. However, the presence of these chemicals in the adipose tissue has been poorly characterized. OBJECTIVE To examine the distributions of adipose tissue concentrations of five toxic metal(loid)s (i.e., arsenic [As], nickel [Ni], lead [Pb], tin [Sn], and titanium [Ti]) in adults, and potential socio-demographic and lifestyle factors associated with metal(loid) concentrations. METHODS The study population consisted of a subsample of 228 subjects from GraMo cohort in Southern Spain (N = 387). Adipose tissue samples were intra-operatively collected from adults recruited in 2003-2004 in two public hospitals, and concentrations of metal(loid)s in adipose tissue were analyzed in 2015 by High-Resolution Inductively Coupled Plasma Mass Spectrometry. Data on socio-demographic and lifestyle factors were obtained by baseline questionnaire completion. Linear and multinomial regression was used to identify factors associated with metal(loid) levels. RESULTS Ni, Pb, Sn, and Ti were detected in all adipose tissue samples, and As in 51% of them. Ni was the metal showing the highest median concentration (0.56 μg/g), followed by Ti (0.31 μg/g), Pb (0.08 μg/g), Sn (0.06 μg/g), and As (0.003 μg/g). Predictors of As levels included area of residence, social class, and oily fish intake; for Ni: area of residence and consumption of cheese, meat, eggs, and canned food; for Pb: vegetables intake and industrial occupation; for Sn: age, body mass index, and consumption of lean fish, eggs, and milk; and cheese intake for Ti. Some of these predictors were sex-specific, particularly those regarding dietary intake. CONCLUSIONS This exploratory study provides the first evidence of the occurrence of Ni, Pb, Sn, Ti, and As in adipose tissue from adult population, and highlights the potential of this tissue as a biological matrix for studying exposure levels and chronic health effects of toxic metal(loid)s.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Petra Vrhovnik
- Slovenian National Building and Civil Engineering Institute (ZAG), SI-1000 Ljubljana, Slovenia.
| | - Željka Fiket
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000 Zagreb, Croatia.
| | - Inmaculada Salcedo-Bellido
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain.
| | - Ruth Echeverría
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
| | - Piedad Martín-Olmedo
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; Andalusian School of Public Health, 18011 Granada, Spain.
| | - Goran Kniewald
- Ruđer Bošković Institute, Division for Marine and Environmental Research, 10000 Zagreb, Croatia.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Biomedical Research Centre, University of Granada, 18016 Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, Granada 18016, Spain.
| | - Juan Pedro Arrebola
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Hospitales Universitarios de Granada, 18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
11
|
Yuan T, Gu J, Zhou H, Huang F, Yang W, Wang S, Zhang J, Huo Y, Liao B. Translocation and accumulation of cadmium and lead in the tissues of 39 rape cultivars grown in a polluted farmland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:15888-15900. [PMID: 32100214 DOI: 10.1007/s11356-020-07697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
To investigate the differences in cadmium (Cd) and lead (Pb) uptake and translocation among rape cultivars and genotypes and select suitable rape cultivars for both safe production and soil remediation, a field experiment was carried out with 39 rape cultivars of three genotypes on a farmland polluted with Cd and Pb in eastern Hunan Province, China. The Cd and Pb contents in rape tissues were measured, and the amount of Cd and Pb removed was calculated. The results showed that Cd in rape plants accumulated mostly in stems, while Pb accumulated mostly in roots. The Cd accumulation in various rape tissues followed the sequence stem > root > husk > rapeseed, while the Pb accumulation followed the sequence root > stem > husk > rapeseed. The total Cd and Pb removed by planting rape were 4.50-23.6 g ha-1 and 5.85-13.7 g ha-1, respectively, and the Cd and Pb contents in rapeseeds were in the range 0.11-0.47 mg kg-1 and 0.03-0.84 mg kg-1, respectively. Only the Pb content in rapeseed of "Youyan 9" exceeded the limit of the maximum levels of contaminants in foods (GB2762-2017, Pb ≤ 0.2 mg kg-1). In this experiment, the roots of most rape cultivars showed a greater capacity for Cd transport, while the stems showed a greater capacity for Pb transport. Except for the TFstem-husk for Cd, there were no significant differences in the TFs and BAFs of 39 rape cultivars, and clear variations in Cd content were found in the stems of the three genotypes, while there was no significant difference in the Cd and Pb contents in the other tissues. In the farmland polluted with Cd and Pb, planting "Xiangzayou 695" and "Youyan 2013" not only reduced soil pollution but also allowed the production of safe rapeseed.
Collapse
Affiliation(s)
- Tengyue Yuan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiaofeng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Fang Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Wenjun Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Shilong Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jingyi Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yang Huo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
12
|
Baliga M, Prabhu H, Kalekhan F, Simon P, D'silva P, Shivashankara A. Hematological, antioxidant, and trace elements status in healthy mechanical welders: A pilot study. JOURNAL OF APPLIED HEMATOLOGY 2020. [DOI: 10.4103/joah.joah_37_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Amrani I, Haddam N, Garat A, Allorge D, Zerimech F, Schraen S, Taleb A, Merzouk H, Edme JL, Lo-Guidice JM. Exposure to metal fumes and circulating miRNAs in Algerian welders. Int Arch Occup Environ Health 2019; 93:553-561. [DOI: 10.1007/s00420-019-01509-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
|
14
|
Nickel induces inflammatory activation via NF-κB, MAPKs, IRF3 and NLRP3 inflammasome signaling pathways in macrophages. Aging (Albany NY) 2019; 11:11659-11672. [PMID: 31822637 PMCID: PMC6932914 DOI: 10.18632/aging.102570] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/23/2019] [Indexed: 01/17/2023]
Abstract
Nickel (Ni), an environmental hazard, widely causes allergic contact hypersensitivity worldwide. Despite that Ni-stimulated pro-inflammatory response is vital in allergy, the underlying molecular mechanisms remain largely unclear. Here, we demonstrated that NiCl2 activated nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs) and interferon regulatory factor 3 (IRF3) signaling pathways in primary bone marrow-derived macrophages (BMDMs), leading to the altered transcription levels of interleukin-1β (IL-1β), -6, -8, -18, tumor necrosis factor-α (TNF-α) and interferon β (INF-β). We also found that nickel chloride (NiCl2) activated Nod-like receptor 3 (NLRP3) inflammasome pathway, resulting in the proteolytic cleavage and release of IL-1β. NiCl2 induced the accumulation of mitochondrial reactive oxygen species (mtROS) and the release of mitochondrial DNA (mtDNA), thus activating NLRP3 inflammasome pathway. Additionally, NiCl2-induced apoptosis was dependent on the generation of mtROS, and caspase-1 activation might also partly contribute to the apoptotic process. Altogether, abovementioned results indicate that NiCl2 induces inflammatory activation in BMDMs via NF-κB, MAPKs, IRF3 signaling pathways as well as NLRP3 inflammasome pathway, which provides a mechanism to improve the efficiency of treatment against Ni-induced allergic reactions.
Collapse
|
15
|
Gu JF, Zhou H, Tang HL, Yang WT, Zeng M, Liu ZM, Peng PQ, Liao BH. Cadmium and arsenic accumulation during the rice growth period under in situ remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:451-459. [PMID: 30639871 DOI: 10.1016/j.ecoenv.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot-1 (9000 kg ha-1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg-1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg-1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution.
Collapse
Affiliation(s)
- Jiao-Feng Gu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Hang Zhou
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Hui-Ling Tang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Wen-Tao Yang
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Min Zeng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Zhi-Ming Liu
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Pei-Qin Peng
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| | - Bo-Han Liao
- College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha 410004, China.
| |
Collapse
|
16
|
Valenti VE, Garner DM. Cardiovascular risks in subjects exposed to the Brumadinho dam collapse, Minas Gerais, Brazil. Clinics (Sao Paulo) 2019; 74:e1301. [PMID: 31664422 PMCID: PMC6807691 DOI: 10.6061/clinics/2019/e1301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Vitor Engrácia Valenti
- Centro de Estudos do Sistema Nervoso Autonomo, Faculdade de Filosofia e Ciencias, Universidade Estadual Paulista, Marilia, SP, BR
- *Corresponding author. E-mail:
| | - David M. Garner
- Cardiorespiratory Research Group, Department of Biological and Medical Sciences, School of Health and Life Sciences, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford OX3 0BP, United Kingdom
| |
Collapse
|