1
|
Poole J, Kitchen GB. Circadian regulation of innate immunity in animals and humans and implications for human disease. Semin Immunopathol 2022; 44:183-192. [PMID: 35169890 PMCID: PMC8853148 DOI: 10.1007/s00281-022-00921-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2022] [Indexed: 01/19/2023]
Abstract
Circadian rhythms are 24-h oscillating variations in physiology generated by the core circadian clock. There is now a wide body of evidence showing circadian regulation of the immune system. Innate immune cells contain the molecular circadian clock which drives rhythmic responses, from the magnitude of the inflammatory response to the numbers of circulating immune cells varying throughout the day. This leads to rhythmic presentation of disease clinically, for example the classic presentation of nocturnal asthma or the sudden development of pulmonary oedema from acute myocardial infarction first thing in the morning.
Collapse
Affiliation(s)
- Joanna Poole
- Southmead Hospital, North Bristol Trust, Southmead Rd, Bristol, BS10 5NB, UK
| | - Gareth B Kitchen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK.
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK.
| |
Collapse
|
2
|
The paraventricular thalamus serves as a nexus in the regulation of stress and immunity. Brain Behav Immun 2021; 95:36-44. [PMID: 33540073 DOI: 10.1016/j.bbi.2021.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/23/2022] Open
Abstract
Many temperate zone animals exhibit seasonal rhythms in physiology and behavior, including seasonal cycles of reproduction, energetics, stress responsiveness, and immune function, among many others. These rhythms are driven by seasonal changes in the duration of pineal melatonin secretion. The neural melatonin target tissues that mediate several of these rhythms have been identified, though the target(s) mediating melatonin's regulation of glucocorticoid secretion, immune cell numbers, and bacterial killing capacity remain unspecified. The present results indicate that one melatonin target tissue, the paraventricular nucleus of the thalamus (PVT), is necessary for the expression of these seasonal rhythms. Thus, while radiofrequency ablations of the PVT failed to alter testicular and body mass response to short photoperiod exposure, they did block the effect of short day lengths on cortisol secretion and bacterial killing efficacy. These results are consistent with the independent regulation by separate neural circuits of several physiological traits that vary seasonally in mammals.
Collapse
|
3
|
Lopes PC, French SS, Woodhams DC, Binning SA. Sickness behaviors across vertebrate taxa: proximate and ultimate mechanisms. J Exp Biol 2021; 224:260576. [PMID: 33942101 DOI: 10.1242/jeb.225847] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| | - Susannah S French
- Department of Biology and The Ecology Center, Utah State University, Logan, UT 84322, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada, H3C 3J7
| |
Collapse
|
4
|
Whiting JR, Mahmud MA, Bradley JE, MacColl ADC. Prior exposure to long-day photoperiods alters immune responses and increases susceptibility to parasitic infection in stickleback. Proc Biol Sci 2020; 287:20201017. [PMID: 32605431 PMCID: PMC7423467 DOI: 10.1098/rspb.2020.1017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/08/2020] [Indexed: 11/15/2022] Open
Abstract
Seasonal disease and parasitic infection are common across organisms, including humans, and there is increasing evidence for intrinsic seasonal variation in immune systems. Changes are orchestrated through organisms' physiological clocks using cues such as day length. Ample research in diverse taxa has demonstrated multiple immune responses are modulated by photoperiod, but to date, there have been few experimental demonstrations that photoperiod cues alter susceptibility to infection. We investigated the interactions among photoperiod history, immunity and susceptibility in laboratory-bred three-spined stickleback (a long-day breeding fish) and its external, directly reproducing monogenean parasite Gyrodactylus gasterostei. We demonstrate that previous exposure to long-day photoperiods (PLD) increases susceptibility to infection relative to previous exposure to short days (PSD), and modifies the response to infection for the mucin gene muc2 and Treg cytokine foxp3a in skin tissues in an intermediate 12 L : 12 D photoperiod experimental trial. Expression of skin muc2 is reduced in PLD fish, and negatively associated with parasite abundance. We also observe inflammatory gene expression variation associated with natural inter-population variation in resistance, but find that photoperiod modulation of susceptibility is consistent across host populations. Thus, photoperiod modulation of the response to infection is important for host susceptibility, highlighting new mechanisms affecting seasonality of host-parasite interactions.
Collapse
Affiliation(s)
- James R. Whiting
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK
| | - Muayad A. Mahmud
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Scientific Research Center, Erbil Polytechnic University, Erbil, Iraq
| | - Janette E. Bradley
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andrew D. C. MacColl
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
5
|
Griepentrog JE, Zhang X, Lewis AJ, Gianfrate G, Labiner HE, Zou B, Xiong Z, Lee JS, Rosengart MR. Frontline Science: Rev-Erbα links blue light with enhanced bacterial clearance and improved survival in murine Klebsiella pneumoniae pneumonia. J Leukoc Biol 2019; 107:11-25. [PMID: 31379019 DOI: 10.1002/jlb.4hi0519-155r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
The wavelength of light is a critical determinant of light's capacity to entrain adaptive biological mechanisms, such as enhanced immune surveillance, that precede and prepare us for the active circadian day, a time when the risk of encountering pathogen is highest. Light rich in the shorter wavelength visible blue spectrum maximally entrains these circadian rhythms. We hypothesized that exposure to blue light during sepsis will augment immunity and improve outcome. Using a clinically relevant Klebsiella pneumoniae acute lower respiratory tract infection model, we show that blue spectrum light shifts autonomic tone toward parasympathetic predominance and enhances immune competence, as characterized by accelerated pathogen clearance that is accompanied by reduced alveolar neutrophil influx, inflammation, and improved survival. Blue light functioned through an optic-cholinergic pathway and expansion of splenic Ccr2+ monocytes to increase control of the infection and improve survival. The "keystone" mediating these effects is the circadian clock protein Rev-Erbα, and biochemical activation with Rev-Erbα agonist SR9009 enhanced mononuclear cell phagocytosis in vitro and recapitulated the enhanced pathogen elimination in vivo observed with blue light. These findings underscore the potential therapeutic value of blue light and modulating Rev-Erbα to enhance host immunity against infection.
Collapse
Affiliation(s)
- John E Griepentrog
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xianghong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony J Lewis
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Hanna E Labiner
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Baobo Zou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zeyu Xiong
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Janet S Lee
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew R Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Fernandes JCR, Aoki JI, Maia Acuña S, Zampieri RA, Markus RP, Floeter-Winter LM, Muxel SM. Melatonin and Leishmania amazonensis Infection Altered miR-294, miR-30e, and miR-302d Impacting on Tnf, Mcp-1, and Nos2 Expression. Front Cell Infect Microbiol 2019; 9:60. [PMID: 30949455 PMCID: PMC6435487 DOI: 10.3389/fcimb.2019.00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
Leishmaniases are neglected diseases that cause a large spectrum of clinical manifestations, from cutaneous to visceral lesions. The initial steps of the inflammatory response involve the phagocytosis of Leishmania and the parasite replication inside the macrophage phagolysosome. Melatonin, the darkness-signaling hormone, is involved in modulation of macrophage activation during infectious diseases, controlling the inflammatory response against parasites. In this work, we showed that exogenous melatonin treatment of BALB/c macrophages reduced Leishmania amazonensis infection and modulated host microRNA (miRNA) expression profile, as well as cytokine production such as IL-6, MCP-1/CCL2, and, RANTES/CCL9. The role of one of the regulated miRNA (miR-294-3p) in L. amazonensis BALB/c infection was confirmed with miRNA inhibition assays, which led to increased expression levels of Tnf and Mcp-1/Ccl2 and diminished infectivity. Additionally, melatonin treatment or miR-30e-5p and miR-302d-3p inhibition increased nitric oxide synthase 2 (Nos2) mRNA expression levels and nitric oxide (NO) production, altering the macrophage activation state and reducing infection. Altogether, these data demonstrated the impact of melatonin treatment on the miRNA profile of BALB/c macrophage infected with L. amazonensis defining the infection outcome.
Collapse
Affiliation(s)
- Juliane Cristina Ribeiro Fernandes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Ide Aoki
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Stephanie Maia Acuña
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Andrade Zampieri
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandra Marcia Muxel
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Hicks A, Healy E, Sandeman N, Feelisch M, Wilkinson T. A time for everything and everything in its time - exploring the mechanisms underlying seasonality of COPD exacerbations. Int J Chron Obstruct Pulmon Dis 2018; 13:2739-2749. [PMID: 30233164 PMCID: PMC6130531 DOI: 10.2147/copd.s146015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Across Europe, COPD affects 23 million people leading to annual health care costs of ~€25.1 billion. This burden is particularly severe during winter months in association with the peak incidence of exacerbation events. Seasonal variation in the health status of patients with COPD places additional and often critical pressure on already strained health care resources. COPD exacerbations are characterized by worsening day-to-day symptoms of an individual and often triggered by respiratory infections, but the process by which this occurs in a seasonal fashion is likely to be multifactorial. In this review, we discuss recent population studies that highlight the impact of seasonality in COPD and review the proposed biological mechanisms underlying this. An appraisal of the role of the host susceptibility and response, environmental triggers and the biology of respiratory pathogens is detailed. The impact of each aspect is considered, and an integrated model of the context for the whole individual and society in general is explored.
Collapse
Affiliation(s)
- Alexander Hicks
- Clinical and Experimental Sciences, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK, .,Southampton NIHR Respiratory Biomedical Research Centre, Southampton General Hospital, Southampton, UK, .,National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care (NIHR CLAHRC) Wessex, Southampton General Hospital, Southampton, UK,
| | - Eugene Healy
- Clinical and Experimental Sciences, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK,
| | - Natasha Sandeman
- Clinical and Experimental Sciences, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK,
| | - Martin Feelisch
- Clinical and Experimental Sciences, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK, .,Southampton NIHR Respiratory Biomedical Research Centre, Southampton General Hospital, Southampton, UK,
| | - Tom Wilkinson
- Clinical and Experimental Sciences, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK, .,Southampton NIHR Respiratory Biomedical Research Centre, Southampton General Hospital, Southampton, UK, .,National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care (NIHR CLAHRC) Wessex, Southampton General Hospital, Southampton, UK, .,Wessex Investigational Sciences Hub, University of Southampton - Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
8
|
Wyse CA, Celis Morales CA, Ward J, Lyall D, Smith DJ, Mackay D, Curtis AM, Bailey MES, Biello S, Gill JMR, Pell JP. Population-level seasonality in cardiovascular mortality, blood pressure, BMI and inflammatory cells in UK biobank. Ann Med 2018; 50:410-419. [PMID: 29724143 DOI: 10.1080/07853890.2018.1472389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION The risk of mortality from cardiovascular disease (CVD) is higher in wintertime throughout the world, but it is not known if this reflects annual changes in diet or lifestyle, or an endogenous photoperiodic mechanism that is sensitive to changes in day length. METHODS Phenotypic data on cardiometabolic and lifestyle factors were collected throughout a 4 year time period from 502,642 middle-aged participants in UK Biobank. To assess the impact of seasonal environmental changes on cardiovascular risk factors, we linked these data to the outdoor temperature and day length at the time of assessment. Self-reported information on physical activity, diet and disease status were used to adjust for confounding factors related to health and lifestyle. RESULTS Mortality related to CVD was higher in winter, as were risk factors for this condition including blood pressure, markers of inflammation and body mass index (BMI). These seasonal rhythms were significantly related to day length after adjustment for other factors that might affect seasonality including physical activity, diet and outdoor temperature. CONCLUSIONS The risk of CVD may be modulated by day length at temperate latitudes, and the implications of seasonality should be considered in all studies of human cardiometabolic health. Key messages In this cross-sectional study in UK Biobank, we report annual variations in cardiovascular risk factors and mortality that were associated with day length independent of environmental and lifestyle factors. These seasonal changes in day length might contribute to annual patterns in cardiovascular disease and mortality.
Collapse
Affiliation(s)
- Cathy A Wyse
- a Department of Molecular and Cellular Therapeutics Department , Royal College of Surgeons in Ireland (RCSI) , Dublin , Ireland.,b Institute of Biodiversity, Animal Health and Comparative Medicine , University of Glasgow , Glasgow , UK
| | - Carlos A Celis Morales
- c Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | - Joey Ward
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Donald Lyall
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Daniel J Smith
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Daniel Mackay
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| | - Annie M Curtis
- a Department of Molecular and Cellular Therapeutics Department , Royal College of Surgeons in Ireland (RCSI) , Dublin , Ireland
| | - Mark E S Bailey
- e School of Life Sciences , University of Glasgow , Glasgow , UK
| | - Stephany Biello
- f Institute of Neuroscience and Psychology , University of Glasgow , Glasgow , UK
| | - Jason M R Gill
- c Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | - J P Pell
- d Institute of Health and Wellbeing , University of Glasgow , Glasgow , UK
| |
Collapse
|
9
|
Beneficial Effects of Exogenous Melatonin in Acute Staphylococcus aureus and Escherichia coli Infection-Induced Inflammation and Associated Behavioral Response in Mice After Exposure to Short Photoperiod. Inflammation 2017; 39:2072-2093. [PMID: 27682182 DOI: 10.1007/s10753-016-0445-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The administration of melatonin during acute bacterial infection was evaluated in this study. Mice pre-exposed to normal photoperiodic (NP), short photoperiodic (SP), and long photoperiodic (LP) day lengths were infected separately with live Staphylococcus aureus (5 × 106 cells/ml) or Escherichia coli (2.5 × 107 colony-forming units/ml) and treated with melatonin (10 mg/kg body weight). Behavioral studies were performed before bacterial infection and after melatonin administration. In mice pre-exposed to SP, exogenous melatonin administration resulted in better clearance of bacteria from blood and behavioral improvement. Reduced glutathione content and superoxide dismutase activities were increased, with concomitant decrease in lipid peroxidation content and catalase activities in the liver, brain, and spleen after exogenous melatonin administration. The overproduction of tumor necrosis factor-α, interferon-γ, and interleukin-6 during acute bacterial infection in mice exposed to different photoperiods was probably regulated by the administration of exogenous melatonin, by reducing neutrophil recruitment to spleen, expression of inducible nitric oxide synthase and cyclooxygenase-2 in hypothalamus, and C-reactive protein in the serum, and was also associated with improved behavioral response. Photoperiodic variations in inflammatory and oxidative stress markers might be correlated to serum melatonin and corticosterone levels. This study suggests that the administration of melatonin during SP exposure is protective in infection-induced inflammation than NP and LP exposure.
Collapse
|
10
|
Prendergast BJ, Cable EJ, Stevenson TJ, Onishi KG, Zucker I, Kay LM. Circadian Disruption Alters the Effects of Lipopolysaccharide Treatment on Circadian and Ultradian Locomotor Activity and Body Temperature Rhythms of Female Siberian Hamsters. J Biol Rhythms 2016; 30:543-56. [PMID: 26566981 DOI: 10.1177/0748730415609450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, University of Chicago, Chicago, Illinois Committee on Neurobiology, University of Chicago, Chicago, Illinois
| | - Erin J Cable
- Department of Psychology, University of Chicago, Chicago, Illinois
| | | | - Kenneth G Onishi
- Department of Psychology, University of Chicago, Chicago, Illinois
| | - Irving Zucker
- Department of Psychology, University of California, Berkeley, California Department of Integrative Biology, University of California, Berkeley, California
| | - Leslie M Kay
- Department of Psychology, University of Chicago, Chicago, Illinois Committee on Neurobiology, University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Nelson RJ, Demas GE. Seasonal Patterns of Stress, Disease, and Sickness Responses. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2016. [DOI: 10.1111/j.0963-7214.2004.00307.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The combined challenge of low food availability and low temperatures can make winter difficult for survival, and nearly impossible for breeding. Traditionally, studies of seasonality have focused on reproductive adaptations and largely ignored adaptations associated with survival. We propose shifting the focus from reproduction to immune function, a proxy for survival, and hypothesize that evolved physiological and behavioral mechanisms enable individuals to anticipate recurrent seasonal stressors and enhance immune function in advance of their occurrence. These seasonal adaptations, which have an important influence on seasonal patterns of survival, are reviewed here. We then discuss studies suggesting that photoperiod (day length) and photoperiod-dependent melatonin secretion influence immune function. Our working hypothesis is that short day lengths reroute energy from reproduction and growth to bolster immune function during winter. The net effect of these photoperiod-mediated adjustments is enhanced immune function and increased survival.
Collapse
Affiliation(s)
- Randy J. Nelson
- Departments of Psychology and Neuroscience, Ohio State University, Columbus
| | | |
Collapse
|
12
|
Muxel SM, Laranjeira-Silva MF, Carvalho-Sousa CE, Floeter-Winter LM, Markus RP. The RelA/cRel nuclear factor-κB (NF-κB) dimer, crucial for inflammation resolution, mediates the transcription of the key enzyme in melatonin synthesis in RAW 264.7 macrophages. J Pineal Res 2016; 60:394-404. [PMID: 26887983 DOI: 10.1111/jpi.12321] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/12/2016] [Indexed: 12/14/2022]
Abstract
Lipopolysaccharide (LPS) modulates the transcription of the gene that codifies the enzyme arylalkylamine-N-acetyltransferase (AA-NAT) through nuclear translocation of the transcription factor nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κB). AA-NAT converts serotonin to N-acetylserotonin, the ultimate precursor of melatonin. Activation of kappa B elements (aa-nat-κB), localized in the promoter (nat-κB1 and nat-κB2), leads to Aa-nat transcription in RAW 264.7 macrophages. Competitive electrophoretic mobility shift assay (EMSA) with oligonucleotide probes corresponding to each of the two elements, as well as a NF-κB consensus corresponding probe, revealed different specificities for each κB element. In addition, activator protein-1 (AP-1) as well as signal transducers and activator of transcription-1 and 3 (STAT-1; STAT-3) competed with NF-κB for binding to nat-κB1, while only STAT-3 competed with NF-κB for binding to nat-κB2. According to co-immunoprecipitation (ChiP) assays, these two sites are able to distinguish NF-κB subunits. The sequence nat-κB1 bound dimers containing p52, RelA, and cRel, while nat-κB2 bound preferentially p50, p52, and RelA, and did not bind cRel. The expression of RelA and cRel is essential for the induction of Aa-nat expression and melatonin synthesis. Considering that the expression of cRel is induced by the earlier expressed p50/RelA, the differential effects of NF-κB dimers may be intimately associated with the temporal regulation of inflammatory responses, with the resolution phase being associated with paracrine and autocrine melatonin effects. Such data suggest that the proven effects of exogenous melatonin in the resolution phase of inflammation are paralleled by the effects of locally synthesized melatonin in immune cells.
Collapse
Affiliation(s)
- Sandra Marcia Muxel
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Regina P Markus
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Abstract
Evidence suggests that light and circadian rhythms profoundly influence the physiologic capacity with which an organism responds to stress. However, the ramifications of light spectrum on the course of critical illness remain to be determined. Here, we show that acute exposure to bright blue spectrum light reduces organ injury by comparison with bright red spectrum or ambient white fluorescent light in two murine models of sterile insult: warm liver ischemia/reperfusion (I/R) and unilateral renal I/R. Exposure to bright blue light before I/R reduced hepatocellular injury and necrosis and reduced acute kidney injury and necrosis. In both models, blue light reduced neutrophil influx, as evidenced by reduced myeloperoxidase (MPO) within each organ, and reduced the release of high-mobility group box 1 (HMGB1), a neutrophil chemotactant and key mediator in the pathogenesis of I/R injury. The protective mechanism appeared to involve an optic pathway and was mediated, in part, by a sympathetic (β3 adrenergic) pathway that functioned independent of significant alterations in melatonin or corticosterone concentrations to regulate neutrophil recruitment. These data suggest that modifying the spectrum of light may offer therapeutic utility in sterile forms of cellular injury.
Collapse
|
14
|
Stevenson TJ, Prendergast BJ. Photoperiodic time measurement and seasonal immunological plasticity. Front Neuroendocrinol 2015; 37:76-88. [PMID: 25456046 PMCID: PMC4405432 DOI: 10.1016/j.yfrne.2014.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022]
Abstract
Seasonal variations in immunity are common in nature, and changes in day length are sufficient to trigger enhancement and suppression of immune function in many vertebrates. Drawing primarily on data from Siberian hamsters, this review describes formal and physiological aspects of the neuroendocrine regulation of seasonal changes in mammalian immunity. Photoperiod regulates immunity in a trait-specific manner, and seasonal changes in gonadal hormone secretion and thyroid hormone signaling all participate in seasonal immunomodulation. Photoperiod-driven changes in the hamster reproductive and immune systems are associated with changes in iodothyronine deiodinase-mediated thyroid hormone signaling, but photoperiod exerts opposite effects on select aspects of the epigenetic regulation of reproductive neuroendocrine and lymphoid tissues. Photoperiodic changes in immunocompetence may explain a proportion of the annual variance in disease incidence and severity in nature, and provide a useful framework to help understand brain-immune interactions.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Brian J Prendergast
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Abstract
Disease is a ubiquitous and powerful evolutionary force. Hosts have evolved behavioural and physiological responses to disease that are associated with increased survival. Behavioural modifications, known as 'sickness behaviours', frequently involve symptoms such as lethargy, somnolence and anorexia. Current research has demonstrated that the social environment is a potent modulator of these behaviours: when conflicting social opportunities arise, animals can decrease or entirely forgo experiencing sickness symptoms. Here, I review how different social contexts, such as the presence of mates, caring for offspring, competing for territories or maintaining social status, affect the expression of sickness behaviours. Exploiting the circumstances that promote this behavioural plasticity will provide new insights into the evolutionary ecology of social behaviours. A deeper understanding of when and how this modulation takes place may lead to better tools to treat symptoms of infection and be relevant for the development of more efficient disease control programmes.
Collapse
Affiliation(s)
- Patricia C Lopes
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
16
|
Mavroudis PD, Corbett SA, Calvano SE, Androulakis IP. Mathematical modeling of light-mediated HPA axis activity and downstream implications on the entrainment of peripheral clock genes. Physiol Genomics 2014; 46:766-78. [PMID: 25073602 DOI: 10.1152/physiolgenomics.00026.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this work we propose a semimechanistic model that describes the photic signal transduction to the hypothalamic-pituitary-adrenal (HPA) axis that ultimately regulates the synchronization of peripheral clock genes (PCGs). Our HPA axis model predicts that photic stimulation induces a type-1 phase response curve to cortisol's profile with increased cortisol sensitivity to light exposure in its rising phase, as well as the shortening of cortisol's period as constant light increases (Aschoff's first rule). Furthermore, our model provides insight into cortisol's phase and amplitude dependence on photoperiods and reveals that cortisol maintains highest amplitude variability when it is entrained by a balanced schedule of light and dark periods. Importantly, by incorporating the links between HPA axis and PCGs we were able to investigate how cortisol secretion impacts the entrainment of a population of peripheral cells and show that disrupted light schedules, leading to blunted cortisol secretion, fail to synchronize a population of PCGs which further signifies the loss of circadian rhythmicity in the periphery of the body.
Collapse
Affiliation(s)
| | - Siobhan A Corbett
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey; and
| | - Steven E Calvano
- Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey; and
| | - Ioannis P Androulakis
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey; Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey; and Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
17
|
Melatonin: buffering the immune system. Int J Mol Sci 2013; 14:8638-83. [PMID: 23609496 PMCID: PMC3645767 DOI: 10.3390/ijms14048638] [Citation(s) in RCA: 443] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/06/2013] [Accepted: 04/07/2013] [Indexed: 12/29/2022] Open
Abstract
Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed.
Collapse
|
18
|
McFarlane D, Wolf RF, McDaniel KA, White GL. The effect of season on inflammatory response in captive baboons. J Med Primatol 2012; 41:341-8. [PMID: 22905903 DOI: 10.1111/j.1600-0684.2012.00560.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2012] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Highly seasonal animals demonstrate predictable changes in immune function that coincide with changes in photoperiod. Little is known about the effect of season on immune response in baboons. The objective of this study was to determine the effect of season on inflammatory response in baboons. MATERIALS AND METHODS Peripheral blood mononuclear cell cytokine response following immune stimulation and serum markers of inflammation were assessed during each season in two groups of young male baboons: one housed under natural light and one in a controlled environment of 12 hours light:12 hours dark. RESULTS A seasonal immune rhythm was evident in both groups, with a greater TNF-α and IL-6 response to stimulation and serum CRP concentration in June and September compared with December. CONCLUSIONS Season is an important experimental confounder, and therefore, time of year should be controlled when designing studies and analyzing data from immune studies in baboons.
Collapse
Affiliation(s)
- Dianne McFarlane
- Department of Physiological Sciences, Center of Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | | | |
Collapse
|
19
|
Castro RA, Angus DC, Hong SY, Lee C, Weissfeld LA, Clermont G, Rosengart MR. Light and the outcome of the critically ill: an observational cohort study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R132. [PMID: 22827924 PMCID: PMC3580717 DOI: 10.1186/cc11437] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/24/2012] [Indexed: 12/03/2022]
Abstract
Introduction Light before and during acute illness has been associated with both benefit and harm in animal models and small human studies. Our objective was to determine the associations of light duration (photoperiod) and intensity (insolation) before and during critical illness with hospital mortality in ICU patients. Based on the 'winter immunoenhancement' theory, we tested the hypothesis that a shorter photoperiod before critical illness is associated with improved survival. Methods We analyzed data from 11,439 patients admitted to 8 ICUs at the University of Pittsburgh Medical Center between June 30, 1999 and July 31, 2004. Daily photoperiod and insolation prior to and after ICU admission were estimated for each patient by using data provided by the United States Naval Observatory and National Aeronautics and Space Administration and direct measurement of light gradient from outside to bedside for each ICU room. Our primary outcome was hospital mortality. The association between light and risk of death was analyzed using multivariate analyses, adjusting for potential confounders, including severity of illness, case mix, and ICU type. Results The cohort had an average APACHE III of 52.9 and a hospital mortality of 10.7%. In total, 128 ICU beds were analyzed; 108 (84%) had windows. Pre-illness photoperiod ranged from 259 to 421 hours in the prior month. A shorter photoperiod was associated with a reduced risk of death: for each 1-hour decrease, the adjusted OR was 0.997 (0.994 to 0.999, p = 0.03). In the ICU, there was near complete (99.6%) degradation of natural light from outside to the ICU bed. Thus, light exposure once in the ICU approached zero; the 24-hour insolation was 0.005 ± 0.003 kWh/m2 with little diurnal variation. There was no association between ICU photoperiod or insolation and mortality. Conclusions Consistent with the winter immunoenhancement theory, a shorter photoperiod in the month before critical illness is associated with a reduced risk of death. Once in the ICU, patients are exposed to near negligible natural light despite the presence of windows. Further studies are warranted to determine the underlying mechanisms and whether manipulating light exposure, before or during ICU admission, can enhance survival.
Collapse
|
20
|
Fonken LK, Bedrosian TA, Michaels HD, Weil ZM, Nelson RJ. Short photoperiods attenuate central responses to an inflammogen. Brain Behav Immun 2012; 26:617-22. [PMID: 22326518 DOI: 10.1016/j.bbi.2012.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022] Open
Abstract
In most parts of the world, environmental conditions vary in a predictable seasonal manner. Thus, seasonal variation in reproductive timing and immune function has emerged in some species to cope with disparate seasonal demands. During the long days of spring and summer when food availability is high and thermoregulatory demands low, Siberian hamsters invest in reproduction, whereas during the harsh short days of winter hamsters divert energy away from reproductive activities and modify immune capabilities. Many seasonal adaptations can be recapitulated in a laboratory setting by adjusting day length (photoperiod). Early-life photoperiods are important sources of seasonal information and can establish an individual's developmental trajectory. Siberian hamsters housed under short days (SD; 8 h light/day) recover more rapidly than long-day (LD; 16 h light/day) hamsters from immune activation with lipopolysaccharide (LPS). SD hamsters attenuate fever response, reduce cytokine production, and abrogate behavioral responses following LPS injection. The mechanism by which SD Siberian hamsters attenuate febrile response remains unspecified. It is possible that periphery-to-brain communication of inflammatory signals is altered by exposure to photoperiod. Rather than testing photoperiod effects on each of the multiple routes by which immunological cues are communicated to the CNS, we administered LPS intracerebroventricularly (i.c.v.) following adolescent exposure to either 6 weeks of SD or LD. Injection of LPS i.c.v. led to a similar immune reaction in SD hamsters as previously reported with intraperitoneal injection. Short days attenuated the response to LPS with diminished fever spike and duration, as well as decreased locomotor inactivity. Furthermore, only LD hamsters demonstrated anhedonic-like behavior following LPS injection as evaluated by decreased preference for a milk solution. These results suggest that photoperiodic differences in response to infection are due in part to changes in central immune activation.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience and Institute for Behavioral Medicine Research, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
21
|
Prendergast BJ. Can photoperiod predict mortality in the 1918-1920 influenza pandemic? J Biol Rhythms 2011; 26:345-52. [PMID: 21775293 DOI: 10.1177/0748730411409708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amplitude of the seasonal change in day length increases with distance from the equator, and changes in day length markedly alter immune function in diverse nonhuman animal models of infection. Historical records of mortality data, ambient temperature, population density, geography, and economic indicators from 42 countries during 1918-1920 were analyzed to determine relative contributions toward human mortality during the "Spanish" influenza pandemic of 1918-1920. The data identify a strong negative relation between distance from the equator and mortality during the 1918-1920 influenza pandemic, which, in a multiple regression model, manifested independent of major economic, demographic, and temperature variables. Enhanced survival was evident in populations that experienced a winter nadir day length ≤10 h light/day, relative to those that experienced lower amplitude changes in photoperiod. Numerous reports indicate that exposure to short day lengths, typical of those occurring outside the tropics during winter, yields robust and enduring reductions in the magnitude of cytokine, febrile, and behavioral responses to infection. The present results are preliminary but prompt the conjecture that, if similar mechanisms are operant in humans, then they would be predicted to mitigate symptoms of infection in proportion to an individual's distance from the equator. Although limitations and uncertainties accompany regression-based analyses of historical epidemiological data, latitude, per se, may be an underrecognized factor in mortality during the 1918-1920 influenza pandemic. The author proposes that some proportion of the global variance in morbidity and mortality from infectious diseases may be explained by effects of day length on the innate immune response to infection.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Fenn AM, Fonken LK, Nelson RJ. Sustained melatonin treatment blocks body mass, pelage, reproductive, and fever responses to short day lengths in female Siberian hamsters. J Pineal Res 2011; 51:180-6. [PMID: 21486368 DOI: 10.1111/j.1600-079x.2011.00874.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Winter imposes physiological challenges on individuals including increased thermoregulatory demands, risk of infection, and decreased food availability. To survive these challenges, animals living outside the tropics must appropriately distribute their energetic costs across the year, including reproduction and immune function. Individuals of many species use the annual cycle of changing day lengths (photoperiod), which is encoded by the nightly duration of melatonin secretion, to adjust physiology. Siberian hamsters exposed to short days (SD) (long nights/prolonged endogenous melatonin secretion) enhance some aspects of immune function, but curtail other energetically expensive immune functions including the febrile response. The purpose of this study was twofold. First, we determined whether sustained melatonin treatment would inhibit the development of the SD phenotype in female hamsters as it does in males. Second, we examined whether the SD attenuation of fever would be blocked by continuous exposure to exogenous melatonin. Hamsters were implanted with melatonin or empty capsules, housed in either long days (LD) or SD for 8-9 weeks, and then challenged with lipopolysaccharide; body temperature and locomotor activity were recorded. Unlike hamsters with empty capsules, hamsters with melatonin implants did not respond to SD and maintained a LD phenotype including summer-like spleen, uterine and body masses, and pelage characteristics. Further, sustained melatonin treatment blocked the SD attenuation of febrile responses and prolonged the behavioral components of the sickness response. These results suggest that the daily fluctuations in endogenous melatonin may be masked by continuous exposure to exogenous melatonin, thus inhibiting functional photoperiodic responses to SD.
Collapse
Affiliation(s)
- Ashley M Fenn
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
23
|
Walton JC, Weil ZM, Nelson RJ. Influence of photoperiod on hormones, behavior, and immune function. Front Neuroendocrinol 2011; 32:303-19. [PMID: 21156187 PMCID: PMC3139743 DOI: 10.1016/j.yfrne.2010.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/26/2023]
Abstract
Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally-appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
24
|
Viljoen H, Bennett NC, Lutermann H. Life‐history traits, but not season, affect the febrile response to a lipopolysaccharide challenge in highveld mole‐rats. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00833.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- H. Viljoen
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - N. C. Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - H. Lutermann
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
25
|
Fonken LK, Morris JS, Nelson RJ. Early life experiences affect adult delayed-type hypersensitivity in short and long photoperiods. Chronobiol Int 2011; 28:101-8. [PMID: 21231871 DOI: 10.3109/07420528.2010.538818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Environmental experiences during development provide animals with important information about future conditions. Siberian hamsters are photoperiodic rodents that dramatically adjust their physiology and behavior to adapt to seasonal changes. For example, during short winter-like days, hamsters enhance some components of immune function putatively to cope with increasing environmental challenges. Furthermore, early life stress alters the developmental course of the immune system. Overall, immune function is typically suppressed in response to chronic stress, but responses vary depending on the type of stress and components of immune function assessed. This led us to hypothesize that delayed-type hypersensitivity (DTH), an antigen-specific, cell-mediated immune response, would be differentially modulated in hamsters that underwent early life maternal separation (MS) in either short or long photoperiods. At birth, hamsters were assigned to either short (SD; 8 h light/day) or long (LD; 16 h light/day) photoperiods and either daily 3 h MS, daily 15-min brief maternal separation (BMS), or no manipulation from postnatal day 2 through 14. In adulthood DTH was assessed. Hamsters reared in short days enhanced DTH responses. MS and BMS attenuated DTH responses in both short and long days. However, BMS long-day female hamsters did not suppress pinna swelling, suggesting a protective effect of female sex steroids on immune function. As is typical in short days, reproductive tissue was regressed. Reproductive tissue mass was also decreased in long-day MS female hamsters. Furthermore, MS altered photoperiod-induced changes in body mass. Taken together, these findings suggest that manipulations of early life mother-pup interactions in Siberian hamsters result in physiological changes and suppressed cell-mediated immunity.
Collapse
Affiliation(s)
- Laura K Fonken
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
26
|
Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, Besing RC, Menaker M, Gewirtz AT, Davidson AJ. Dysregulation of inflammatory responses by chronic circadian disruption. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5796-805. [PMID: 20944004 PMCID: PMC2974025 DOI: 10.4049/jimmunol.1001026] [Citation(s) in RCA: 393] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circadian rhythms modulate nearly every mammalian physiological process. Chronic disruption of circadian timing in shift work or during chronic jet lag in animal models leads to a higher risk of several pathologies. Many of these conditions in both shift workers and experimental models share the common risk factor of inflammation. In this study, we show that experimentally induced circadian disruption altered innate immune responses. Endotoxemic shock induced by LPS was magnified, leading to hypothermia and death after four consecutive weekly 6-h phase advances of the light/dark schedule, with 89% mortality compared with 21% in unshifted control mice. This may be due to a heightened release of proinflammatory cytokines in response to LPS treatment in shifted animals. Isolated peritoneal macrophages harvested from shifted mice exhibited a similarly heightened response to LPS in vitro, indicating that these cells are a target for jet lag. Sleep deprivation and stress are known to alter immune function and are potential mediators of the effects we describe. However, polysomnographic recording in mice exposed to the shifting schedule revealed no sleep loss, and stress measures were not altered in shifted mice. In contrast, we observed altered or abolished rhythms in the expression of clock genes in the central clock, liver, thymus, and peritoneal macrophages in mice after chronic jet lag. We conclude that circadian disruption, but not sleep loss or stress, are associated with jet lag-related dysregulation of the innate immune system. Such immune changes might be a common mechanism for the myriad negative health effects of shift work.
Collapse
|
27
|
Keski-Nisula L, Lappalainen MHJ, Mustonen K, Hirvonen MR, Pfefferle PI, Renz H, Pekkanen J, Roponen M. Production of interleukin-5, -10 and interferon-γ in cord blood is strongly associated with the season of birth. Clin Exp Allergy 2010; 40:1658-68. [PMID: 20825427 DOI: 10.1111/j.1365-2222.2010.03601.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The effect of labour and different labour-related factors on the cord blood (CB) cell cytokine production is still relatively unknown. OBJECTIVE To study the relationships between the production of IL-5, IL-10 and IFN-γ in CB samples and maternal, early neonatal and birth-related factors. METHODS Whole-blood samples were collected after birth (n=423) and they were stimulated for 24 and 48 h with a combination of phorbol ester and ionomycin. Production of IL-5, IL-10 and IFN-γ was determined using ELISA. Maternal, early neonatal and birth-related variables were recorded prospectively during pregnancy, and during and after delivery. RESULTS After multivariable adjustment for confounders, the strongest predictor of IL-5, IL-10 and IFN-γ production in CB cell samples was the season of birth. Children born in the spring had significantly lower cytokine responses compared with those born in the fall. IL-5 production was inversely associated with female gender of the child and maternal smoking. If corrections for white blood cell (WBC) counts were not performed, IL-5 production was also significantly associated with the mode of delivery. Respectively, the production of IL-10 and IFN-γ was inversely associated with prostaglandin induction before birth. CONCLUSION Environmental exposure to pollen and ultraviolet irradiation during gestation may have an effect on the cytokine profile of the offspring in CB because children born in the spring or winter showed the lowest IL-5, IL-10 and IFN-γ responses. The production of IL-10 and IFN-γ was also inversely associated with prostaglandin labour induction before birth. Other labour-related factors were not significantly associated with production of IL-5, IL-10 and IFN-γ after WBC count correction.
Collapse
Affiliation(s)
- L Keski-Nisula
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bailey MT, Walton JC, Dowd SE, Weil ZM, Nelson RJ. Photoperiod modulates gut bacteria composition in male Siberian hamsters (Phodopus sungorus). Brain Behav Immun 2010; 24:577-84. [PMID: 20045457 DOI: 10.1016/j.bbi.2009.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 12/21/2009] [Accepted: 12/27/2009] [Indexed: 01/07/2023] Open
Abstract
Seasonal changes in day length (i.e., photoperiod) provide animals with a reliable environmental cue to determine time of year, and many physiological changes occur in laboratory animals simply by extending or shortening day length. Male Siberian hamsters (Phodopus sungorus) housed in long summer-like day lengths have significantly elevated body and fat masses compared to short-day hamsters. Because others have demonstrated that the intestinal microbiota of humans and rodents promotes host adiposity, we hypothesized that photoperiod-induced changes in body and fat masses could be associated with changes in the microbial composition in the intestines. We used bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) to assess microbial diversity in the cecal contents of hamsters; long days significantly increased the relative abundance of bacteria in the phylum Proteobacteria. This effect was primarily due to a significant increase in the abundance of the genus Citrobacter, with both the abundance of Proteobacteria and Citrobacter spp. significantly correlated with body mass and with inguinal fat mass. In general, the abundance of the Firmicutes phylum was inversely associated with body mass. These data indicate that the intestinal microbiota are responsive to changes in photoperiod and suggest that these changes may in part influence photoperiodic changes in body and fat masses.
Collapse
Affiliation(s)
- Michael T Bailey
- Section of Oral Biology, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
29
|
Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ. The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev Camb Philos Soc 2009; 85:607-23. [PMID: 20039865 DOI: 10.1111/j.1469-185x.2009.00118.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melatonin is a molecule present in a multitude of taxa and may be ubiquitous in organisms. It has been found in bacteria, unicellular eukaryotes, macroalgae, fungi, plants and animals. A primary biological function of melatonin in primitive unicellular organisms is in antioxidant defence to protect against toxic free radical damage. During evolution, melatonin has been adopted by multicellular organisms to perform many other biological functions. These functions likely include the chemical expression of darkness in vertebrates, environmental tolerance in fungi and plants, sexual signaling in birds and fish, seasonal reproductive regulation in photoperiodic mammals, and immunomodulation and anti-inflammatory activity in all vertebrates tested. Moreover, its waning production during aging may indicate senescence in terms of a bio-clock in many organisms. Conversely, high melatonin levels can serve as a signal of vitality and health. The multiple biological functions of melatonin can partially be attributed to its unconventional metabolism which is comprised of multi-enzymatic, pseudo-enzymatic and non-enzymatic pathways. As a result, several bioactive metabolites of melatonin are formed during its metabolism and some of the presumed biological functions of melatonin reported to date may, in fact, be mediated by these metabolites. The changing biological roles of melatonin seem to have evolved from its primary function as an antioxidant.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Outside of the tropics, environmental conditions fluctuate in a generally predictable manner across the year. Many small mammals have evolved mechanisms, such as seasonal breeding and annual adjustments in physiology, morphology, and behavior, that promote winter survival when food is scarce and thermoregulation is challenging. Photoperiod (day length) is a cue used by many seasonal breeders to predict seasonal changes in environmental conditions. One system that is uniquely situated to mediate photoperiod-induced alterations in physiology is the autonomic nervous system (ANS). The 2 branches of the ANS are key regulators of immune responses, thermoregulation, and energy balance, functions that undergo marked shifts in baseline and reactivity following acclimation to short day lengths. Although previous studies have investigated the effects of photoperiod on ANS endpoints, this study examined the direct effects of photoperiod on integrated ANS function. To test the hypothesis that short day lengths increase parasympathetic and sympathetic tones, we maintained adult male Siberian hamsters (Phodopus sungorus) to either long or short photoperiods and then analyzed electrocardiogram recordings. Short day lengths increased both parasympathetic tone, as measured by respiratory sinus arrhythmia, and sympathetic control of the heart, measured with autonomic blockade. Additionally, short day lengths enhanced the withdrawal of parasympathetic control and the increase of sympathetic tone in response to acute restraint stress. Finally, these effects were discovered to be independent of circulating androgens. These data indicate that the ANS of Siberian hamsters undergoes profound changes following prolonged exposure to short winter-like day lengths.
Collapse
|
31
|
Prendergast BJ, Galang J, Kay LM, Pyter LM. Influence of the olfactory bulbs on blood leukocytes and behavioral responses to infection in Siberian hamsters. Brain Res 2009; 1268:48-57. [PMID: 19368847 DOI: 10.1016/j.brainres.2009.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/12/2009] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
Abstract
Surgical removal of the olfactory bulb alters several aspects of immunological activity. This study investigated the role of the olfactory bulbs in the control of behavioral responses to simulated infection, and the environmental modulation of sickness behaviors by changes in day length. Adult male Siberian hamsters (Phodopus sungorus) were subjected to bilateral olfactory bulbectomy (OBx) or a sham surgical procedure, and were then exposed to long(15 h light/day; LD) or short (9 h light/day; SD) photoperiods for 8–12 weeks, after which circulating leukocytes and behavioral responses (anorexia, anhedonia, cachexia) to simulated gram-negative bacterial infections (i.p. lipopolysaccharide [LPS] treatment;0.625 mg/kg) were quantified. OBx treatment altered the effects of photoperiod on immune function in a trait-specific manner. LPS-induced anorexia was exacerbated in SD-OBx hamsters; LPS-induced anhedonia was exacerbated in LD-OBx hamsters; and photoperiodic differences in circulating leukocytes and LPS-induced cachexia were eliminated by OBx. Plasma cortisol concentrations did not differ between LD and SD hamsters, irrespective of olfactory bulb integrity. The data indicate that photoperiod affects immune function via OB-dependent and -independent mechanisms, and that changes in cortisol production are not required for photoperiodic changes in sickness behaviors to manifest.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA.
| | - Jerome Galang
- Department of Psychology, Institute for Mind and Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Leslie M Kay
- Department of Psychology, Institute for Mind and Biology, The University of Chicago, Chicago, IL 60637, USA; Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Leah M Pyter
- Department of Psychology, Institute for Mind and Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Prendergast BJ. Behavioral tolerance to endotoxin is enhanced by adaptation to winter photoperiods. Psychoneuroendocrinology 2008; 33:540-5. [PMID: 18291598 PMCID: PMC2705996 DOI: 10.1016/j.psyneuen.2007.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/14/2007] [Accepted: 12/19/2007] [Indexed: 02/03/2023]
Abstract
Seasonal changes in day length enhance or suppress aspects of immune function in mammals. Following adaptation to short, winter-like short photoperiods, cytokine and behavioral responses to lipopolysaccharide (LPS)-induced simulated infections are attenuated in LPS-naive Siberian hamsters. This experiment examined whether diminished initial responses to LPS in short days (SDs) are accompanied by decrements in the development of innate immunological memory that leads to endotoxin tolerance. Male hamsters exposed to SDs (9h-light/day) or kept in their natal long-day (LD) photoperiod (15h-light/day) for 12-13 weeks were injected with bacterial LPS (625microg/kg, i.p.) or sterile saline. Ten days later all hamsters were challenged with LPS (625microg/kg, i.p.), and behavioral sickness responses (anorexia and reductions in nest building) were assessed. In LD hamsters, behavioral responses to the second LPS injection were markedly attenuated but still evident, indicative of partial tolerance. SD hamsters, in contrast, failed to exhibit anorexic or thermoregulatory responses to the second LPS injection, indicative of complete behavioral tolerance to LPS. Thus despite engaging greater naive responses to LPS, LD hamsters exhibited incomplete LPS tolerance relative to SD hamsters. The expression of behavioral tolerance to endotoxin is relatively diminished during the breeding season, a time of year when naive responses to endotoxin are at their greatest. During winter, enhancements in behavioral endotoxin tolerance may conserve energy and facilitate survival in the face of energetically challenging conditions.
Collapse
|
33
|
Baillie SR, Prendergast BJ. Photoperiodic regulation of behavioral responses to bacterial and viral mimetics: a test of the winter immunoenhancement hypothesis. J Biol Rhythms 2008; 23:81-90. [PMID: 18258760 DOI: 10.1177/0748730407311518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Siberian hamsters (Phodopus sungorus) exhibit changes in immune function following adaptation to short photoperiods, including a marked attenuation of energetically expensive thermoregulatory and behavioral responses to gram-negative bacterial infections. Whether this seasonal attenuation of the immune response is idiosyncratic to gram-negative infections or is representative of innate immune responses in general is not known. If seasonal attenuation of responsiveness to infection is indeed driven primarily by anticipation of energetic constraints, then one would predict that responsiveness to all pathogens would be diminished during short days. If, on the other hand, seasonal changes in responsiveness to infection reflect anticipation of specific pathogens that are common at different phases of the annual cycle, then one would expect short photoperiods to attenuate responsiveness to some pathogens and long photoperiods to attenuate responsiveness to others. To resolve this issue, we exposed male Siberian hamsters to either long or short photoperiods for 11 weeks, then examined their behavioral sickness responses to compounds that represent the minimally immunogenic components of gram-negative bacterial (lipopolysaccharide), gram-positive bacterial (muramyl dipeptide), and viral (polyinosinepolycytidylic acid) organisms. Hamsters exhibited anorexic, anhedonic, ponderal, and/or thermoregulatory sickness behaviors to all 3 pathogen mimetics, but in all cases in which sickness responses were evident, they were attenuated in short days. Energetically costly behavioral responses to several distinct classes of infectious organisms are attenuated in anticipation of winter. The data are not consistent with a pathogen-specific seasonal modulation of innate immune responses.
Collapse
Affiliation(s)
- Scott R Baillie
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
34
|
Freeman DA. Multiple neuroendocrine pathways mediate seasonal immunity. Am J Physiol Regul Integr Comp Physiol 2008; 294:R382-3. [DOI: 10.1152/ajpregu.00856.2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Prendergast BJ, Baillie SR, Dhabhar FS. Gonadal hormone-dependent and -independent regulation of immune function by photoperiod in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 2007; 294:R384-92. [PMID: 17989142 DOI: 10.1152/ajpregu.00551.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Siberian hamsters (Phodopus sungorus) exhibit changes in reproductive and immune function in response to seasonal variations in day length. Exposure to short days induces gonadal regression and inhibits testosterone secretion. In parallel, short days enhance immune function: increasing leukocyte numbers and attenuating cytokine and behavioral responses to infection. We examined whether photoperiodic changes in leukocyte phenotypes and sickness behaviors are dependent on concurrent photoperiodic changes in gonadal function. Male hamsters were gonadectomized or sham-gonadectomized and either exposed to short days (9 h light/day; SD) or kept in their natal long-day (15 h light/day; LD) photoperiod for 10-13 wk. Blood samples were obtained for leukocyte enumeration, and hamsters were challenged with bacterial LPS, which induced behavioral (anorexia, reductions in nest building) and somatic (weight loss) sickness responses. Among gonad-intact hamsters, exposure to SD increased total and CD62L+ lymphocytes and CD3+ T lymphocytes in blood and significantly attenuated LPS-induced sickness responses. Independent of photoperiod, castration alone increased total and CD62L+ lymphocyte and CD3+ T lymphocyte numbers and attenuated somatic and anorexic sickness responses. Among castrated hamsters, SD exposure increased lymphocyte numbers and suppressed sickness behaviors. In castrated hamsters, the magnitude of most immunological effects of SD were diminished relative to those evident in gonad-intact hamsters. The SD phenotype in several measures of immunity can be instated via elimination of gonadal hormones alone; however, photoperiodic effects on immune function persist even in castrated hamsters. Thus, photoperiod affects the immune system and neural-immune interactions underlying sickness behaviors via gonadal hormone-dependent and -independent mechanisms.
Collapse
|
36
|
Prendergast BJ, Kampf-Lassin A, Yee JR, Galang J, McMaster N, Kay LM. Winter day lengths enhance T lymphocyte phenotypes, inhibit cytokine responses, and attenuate behavioral symptoms of infection in laboratory rats. Brain Behav Immun 2007; 21:1096-108. [PMID: 17728099 PMCID: PMC2693110 DOI: 10.1016/j.bbi.2007.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 05/18/2007] [Accepted: 05/19/2007] [Indexed: 10/22/2022] Open
Abstract
Annual variations in day length (photoperiod) trigger changes in the immune and reproductive system of seasonally-breeding animals. The purpose of this study was to determine whether photoperiodic changes in immunity depend on concurrent photoperiodic responses in the reproductive system, or whether immunological responses to photoperiod occur independent of reproductive responses. Here we report photoperiodic changes in enumerative, functional, and behavioral aspects of the immune system, and in immunomodulatory glucocorticoid secretion, in reproductively non-photoperiodic Wistar rats. T-cell numbers (CD3+, CD8+, CD8+CD25+, CD4+CD25+) were higher in the blood of rats housed in short as opposed to long-day lengths for 10 weeks. Following a simulated bacterial infection (Escherichia coli LPS; 125 microg/kg) the severity of several acute-phase sickness behaviors (anorexia, cachexia, neophobia, and social withdrawal) were attenuated in short days. LPS-stimulated IL-1beta and IL-6 production were comparable between photoperiods, but plasma TNFalpha was higher in long-day relative to short-day rats. In addition, corticosterone concentrations were higher in short-day relative to long-day rats. The data are consistent with the hypothesis that photoperiodic regulation of the immune system can occur entirely independently of photoperiodic regulation of the reproductive system. In the absence of concurrent reproductive responses, short days increase the numbers of leukocytes capable of immunosurveillance and inhibition of inflammatory responses, increase proinflammatory cytokine production, increase immunomodulatory glucocorticoid secretion, and ultimately attenuate behavioral responses to infection. Seasonal changes in the host immune system, endocrine system, and behavior may contribute to the seasonal variability in disease outcomes, even in reproductively non-photoperiodic mammals.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, 940 E. 57th Street, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Navara KJ, Trainor BC, Nelson RJ. Photoperiod alters macrophage responsiveness, but not expression of Toll-like receptors in Siberian hamsters. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:354-9. [PMID: 17588795 DOI: 10.1016/j.cbpa.2007.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/07/2007] [Accepted: 05/14/2007] [Indexed: 01/27/2023]
Abstract
Defense against pathogens is a critical component of comparative and ecological biology. However, pathogen recognition, a process necessary for the facilitation of systemic immune response, remains understudied in a comparative context, yet could provide insight into how the immune system interacts with pathogens in variable environments. We examined pathogen recognition by macrophages in relation to an ecological variable, day length, in Siberian hamsters (Phodopus sungorus). Because peritoneal macrophages collected in long, summer-like day lengths are more responsive to a lipopolysaccharide (LPS) challenge compared to macrophages collected during short, winter-like day lengths, we hypothesized that these functional differences are mediated by variation in pathogen recognition, which occurs through binding to Toll-like receptors (TLRs). We predicted that expression of TLR2 and 4, the receptors that bind and respond specifically to LPS, would be upregulated in long vs. short days, and that expression of these receptors would reflect macrophage responsiveness to LPS. Macrophages collected during long days were again more responsive to LPS challenge compared to short-day macrophages; however, TLR2 and TLR4 expression was similar between photoperiods and were unrelated to our measure of macrophage responsiveness suggesting that other downstream intracellular mechanisms may be responsible for photoperiod-based variation in macrophage responsiveness in this species.
Collapse
Affiliation(s)
- Kristen J Navara
- Departments of Psychology and Neuroscience, Institute of Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
38
|
Abstract
Effects of photoperiod are mediated by the pineal gland in male Siberian hamsters. The hypothesis that the pineal hormone melatonin mediates the effects of short days (SD) to blunt select humoral and endocrine functions was tested. In the first study, regressed testes were found in pineal-intact controls transferred from long days (LD) to SDs (16 hr to 8 hr light/day); the rise in antigen-induced serum immunoglobulin (Ig) M was blunted and serum cortisol concentrations elevated compared with long-day controls. These effects of short-day were blocked in pinealectomized males moved from long to SDs, but restored by melatonin treatments. In a second study, males in LD were exposed to constant light (LL) to abolish the nighttime melatonin rhythm. In hamsters in LL, melatonin induced testicular regression as in males in SDs. Large testes were present in vehicle-treated controls in LL and in males that remained in LDs. Antigen-induced increases in serum IgM in vehicle and melatonin treatment males in LL were intermediate between concentrations in long- or short-day controls and not significantly different from each other. However, serum cortisol was again elevated in hamsters in SDs or in LL when treated with melatonin compared with males in LL or LDs. These findings indicate that melatonin treatments mimicked the effects of SDs to regulate adaptive physiologic functions in hamsters lacking the nocturnal melatonin rhythm. Thus, the photoneuroendocrine mechanism regulating reproductive responses to photoperiod also mediates short-day effects on T cell-dependent B-cell antibody production and processes that regulate cortisol in circulation.
Collapse
Affiliation(s)
- Steven M Yellon
- Center for Perinatal Biology, Department of Physiology, School of Medicine, Loma Linda University Adventist Health Sciences Center, Loma Linda, CA 92350, USA.
| |
Collapse
|
39
|
Wen JC, Prendergast BJ. Photoperiodic regulation of behavioral responsiveness to proinflammatory cytokines. Physiol Behav 2007; 90:717-25. [PMID: 17275861 PMCID: PMC2692586 DOI: 10.1016/j.physbeh.2006.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 11/21/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Symptoms of bacterial infection include decreases in body mass (cachexia), induction of depressive-like hedonic tone (anhedonia), decreases in food intake (anorexia), and increases in body temperature (fever). Recognition of bacteria by the innate immune system triggers the release of proinflammatory cytokines which induce these sickness behaviors via actions at central and peripheral targets. In Siberian hamsters, exposure to short day lengths decreases both the production of proinflammatory cytokines and the magnitude of the symptoms of infection. Short-day attenuation of sickness behaviors may arise solely from decreased production of cytokines; alternatively, substrates responsible for the generation of sickness behaviors may be less responsive to cytokines in short days. To discriminate among these hypotheses, Siberian hamsters were treated with either bacterial lipopolysaccharide (LPS; 25 microg) or recombinant mouse IL-1beta (rIL-1beta; 100 ng) following 11 weeks of exposure to long (15 h light/day) and short (9 h light/day) photoperiods. Replicating earlier work, the magnitude and/or duration of LPS-induced anorexia, anhedonia, cachexia, and fever were greater in long-day relative to short-day hamsters. A comparable short-day attenuation of sickness behaviors and fever was obtained in response to rIL-1beta treatment, despite treatment with identical concentrations of cytokine. These data suggest that hamsters subjected to immunoenhancing short days exhibit diminished symptoms of infection not solely because infections elicit lower levels of cytokine production, but also because the substrates upon which cytokines act become relatively refractory.
Collapse
Affiliation(s)
| | - Brian J. Prendergast
- Correspondence to: Brian J. Prendergast, University of Chicago, Department of Psychology, Institute for Mind and Biology, 940 E. 57 St., Chicago, IL 60637 USA, Telephone: (773) 702-2895, Fax: (773) 702-6898,
| |
Collapse
|
40
|
Wen JC, Dhabhar FS, Prendergast BJ. Pineal-dependent and -independent effects of photoperiod on immune function in Siberian hamsters (Phodopus sungorus). Horm Behav 2007; 51:31-9. [PMID: 17022983 PMCID: PMC3345196 DOI: 10.1016/j.yhbeh.2006.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/03/2006] [Accepted: 08/03/2006] [Indexed: 11/16/2022]
Abstract
Siberian hamsters (Phodopus sungorus) exhibit reproductive and immunological responses to photoperiod. Short (<10-h light/day) days induce gonadal atrophy, increase leukocyte concentrations, and attenuate thermoregulatory and behavioral responses to infection. Whereas hamster reproductive responses to photoperiod are dependent on pineal melatonin secretion, the role of the pineal in short-day induced changes in immune function is not fully understood. To examine this, adult hamsters were pinealectomized (PINx) or sham-PINx, and transferred to short days (9-h light/day; SD) or kept in their natal long-day (15-h light/day; LD) photoperiod. Intact and PINx hamsters housed in LD maintained large testes over the next 12 weeks; sham-PINx hamsters exhibited gonadal regression in SD, and PINx abolished this effect. Among pineal-intact hamsters, blood samples revealed increases in leukocyte, lymphocyte, CD62L+ lymphocyte, and T cell counts in SD relative to LD; PINx did not affect leukocyte numbers in LD hamsters, but abolished the SD increase in these measures. Hamsters were then treated with bacterial lipopolysaccharide (LPS), which induced thermoregulatory (fever), behavioral (anorexia, reductions in nest building), and somatic (weight loss) sickness responses in all groups. Among pineal-intact hamsters, febrile and behavioral responses to LPS were attenuated in SD relative to LD. PINx did not affect sickness responses to LPS in LD hamsters, but abolished the ameliorating effects of SD on behavioral responses to LPS. Surprisingly, PINx failed to abolish the effect of SD on fever. In common with the reproductive system, PINx induces the LD phenotype in most aspects of the immune system. The pineal gland is required for photoperiodic regulation of circulating leukocytes and neural-immune interactions that mediate select aspects of sickness behaviors.
Collapse
Affiliation(s)
- Jarvi C. Wen
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
| | - Firdaus S. Dhabhar
- Department of Psychiatry And Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brian J. Prendergast
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA
- Corresponding author. Fax: +1 773 702 898. (B.J. Prendergast)
| |
Collapse
|
41
|
Pyter LM, Samuelsson AR, Quan N, Nelson RJ. Photoperiod alters hypothalamic cytokine gene expression and sickness responses following immune challenge in female Siberian hamsters (Phodopus sungorus). Neuroscience 2005; 131:779-84. [PMID: 15749332 DOI: 10.1016/j.neuroscience.2004.11.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 11/30/2022]
Abstract
Rodents that live in changing environments display different immune responses mediated in part by photoperiod (day length) cues. Siberian hamsters maintained in winter-like (short) photoperiods display smaller physiological and behavioral responses to immune challenges as compared with hamsters housed in summer-like (long) photoperiods. We hypothesized that these different response patterns are attributable to altered cytokine production in the hypothalamus in response to photoperiod changes. Female hamsters were housed in long or short days for 10 weeks to induce photoperiodic alterations, then injected with either LPS (a bacterial endotoxin) or saline. Fever and food intake were assessed 3 h post-injection; hypothalami and blood were collected 3, 6, and 12 h post-injection. LPS induced lower fever and reduction in food intake responses in short-day hamsters as compared with long-day hamsters. Additionally, short-day hamsters reduced IL-1beta and Tnfalpha expression in the hypothalamus 6 h after LPS injection, as measured by quantitative RT-PCR. Plasma estradiol concentrations did not differ between long- and short-day hamsters. These data suggest that differences in cytokine production in the hypothalamus may underlie the photoperiod-induced differences in sickness responses, and that these changes are not mediated by estradiol.
Collapse
Affiliation(s)
- L M Pyter
- Department of Neuroscience, Institute of Behavioral Medicine Research, 48A Townshend Hall, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
42
|
Prendergast BJ, Hotchkiss AK, Nelson RJ. Photoperiodic regulation of circulating leukocytes in juvenile Siberian hamsters: mediation by melatonin and testosterone. J Biol Rhythms 2004; 18:473-80. [PMID: 14667148 DOI: 10.1177/0748730403258486] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The reproductive system of Siberian hamsters (Phodopus sungorus) undergoes rapid phenotypic responses to changes in day length that occur around the time of weaning. The present experiments tested whether the immune system of Siberian hamsters is similarly photoperiodic early in life and whether photoperiodic changes in melatonin or gonadal hormone secretions mediate any such responses to day length. Circulating blood leukocyte concentrations (WBC) were measured in juvenile male Siberian hamsters that were gestated in long-days (LD), transferred to short-days (SD) on the day of birth, and subsequently either remained in SD or were transferred from SD to LD at 18 days of age (day 18). WBC values were comparable between LD and SD hamsters on day 18. Between day 18 and day 32, SD hamsters exhibited a 3-fold increase in WBC, whereas LD hamsters failed to undergo a significant increase in WBC during this interval. WBC of LD hamsters was significantly lower than that of SD hamsters on day 25 and on day 32. In LD housed males, peripheral injections of melatonin delivered so as to extend the nocturnal duration of elevated endogenous melatonin secretion (i.e., provided in late afternoon) on days 18-31 increased WBC as measured on day 32. Peripubertal (day 17) gonadectomy abolished the immunosuppressive effect of LD exposure on WBC, and treatment with silastic implants containing testosterone suppressed WBC independent of photoperiod treatment. These data indicate that juvenile Siberian hamsters are immunologically responsive to photoperiod and that the leukocyte responses to day length are the result of melatonin-mediated effects of photoperiod on testicular hormone secretion.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Randy J Nelson
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
Prendergast BJ, Hotchkiss AK, Bilbo SD, Nelson RJ. Peripubertal Immune Challenges Attenuate Reproductive Development in Male Siberian Hamsters (Phodopus sungorus)1. Biol Reprod 2004; 70:813-20. [PMID: 14627552 DOI: 10.1095/biolreprod.103.023408] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Differential allocation of energy to reproduction versus host defense is assumed to drive the seasonal antiphase relation between peak reproductive function and immunocompetence; however, evidence supporting this assumption is only correlational. These experiments tested whether photoperiod affects immune responses to antigens in peripubertal Siberian hamsters, whether such activation of the immune system exacts energetic and reproductive costs, and whether such costs vary seasonally. Male Siberian hamsters were raised from birth in long (LD) or short days (SD), which respectively initiate or inhibit the onset of puberty. To elicit a specific immune response, hamsters were injected with a novel antigen (keyhole limpet hemocyanin [KLH]) as juveniles. Reproductive development was attenuated and body temperature was elevated in LD hamsters relative to saline-injected control animals. In contrast, KLH treatments affected neither thermoregulation nor reproductive development in photoinhibited SD hamsters. In experiment 2, juvenile male hamsters were challenged with bacterial lipopolysaccharide (LPS) in order to elicit an innate immune response. Febrile and anorexic responses to LPS were greater in reproductively stimulated LD hamsters relative to reproductively inhibited SD hamsters. LPS treatments attenuated somatic and testicular development in LD hamsters, but did not significantly affect circulating testosterone concentrations. In contrast, LPS treatments were without effect on somatic and reproductive development in SD hamsters. These experiments indicate that photoperiod affects antigen-specific antibody production, febrile responses to LPS, and sickness behaviors in juvenile Siberian hamsters, and that peripubertal activation of the immune system exacts energetic and metabolic costs that can diminish the magnitude of somatic and reproductive maturation in LD. The data also underscore the importance of seasonally dependent life history factors in assessing physiological tradeoffs.
Collapse
Affiliation(s)
- Brian J Prendergast
- Departments of Psychology and Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
45
|
Prendergast BJ, Bilbo SD, Nelson RJ. Photoperiod controls the induction, retention, and retrieval of antigen-specific immunological memory. Am J Physiol Regul Integr Comp Physiol 2004; 286:R54-60. [PMID: 12958060 DOI: 10.1152/ajpregu.00381.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in day length affect several measures of immunity in seasonally breeding mammals. In Siberian hamsters (Phodopus sungorus), short day lengths suppress specific secondary antibody responses to the keyhole limpet hemocyanin (KLH) antigen and enhance cutaneous delayed-type hypersensitivity (DTH) responses to dinitrofluorobenzene (DNFB). These experiments tested whether day length affects secondary antibody and DTH responses by altering immune function solely during the interval after the initial exposure to each antigen, solely during the interval after the second exposure, or during both stages of the respective immune responses. Adult male Siberian hamsters were exposed to either a long (16 h light/day; LD) or a short (8 h light/day; SD) photoperiod for 7.5 wk before receiving an initial exposure to each antigen (KLH injection, cutaneous DNFB treatment; separate groups of animals for each antigen). A subset of LD hamsters was transferred to the SD photo-period, and a subset of SD hamsters was transferred to the LD photoperiod. Other hamsters remained in LD or SD. Eight weeks later, all hamsters were challenged with a second subcutaneous injection of KLH or a second application of DNFB to the ear, and immune responses were measured. Exposure to SD during the primary antibody response did not affect secondary IgG responses, but SD exposure during the secondary response significantly suppressed IgG production independent of day length during the initial KLH treatment. In contrast, exposure to SD during the DNFB challenge enhanced the ensuing DTH response, but this enhancement depended on the photoperiod prevailing during the initial exposure. Exposure to SD during the sensitization stage did not enhance DTH in hamsters subsequently exposed to LD. The data suggest that short photoperiods have enduring effects on immune responsiveness and on the establishment and retention of immunological memory.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|