1
|
Zou S, Chen Q, Shen Z, Qin B, Zhu X, Lan Y. Update on the roles of regular daily rhythms in combating brain tumors. Eur J Pharmacol 2025; 986:177144. [PMID: 39571672 DOI: 10.1016/j.ejphar.2024.177144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
An endogenous time-keeping system found in all kingdoms of life, the endogenous circadian clock, is the source of the essential cyclic change mechanism known as the circadian rhythm. The primary circadian clock that synchronizes peripheral circadian clocks to the proper phase is housed in the anterior hypothalamus's suprachiasmatic nuclei (SCN), which functions as a central pacemaker. According to many epidemiological studies, many cancer types, especially brain tumors, have shown evidence of dysregulated clock gene expression, and the connection between clock and brain tumors is highly specific. In some studies, it is reported that the treatment administered in the morning has been linked to prolonged survival for brain cancer patients, and drug sensitivity and gene expression in gliomas follow daily rhythms. These results suggest a relationship between the circadian rhythm and the onset and spread of brain tumors, while further accumulation of research evidence will be needed to establish definitely these positive outcomes as well as to determine the mechanism underlying them. Chronotherapy provides a means of harnessing current medicines to prolong patients' lifespans and improve their quality of life, indicating the significance of circadian rhythm in enhancing the design of future patient care and clinical trials. Moreover, it is implicated that chronobiological therapy target may provide a significant challenge that warrants extensive effort to achieve. This review examines evidence of the relationship of circadian rhythm with glioma molecular pathogenesis and summarizes the mechanisms and drugs implicated in this disease.
Collapse
Affiliation(s)
- Shuang Zou
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, China
| | - Zhiwei Shen
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangdong Zhu
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Yulong Lan
- Department of Neurosurgery and Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Woodie LN, Alberto AJ, Krusen BM, Melink LC, Lazar MA. Genetic synchronization of the brain and liver molecular clocks defend against chrono-metabolic disease. Proc Natl Acad Sci U S A 2024; 121:e2417678121. [PMID: 39665757 DOI: 10.1073/pnas.2417678121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Nearly every cell of the body contains a circadian clock mechanism that is synchronized with the light-entrained clock in the suprachiasmatic nucleus (SCN). Desynchrony between the SCN and the external environment leads to metabolic dysfunction in shift workers. Similarly, mice with markedly shortened endogenous period due to the deletion of circadian REV-ERBα/β nuclear receptors in the SCN (SCN DKO) exhibit increased sensitivity to diet-induced obesity (DIO) on a 24 h light:dark cycle while mice with REV-ERBs deleted in hepatocytes (HepDKO) display exacerbated hepatosteatosis in response to a high-fat diet. Here, we show that inducing deletion of hepatocyte REV-ERBs in SCN DKO mice (Hep-SCN DDKO) rescued the exacerbated DIO and hepatic triglyceride accumulation, without affecting the shortened behavioral period. These findings suggest that metabolic disturbances due to environmental desynchrony with the central clock are due to effects on peripheral clocks which can be mitigated by matching peripheral and central clock periods even in a desynchronous environment. Thus, maintaining synchrony within an organism, rather than between endogenous and exogenous clocks, may be a viable target for the treatment of metabolic disorders associated with circadian disruption.
Collapse
Affiliation(s)
- Lauren N Woodie
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Ahren J Alberto
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Brianna M Krusen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Lily C Melink
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
3
|
Brouwers TMJ, Çobanoğlu ÜG, Geers D, Rietdijk WJR, Gommers L, Bogers S, Lammers GJ, van der Horst GTJ, Chaves I, GeurtsvanKessel CH, Koch BCP, de Vries RD, van Baarle D, van der Kuy HM, Lammers-van der Holst HM. The effect of sleep and shift work on the primary immune response to messenger RNA-based COVID-19 vaccination. J Sleep Res 2024:e14431. [PMID: 39658344 DOI: 10.1111/jsr.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Shift work can cause circadian misalignment, which often results in sleeping problems and has been associated with immune dysfunction. To better understand the impact of shift work on a primary immune response to vaccination, we compared severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific humoral and cellular immune responses after one injection of the messenger RNA (mRNA)-1273 vaccine between day workers (n = 24) and night shift workers (n = 21). In addition, duration and quality of sleep were assessed for a period of 7 days around the time of vaccination using actigraphy and daily sleep diaries, and their relationship with immunogenicity of mRNA-1273 vaccination was studied. We found that median total sleep time on the 2 days immediately after vaccination, which coincided with the days that night shift workers worked night shifts, was significantly lower in night shift workers (342 and 318 min) than day workers (431 and 415 min) (both p < 0.001). There was no difference in sleep quality between day workers and night shift workers. Furthermore, no difference in the antibody response between the two groups was observed, yet night shift workers had a significantly higher virus-specific T-cell response than day workers 28 days after immunisation (p = 0.013). Multivariate regression analysis showed no association between sleep duration, sleep quality and SARS-CoV-2-specific humoral or cellular immune responses. Collectively, these findings indicate that shift work-induced sleep loss and night shift work have little to no effect on the primary immune response to mRNA-based COVID-19 vaccination.
Collapse
Affiliation(s)
- Tamara M J Brouwers
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Ümmü Gülsüm Çobanoğlu
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim J R Rietdijk
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lennert Gommers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Sleep Wake Center, Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
| | | | - Inês Chaves
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
| | - Hugo M van der Kuy
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
4
|
Zhang Y, Chen Y, Li W, Tang L, Li J, Feng X. Targeting the circadian modulation: novel therapeutic approaches in the management of ASD. Front Psychiatry 2024; 15:1451242. [PMID: 39465045 PMCID: PMC11503653 DOI: 10.3389/fpsyt.2024.1451242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Circadian dysfunction is prevalent in neurodevelopmental disorders, particularly in autism spectrum disorder (ASD). A plethora of empirical studies demonstrate a strong correlation between ASD and circadian disruption, suggesting that modulation of circadian rhythms and the clocks could yield satisfactory advancements. Research indicates that circadian dysfunction associated with abnormal neurodevelopmental phenotypes in ASD individuals, potentially contribute to synapse plasticity disruption. Therefore, targeting circadian rhythms may emerge as a key therapeutic approach. In this study, we did a brief review of the mammalian circadian clock, and the correlation between the circadian mechanism and the pathology of ASD at multiple levels. In addition, we highlight that circadian is the target or modulator to participate in the therapeutic approaches in the management of ASD, such as phototherapy, melatonin, modulating circadian components, natural compounds, and chronotherapies. A deep understanding of the circadian clock's regulatory role in the neurodevelopmental phenotypes in ASD may inspire novel strategies for improving ASD treatment.
Collapse
Affiliation(s)
- Yuxing Zhang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yinan Chen
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wu Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liya Tang
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jiangshan Li
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiang Feng
- School of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
5
|
Kisamore C, Kisamore C, Walker W. Circadian Rhythm Disruption in Cancer Survivors: From Oncogenesis to Quality of Life. Cancer Med 2024; 13:e70353. [PMID: 39463009 PMCID: PMC11513439 DOI: 10.1002/cam4.70353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Circadian rhythms are approximately 24-hour cycles in physiological and behavioral processes. They are entrained to the external solar day via blue wavelength light. Disruptions in these intrinsic rhythms can lead to circadian dysfunction, which has several negative implications on human health, including cancer development and progression. AIMS Here we review the molecular mechanisms of circadian disruption and their impact on tumor development and progression, discuss the interplay between circadian dysfunction and cancer in basic scientific studies and clinical data, and propose the potential clinical implications of these data that may be used to improve patient outcomes and reduce cost of treatment. MATERIALS & METHODS Using scientific literature databases, relevant studies were analyzed to draw overarching conclusions of the relationship between circadian rhythm dysruption and cancer. CONCLUSIONS Circadian disruption can be mediated by a number of environmental factors such as exposure to light at night, shift work, jetlag, and social jetlag which drive oncogenesis. Tumor growth and progression, as well as treatment, can lead to long-term alterations in circadian rhythms that negatively affect quality of life in cancer survivors.
Collapse
Affiliation(s)
- Claire O. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Caleb A. Kisamore
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
| | - William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience InstituteWest Virginia UniversityMorgantownWest VirginiaUSA
- West Virginia University Cancer InstituteMorgantownWest VirginiaUSA
| |
Collapse
|
6
|
Ahmed O, Ibrahiam AT, Al-Qassab ZM, Kannan V, Ullah N, Geddada S, Nassar ST. Unraveling the Impact of Travel on Circadian Rhythm and Crafting Optimal Management Approaches: A Systematic Review. Cureus 2024; 16:e71316. [PMID: 39534813 PMCID: PMC11554432 DOI: 10.7759/cureus.71316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Circadian rhythms, which regulate essential physiological and behavioral processes, are crucial for maintaining overall health and well-being. However, disruptions to these rhythms, particularly due to trans-meridian travel and shift work, can lead to significant health issues, including jet lag, metabolic imbalances, and neuropsychiatric disorders. In this systematic review, conducted in line with Preferred Reporting Items for Systematic Reviews and Metanalysis (PRISMA) 2020 guidelines, we explore the effectiveness of various interventions aimed at realigning circadian rhythms disrupted by such factors. Focusing on studies published between 2020 and 2024, our search spanned databases like PubMed, Google Scholar, PubMed Central (PMC), and ScienceDirect, emphasizing randomized controlled trials (RCTs), observational studies, and comprehensive reviews. A rigorous quality assessment using the AMSTAR tool for systematic reviews and the SANRA checklist for narrative reviews was employed. Out of an initial 2153 titles, 23 high-quality studies were identified and analyzed. The findings reveal that interventions such as melatonin supplementation, personalized light exposure, and chrono-modulation can significantly improve sleep quality, reduce jet lag symptoms, and promote better health outcomes. This review highlights the critical nature of circadian alignment in preventing serious health issues, such as mental health disorders, metabolic syndromes, and even cancer. It advocates for a personalized, integrative approach that combines melatonin, light therapy, time-restricted eating, exercise, and alternative therapies like electroacupuncture. Such strategies not only facilitate smoother transitions across time zones but also contribute to overall health and resilience. Future studies should aim to assess the long-term benefits and practical applications of these interventions in broader populations.
Collapse
Affiliation(s)
- Osman Ahmed
- Family Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Amir T Ibrahiam
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Zahraa M Al-Qassab
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Vaishnavi Kannan
- General Surgery Research, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Najeeb Ullah
- General Surgery, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Sunitha Geddada
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Sondos T Nassar
- Medicine and Surgery, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
7
|
Goraya SA, Ding S, Arif MK, Kong H, Masud A. Effect of Circadian Rhythm Modulated Blood Flow on Nanoparticle based Targeted Drug Delivery in Virtual In Vivo Arterial Geometries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597680. [PMID: 38895445 PMCID: PMC11185639 DOI: 10.1101/2024.06.05.597680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Delivery of drug using nanocarriers tethered with vasculature-targeting epitopes aims to maximize the therapeutic efficacy of the drug while minimizing the drug side effects. Circadian rhythm which is governed by the central nervous system has implications for targeted drug delivery due to sleep-wake cycle changes in blood flow dynamics. This paper presents an advanced fluid dynamics modeling method that is based on viscous incompressible shear-rate fluid (blood) coupled with an advection-diffusion equation to simulate the formation of drug concentration gradients in the blood stream and buildup of concentration at the targeted site. The method is equipped with an experimentally calibrated nanoparticle-endothelial cell adhesion model that employs Robin boundary conditions to describe nanoparticle retention based on probability of adhesion, a friction model accounting for surface roughness of endothelial cell layer, and a dispersion model based on Taylor-Aris expression for effective diffusion in the boundary layer. The computational model is first experimentally validated and then tested on engineered bifurcating arterial systems where impedance boundary conditions are applied at the outflow to account for the downstream resistance at each outlet. It is then applied to a virtual geometric model of an in vivo arterial tree developed through MRI-based image processing techniques. These simulations highlight the potential of the computational model for drug transport, adhesion, and retention at multiple sites in virtual in vivo models. The model provides a virtual platform for exploring circadian rhythm modulated blood flow for targeted drug delivery while minimizing the in vivo experimentation. Statement of Significance A novel integration of nanoparticle-based drug delivery framework with shear-rate dependent blood flow model is presented. The framework is comprised of a unique combination of mechanics-based dispersion model, an asperity model for endothelium surface roughness, and a stochastic nanoparticle-endothelial cell adhesion model. Simulations of MRI based in vivo carotid artery system showcase the effects of vessel geometry on nanoparticle adhesion and retention at the targeted site. Vessel geometry and target site location impact nanoparticle adhesion; curved and bifurcating regions favor local accumulation of drug. It is also shown that aligning drug administration with circadian rhythm and sleep cycle can enhance the efficacy of drug delivery processes. These simulations highlight the potential of the computational modeling for exploring circadian rhythm modulated blood flow for targeted drug delivery while minimizing the in vivo experimentation.
Collapse
Affiliation(s)
- Shoaib A. Goraya
- Department of Civil and Environmental Engineering, University of Illinois Urbana–Champaign
| | - Shengzhe Ding
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana–Champaign
| | | | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana–Champaign
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana–Champaign
| | - Arif Masud
- Department of Civil and Environmental Engineering, University of Illinois Urbana–Champaign
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana–Champaign
| |
Collapse
|
8
|
García-Montero C, Fraile-Martinez O, Cobo-Prieto D, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Pekarek L, Gragera R, Hernández-Fernández M, Guijarro LG, Toledo-Lobo MDV, López-González L, Díaz-Pedrero R, Monserrat J, Álvarez-Mon M, Saez MA, Ortega MA. Abnormal Histopathological Expression of Klotho, Ferroptosis, and Circadian Clock Regulators in Pancreatic Ductal Adenocarcinoma: Prognostic Implications and Correlation Analyses. Biomolecules 2024; 14:947. [PMID: 39199335 PMCID: PMC11353028 DOI: 10.3390/biom14080947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal tumor with increasing incidence, presenting numerous clinical challenges. The histopathological examination of novel, unexplored biomarkers offers a promising avenue for research, with significant translational potential for improving patient outcomes. In this study, we evaluated the prognostic significance of ferroptosis markers (TFRC, ALOX-5, ACSL-4, and GPX-4), circadian clock regulators (CLOCK, BMAL1, PER1, PER2), and KLOTHO in a retrospective cohort of 41 patients deceased by PDAC. Immunohistochemical techniques (IHC) and multiple statistical analyses (Kaplan-Meier curves, correlograms, and multinomial linear regression models) were performed. Our findings reveal that ferroptosis markers are directly associated with PDAC mortality, while circadian regulators and KLOTHO are inversely associated. Notably, TFRC emerged as the strongest risk marker associated with mortality (HR = 35.905), whereas CLOCK was identified as the most significant protective marker (HR = 0.01832). Correlation analyses indicate that ferroptosis markers are positively correlated with each other, as are circadian regulators, which also positively correlate with KLOTHO expression. In contrast, KLOTHO and circadian regulators exhibit inverse correlations with ferroptosis markers. Among the clinical variables examined, only the presence of chronic pathologies showed an association with the expression patterns of several proteins studied. These findings underscore the complexity of PDAC pathogenesis and highlight the need for further research into the specific molecular mechanisms driving disease progression.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - David Cobo-Prieto
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Immune System Diseases-Rheumatology Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Raquel Gragera
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
| | - Mauricio Hernández-Fernández
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - María Del Val Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (O.F.-M.); (D.C.-P.); (D.D.L.-O.); (D.L.B.); (P.D.C.-M.); (L.P.); (R.G.); (J.M.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (M.D.V.T.-L.); (L.L.-G.); (R.D.-P.)
| |
Collapse
|
9
|
Sang X, Lu J, Tan L, Zeng J, Wang D, Guo A, Tang S, Zeng Q, Liu W, Gao L. The Circadian Rhythm of Itching among 241 Adults with Atopic Dermatitis: A Cross-sectional Study. Acta Derm Venereol 2024; 104:adv35427. [PMID: 39101338 PMCID: PMC11318504 DOI: 10.2340/actadv.v104.35427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
The pattern of itching in patients with atopic dermatitis has not been systematically studied. Therefore, this study aimed to assess the pattern of itching in adults with atopic dermatitis using questionnaires to assess for a circadian rhythm of itching in participating patients at a single institution (n = 241). A self-report questionnaire was used to assess circadian rhythm and intensity of itching in patients. In addition, the patients' disease severity (Eczema Area and Severity Index [EASI]) and quality of life (Dermatology Life Quality Index [DLQI]) were assessed. Itching occurred most frequently (74.69%) and with the greatest severity (62.66%) between 20:00 and 00:00, and the least number of patients (25.31%) experienced itching between 04:00 and 08:00. The DLQI and EASI scores both correlated with the average and maximum itch intensity (r = 0.582, r = 0.533, respectively; r = 0.539, r = 0.517, respectively; p < 0.001). The DLQI and EASI scores were associated with average itch intensity (B = 0.179, B = 0.204, respectively; 95% CI: 0.112 to 0.246, 95% CI: 0.096 to 0.313, respectively; p < 0.001), and the EASI score was associated with males and family history (B = 0.285, B = 0.287, respectively; 95% CI: 0.094 to 0.476, 95% CI: 0.096 to 0.478, respectively; p = 0.003). Adult patients with atopic dermatitis exhibited a circadian rhythm of itching; these study results could positively impact treatment approaches.
Collapse
Affiliation(s)
- Xiaoxue Sang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Jianyun Lu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Ozone Research Center of Central South University, Changsha, Hunan, China
| | - Lina Tan
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Ozone Research Center of Central South University, Changsha, Hunan, China
| | - Jinrong Zeng
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Ozone Research Center of Central South University, Changsha, Hunan, China
| | - Dan Wang
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Ozone Research Center of Central South University, Changsha, Hunan, China
| | - Aiyuan Guo
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Ozone Research Center of Central South University, Changsha, Hunan, China
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Qian Zeng
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Lihua Gao
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Medical Ozone Research Center of Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Iascone DM, Zhang X, Brafford P, Mesaros C, Sela Y, Hofbauer S, Zhang SL, Madhwal S, Cook K, Pivarshev P, Stanger BZ, Anderson S, Dang CV, Sehgal A. Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2319782121. [PMID: 39008664 PMCID: PMC11287162 DOI: 10.1073/pnas.2319782121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.
Collapse
Affiliation(s)
- Daniel Maxim Iascone
- HHMI, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Xue Zhang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Wistar Institute, Philadelphia, PA19104
| | - Patricia Brafford
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Wistar Institute, Philadelphia, PA19104
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA19104
| | - Yogev Sela
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Samuel Hofbauer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA19104
| | - Shirley L. Zhang
- HHMI, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Sukanya Madhwal
- HHMI, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kieona Cook
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Pavel Pivarshev
- HHMI, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ben Z. Stanger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Stewart Anderson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Chi V. Dang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Wistar Institute, Philadelphia, PA19104
| | - Amita Sehgal
- HHMI, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
11
|
Balter LJT, van Someren EJW, Axelsson J. Insomnia symptom severity and dynamics of arousal-related symptoms across the day. J Sleep Res 2024:e14276. [PMID: 38923646 DOI: 10.1111/jsr.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/19/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Arousal is a central component of many emotional symptoms and can contribute to insomnia. Here we assessed how the timing and fluctuating nature of arousal-related symptoms over the course of the day relate to insomnia symptom severity. In this study, 361 participants (M age = 31.9 years, 282 women, 77 men, 2 non-binary individuals) completed the Insomnia Severity Index to assess severity of insomnia symptoms, followed by repeated ratings of anxiety or nervousness, stress, sleepiness, and feeling down via their mobile phone between ~08:00 hours and 00:00 hours across 1 day. Measures of dynamics included: mean levels across the day; variation (standard deviation); instability (mean squared successive differences); and resistance to change/inertia (first-order autocorrelation). Time-of-day patterns were modelled using generalized additive mixed effects models. Insomnia symptom severity (mean Insomnia Severity Index = 9.1, SD = 5.2, range 0-25) was associated with higher mean levels of all arousal-related symptoms, and increased instability and variation throughout the day in anxiety or nervousness, stress, and feeling down. Resistance to change (inertia) was not associated with insomnia symptom severity. Generalized additive mixed effects analyses showed that while individuals with more severe insomnia symptoms had elevated symptoms across the entire day, they were especially more anxious or nervous and sleepy in the early morning (~08:00 hours), anxious or nervous, stressed and sleepy in the late afternoon/early evening (~16:00 hours-21:00 hours), and anxious or nervous and stressed in the late evening (~22:00 hours). Remarkably, higher arousal occurred in the presence of high subjective sleepiness. Together these results indicate that insomnia symptom severity is associated with problems with daytime and evening arousal regulation.
Collapse
Affiliation(s)
- Leonie J T Balter
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Eus J W van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Integrative Neurophysiology and Psychiatry, Center for Neurogenomics and Cognitive Research, Amsterdam UMC, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - John Axelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Stress Research Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
12
|
Wegener C, Amatobi KM, Ozbek-Unal AG, Fekete A. Circadian Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874889 DOI: 10.1007/5584_2024_810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
To ensure optimum health and performance, lipid metabolism needs to be temporally aligned to other body processes and to daily changes in the environment. Central and peripheral circadian clocks and environmental signals such as light provide internal and external time cues to the body. Importantly, each of the key organs involved in insect lipid metabolism contains a molecular clockwork which ticks with a varying degree of autonomy from the central clock in the brain. In this chapter, we review our current knowledge about peripheral clocks in the insect fat body, gut and oenocytes, and light- and circadian-driven diel patterns in lipid metabolites and lipid-related transcripts. In addition, we highlight selected neuroendocrine signaling pathways that are or may be involved in the temporal coordination and control of lipid metabolism.
Collapse
Affiliation(s)
- Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Kelechi M Amatobi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayten Gizem Ozbek-Unal
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
Keiser T, Katz S, Robson SM, Greaney JL, Healy S, Malone SK, Farrahi V, Patterson F. Association between time-of-day for eating, exercise, and sleep with blood pressure in adults with elevated blood pressure or hypertension: a systematic review. J Hypertens 2024; 42:951-960. [PMID: 38647159 PMCID: PMC11062822 DOI: 10.1097/hjh.0000000000003732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The purpose of this review is to synthesize results from studies examining the association between time-of-day for eating, exercise, and sleep with blood pressure (BP) in adults with elevated BP or hypertension. Six databases were searched for relevant publications from which 789 were identified. Ten studies met inclusion criteria. Four studies examined time-of-day for eating, five examined time-of-day for exercise, and one examined time-of-day for sleep and their associations with BP. Results suggested that later time-of-day for eating ( n = 2/4) and later sleep mid-point ( n = 1/1) were significantly related to higher BP in multivariable models, whereas morning ( n = 3/5) and evening ( n = 4/5) exercise were associated with significantly lower BP. Although this small body of work is limited by a lack of prospective, randomized controlled study designs and underutilization of 24 h ambulatory BP assessment, these results provide preliminary, hypothesis-generating support for the independent role of time-of-day for eating, exercise, and sleep with lower BP.
Collapse
Affiliation(s)
- Thomas Keiser
- College of Health Sciences, University of Delaware, Newark, Delaware, USA
| | - Sarah Katz
- Department of Library, Museums, and Press, University of Delaware, Newark, Delaware, USA
| | - Shannon M Robson
- College of Health Sciences, University of Delaware, Newark, Delaware, USA
| | - Jody L Greaney
- College of Health Sciences, University of Delaware, Newark, Delaware, USA
| | - Sean Healy
- Department of Physical Education and Sports Science, University of Limerick, Limerick, Ireland
| | - Susan K Malone
- Rory Meyers College of Nursing, New York University, New York, USA
| | - Vahid Farrahi
- Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| | - Freda Patterson
- College of Health Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
15
|
Munteanu C, Turti S, Achim L, Muresan R, Souca M, Prifti E, Mârza SM, Papuc I. The Relationship between Circadian Rhythm and Cancer Disease. Int J Mol Sci 2024; 25:5846. [PMID: 38892035 PMCID: PMC11172077 DOI: 10.3390/ijms25115846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The circadian clock regulates biological cycles across species and is crucial for physiological activities and biochemical reactions, including cancer onset and development. The interplay between the circadian rhythm and cancer involves regulating cell division, DNA repair, immune function, hormonal balance, and the potential for chronotherapy. This highlights the importance of maintaining a healthy circadian rhythm for cancer prevention and treatment. This article investigates the complex relationship between the circadian rhythm and cancer, exploring how disruptions to the internal clock may contribute to tumorigenesis and influence cancer progression. Numerous databases are utilized to conduct searches for articles, such as NCBI, MEDLINE, and Scopus. The keywords used throughout the academic archives are "circadian rhythm", "cancer", and "circadian clock". Maintaining a healthy circadian cycle involves prioritizing healthy sleep habits and minimizing disruptions, such as consistent sleep schedules, reduced artificial light exposure, and meal timing adjustments. Dysregulation of the circadian clock gene and cell cycle can cause tumor growth, leading to the need to regulate the circadian cycle for better treatment outcomes. The circadian clock components significantly impact cellular responses to DNA damage, influencing cancer development. Understanding the circadian rhythm's role in tumor diseases and their therapeutic targets is essential for treating and preventing cancer. Disruptions to the circadian rhythm can promote abnormal cell development and tumor metastasis, potentially due to immune system imbalances and hormonal fluctuations.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sabina Turti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Larisa Achim
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Raluca Muresan
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Marius Souca
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Eftimia Prifti
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; (C.M.); (S.T.); (L.A.); (R.M.); (M.S.); (E.P.)
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
16
|
Sharma D, Adnan D, Abdel-Reheem MK, Anafi RC, Leary DD, Bishehsari F. Circadian transcriptome of pancreatic adenocarcinoma unravels chronotherapeutic targets. JCI Insight 2024; 9:e177697. [PMID: 38716727 PMCID: PMC11141942 DOI: 10.1172/jci.insight.177697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 06/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA. We hypothesized that there are temporal variations in cancer-relevant processes within PDA tumors, offering insights into the optimal timing of drug administration - a concept termed chronotherapy. In this study, we explored the presence of the circadian transcriptome in PDA using patient-derived organoids and validated these findings by comparing PDA data from The Cancer Genome Atlas with noncancerous healthy pancreas data from GTEx. Several PDA-associated pathways (cell cycle, stress response, Rho GTPase signaling) and cancer driver hub genes (EGFR and JUN) exhibited a cancer-specific rhythmic pattern intricately linked to the circadian clock. Through the integration of multiple functional measurements for rhythmic cancer driver genes, we identified top chronotherapy targets and validated key findings in molecularly divergent pancreatic cancer cell lines. Testing the chemotherapeutic efficacy of clinically relevant drugs further revealed temporal variations that correlated with drug-target cycling. Collectively, our study unravels the PDA circadian transcriptome and highlights a potential approach for optimizing chrono-chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Mostafa K. Abdel-Reheem
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Ron C. Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel D. Leary
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Gastroenterology and
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
17
|
Henson J, Tziannou A, Rowlands AV, Edwardson CL, Hall AP, Davies MJ, Yates T. Twenty-four-hour physical behaviour profiles across type 2 diabetes mellitus subtypes. Diabetes Obes Metab 2024; 26:1355-1365. [PMID: 38186324 DOI: 10.1111/dom.15437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
AIM To investigate how 24-h physical behaviours differ across type 2 diabetes (T2DM) subtypes. MATERIALS AND METHODS We included participants living with T2DM, enrolled as part of an ongoing observational study. Participants wore an accelerometer for 7 days to quantify physical behaviours across 24 h. We used routinely collected clinical data (age at onset of diabetes, glycated haemoglobin level, homeostatic model assessment index of beta-cell function, homeostatic model assessment index of insulin resistance, body mass index) to replicate four previously identified subtypes (insulin-deficient diabetes [INS-D], insulin-resistant diabetes [INS-R], obesity-related diabetes [OB] and age-related diabetes [AGE]), via k-means clustering. Differences in physical behaviours across the diabetes subtypes were assessed using generalized linear models, with the AGE cluster as the reference. RESULTS A total of 564 participants were included in this analysis (mean age 63.6 ± 8.4 years, 37.6% female, mean age at diagnosis 53.1 ± 10.0 years). The proportions in each cluster were as follows: INS-D: n = 35, 6.2%; INS-R: n = 88, 15.6%; OB: n = 166, 29.4%; and AGE: n = 275, 48.8%. Compared to the AGE cluster, the OB cluster had a shorter sleep duration (-0.3 h; 95% confidence interval [CI] -0.5, -0.1), lower sleep efficiency (-2%; 95% CI -3, -1), lower total physical activity (-2.9 mg; 95% CI -4.3, -1.6) and less time in moderate-to-vigorous physical activity (-6.6 min; 95% CI -11.4, -1.7), alongside greater sleep variability (17.9 min; 95% CI 8.2, 27.7) and longer sedentary time (31.9 min; 95% CI 10.5, 53.2). Movement intensity during the most active continuous 10 and 30 min of the day was also lower in the OB cluster. CONCLUSIONS In individuals living with T2DM, the OB subtype had the lowest levels of physical activity and least favourable sleep profiles. Such behaviours may be suitable targets for personalized therapeutic lifestyle interventions.
Collapse
Affiliation(s)
- Joseph Henson
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK
| | - Aikaterina Tziannou
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK
| | - Alex V Rowlands
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), UniSA Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Charlotte L Edwardson
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK
| | - Andrew P Hall
- Hanning Sleep Laboratory, Leicester General Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK
| | - Thomas Yates
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
18
|
Liu L, Luo X, Wu W, Li Y, Long J, Luo X, Chen X, Gong X, Zhao C, He Q, Li Z, Shang K, Chen Y, Xinyu X, Jin F. Long-term survival, toxicities, and the role of chrono-chemotherapy with different infusion rates in locally advanced nasopharyngeal carcinoma patients treated with intensity-modulated radiation therapy: a retrospective study with a 5-year follow-up. Front Oncol 2024; 14:1371878. [PMID: 38585011 PMCID: PMC10995334 DOI: 10.3389/fonc.2024.1371878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose This study aimed to evaluate 5-year outcomes and the late toxicity profile of chrono-chemotherapy with different infusion rates in patients with locally advanced nasopharyngeal carcinoma (NPC). Methods and materials Our retrospective analysis included 70 patients with locally advanced NPC stages III and IVB (according to the 2010 American Joint Committee on Cancer staging system). Patients were treated with two cycles of induction chemotherapy (IC) before concurrent chemoradiotherapy (CCRT) at Guizhou Cancer Hospital. The IC with docetaxel, cisplatin (DDP) and fluorouracil regimen. Patients were divided into two groups during CCRT. Using a "MELODIE" multi-channel programmed pump, DDP (100 mg/m2) was administered for 12 hours from 10:00 am to 10:00 pm and repeated every 3 weeks for 2-3 cycles. DDP was administered at the peak period of 4:00 pm in the sinusoidal chrono-modulated infusion group (Arm A, n=35). The patients in Arm B received a constant rate of infusion. Both arms received radiotherapy through the same technique and dose fraction. The long-term survival and disease progression were observed. Results After a median follow-up of 82.8 months, the 5-year progression-free survival rate was 81.3% in Arm A and 79.6% in Arm B (P = 0.85). The 5-year overall survival rate was not significantly different between Arm A and Arm B (79.6% vs 85.3%, P = 0.79). The 5-year distant metastasis-free survival rate was 83.6% in Arm A and 84.6% in Arm B (P = 0.75). The 5-year local recurrence-free survival rate was 88.2% in Arm A and 85.3% in Arm B (P = 0.16). There were no late toxicities of grade 3-4 in either group. Both groups had grade 1-2 late toxicities. Dry mouth was the most common late toxic side effect, followed by hearing loss and difficulty in swallowing. There was no statistically significant difference between Arm A and Arm B in terms of side effects. Conclusion Long-term analysis confirmed that in CCRT, cisplatin administration with sinusoidal chrono-modulated infusion was not superior to the constant infusion rate in terms of long-term toxicity and prognosis.
Collapse
Affiliation(s)
- Lina Liu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xunyan Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weili Wu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanyuan Li
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jinhua Long
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiuling Luo
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoxiao Chen
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiuyun Gong
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Chaofen Zhao
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Qianyong He
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhuoling Li
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Kai Shang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yue Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xu Xinyu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Feng Jin
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
19
|
Zeng Q, Oliva VM, Moro MÁ, Scheiermann C. Circadian Effects on Vascular Immunopathologies. Circ Res 2024; 134:791-809. [PMID: 38484032 DOI: 10.1161/circresaha.123.323619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
Circadian rhythms exert a profound impact on most aspects of mammalian physiology, including the immune and cardiovascular systems. Leukocytes engage in time-of-day-dependent interactions with the vasculature, facilitating the emigration to and the immune surveillance of tissues. This review provides an overview of circadian control of immune-vascular interactions in both the steady state and cardiovascular diseases such as atherosclerosis and infarction. Circadian rhythms impact both the immune and vascular facets of these interactions, primarily through the regulation of chemoattractant and adhesion molecules on immune and endothelial cells. Misaligned light conditions disrupt this rhythm, generally exacerbating atherosclerosis and infarction. In cardiovascular diseases, distinct circadian clock genes, while functioning as part of an integrated circadian system, can have proinflammatory or anti-inflammatory effects on these immune-vascular interactions. Here, we discuss the mechanisms and relevance of circadian rhythms in vascular immunopathologies.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - Valeria Maria Oliva
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
| | - María Ángeles Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.Á.M.)
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland (Q.Z., V.M.O., C.S.)
- Geneva Center for Inflammation Research, Switzerland (C.S.)
- Translational Research Centre in Oncohaematology, Geneva, Switzerland (C.S.)
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Germany (C.S.)
| |
Collapse
|
20
|
Zhu X, Maier G, Panda S. Learning from circadian rhythm to transform cancer prevention, prognosis, and survivorship care. Trends Cancer 2024; 10:196-207. [PMID: 38001006 PMCID: PMC10939944 DOI: 10.1016/j.trecan.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Circadian timekeeping mechanisms and cell cycle regulation share thematic biological principles in responding to signals, repairing cellular damage, coordinating metabolism, and allocating cellular resources for optimal function. Recent studies show interactions between cell cycle regulators and circadian clock components, offering insights into potential cancer treatment approaches. Understanding circadian control of metabolism informs timing for therapies to reduce adverse effects and enhance treatment efficacy. Circadian adaptability to lifestyle factors, such as activity, sleep, and nutrition sheds light on their impact on cancer. Leveraging circadian regulatory mechanisms for cancer prevention and care is vital, as most risk stems from modifiable lifestyles. Monitoring circadian factors aids risk assessment and targeted interventions across the cancer care continuum.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geraldine Maier
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
21
|
Mok H, Ostendorf E, Ganninger A, Adler AJ, Hazan G, Haspel JA. Circadian immunity from bench to bedside: a practical guide. J Clin Invest 2024; 134:e175706. [PMID: 38299593 PMCID: PMC10836804 DOI: 10.1172/jci175706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
The immune system is built to counteract unpredictable threats, yet it relies on predictable cycles of activity to function properly. Daily rhythms in immune function are an expanding area of study, and many originate from a genetically based timekeeping mechanism known as the circadian clock. The challenge is how to harness these biological rhythms to improve medical interventions. Here, we review recent literature documenting how circadian clocks organize fundamental innate and adaptive immune activities, the immunologic consequences of circadian rhythm and sleep disruption, and persisting knowledge gaps in the field. We then consider the evidence linking circadian rhythms to vaccination, an important clinical realization of immune function. Finally, we discuss practical steps to translate circadian immunity to the patient's bedside.
Collapse
Affiliation(s)
- Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elaine Ostendorf
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Ganninger
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Avi J. Adler
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guy Hazan
- Department of Pediatrics, Soroka University Medical Center, Beer-Sheva, Israel
- Research and Innovation Center, Saban Children’s Hospital, Beer-Sheva, Israel
| | - Jeffrey A. Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Nelson MJ, Soliman PS, Rhew R, Cassidy RN, Haass-Koffler CL. Disruption of circadian rhythms promotes alcohol use: a systematic review. Alcohol Alcohol 2024; 59:agad083. [PMID: 38123479 PMCID: PMC10794164 DOI: 10.1093/alcalc/agad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
This systematic review investigates the bidirectional relationship between alcohol consumption and disrupted circadian rhythms. The goal of this study was to identify (i) the types of circadian rhythm disruptors (i.e. social jet lag, extreme chronotypes, and night shift work) associated with altered alcohol use and (ii) whether sex differences in the consequences of circadian disruption exist. We conducted a search of PubMed, Embase, and PsycINFO exclusively on human research. We identified 177 articles that met the inclusion criteria. Our analyses revealed that social jet lag and the extreme chronotype referred to as eveningness were consistently associated with increased alcohol consumption. Relationships between night shift work and alcohol consumption were variable; half of articles reported no effect of night shift work on alcohol consumption. Both sexes were included as participants in the majority of the chronotype and social jet lag papers, with no sex difference apparent in alcohol consumption. The night shift research, however, contained fewer studies that included both sexes. Not all forms of circadian disruption are associated with comparable patterns of alcohol use. The most at-risk individuals for increased alcohol consumption are those with social jet lag or those of an eveningness chronotype. Direct testing of the associations in this review should be conducted to evaluate the relationships among circadian disruption, alcohol intake, and sex differences to provide insight into temporal risk factors associated with development of alcohol use disorder.
Collapse
Affiliation(s)
- Morgan J Nelson
- Biotechnology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Center for Alcohol and Addiction Studies, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
| | - Paul S Soliman
- Center for Alcohol and Addiction Studies, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Department of Neuroscience, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
| | - Ryan Rhew
- Center for Alcohol and Addiction Studies, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Department of Neuroscience, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
| | - Rachel N Cassidy
- Center for Alcohol and Addiction Studies, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Department of Behavioral and Social Sciences, School of Public Health, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Department of Behavioral and Social Sciences, School of Public Health, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI 02912, United States
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, United States
| |
Collapse
|
23
|
Hannemann J, Laing A, Middleton B, Schwedhelm E, Marx N, Federici M, Kastner M, Skene DJ, Böger R. Effect of oral melatonin treatment on insulin resistance and diurnal blood pressure variability in night shift workers. A double-blind, randomized, placebo-controlled study. Pharmacol Res 2024; 199:107011. [PMID: 38029806 DOI: 10.1016/j.phrs.2023.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Night shift work is associated with sleep disturbances, obesity, and cardiometabolic diseases. Disruption of the circadian clock system has been suggested to be an independent cause of type 2 diabetes and cardiovascular disease in shift workers. We aimed to improve alignment of circadian timing with social and environmental factors with administration of melatonin. METHODS In a randomized, placebo-controlled, prospective study, we analysed the effects of 2 mg of sustained-release melatonin versus placebo on glucose tolerance, insulin resistance indices, sleep quality, circadian profiles of plasma melatonin and cortisol, and diurnal blood pressure profiles in 24 rotating night shift workers during 12 weeks of treatment, followed by 12 weeks of wash-out. In a novel design, the time of melatonin administration (at night or in the morning) depended upon the shift schedule. We also compared the baseline profiles of the night shift (NS) workers with 12 healthy non-night shift (NNS)-working controls. RESULTS We found significantly impaired indices of insulin resistance at baseline in NS versus NNS (p < 0.05), but no differences in oral glucose tolerance tests nor in the diurnal profiles of melatonin, cortisol, or blood pressure. Twelve weeks of melatonin treatment did not significantly improve insulin resistance, nor did it significantly affect diurnal blood pressure or melatonin and cortisol profiles. Melatonin administration, however, caused a significant improvement in sleep quality which was significantly impaired in NS versus NNS at baseline (p < 0.001). CONCLUSIONS Rotating night shift work causes mild-to-moderate impairment of sleep quality and insulin resistance. Melatonin treatment at bedtime improves sleep quality, but does not significantly affect insulin resistance in rotating night shift workers after 12 weeks of administration.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Laing
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benita Middleton
- Chronobiology, University of Surrey, Guildford, Surrey, England, UK
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nikolaus Marx
- Department of Cardiology, University Medical Center Aachen, Aachen, Germany
| | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mariola Kastner
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Debra J Skene
- Chronobiology, University of Surrey, Guildford, Surrey, England, UK
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
24
|
Pang X, Chen L, Xu G. New Awareness of the Interplay Between the Gut Microbiota and Circadian Rhythms. Pol J Microbiol 2023; 72:355-363. [PMID: 38095865 PMCID: PMC10725168 DOI: 10.33073/pjm-2023-046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Circadian rhythms influence various aspects of the biology and physiology of the host, such as food intake and sleep/wake cycles. In recent years, an increasing amount of genetic and epidemiological data has shown that the light/dark cycle is the main cue that regulates circadian rhythms. Other factors, including sleep/wake cycles and food intake, have necessary effects on the composition and rhythms of the gut microbiota. Interestingly, the gut microbiota can affect the circadian rhythm of hosts in turn through contact-dependent and contact-independent mechanisms. Furthermore, the gut microbiota has been shown to regulate the sleep/wake cycles through gut-brain-microbiota interaction. In addition to diabetes, the gut microbiota can also intervene in the progression of neuro- degenerative diseases through the gut-brain-microbiota interaction, and also in other diseases such as hypertension and rheumatoid arthritis, where it is thought to have a spare therapeutic potential. Even though fecal microbiota transplantation has good potential for treating many diseases, the risk of spreading intestinal pathogens should not be ignored.
Collapse
Affiliation(s)
- Xiaoxiao Pang
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Long Chen
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Lin J, Kuang H, Jiang J, Zhou H, Peng L, Yan X, Kuang J. Circadian Rhythms in Cardiovascular Function: Implications for Cardiac Diseases and Therapeutic Opportunities. Med Sci Monit 2023; 29:e942215. [PMID: 37986555 PMCID: PMC10675984 DOI: 10.12659/msm.942215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 11/22/2023] Open
Abstract
Circadian rhythms are internal 24-h intrinsic oscillations that are present in essentially all mammalian cells and can influence numerous biological processes. Cardiac function is known to exhibit a circadian rhythm and is strongly affected by the day/night cycle. Many cardiovascular variables, including heart rate, heart rate variability (HRV), electrocardiogram (ECG) waveforms, endothelial cell function, and blood pressure, demonstrate robust circadian rhythms. Many experiential and clinical studies have highlighted that disruptions in circadian rhythms can ultimately lead to maladaptive cardiac function. Factors that disrupt the circadian rhythm, including shift work, global travel, and sleep disorders, may consequently enhance the risk of cardiovascular diseases. Some cardiac diseases appear to occur at particular times of the day or night; therefore, targeting the disease at particular times of day may improve the clinical outcome. The objective of this review is to unravel the relationship between circadian rhythms and cardiovascular health. By understanding this intricate interplay, we aim to reveal the potential risks of circadian disruption and discuss the emerging therapeutic strategies, specifically those targeting circadian rhythms. In this review, we explore the important role of circadian rhythms in cardiovascular physiology and highlight the role they play in cardiac dysfunction such as ventricular hypertrophy, arrhythmia, diabetes, and myocardial infarction. Finally, we review potential translational treatments aimed at circadian rhythms. These treatments offer an innovative approach to enhancing the existing approaches for managing and treating heart-related conditions, while also opening new avenues for therapeutic development.
Collapse
Affiliation(s)
- Jiayue Lin
- Postgraduate School, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Haoming Kuang
- Postgraduate School, Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Jiahao Jiang
- Department of Chinese Medicine, The First People’s Hospital of Kunshan, Suzhou, Jiangsu, PR China
| | - Hui Zhou
- Department of Cardiovascular, Beibei Hospital of Chinese Medicine, Chongqing, PR China
| | - Li Peng
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Xu Yan
- Department of Cardiovascular, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| | - Jianjun Kuang
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, PR China
| |
Collapse
|
26
|
Iascone DM, Zhang X, Bafford P, Mesaros C, Sela Y, Hofbauer S, Zhang SL, Cook K, Pivarshev P, Stanger BZ, Anderson S, Dang CV, Sehgal A. Hypermetabolic state is associated with circadian rhythm disruption in mouse and human cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566310. [PMID: 38014131 PMCID: PMC10680562 DOI: 10.1101/2023.11.08.566310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Crosstalk between cellular metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to degenerative disease, including cancer. Here, we investigated whether maintenance of circadian rhythms depends upon specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to overall levels of a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function in an in vitro mouse model of pancreatic adenocarcinoma. Metabolic profiling of a library of congenic tumor cell clones revealed significant differences in levels of lactate, pyruvate, ATP, and other crucial metabolites that we used to identify candidate clones with which to generate circadian reporter lines. Despite the shared genetic background of the clones, we observed diverse circadian profiles among these lines that varied with their metabolic phenotype: the most hypometabolic line had the strongest circadian rhythms while the most hypermetabolic line had the weakest rhythms. Treatment of these tumor cell lines with bezafibrate, a peroxisome proliferator-activated receptor (PPAR) agonist shown to increase OxPhos, decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, treatment with the Complex I antagonist rotenone enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function, and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.
Collapse
Affiliation(s)
- Daniel Maxim Iascone
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xue Zhang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
- Wistar Institute, Philadelphia, PA, USA
- Present address: Johns Hopkins University, Baltimore, MD, USA
| | - Patricia Bafford
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
- Wistar Institute, Philadelphia, PA, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogev Sela
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Samuel Hofbauer
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirley L Zhang
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Present address: Emory University, Atlanta, GA, USA
| | - Kieona Cook
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pavel Pivarshev
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z Stanger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stewart Anderson
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Chi V Dang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104
- Wistar Institute, Philadelphia, PA, USA
- Present address: Johns Hopkins University, Baltimore, MD, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Teruel-Hernández E, López-Pina JA, Souto-Camba S, Báez-Suárez A, Medina-Ramírez R, Gómez-Conesa A. Improving Sleep Quality, Daytime Sleepiness, and Cognitive Function in Patients with Dementia by Therapeutic Exercise and NESA Neuromodulation: A Multicenter Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7027. [PMID: 37947583 PMCID: PMC10650908 DOI: 10.3390/ijerph20217027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Dementia is a progressive decline in cognitive functions caused by an alteration in the pattern of neural network connections. There is an inability to create new neuronal connections, producing behavioral disorders. The most evident alteration in patients with neurodegenerative diseases is the alteration of sleep-wake behavior. The aim of this study was to test the effect of two non-pharmacological interventions, therapeutic exercise (TE) and non-invasive neuromodulation through the NESA device (NN) on sleep quality, daytime sleepiness, and cognitive function of 30 patients diagnosed with dementia (non-invasive neuromodulation experimental group (NNG): mean ± SD, age: 71.6 ± 7.43 years; therapeutic exercise experimental group (TEG) 75.2 ± 8.63 years; control group (CG) 80.9 ± 4.53 years). The variables were evaluated by means of the Pittsburg Index (PSQI), the Epworth Sleepiness Scale (ESS), and the Mini-Cognitive Exam Test at four different times during the study: at baseline, after 2 months (after completion of the NNG), after 5 months (after completion of the TEG), and after 7 months (after 2 months of follow-up). Participants in the NNG and TEG presented significant improvements with respect to the CG, and in addition, the NNG generated greater relevant changes in the three variables with respect to the TEG (sleep quality (p = 0.972), daytime sleepiness (p = 0.026), and cognitive function (p = 0.127)). In conclusion, with greater effects in the NNG, both treatments were effective to improve daytime sleepiness, sleep quality, and cognitive function in the dementia population.
Collapse
Affiliation(s)
| | | | - Sonia Souto-Camba
- Department of Physiotherapy, Medicine and Biomedical Sciences, University of A Coruña, 15006 A Coruña, Spain;
| | - Aníbal Báez-Suárez
- Health Science Faculty, University of Las Palmas de Gran Canaria, 35016 Las Palmas, Spain;
| | - Raquel Medina-Ramírez
- SocDig Research Group, University of Las Palmas de Gran Canaria, 35016 Las Palmas, Spain;
| | - Antonia Gómez-Conesa
- Research Methods and Evaluation in the Social Sciences Research Group, Mare Nostrum Campus of International Excellence, University of Murcia, 30100 Murcia, Spain;
| |
Collapse
|
28
|
Myung J, Hong S, Schmal C, Vitet H, Wu MY. Weak synchronization can alter circadian period length: implications for aging and disease conditions. Front Neurosci 2023; 17:1242800. [PMID: 37829718 PMCID: PMC10564985 DOI: 10.3389/fnins.2023.1242800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
The synchronization of multiple oscillators serves as the central mechanism for maintaining stable circadian rhythms in physiology and behavior. Aging and disease can disrupt synchronization, leading to changes in the periodicity of circadian activities. While our understanding of the circadian clock under synchronization has advanced significantly, less is known about its behavior outside synchronization, which can also fall within a predictable domain. These states not only impact the stability of the rhythms but also modulate the period length. In C57BL/6 mice, aging, diseases, and removal of peripheral circadian oscillators often result in lengthened behavioral circadian periods. Here, we show that these changes can be explained by a surprisingly simple mathematical relationship: the frequency is the reciprocal of the period, and its distribution becomes skewed when the period distribution is symmetric. The synchronized frequency of a population in the skewed distribution and the macroscopic frequency of combined oscillators differ, accounting for some of the atypical circadian period outputs observed in networks without synchronization. Building on this finding, we investigate the dynamics of circadian outputs in the context of aging and disease, where synchronization is weakened.
Collapse
Affiliation(s)
- Jihwan Myung
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei City, Taiwan
- Brain and Consciousness Research Centre (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Sungho Hong
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hélène Vitet
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei City, Taiwan
- Brain and Consciousness Research Centre (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
29
|
Maroto-Gómez M, Malfaz M, Castro-González Á, Carrasco-Martínez S, Salichs MÁ. Adaptive Circadian Rhythms for Autonomous and Biologically Inspired Robot Behavior. Biomimetics (Basel) 2023; 8:413. [PMID: 37754164 PMCID: PMC10527311 DOI: 10.3390/biomimetics8050413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Biological rhythms are periodic internal variations of living organisms that act as adaptive responses to environmental changes. The human pacemaker is the suprachiasmatic nucleus, a brain region involved in biological functions like homeostasis or emotion. Biological rhythms are ultradian (<24 h), circadian (∼24 h), or infradian (>24 h) depending on their period. Circadian rhythms are the most studied since they regulate daily sleep, emotion, and activity. Ambient and internal stimuli, such as light or activity, influence the timing and the period of biological rhythms, making our bodies adapt to dynamic situations. Nowadays, robots experience unceasing development, assisting us in many tasks. Due to the dynamic conditions of social environments and human-robot interaction, robots exhibiting adaptive behavior have more possibilities to engage users by emulating human social skills. This paper presents a biologically inspired model based on circadian biorhythms for autonomous and adaptive robot behavior. The model uses the Dynamic Circadian Integrated Response Characteristic method to mimic human biology and control artificial biologically inspired functions influencing the robot's decision-making. The robot's clock adapts to light, ambient noise, and user activity, synchronizing the robot's behavior to the ambient conditions. The results show the adaptive response of the model to time shifts and seasonal changes of different ambient stimuli while regulating simulated hormones that are key in sleep/activity timing, stress, and autonomic basal heartbeat control during the day.
Collapse
Affiliation(s)
- Marcos Maroto-Gómez
- Systems Engineering and Automation, University Carlos III of Madrid, Av. de la Universidad 30, 28911 Leganés, Madrid, Spain; (M.M.); (Á.C.-G.); (S.C.-M.); (M.Á.S.)
| | | | | | | | | |
Collapse
|
30
|
Silver R, Yao Y, Roy RK, Stern JE. Parallel trajectories in the discovery of the SCN-OVLT and pituitary portal pathways: Legacies of Geoffrey Harris. J Neuroendocrinol 2023; 35:e13245. [PMID: 36880566 PMCID: PMC10423749 DOI: 10.1111/jne.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
A map of central nervous system organization based on vascular networks provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. The first evidence of such a pathway in the brain came from anatomical studies identifying a portal pathway linking the hypothalamus and the pituitary gland. Almost a century later, we demonstrated a vascular portal pathway that joined the capillary beds of the suprachiasmatic nucleus and a circumventricular organ, the organum vasculosum of the lamina terminalis, in a mouse brain. For each of these portal pathways, the anatomical findings opened many new lines of inquiry, including the determination of the direction of flow of information, the identity of the signal that flowed along this pathway, and the function of the signals that linked the two regions. Here, we review landmark steps to these discoveries and highlight the experiments that reveal the significance of portal pathways and more generally, the implications of morphologically distinct nuclei sharing capillary beds.
Collapse
Affiliation(s)
- Rae Silver
- Department of Neuroscience, Barnard College, 3009 Broadway, New York City, NY, 10027, USA
- Columbia University Department of Psychology, 1190 Amsterdam Avenue, New York City, NY, 10027, USA
- Department of Psychology, Barnard College, 3009 Broadway, New York City, NY, 10027, USA
| | - Yifan Yao
- Columbia University Department of Psychology, 1190 Amsterdam Avenue, New York City, NY, 10027, USA
| | - Ranjan K. Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, 30303, USA
| | - Javier E. Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
31
|
Marilac Soalheiro L, de Jesus Brandão B, Paiva RVN, Dias Carvalho L, Menezes Paranhos RD, Ribeiro Barbosa PC, Guerrero-Vargas NN, Tamura EK. Familiarity of Brazilian psychologists with basic concepts in sleep science and chronobiology. Chronobiol Int 2023; 40:1072-1083. [PMID: 37661786 DOI: 10.1080/07420528.2023.2250870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Desynchronization of circadian rhythms and sleep-wake patterns impacts biochemical, physiological, and behavioral functions, including mental processes. The complex relationship between circadian rhythms and mental health makes it challenging to determine causality between circadian desynchronization and mental disorders. Regarding the fact that psychologists act as the front line for initial mental health care, we aimed to assess the knowledge and use of sleep science and basic chronobiology by professional psychologists in Brazil. Data were collected via an online questionnaire completed by 1384 professional psychologists between October 2018 and May 2019. Our findings revealed that ±80% of psychologists reported that at least half of their patients presented some sleep-related complaints; however, only ±27% routinely inquired about sleep quality even in the absence of patient complaints. Additionally, only ±66% initiated treatments to understand these complaints, potentially influenced by the lack of prior academic exposure to biological rhythms as reported by ±76% of Brazilian psychologists interviewed. Importantly, ±15% did not believe in an association between mental health and biological rhythms, and even a significant ±67% were unfamiliar with the term chronobiology and ±63% were not able to describe any other biological rhythm except for the sleep-wake cycle. These results demonstrate that fundamental concepts in chronobiology and sleep science are unknown to a substantial proportion of Brazilian psychologists. In conclusion, we propose that this subject could be more effectively integrated into psychologists' academic training, potentially promoting benefits through the incorporation of a chronobiological approach in mental health practice.
Collapse
Affiliation(s)
| | | | | | - Lázaro Dias Carvalho
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Paulo César Ribeiro Barbosa
- Department of Human Sciences and Philosophy, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Natali N Guerrero-Vargas
- Department of Anatomy, Faculty of Medicine, Universidad Nacional Autonóma de México, México City, México
| | - Eduardo Koji Tamura
- Department of Health Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| |
Collapse
|
32
|
Hastings MH, Brancaccio M, Gonzalez-Aponte MF, Herzog ED. Circadian Rhythms and Astrocytes: The Good, the Bad, and the Ugly. Annu Rev Neurosci 2023; 46:123-143. [PMID: 36854316 PMCID: PMC10381027 DOI: 10.1146/annurev-neuro-100322-112249] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
This review explores the interface between circadian timekeeping and the regulation of brain function by astrocytes. Although astrocytes regulate neuronal activity across many time domains, their cell-autonomous circadian clocks exert a particular role in controlling longer-term oscillations of brain function: the maintenance of sleep states and the circadian ordering of sleep and wakefulness. This is most evident in the central circadian pacemaker, the suprachiasmatic nucleus, where the molecular clock of astrocytes suffices to drive daily cycles of neuronal activity and behavior. In Alzheimer's disease, sleep impairments accompany cognitive decline. In mouse models of the disease, circadian disturbances accelerate astroglial activation and other brain pathologies, suggesting that daily functions in astrocytes protect neuronal homeostasis. In brain cancer, treatment in the morning has been associated with prolonged survival, and gliomas have daily rhythms in gene expression and drug sensitivity. Thus, circadian time is fast becoming critical to elucidating reciprocal astrocytic-neuronal interactions in health and disease.
Collapse
Affiliation(s)
- Michael H Hastings
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Marco Brancaccio
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Maria F Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA;
| | - Erik D Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
33
|
Vágó J, Takács R, Kovács P, Hajdú T, van der Veen DR, Matta C. Combining biomechanical stimulation and chronobiology: a novel approach for augmented chondrogenesis? Front Bioeng Biotechnol 2023; 11:1232465. [PMID: 37456723 PMCID: PMC10349586 DOI: 10.3389/fbioe.2023.1232465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The unique structure and composition of articular cartilage is critical for its physiological function. However, this architecture may get disrupted by degeneration or trauma. Due to the low intrinsic regeneration properties of the tissue, the healing response is generally poor. Low-grade inflammation in patients with osteoarthritis advances cartilage degradation, resulting in pain, immobility, and reduced quality of life. Generating neocartilage using advanced tissue engineering approaches may address these limitations. The biocompatible microenvironment that is suitable for cartilage regeneration may not only rely on cells and scaffolds, but also on the spatial and temporal features of biomechanics. Cell-autonomous biological clocks that generate circadian rhythms in chondrocytes are generally accepted to be indispensable for normal cartilage homeostasis. While the molecular details of the circadian clockwork are increasingly well understood at the cellular level, the mechanisms that enable clock entrainment by biomechanical signals, which are highly relevant in cartilage, are still largely unknown. This narrative review outlines the role of the biomechanical microenvironment to advance cartilage tissue engineering via entraining the molecular circadian clockwork, and highlights how application of this concept may enhance the development and successful translation of biomechanically relevant tissue engineering interventions.
Collapse
Affiliation(s)
- Judit Vágó
- Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Roland Takács
- Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Daan R. van der Veen
- Chronobiology Section, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Csaba Matta
- Department of Anatomy, Faculty of Medicine, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
34
|
Gerstner JR, Flores CC, Lefton M, Rogers B, Davis CJ. FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function. Front Syst Neurosci 2023; 17:1212213. [PMID: 37404868 PMCID: PMC10315501 DOI: 10.3389/fnsys.2023.1212213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Brooke Rogers
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
35
|
Skapetze L, Owino S, Lo EH, Arai K, Merrow M, Harrington M. Rhythms in barriers and fluids: Circadian clock regulation in the aging neurovascular unit. Neurobiol Dis 2023; 181:106120. [PMID: 37044366 DOI: 10.1016/j.nbd.2023.106120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
The neurovascular unit is where two very distinct physiological systems meet: The central nervous system (CNS) and the blood. The permeability of the barriers separating these systems is regulated by time, including both the 24 h circadian clock and the longer processes of aging. An endogenous circadian rhythm regulates the transport of molecules across the blood-brain barrier and the circulation of the cerebrospinal fluid and the glymphatic system. These fluid dynamics change with time of day, and with age, and especially in the context of neurodegeneration. Factors may differ depending on brain region, as can be highlighted by consideration of circadian regulation of the neurovascular niche in white matter. As an example of a potential target for clinical applications, we highlight chaperone-mediated autophagy as one mechanism at the intersection of circadian dysregulation, aging and neurodegenerative disease. In this review we emphasize key areas for future research.
Collapse
Affiliation(s)
- Lea Skapetze
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sharon Owino
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mary Harrington
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America.
| |
Collapse
|
36
|
Wang Y, Li JQ, Qiang WM, Wang SR, Shen AM, Xi CX, Liu H. Can chronoradiotherapy offer benefits to cervical cancer patients? A scoping review. Chronobiol Int 2023; 40:353-360. [PMID: 36912010 DOI: 10.1080/07420528.2023.2174880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The objective of this scoping review was to synthesize the available evidence and evaluate the effectiveness of chronoradiotherapy interventions in cervical cancer patients. This scoping review was performed by searching in the PubMed, Cochrane Library, Embase, Web of Science, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), China National Knowledge Infrastructure (CNKI), Wanfang, Wenpu, and Chinese Biomedical Literature (CBM) databases. Databases were searched for studies published in English or Chinese from inception to 21 May 2021, and reference lists of relevant reports were scanned. Two investigators independently screened eligible studies in accordance with predetermined eligibility criteria and extracted data. The included studies were summarized and analyzed. Five studies including a total of 422 patients with cervical cancer were included in the scoping review; four studies were Chinese, and one was Indian. Main themes identified included the efficiency of chronoradiotherapy and relevant toxic and side effects, including diarrhea toxicity, hematologic toxicity, myelosuppression, gastrointestinal mucositis, and skin reactions. Administration of radiotherapy at different times of the day resulted in similar efficacy. However, the toxic side effects of morning radiotherapy (MR) and evening radiotherapy (ER) differed, with radiotherapy in the evening leading to more severe hematologic toxicity and myelosuppression. There were conflicting conclusions about gastrointestinal reactions with chronoradiotherapy, and further studies are needed. Radiation responses may be associated with circadian genes, through the influence of cell cycles and apoptosis.
Collapse
Affiliation(s)
- Ying Wang
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jia-Qian Li
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Wan-Min Qiang
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Shu-Rui Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ao-Mei Shen
- Nursing Department, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Chen-Xi Xi
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huan Liu
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
37
|
Petković M, Henis M, Heese O, Relógio A. Chronotherapy in Glioblastoma: state of the art and future perspectives. EBioMedicine 2023; 89:104470. [PMID: 36796229 PMCID: PMC9958380 DOI: 10.1016/j.ebiom.2023.104470] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Circadian rhythms regulate various processes in the human body, including drug metabolism. Chronotherapy optimizes treatment timing based on the circadian rhythm of the individual patient, such that the treatment efficacy is maximized, and adverse effects are minimized. It has been explored in different cancers with varying conclusions. Glioblastoma multiforme (GBM) is the most aggressive type of brain tumour with a very dismal prognosis. In recent years, there has been very little success in designing successful therapies to fight this disease. Chronotherapy offers the opportunity to leverage existing treatments to extend patient survival and to increase their quality of life. Here, we discuss recent advances in using chronotherapy regimens in the treatment of GMB, such as radiotherapy, temozolomide (TMZ) and bortezomib, as well as discuss novel treatments with drugs of short half-life or circadian phase specific activity, and examine the therapeutic potential of new approaches that target elements of the core circadian clock.
Collapse
Affiliation(s)
- Marina Petković
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| | - Melad Henis
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Oliver Heese
- Department of Neurosurgery and Spinal Surgery, HELIOS Medical Center Schwerin, University Campus of MSH Medical School Hamburg, Hamburg 20457, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany; Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg 20457, Germany; Medical Department of Hematology, Oncology, and Tumour Immunology, Molecular Cancer Research Center (MKFZ), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany.
| |
Collapse
|
38
|
Sun S, Wang H. Clocking Epilepsies: A Chronomodulated Strategy-Based Therapy for Rhythmic Seizures. Int J Mol Sci 2023; 24:4223. [PMID: 36835631 PMCID: PMC9962262 DOI: 10.3390/ijms24044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.
Collapse
Affiliation(s)
- Sha Sun
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
39
|
Martin RA, Viggars MR, Esser KA. Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat Rev Endocrinol 2023; 19:272-284. [PMID: 36726017 DOI: 10.1038/s41574-023-00805-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Circadian rhythms that influence mammalian homeostasis and overall health have received increasing interest over the past two decades. The molecular clock, which is present in almost every cell, drives circadian rhythms while being a cornerstone of physiological outcomes. The skeletal muscle clock has emerged as a primary contributor to metabolic health, as the coordinated expression of the core clock factors BMAL1 and CLOCK with the muscle-specific transcription factor MYOD1 facilitates the circadian and metabolic programme that supports skeletal muscle physiology. The phase of the skeletal muscle clock is sensitive to the time of exercise, which provides a rationale for exploring the interactions between the skeletal muscle clock, exercise and metabolic health. Here, we review the underlying mechanisms of the skeletal muscle clock that drive muscle physiology, with a particular focus on metabolic health. Additionally, we highlight the interaction between exercise and the skeletal muscle clock as a means of reinforcing metabolic health and discuss the possible implications of the time of exercise as a chronotherapeutic approach.
Collapse
Affiliation(s)
- Ryan A Martin
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Mark R Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
40
|
Huang H, Mehta A, Kalmanovich J, Anand A, Bejarano MC, Garg T, Khan N, Tonpouwo GK, Shkodina AD, Bardhan M. Immunological and inflammatory effects of infectious diseases in circadian rhythm disruption and future therapeutic directions. Mol Biol Rep 2023; 50:3739-3753. [PMID: 36656437 PMCID: PMC9851103 DOI: 10.1007/s11033-023-08276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Circadian rhythm is characterised by daily variations in biological activity to align with the light and dark cycle. These diurnal variations, in turn, influence physiological functions such as blood pressure, temperature, and sleep-wake cycle. Though it is well established that the circadian pathway is linked to pro-inflammatory responses and circulating immune cells, its association with infectious diseases is widely unknown. OBJECTIVE This comprehensive review aims to describe the association between circadian rhythm and host immune response to various kinds of infection. METHODS We conducted a literature search in databases Pubmed/Medline and Science direct. Our paper includes a comprehensive analysis of findings from articles in English which was related to our hypothesis. FINDINGS Molecular clocks determine circadian rhythm disruption in response to infection, influencing the host's response toward infection. Moreover, there is a complex interplay with intrinsic oscillators of pathogens and the influence of specific infectious processes on the CLOCK: BMAL1 pathway. Such mechanisms vary for bacterial and viral infections, both well studied in the literature. However, less is known about the association of parasitic infections and fungal pathogens with circadian rhythm modulation. CONCLUSION It is shown that bidirectional relationships exist between circadian rhythm disruption and infectious process, which contains interplay between the host's and pathogens' circadian oscillator, immune response, and the influence of specific infectious. Further studies exploring the modulations of circadian rhythm and immunity can offer novel explanations of different susceptibilities to infection and can lead to therapeutic avenues in circadian immune modulation of infectious diseases.
Collapse
Affiliation(s)
- Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Aashna Mehta
- Faculty of Medicine, University of Debrecen, Debrecen, 4032 Hungary
| | | | - Ayush Anand
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Maria Chilo Bejarano
- Facultad de Ciencias de la Salud Humana, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Tulika Garg
- Government Medical College and Hospital, Chandigarh, India
| | - Nida Khan
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Gauvain Kankeu Tonpouwo
- Faculté de Médecine, Université de Lubumbashi, Plaine Tshombé, Lubumbashi, Democratic Republic of the Congo
| | | | - Mainak Bardhan
- ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| |
Collapse
|
41
|
Hirayama J, Hattori A, Takahashi A, Furusawa Y, Tabuchi Y, Shibata M, Nagamatsu A, Yano S, Maruyama Y, Matsubara H, Sekiguchi T, Suzuki N. Physiological consequences of space flight, including abnormal bone metabolism, space radiation injury, and circadian clock dysregulation: Implications of melatonin use and regulation as a countermeasure. J Pineal Res 2023; 74:e12834. [PMID: 36203395 DOI: 10.1111/jpi.12834] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
Exposure to the space environment induces a number of pathophysiological outcomes in astronauts, including bone demineralization, sleep disorders, circadian clock dysregulation, cardiovascular and metabolic dysfunction, and reduced immune system function. A recent report describing experiments aboard the Space Shuttle mission, STS-132, showed that the level of melatonin, a hormone that provides the biochemical signal of darkness, was decreased during microgravity in an in vitro culture model. Additionally, abnormal lighting conditions in outer space, such as low light intensity in orbital spacecraft and the altered 24-h light-dark cycles, may result in the dysregulation of melatonin rhythms and the misalignment of the circadian clock from sleep and work schedules in astronauts. Studies on Earth have demonstrated that melatonin regulates various physiological functions including bone metabolism. These data suggest that the abnormal regulation of melatonin in outer space may contribute to pathophysiological conditions of astronauts. In addition, experiments with high-linear energy transfer radiation, a ground-based model of space radiation, showed that melatonin may serve as a protectant against space radiation. Gene expression profiling using an in vitro culture model exposed to space flight during the STS-132 mission, showed that space radiation alters the expression of DNA repair and oxidative stress response genes, indicating that melatonin counteracts the expression of these genes responsive to space radiation to promote cell survival. These findings implicate the use of exogenous melatonin and the regulation of endogenous melatonin as countermeasures for the physiological consequences of space flight.
Collapse
Affiliation(s)
- Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences & Division of Health Sciences, Graduate School of Sustainable Systems Science, Komatsu University, Komatsu, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Masahiro Shibata
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | | | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Noto-cho, Ishikawa, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho, Japan
| |
Collapse
|
42
|
Schönke M, Esser KA, Gabriel BM. Editorial: Circadian rhythms and exercise in cardiometabolic health. Front Endocrinol (Lausanne) 2023; 14:1180851. [PMID: 37025402 PMCID: PMC10070961 DOI: 10.3389/fendo.2023.1180851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Affiliation(s)
- Milena Schönke
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Milena Schönke,
| | - Karyn A. Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brendan M. Gabriel
- Aberdeen Cardiovascular & Diabetes Centre, The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
43
|
Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. Eur J Neurosci 2023; 57:178-200. [PMID: 36342744 PMCID: PMC10099399 DOI: 10.1111/ejn.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.
Collapse
Affiliation(s)
- Ziba Asadpoordezaki
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Beverley M Henley
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| |
Collapse
|
44
|
Kalita E, Panda M, Prajapati VK. The interplay between circadian clock and viral infections: A molecular perspective. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:293-330. [PMID: 37709380 DOI: 10.1016/bs.apcsb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The circadian clock influences almost every aspect of mammalian behavioral, physiological and metabolic processes. Being a hierarchical network, the circadian clock is driven by the central clock in the brain and is composed of several peripheral tissue-specific clocks. It orchestrates and synchronizes the daily oscillations of biological processes to the environment. Several pathological events are influenced by time and seasonal variations and as such implicate the clock in pathogenesis mechanisms. In context with viral infections, circadian rhythmicity is closely associated with host susceptibility, disease severity, and pharmacokinetics and efficacies of antivirals and vaccines. Leveraging the circadian molecular mechanism insights has increased our understanding of clock infection biology and proposes new avenues for viral diagnostics and therapeutics. In this chapter, we address the molecular interplay between the circadian clock and viral infections and discuss the importance of chronotherapy as a complementary approach to conventional medicines, emphasizing the significance of virus-clock studies.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India..
| |
Collapse
|
45
|
Yin JCP, Cui E, Hardin PE, Zhou H. Circadian disruption of memory consolidation in Drosophila. Front Syst Neurosci 2023; 17:1129152. [PMID: 37034015 PMCID: PMC10073699 DOI: 10.3389/fnsys.2023.1129152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
The role of the circadian system in memory formation is an important question in neurobiology. Despite this hypothesis being intuitively appealing, the existing data is confusing. Recent work in Drosophila has helped to clarify certain aspects of the problem, but the emerging sense is that the likely mechanisms are more complex than originally conceptualized. In this report, we identify a post-training window of time (during consolidation) when the circadian clock and its components are involved in memory formation. In the broader context, our data suggest that circadian biology might have multiple roles during memory formation. Testing for its roles at multiple timepoints, and in different cells, will be necessary to resolve some of the conflicting data.
Collapse
Affiliation(s)
- Jerry C. P. Yin
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Neurology Department, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- *Correspondence: Jerry C. P. Yin
| | - Ethan Cui
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Paul E. Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, College Station, TX, United States
| | - Hong Zhou
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
46
|
Klerman EB, Brager A, Carskadon MA, Depner CM, Foster R, Goel N, Harrington M, Holloway PM, Knauert MP, LeBourgeois MK, Lipton J, Merrow M, Montagnese S, Ning M, Ray D, Scheer FAJL, Shea SA, Skene DJ, Spies C, Staels B, St‐Onge M, Tiedt S, Zee PC, Burgess HJ. Keeping an eye on circadian time in clinical research and medicine. Clin Transl Med 2022; 12:e1131. [PMID: 36567263 PMCID: PMC9790849 DOI: 10.1002/ctm2.1131] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Daily rhythms are observed in humans and almost all other organisms. Most of these observed rhythms reflect both underlying endogenous circadian rhythms and evoked responses from behaviours such as sleep/wake, eating/fasting, rest/activity, posture changes and exercise. For many research and clinical purposes, it is important to understand the contribution of the endogenous circadian component to these observed rhythms. CONTENT The goal of this manuscript is to provide guidance on best practices in measuring metrics of endogenous circadian rhythms in humans and promote the inclusion of circadian rhythms assessments in studies of health and disease. Circadian rhythms affect all aspects of physiology. By specifying minimal experimental conditions for studies, we aim to improve the quality, reliability and interpretability of research into circadian and daily (i.e., time-of-day) rhythms and facilitate the interpretation of clinical and translational findings within the context of human circadian rhythms. We describe protocols, variables and analyses commonly used for studying human daily rhythms, including how to assess the relative contributions of the endogenous circadian system and other daily patterns in behaviours or the environment. We conclude with recommendations for protocols, variables, analyses, definitions and examples of circadian terminology. CONCLUSION Although circadian rhythms and daily effects on health outcomes can be challenging to distinguish in practice, this distinction may be important in many clinical settings. Identifying and targeting the appropriate underlying (patho)physiology is a medical goal. This review provides methods for identifying circadian effects to aid in the interpretation of published work and the inclusion of circadian factors in clinical research and practice.
Collapse
Affiliation(s)
- Elizabeth B. Klerman
- Department of NeurologyMassachusetts General Hospital, Brigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Allison Brager
- PlansAnalysis, and FuturesJohn F. Kennedy Special Warfare Center and SchoolFort BraggNorth CarolinaUSA
| | - Mary A. Carskadon
- Alpert Medical School of Brown UniversityDepartment of Psychiatry and Human BehaviorEP Bradley HospitalChronobiology and Sleep ResearchProvidenceRhode IslandUSA
| | | | - Russell Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience InstituteNuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Namni Goel
- Biological Rhythms Research LaboratoryDepartment of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIllinoisUSA
| | - Mary Harrington
- Neuroscience ProgramSmith CollegeNorthamptonMassachusettsUSA
| | | | - Melissa P. Knauert
- Section of PulmonaryCritical Care, and Sleep MedicineDepartment of Internal MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Monique K. LeBourgeois
- Sleep and Development LaboratoryDepartment of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Jonathan Lipton
- Boston Children's Hospital and Kirby Neurobiology CenterBostonMassachusettsUSA
| | - Martha Merrow
- Institute of Medical PsychologyFaculty of MedicineLMUMunichGermany
| | - Sara Montagnese
- Department of MedicineUniversity of PadovaPadovaItaly
- ChronobiologyFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Mingming Ning
- Clinical Proteomics Research Center and Cardio‐Neurology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - David Ray
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUK
- Oxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUK
| | - Frank A. J. L. Scheer
- Division of Sleep MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Medical Chronobiology ProgramDivision of Sleep and Circadian DisordersDepartments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Steven A. Shea
- Oregon Institute of Occupational Health SciencesOregon Health and Science UniversityPortlandOregonUSA
| | - Debra J. Skene
- ChronobiologyFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care MedicineCharité – Universitaetsmedizin BerlinBerlinGermany
| | - Bart Staels
- UnivLilleInsermCHU LilleInstitut Pasteur de LilleU1011‐EGIDLilleFrance
| | - Marie‐Pierre St‐Onge
- Division of General Medicine and Center of Excellence for Sleep and Circadian ResearchDepartment of MedicineColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Steffen Tiedt
- Institute for Stroke and Dementia ResearchUniversity HospitalLMUMunichGermany
| | - Phyllis C. Zee
- Center for Circadian and Sleep MedicineDivision of Sleep MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Helen J. Burgess
- Sleep and Circadian Research LaboratoryDepartment of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
47
|
Neba Ambe GNN, Breda C, Bhambra AS, Arroo RRJ. Effect of the Citrus Flavone Nobiletin on Circadian Rhythms and Metabolic Syndrome. Molecules 2022; 27:molecules27227727. [PMID: 36431828 PMCID: PMC9695244 DOI: 10.3390/molecules27227727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The importance of the circadian clock in maintaining human health is now widely acknowledged. Dysregulated and dampened clocks may be a common cause of age-related diseases and metabolic syndrome Thus, circadian clocks should be considered as therapeutic targets to mitigate disease symptoms. This review highlights a number of dietary compounds that positively affect the maintenance of the circadian clock. Notably the polymethoxyflavone nobiletin has shown some encouraging results in pre-clinical experiments. Although many more experiments are needed to fully elucidate its exact mechanism of action, it is a promising candidate with potential as a chronotherapeutic agent.
Collapse
Affiliation(s)
- Gael N. N. Neba Ambe
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Carlo Breda
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Avninder Singh Bhambra
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
- Correspondence:
| |
Collapse
|
48
|
Goode LK, Fusilier AR, Remiszewski N, Reeves JM, Abiraman K, Defenderfer M, Paul JR, McMahon LL, Gamble KL. Examination of Diurnal Variation and Sex Differences in Hippocampal Neurophysiology and Spatial Memory. eNeuro 2022; 9:ENEURO.0124-22.2022. [PMID: 36265903 PMCID: PMC9668349 DOI: 10.1523/eneuro.0124-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
Circadian rhythms are biological processes that cycle across 24 h and regulate many facets of neurophysiology, including learning and memory. Circadian variation in spatial memory task performance is well documented; however, the effect of sex across circadian time (CT) remains unclear. Additionally, little is known regarding the impact of time-of-day on hippocampal neuronal physiology. Here, we investigated the influence of both sex and time-of-day on hippocampal neurophysiology and memory in mice. Performance on the object location memory (OLM) task depended on both circadian time and sex, with memory enhanced at night in males but during the day in females. Long-term synaptic potentiation (LTP) magnitude at CA3-CA1 synapses was greater at night compared with day in both sexes. Next, we measured spontaneous synaptic excitation and inhibition onto CA1 pyramidal neurons. Frequency and amplitude of inhibition was greater during the day compared with night, regardless of sex. Frequency and amplitude of excitation was larger in females, compared with males, independent of time-of-day, although both time-of-day and sex influenced presynaptic release probability. At night, CA1 pyramidal neurons showed enhanced excitability (action potential firing and/or baseline potential) that was dependent on synaptic excitation and inhibition, regardless of sex. This study emphasizes the importance of sex and time-of-day in hippocampal physiology, especially given that many neurologic disorders impacting the hippocampus are linked to circadian disruption and present differently in men and women. Knowledge about how sex and circadian rhythms affect hippocampal physiology can improve the translational relevancy of therapeutics and inform the appropriate timing of existing treatments.
Collapse
Affiliation(s)
- Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| | - Allison R Fusilier
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| | - Natalie Remiszewski
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| | - Jacob M Reeves
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| | | | - Matthew Defenderfer
- Research Computing, Information Technology, University of Alabama at Birmingham, Birmingham 35233, AL
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham 35233, AL
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham 35233, AL
| |
Collapse
|
49
|
Amiama-Roig A, Verdugo-Sivianes EM, Carnero A, Blanco JR. Chronotherapy: Circadian Rhythms and Their Influence in Cancer Therapy. Cancers (Basel) 2022; 14:5071. [PMID: 36291855 PMCID: PMC9599830 DOI: 10.3390/cancers14205071] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 08/19/2023] Open
Abstract
Living organisms present rhythmic fluctuations every 24 h in their behavior and metabolism to anticipate changes in the environment. These fluctuations are controlled by a very complex molecular mechanism, the circadian clock, that regulates the expression of multiple genes to ensure the right functioning of the body. An individual's circadian system is altered during aging, and this is related to numerous age-associated pathologies and other alterations that could contribute to the development of cancer. Nowadays, there is an increasing interest in understanding how circadian rhythms could be used in the treatment of cancer. Chronotherapy aims to understand the impact that biological rhythms have on the response to a therapy to optimize its action, maximize health benefits and minimize possible adverse effects. Clinical trials so far have confirmed that optimal timing of treatment with chemo or immunotherapies could decrease drug toxicity and increase efficacy. Instead, chronoradiotherapy seems to minimize treatment-related symptoms rather than tumor progression or patient survival. In addition, potential therapeutic targets within the molecular clock have also been identified. Therefore, results of the application of chronotherapy in cancer therapy until now are challenging, feasible, and could be applied to clinical practice to improve cancer treatment without additional costs. However, different limitations and variables such as age, sex, or chronotypes, among others, should be overcome before chronotherapy can really be put into clinical practice.
Collapse
Grants
- RTI2018-097455-B-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- RED2018-102723-T Ministerio de Ciencia, Innovación y Universidades (MCIU) Plan Estatal de I+D+I 2018, a la Agencia Estatal de Investigación (AEI) y al Fondo Europeo de Desarrollo Regional (MCIU/AEI/FEDER, UE):
- CB16/12/00275 Centro de Investigación Biomédica en Red de Cáncer
- PI-0397-2017 Consejería de Salud y Familias
- P18-RT-2501 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
- No. CTEICU/PAIDI 2020 Consejería de Transformacion Economica, Industria, Conocimiento, y Universidades of the Junta de Andalucía
Collapse
Affiliation(s)
- Ana Amiama-Roig
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José-Ramón Blanco
- Hospital Universitario San Pedro, 26006 Logroño, Spain
- Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
50
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|