1
|
Crowthers R, Thi Mong Nguyen T, Martinez D. Circadian disruptions and their role in the development of hypertension. Front Neurosci 2024; 18:1433512. [PMID: 39170672 PMCID: PMC11335678 DOI: 10.3389/fnins.2024.1433512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Circadian fluctuations in physiological setpoints are determined by the suprachiasmatic nucleus (SCN) which exerts control over many target structures within and beyond the hypothalamus via projections. The SCN, or central pacemaker, orchestrates synchrony between the external environment and the internal circadian mechanism. The resulting cycles in hormone levels and autonomic nervous system (ANS) activity provide precise messages to specific organs, adjusting, for example, their sensitivity to approaching hormones or metabolites. The SCN responds to both photic (light) and non-photic input. Circadian patterns are found in both heart rate and blood pressure, which are linked to daily variations in activity and autonomic nervous system activity. Variations in blood pressure are of great interest as several cardiovascular diseases such as stroke, arrhythmias, and hypertension are linked to circadian rhythm dysregulation. The disruption of normal day-night cycles, such as in shift work, social jetlag, or eating outside of normal hours leads to desynchronization of the central and peripheral clocks. This desynchronization leads to disorganization of the cellular processes that are normally driven by the interactions of the SCN and photic input. Here, we review autonomic system function and dysfunction due to regulation and interaction between different cardiorespiratory brain centers and the SCN, as well as social, lifestyle, and external factors that may impact the circadian control of blood pressure.
Collapse
|
2
|
Zhang R, Tomasi D, Shokri-Kojori E, Manza P, Demiral SB, Wang GJ, Volkow ND. Seasonality in regional brain glucose metabolism. Psychol Med 2024; 54:2264-2272. [PMID: 38634486 DOI: 10.1017/s0033291724000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Daylength and the rates of changes in daylength have been associated with seasonal fluctuations in psychiatric symptoms and in cognition and mood in healthy adults. However, variations in human brain glucose metabolism in concordance with seasonal changes remain under explored. METHODS In this cross-sectional study, we examined seasonal effects on brain glucose metabolism, which we measured using 18F-fluorodeoxyglucose-PET in 97 healthy participants. To maximize the sensitivity of regional effects, we computed relative metabolic measures by normalizing the regional measures to white matter metabolism. Additionally, we explored the role of rest-activity rhythms/sleep-wake activity measured with actigraphy in the seasonal variations of regional brain metabolic activity. RESULTS We found that seasonal variations of cerebral glucose metabolism differed across brain regions. Glucose metabolism in prefrontal regions increased with longer daylength and with greater day-to-day increases in daylength. The cuneus and olfactory bulb had the maximum and minimum metabolic values around the summer and winter solstice respectively (positively associated with daylength), whereas the temporal lobe, brainstem, and postcentral cortex showed maximum and minimum metabolic values around the spring and autumn equinoxes, respectively (positively associated with faster daylength gain). Longer daylength was associated with greater amplitude and robustness of diurnal activity rhythms suggesting circadian involvement. CONCLUSIONS The current findings advance our knowledge of seasonal patterns in a key indicator of brain function relevant for mood and cognition. These data could inform treatment interventions for psychiatric symptoms that peak at specific times of the year.
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sukru Baris Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Robertson-Dixon I, Murphy MJ, Crewther SG, Riddell N. The Influence of Light Wavelength on Human HPA Axis Rhythms: A Systematic Review. Life (Basel) 2023; 13:1968. [PMID: 37895351 PMCID: PMC10608196 DOI: 10.3390/life13101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Environmental light entrains many physiological and behavioural processes to the 24 h solar cycle. Such light-driven circadian rhythms are centrally controlled by the suprachiasmatic nucleus (SCN), which receives information from the short-wavelength-sensitive intrinsically photosensitive retinal ganglion cells. The SCN synchronizes local clocks throughout the body affecting sleep/wake routines and the secretion of neuroendocrine-linked hormones such as melatonin from the pineal gland and cortisol via the hypothalamic pituitary adrenal (HPA) axis. Although the effects of light parameters on melatonin have been recently reviewed, whether the experimental variation of the spectral power distribution and intensity of light can induce changes in cortisol rhythms remains unclear. Thus, this systematic review evaluated the effects of daytime exposure to lights of different spectral wavelength characteristics and luminance intensity on the cortisol levels in healthy individuals. A search of the PubMed, Web of Science, EMBASE, CINAHL, Medline, PsycINFO and Cochrane Library databases on 19 June 2023 identified 3418 articles, of which 12 studies (profiling 337 participants) met the inclusion and risk of bias criteria. An analysis of the literature indicated that exposure to bright lights of any colour during the late night or early morning can induce significant increases in cortisol secretion relative to time-matched dim light comparison conditions. Furthermore, exposure to bright lights with stronger short-wavelength (blue/green) components in the early morning typically induced greater increases in cortisol relative to lights with stronger long-wavelength (red) components. Thus, the circadian regulation of cortisol is sensitive to the wavelength composition of environmental lighting, in line with the more commonly studied melatonin. As such, wavelength characteristics should be optimized and reported in light intervention studies (particularly for the investigation of cortisol-associated disorders and HPA axis function), and exposure to short-wavelength light during sensitive periods should be carefully considered in constructed environments (e.g., bedroom and classroom lighting and device screens).
Collapse
Affiliation(s)
- Isabella Robertson-Dixon
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia; (I.R.-D.); (M.J.M.); (S.G.C.)
| | - Melanie J. Murphy
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia; (I.R.-D.); (M.J.M.); (S.G.C.)
| | - Sheila G. Crewther
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia; (I.R.-D.); (M.J.M.); (S.G.C.)
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Nina Riddell
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia; (I.R.-D.); (M.J.M.); (S.G.C.)
| |
Collapse
|
4
|
Chauhan S, Norbury R, Faßbender KC, Ettinger U, Kumari V. Beyond sleep: A multidimensional model of chronotype. Neurosci Biobehav Rev 2023; 148:105114. [PMID: 36868368 DOI: 10.1016/j.neubiorev.2023.105114] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Chronotype can be defined as an expression or proxy for circadian rhythms of varied mechanisms, for example in body temperature, cortisol secretion, cognitive functions, eating and sleeping patterns. It is influenced by a range of internal (e.g., genetics) and external factors (e.g., light exposure), and has implications for health and well-being. Here, we present a critical review and synthesis of existing models of chronotype. Our observations reveal that most existing models and, as a consequence, associated measures of chronotype have focused solely or primarily on the sleep dimension, and typically have not incorporated social and environmental influences on chronotype. We propose a multidimensional model of chronotype, integrating individual (biological and psychological), environmental and social factors that appear to interact to determine an individual's true chronotype with potential feedback loops between these factors. This model could be beneficial not only from a basic science perspective but also in the context of understanding health and clinical implications of certain chronotypes as well as designing preventive and therapeutic approaches for related illnesses.
Collapse
Affiliation(s)
- Satyam Chauhan
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom.
| | - Ray Norbury
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom
| | | | | | - Veena Kumari
- Department of Psychology, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom.
| |
Collapse
|
5
|
Zhang R, Volkow ND. Seasonality of brain function: role in psychiatric disorders. Transl Psychiatry 2023; 13:65. [PMID: 36813773 PMCID: PMC9947162 DOI: 10.1038/s41398-023-02365-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Seasonality patterns are reported in various psychiatric disorders. The current paper summarizes findings on brain adaptations associated with seasonal changes, factors that contribute to individual differences and their implications for psychiatric disorders. Changes in circadian rhythms are likely to prominently mediate these seasonal effects since light strongly entrains the internal clock modifying brain function. Inability of circadian rhythms to accommodate to seasonal changes might increase the risk for mood and behavior problems as well as worse clinical outcomes in psychiatric disorders. Understanding the mechanisms that account for inter-individual variations in seasonality is relevant to the development of individualized prevention and treatment for psychiatric disorders. Despite promising findings, seasonal effects are still understudied and only controlled as a covariate in most brain research. Rigorous neuroimaging studies with thoughtful experimental designs, powered sample sizes and high temporal resolution alongside deep characterization of the environment are needed to better understand the seasonal adaptions of the human brain as a function of age, sex, and geographic latitude and to investigate the mechanisms underlying the alterations in seasonal adaptation in psychiatric disorders.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA.
| | - Nora D. Volkow
- grid.94365.3d0000 0001 2297 5165Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013 USA
| |
Collapse
|
6
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Moralia MA, Quignon C, Simonneaux M, Simonneaux V. Environmental disruption of reproductive rhythms. Front Neuroendocrinol 2022; 66:100990. [PMID: 35227765 DOI: 10.1016/j.yfrne.2022.100990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Reproduction is a key biological function requiring a precise synchronization with annual and daily cues to cope with environmental fluctuations. Therefore, humans and animals have developed well-conserved photoneuroendocrine pathways to integrate and process daily and seasonal light signals within the hypothalamic-pituitary-gonadal axis. However, in the past century, industrialization and the modern 24/7 human lifestyle have imposed detrimental changes in natural habitats and rhythms of life. Indeed, exposure to an excessive amount of artificial light at inappropriate timing because of shift work and nocturnal urban lighting, as well as the ubiquitous environmental contamination by endocrine-disrupting chemicals, threaten the integrity of the daily and seasonal timing of biological functions. Here, we review recent epidemiological, field and experimental studies to discuss how light and chemical pollution of the environment can disrupt reproductive rhythms by interfering with the photoneuroendocrine timing system.
Collapse
Affiliation(s)
- Marie-Azélie Moralia
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Clarisse Quignon
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Marine Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Valérie Simonneaux
- Université de Strasbourg, Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
8
|
Palmu R, Koskinen S, Partonen T. Seasonal changes in mood and behavior contribute to suicidality and worthlessness in a population-based study. J Psychiatr Res 2022; 150:184-188. [PMID: 35395608 DOI: 10.1016/j.jpsychires.2022.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Limited evidence suggests that the seasonal changes in mood and behavior may associate with suicidality and the feelings of worthlessness, but these associations have not been analyzed in large population-based data. A random sample of adults (n = 4069), representative of the general population living in Finland, attended a nationwide health examination survey. Seasonal variations (seasonality) in mood and behavior were analyzed with the six items of global seasonality score (GSS) and the experienced problem due to these variations. Their impact on suicidality as well as on the feelings of worthlessness were analyzed using logistic regression models. After adjusting for age and gender, the GSS, each of its six items and the experienced problem due to the seasonal variations in mood and behavior all showed separately a significant association with suicidality as well as with worthlessness. After further adjustment for the education level and region of residence, the GSS, its mood item and the experienced problem remained significantly associated with both suicidality and worthlessness. Seasonal variations in mood and behavior have a significant association with both suicidality and worthlessness.
Collapse
Affiliation(s)
- Raimo Palmu
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, P.O. Box 590 (Välskärinkatu 12), FI-00029, HUS, Finland; Department of Public Health and Welfare, Finnish Institute for Health and Welfare, P.O. Box 30 (Mannerheimintie 166), FI-00271, Helsinki, Finland.
| | - Seppo Koskinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, P.O. Box 30 (Mannerheimintie 166), FI-00271, Helsinki, Finland
| | - Timo Partonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, P.O. Box 30 (Mannerheimintie 166), FI-00271, Helsinki, Finland
| |
Collapse
|
9
|
Tanycytes in the infundibular nucleus and median eminence and their role in the blood-brain barrier. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:253-273. [PMID: 34225934 DOI: 10.1016/b978-0-12-820107-7.00016-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier is generally attributed to endothelial cells. However, in circumventricular organs, such as the median eminence, tanycytes take over the barrier function. These ependymoglial cells form the wall of the third ventricle and send long extensions into the parenchyma to contact blood vessels and hypothalamic neurons. The shape and location of tanycytes put them in an ideal position to connect the periphery with central nervous compartments. In line with this, tanycytes control the transport of hormones and key metabolites in and out of the hypothalamus. They function as sensors of peripheral homeostasis for central regulatory networks. This chapter discusses current evidence that tanycytes play a key role in regulating glucose balance, food intake, endocrine axes, seasonal changes, reproductive function, and aging. The understanding of how tanycytes perform these diverse tasks is only just beginning to emerge and will probably lead to a more differentiated view of how the brain and the periphery interact.
Collapse
|
10
|
Swaab DF, Bao AM. Matching of the postmortem hypothalamus from patients and controls. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:141-156. [PMID: 34225959 DOI: 10.1016/b978-0-12-819975-6.00007-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The quality of postmortem hypothalamus research depends strongly on a thorough clinical investigation and documentation of the patient's disorder and therapies. In addition, a systematic and professional neuropathological investigation of the entire brain of both the cases and the controls is absolutely crucial. In the experience of the Netherlands Brain Bank (NBB), about 20% of the clinical neurological diagnoses, despite being made in first rate clinics, have to be revised or require extra diagnoses after a complete and thorough neuropathologic review by the NBB. The neuropathology examination may reveal for instance that the elderly "controls" already have preclinical neurodegenerative alterations. In postmortem studies, the patient and control groups must be matched for as many as possible of the known confounding factors. This is necessary to make the groups as similar as possible, except for the topic being investigated. Confounding factors are present (i) before, (ii) during, and (iii) after death. They are, respectively: (i) genetic background, systemic diseases, duration and gravity of illness, medicines and addictive compounds used, age, sex, gender identity, sexual orientation, clock- and seasonal time of death, and lateralization; (ii) agonal state, stress of dying; and (iii) postmortem delay, freezing procedures, fixation, and storage time. Agonal state is generally estimated by measuring the pH of the brain. However, there are disorders in which pH is lower as a part of the disease process. Because of the large number of potentially confounding factors that differ according to, for instance, brain area and disease, a brain bank should have a large number of controls at its disposal for appropriate matching. If matching fails for some confounders, the influence of the confounders may be determined by statistical methods, such as analysis of variance or the regression models.
Collapse
Affiliation(s)
- Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Swaab DF, Bao AM. Sex differences in stress-related disorders: Major depressive disorder, bipolar disorder, and posttraumatic stress disorder. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:335-358. [PMID: 33008536 DOI: 10.1016/b978-0-444-64123-6.00023-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stress-related disorders, such as mood disorders and posttraumatic stress disorder (PTSD), are more common in women than in men. This sex difference is at least partly due to the organizing effect of sex steroids during intrauterine development, while activating or inhibiting effects of circulating sex hormones in the postnatal period and adulthood also play a role. Such effects result in structural and functional changes in neuronal networks, neurotransmitters, and neuropeptides, which make the arousal- and stress-related brain systems more vulnerable to environmental stressful events in women. Certain brainstem nuclei, the amygdala, habenula, prefrontal cortex, and hypothalamus are important hubs in the stress-related neuronal network. Various hypothalamic nuclei play a central role in this sexually dimorphic network. This concerns not only the hypothalamus-pituitary-adrenal axis (HPA-axis), which integrates the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of mood disorders, such as disordered day-night rhythm, lack of reward feelings, disturbed eating and sex, and disturbed cognitive functions. The present chapter focuses on the structural and functional sex differences that are present in the stress-related brain systems in mood disorders and PTSD, placing the HPA-axis in the center. The individual differences in the vulnerability of the discussed systems, caused by genetic and epigenetic developmental factors warrant further research to develop tailor-made therapeutic strategies.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Key Laboratory of Mental Disorder Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Circadian circuits in humans: White matter microstructure predicts daytime sleepiness. Cortex 2019; 122:97-107. [PMID: 31097190 DOI: 10.1016/j.cortex.2019.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/31/2018] [Accepted: 01/14/2019] [Indexed: 11/22/2022]
Abstract
The suprachiasmatic nucleus of the hypothalamus is the chief circadian pacemaker in the brain, and is entrained to day-night cycles by visual afferents from melanopsin containing retinal ganglion cells via the inferior accessory optic tract. Tracer studies have demonstrated efferents from the suprachiasmatic nucleus projecting to the paraventricular nucleus of the hypothalamus, which in turn project to first-order sympathetic neurons in the intermedio-lateral grey of the spinal cord. Sympathetic projections to the pineal gland trigger the secretion of the sleep inducing hormone melatonin. The current study reports the first demonstration of potential sympathopetal hypothalamic projections involved in circadian regulation in humans with in vivo virtual white matter dissections using probabilistic diffusion tensor imaging (DTI) tractography. Additionally, our data shows a correlation between individual differences in white matter microstructure (measured with fractional anisotropy) and increased daytime sleepiness [measured with the Epworth Sleepiness Scale (ESS, Johns, 1991)]. Sympathopetal connections with the hypothalamus were virtually dissected using designated masks on the optic chiasm, which served as an anatomical landmark for retinal fibres projecting to the suprachiasmatic nucleus, and a waypoint mask on the lateral medulla, where hypothalamic projections to the sympathetic nervous system traverse in humans. Sympathopetal projections were demonstrated in each hemisphere in twenty-six subjects. The tract passed through the suprachiasmatic nucleus of the hypothalamus and its trajectory corresponds to the dorsal longitudinal fasciculus traversing the periaqueductal region and the lateral medulla. White matter microstructure (FA) in the left hemisphere correlated with high scores on the ESS, suggesting an association between circadian pathway white matter microstructure, and increased daytime sleepiness.
Collapse
|
13
|
Bao AM, Swaab DF. The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Rep 2018; 6:45-53. [PMID: 31211281 PMCID: PMC6562194 DOI: 10.1016/j.ibror.2018.11.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2018] [Indexed: 02/08/2023] Open
Abstract
There are no specific structural neuropathological hallmarks found in the brain of mood disorders. Instead, there are molecular, functional and structural alterations reported in many brain areas. The neurodevelopmental underpinning indicated the presence of various genetic and developmental risk factors. The effect of genetic polymorphisms and developmental sequalae, some of which may start in the womb, result in functional changes in a network mediated by neurotransmitters and neuropeptides, which make the emotion- and stress-related brain systems more vulnerable to stressful events. This network of stress-related neurocircuits consists of, for instance, brainstem nuclei, the amygdala, habenula, prefrontal cortex and hypothalamus. Various nuclei of the hypothalamus form indeed one of the crucial hubs in this network. This structure concerns not only the hypothalamo-pituitary-adrenal (HPA) axis that integrate the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of depression, such as disordered day-night rhythm, lack of reward feelings, disturbed eating, sex, and disturbed cognitive functions. The present review will focus on the changes in the human hypothalamus in depression, with the HPA axis in the center. We will discuss the inordinate network of neurotransmitters and neuropeptides involved, with the hope to find the most vulnerable neurobiological systems and the possible development of tailor-made treatments for mood disorders in the future.
Collapse
Affiliation(s)
- Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Institute of neuroscience, NHC and CAMS key laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Dick F Swaab
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Institute of neuroscience, NHC and CAMS key laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.,Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Bernstein HG, Bogerts B, Keilhoff G, Steiner J. Postmortem studies indicate altered cell chemical composition of the suprachiasmatic nucleus in mood disorders. Eur Arch Psychiatry Clin Neurosci 2018; 268:871-872. [PMID: 29119265 DOI: 10.1007/s00406-017-0849-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany. .,Department of Psychiatry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, 39120, Magdeburg, Germany
| |
Collapse
|
15
|
Cerebrospinal Fluid-Contacting Neurons Sense pH Changes and Motion in the Hypothalamus. J Neurosci 2018; 38:7713-7724. [PMID: 30037834 DOI: 10.1523/jneurosci.3359-17.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/04/2018] [Accepted: 07/15/2018] [Indexed: 01/20/2023] Open
Abstract
CSF-contacting (CSF-c) cells are present in the walls of the brain ventricles and the central canal of the spinal cord and found throughout the vertebrate phylum. We recently identified ciliated somatostatin-/GABA-expressing CSF-c neurons in the lamprey spinal cord that act as pH sensors as well as mechanoreceptors. In the same neuron, acidic and alkaline responses are mediated through ASIC3-like and PKD2L1 channels, respectively. Here, we investigate the functional properties of the ciliated somatostatin-/GABA-positive CSF-c neurons in the hypothalamus by performing whole-cell recordings in hypothalamic slices. Depolarizing current pulses readily evoked action potentials, but hypothalamic CSF-c neurons had no or a very low level of spontaneous activity at pH 7.4. They responded, however, with membrane potential depolarization and trains of action potentials to small deviations in pH in both the acidic and alkaline direction. Like in spinal CSF-c neurons, the acidic response in hypothalamic cells is mediated via ASIC3-like channels. In contrast, the alkaline response appears to depend on connexin hemichannels, not on PKD2L1 channels. We also show that hypothalamic CSF-c neurons respond to mechanical stimulation induced by fluid movements along the wall of the third ventricle, a response mediated via ASIC3-like channels. The hypothalamic CSF-c neurons extend their processes dorsally, ventrally, and laterally, but as yet, the effects exerted on hypothalamic circuits are unknown. With similar neurons being present in rodents, the pH- and mechanosensing ability of hypothalamic CSF-c neurons is most likely conserved throughout vertebrate phylogeny.SIGNIFICANCE STATEMENT CSF-contacting neurons are present in all vertebrates and are located mainly in the hypothalamic area and the spinal cord. Here, we report that the somatostatin-/GABA-expressing CSF-c neurons in the lamprey hypothalamus sense bidirectional deviations in the extracellular pH and do so via different molecular mechanisms. They also serve as mechanoreceptors. The hypothalamic CSF-c neurons have extensive axonal ramifications and may decrease the level of motor activity via release of somatostatin. In conclusion, hypothalamic somatostatin-/GABA-expressing CSF-c neurons, as well as their spinal counterpart, represent a novel homeostatic mechanism designed to sense any deviation from physiological pH and thus constitute a feedback regulatory system intrinsic to the CNS, possibly serving a protective role from damage caused by changes in pH.
Collapse
|
16
|
The art of matching brain tissue from patients and controls for postmortem research. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:197-217. [PMID: 29496142 DOI: 10.1016/b978-0-444-63639-3.00015-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The quality of postmortem research depends strongly on a thorough clinical investigation and documentation of the patient's disorder and therapies. In addition, a systematic and professional neuropathologic investigation of both cases and controls is absolutely crucial. In the experience of the Netherlands Brain Bank (NBB), about 20% of clinical neurologic diagnoses, despite being made in first-rate clinics, have to be revised or require an extra diagnosis after a complete and thorough review by the NBB. The neuropathology examination may reveal for instance that the "controls" already have preclinical neurodegenerative alterations. In postmortem studies the patient and control groups must be matched for as many of the known confounding factors as possible. This is necessary to make the groups as similar as possible, except for the topic being investigated. Confounding factors are present before, during, and after death. They are respectively: (1) genetic background, systemic diseases, duration and gravity of illness, medicines and addictive compounds used, age, sex, gender identity, sexual orientation, circadian and seasonal fluctuations, lateralization; (2) agonal state, stress of dying; and (3) postmortem delay, freezing procedures, fixation and storage time. Consequently, a brain bank should have a large number of controls at its disposal for appropriate matching. If matching fails for some confounders, then their influence may be determined by statistical methods such as analysis of variance or regression models.
Collapse
|
17
|
Jiang C, Yi L, Su S, Shi C, Long X, Xie G, Zhang L. Diurnal Variations in Neural Activity of Healthy Human Brain Decoded with Resting-State Blood Oxygen Level Dependent fMRI. Front Hum Neurosci 2016; 10:634. [PMID: 28066207 PMCID: PMC5169030 DOI: 10.3389/fnhum.2016.00634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
It remains an ongoing investigation about how the neural activity alters with the diurnal rhythms in human brain. Resting-state functional magnetic resonance imaging (RS-fMRI) reflects spontaneous activities and/or the endogenous neurophysiological process of the human brain. In the present study, we applied the ReHo (regional homogeneity) and ALFF (amplitude of low frequency fluctuation) based on RS-fMRI to explore the regional differences in the spontaneous cerebral activities throughout the entire brain between the morning and evening sessions within a 24-h time cycle. Wide spread brain areas were found to exhibit diurnal variations, which may be attributed to the internal molecular systems regulated by clock genes, and the environmental factors including light-dark cycle, daily activities and homeostatic sleep drive. Notably, the diurnal variation of default mode network (DMN) suggests that there is an adaptation or compensation response within the subregions of DMN, implying a balance or a decoupling of regulation between these regions.
Collapse
Affiliation(s)
- Chunxiang Jiang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital Shenzhen, China
| | - Shi Su
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Caiyun Shi
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Xiaojing Long
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Guoxi Xie
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| | - Lijuan Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen, China
| |
Collapse
|
18
|
Coomans CP, Ramkisoensing A, Meijer JH. The suprachiasmatic nuclei as a seasonal clock. Front Neuroendocrinol 2015; 37:29-42. [PMID: 25451984 DOI: 10.1016/j.yfrne.2014.11.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 12/23/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) contains a central clock that synchronizes daily (i.e., 24-h) rhythms in physiology and behavior. SCN neurons are cell-autonomous oscillators that act synchronously to produce a coherent circadian rhythm. In addition, the SCN helps regulate seasonal rhythmicity. Photic information is perceived by the SCN and transmitted to the pineal gland, where it regulates melatonin production. Within the SCN, adaptations to changing photoperiod are reflected in changes in neurotransmitters and clock gene expression, resulting in waveform changes in rhythmic electrical activity, a major output of the SCN. Efferent pathways regulate the seasonal timing of breeding and hibernation. In humans, seasonal physiology and behavioral rhythms are also present, and the human SCN has seasonally rhythmic neurotransmitter levels and morphology. In summary, the SCN perceives and encodes changes in day length and drives seasonal changes in downstream pathways and structures in order to adapt to the changing seasons.
Collapse
Affiliation(s)
- Claudia P Coomans
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Ashna Ramkisoensing
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
19
|
Shan L, Bao AM, Swaab DF. The human histaminergic system in neuropsychiatric disorders. Trends Neurosci 2015; 38:167-77. [PMID: 25575625 DOI: 10.1016/j.tins.2014.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 12/06/2014] [Accepted: 12/08/2014] [Indexed: 11/16/2022]
Abstract
Histaminergic neurons are exclusively located in the hypothalamic tuberomamillary nucleus, from where they project to many brain areas. The histaminergic system is involved in basic physiological functions, such as the sleep-wake cycle, energy and endocrine homeostasis, sensory and motor functions, cognition, and attention, which are all severely affected in neuropsychiatric disorders. Here, we present recent postmortem findings on the alterations in this system in neuropsychiatric disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), depression, and narcolepsy. In addition, we highlight the need to validate animal models for these diseases and also for Tourette's syndrome (TS) in relation to alterations in the histaminergic system. Moreover, we discuss the potential for, and concerns over, the use of novel histamine 3 receptor (H3R) antagonists/inverse agonists as treatment for such disorders.
Collapse
Affiliation(s)
- Ling Shan
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands; Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA; Neurobiology Research, Veterans Administration Greater Los Angeles Health Care System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Ai-Min Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands
| |
Collapse
|
20
|
Albers HE. Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network. Front Neuroendocrinol 2015; 36:49-71. [PMID: 25102443 PMCID: PMC4317378 DOI: 10.1016/j.yfrne.2014.07.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 11/16/2022]
Abstract
Arginine-vasotocin (AVT)/arginine vasopressin (AVP) are members of the AVP/oxytocin (OT) superfamily of peptides that are involved in the regulation of social behavior, social cognition and emotion. Comparative studies have revealed that AVT/AVP and their receptors are found throughout the "social behavior neural network (SBNN)" and display the properties expected from a signaling system that controls social behavior (i.e., species, sex and individual differences and modulation by gonadal hormones and social factors). Neurochemical signaling within the SBNN likely involves a complex combination of synaptic mechanisms that co-release multiple chemical signals (e.g., classical neurotransmitters and AVT/AVP as well as other peptides) and non-synaptic mechanisms (i.e., volume transmission). Crosstalk between AVP/OT peptides and receptors within the SBNN is likely. A better understanding of the functional properties of neurochemical signaling in the SBNN will allow for a more refined examination of the relationships between this peptide system and species, sex and individual differences in sociality.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
21
|
Abstract
Night eating syndrome (NES) has recently been getting more attention as a recognized eating disorder. NES is characterized by a delay in the circadian pattern of food intake, associated with morning anorexia, evening hyperphagia, awakenings from sleep with ingestion of food, depressed mood, and obesity. Although the behavioral characteristics of NES were first described in 1955, the neuroendocrine characteristics have only been described recently. Researchers have examined several hormones that appear to differ in night eaters compared to controls, including melatonin, leptin, and cortisol. Researchers have more recently examined the hypothalamic-pituitary-adrenal axis in more detail, with emphasis on corticotrophin releasing hormone. Further studies have examined ghrelin, growth hormone, prolactin, and IGF-1, with differences observed in the circadian pattern of these hormones in those with NES compared to controls. Despite increasing interest in the neuroendocrine profile of night eating behavior, the biological basis of NES is still not well understood.
Collapse
Affiliation(s)
| | - Allan Geliebter
- NY Obesity Nutrition Center, St. Luke's Hospital, Columbia University, New York, NY, 10025, USA.
| | - Jon Florholmen
- Department of Gastroenterology, University Hospital of the North, Tromsø, Norway.
| | - Marci E Gluck
- Obesity and Diabetes Clinical Research Section, NIH/NIDDK, 4212 North 16th Street, Room 541, Phoenix, AZ, 85016, USA.
| |
Collapse
|
22
|
Borgers AJ, Fliers E, Siljee JE, Swaab DF, Van Someren EJW, Bisschop PH, Alkemade A. Arginine vasopressin immunoreactivity is decreased in the hypothalamic suprachiasmatic nucleus of subjects with suprasellar tumors. Brain Pathol 2013; 23:440-4. [PMID: 23278971 PMCID: PMC8028940 DOI: 10.1111/bpa.12016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/10/2012] [Indexed: 11/29/2022] Open
Abstract
Suprasellar tumors with compression of the optic chiasm are associated with an impaired sleep-wake rhythm. We hypothesized that this reflects a disorder of the biological clock of the human brain, the suprachiasmatic nucleus (SCN), which is located just above the optic chiasm. In order to test this hypothesis, we investigated the expression of two key neuropeptides of the SCN, that is, arginine vasopressin (AVP) and vasoactive intestinal peptide (VIP), as assessed by quantitative immunocytochemistry in post-mortem hypothalamic tissue of patients with a suprasellar tumor inducing permanent visual field defects. Post-mortem hypothalamic tissue of 5 patients with a suprasellar tumor inducing permanent visual field defects (acromegaly n = 2, nonfunctioning macro-adenoma n = 1, macroprolactinoma n = 1, infundibular metastasis of a colorectal adenocarcinoma n = 1) and 15 age- and gender-matched controls was obtained from the Netherlands Brain Bank. Total AVP immunoreactivity in the SCN was lower in patients with a suprasellar tumor than in controls (P = 0.03). By contrast, total VIP immunoreactivity was not different between patients and controls (P = 0.44). Suprasellar tumors leading to permanent visual field defects are associated with reduced AVP, but not VIP immunoreactivity, in the SCN. These findings raise the possibility that selective impairment of the SCN contributes to sleep-wake disturbances in these patients.
Collapse
Affiliation(s)
- Anke J. Borgers
- Department of Endocrinology and MetabolismAcademic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Eric Fliers
- Department of Endocrinology and MetabolismAcademic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Jacqueline E. Siljee
- Department of Endocrinology and MetabolismAcademic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Dick F. Swaab
- Department of Neuropsychiatric DisordersNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamthe Netherlands
| | - Eus J. W. Van Someren
- Department of Sleep and CognitionNetherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and SciencesAmsterdamthe Netherlands
| | - Peter H. Bisschop
- Department of Endocrinology and MetabolismAcademic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
| | - Anneke Alkemade
- Department of Endocrinology and MetabolismAcademic Medical CenterUniversity of AmsterdamAmsterdamthe Netherlands
- Cognitive Science Center AmsterdamUniversity of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
23
|
Marrin K, Drust B, Gregson W, Atkinson G. A meta-analytic approach to quantify the dose-response relationship between melatonin and core temperature. Eur J Appl Physiol 2013. [PMID: 23771573 DOI: 10.1007/s00421‐013‐2668‐x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A melatonin-mediated reduction in body temperature could be useful as a "pre-cooling" intervention for athletes, as long as the melatonin dose is optimised so that substantial soporific effects are not induced. However, the melatonin-temperature dose-response relationship is unclear in humans. Individual studies have involved small samples of different sexes and temperature measurement sites. Therefore, we meta-analysed the effects of exogenous melatonin on body core temperature to quantify the dose-response relationship and to explore the influence of moderating variables such as sex and measurement site. Following a literature search, we meta-analysed 30 data-sets involving 193 participants and 405 ingestions of melatonin. The outcome was the mean difference (95 % confidence limits) in core temperature between the melatonin and placebo-controlled conditions in each study, weighted by the reciprocal of each standard error of the difference. The mean (95 % confidence interval) pooled reduction in core temperature was found to be 0.21 °C (0.18-0.24 °C). The dose-response relationship was found to be logarithmic (P < 0.0001). Doses of 0-5 mg reduced temperature by ~0.00-0.22 °C. Any further reductions in temperature were negligible with doses >5 mg. The pooled mean reduction was 0.13 °C (0.05-0.20 °C) for oral temperature vs 0.26 °C (0.20-0.32 °C) for tympanic and 0.22 °C (0.19-0.25 °C) for rectal temperature. In conclusion, our meta-regression revealed a logarithmic dose-response relationship between melatonin and its temperature lowering effects. A 5-mg dose of melatonin lowered core temperature by ~0.2 °C. Higher doses do not substantially increase this hypothermic effect and may induce greater soporific effects.
Collapse
Affiliation(s)
- K Marrin
- Sport and Exercise Research Group, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP, UK.
| | | | | | | |
Collapse
|
24
|
Marrin K, Drust B, Gregson W, Atkinson G. A meta-analytic approach to quantify the dose-response relationship between melatonin and core temperature. Eur J Appl Physiol 2013; 113:2323-9. [PMID: 23771573 DOI: 10.1007/s00421-013-2668-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 05/28/2013] [Indexed: 01/20/2023]
Abstract
A melatonin-mediated reduction in body temperature could be useful as a "pre-cooling" intervention for athletes, as long as the melatonin dose is optimised so that substantial soporific effects are not induced. However, the melatonin-temperature dose-response relationship is unclear in humans. Individual studies have involved small samples of different sexes and temperature measurement sites. Therefore, we meta-analysed the effects of exogenous melatonin on body core temperature to quantify the dose-response relationship and to explore the influence of moderating variables such as sex and measurement site. Following a literature search, we meta-analysed 30 data-sets involving 193 participants and 405 ingestions of melatonin. The outcome was the mean difference (95 % confidence limits) in core temperature between the melatonin and placebo-controlled conditions in each study, weighted by the reciprocal of each standard error of the difference. The mean (95 % confidence interval) pooled reduction in core temperature was found to be 0.21 °C (0.18-0.24 °C). The dose-response relationship was found to be logarithmic (P < 0.0001). Doses of 0-5 mg reduced temperature by ~0.00-0.22 °C. Any further reductions in temperature were negligible with doses >5 mg. The pooled mean reduction was 0.13 °C (0.05-0.20 °C) for oral temperature vs 0.26 °C (0.20-0.32 °C) for tympanic and 0.22 °C (0.19-0.25 °C) for rectal temperature. In conclusion, our meta-regression revealed a logarithmic dose-response relationship between melatonin and its temperature lowering effects. A 5-mg dose of melatonin lowered core temperature by ~0.2 °C. Higher doses do not substantially increase this hypothermic effect and may induce greater soporific effects.
Collapse
Affiliation(s)
- K Marrin
- Sport and Exercise Research Group, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP, UK.
| | | | | | | |
Collapse
|
25
|
The circadian system and the balance of the autonomic nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2013; 117:173-91. [DOI: 10.1016/b978-0-444-53491-0.00015-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Schindler S, Geyer S, Strauß M, Anwander A, Hegerl U, Turner R, Schönknecht P. Structural studies of the hypothalamus and its nuclei in mood disorders. Psychiatry Res 2012; 201:1-9. [PMID: 22285717 DOI: 10.1016/j.pscychresns.2011.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 06/01/2011] [Accepted: 06/11/2011] [Indexed: 12/28/2022]
Abstract
A large body of evidence indicates that the hypothalamus is involved in pathogenetic mechanisms of mood disorders. It has been suggested that functional abnormalities of the hypothalamus are associated with structural hypothalamic changes. Structural neuroimaging allows in vivo investigation of the hypothalamus that may shed light on the underlying pathogenetic mechanisms of unipolar and bipolar disorder. Clearly, the detection of subtle structural cerebral changes depends on the limitations of the neuroimaging technique used. Making a comprehensive database search, we reviewed the literature on hypothalamic macrostructure in affective disorders, addressing the specific question of what structural magnetic resonance imaging might be expected to show. Studies with convincing methodology, although rare, suggest a global volume decrease in the hypothalamus in affective disorders, a decrease which is not shown by the two specific nuclei investigated, the paraventricular and supraoptic nuclei. We discuss the implications of these findings and provide directions for future research.
Collapse
Affiliation(s)
- Stephanie Schindler
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Bao AM, Ruhé HG, Gao SF, Swaab DF. Neurotransmitters and neuropeptides in depression. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:107-36. [PMID: 22608619 DOI: 10.1016/b978-0-444-52002-9.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- A-M Bao
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | |
Collapse
|
28
|
Hiltunen L, Suominen K, Lönnqvist J, Partonen T. Relationship between daylength and suicide in Finland. J Circadian Rhythms 2011; 9:10. [PMID: 21943377 PMCID: PMC3206457 DOI: 10.1186/1740-3391-9-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/23/2011] [Indexed: 11/26/2022] Open
Abstract
Background Many previous studies have documented seasonal variation in suicides globally. We re-assessed the seasonal variation of suicides in Finland and tried to relate it to the seasonal variation in daylength and ambient temperature and in the discrepancy between local time and solar time. Methods The daily data of all suicides from 1969 to 2003 in Finland (N = 43,393) were available. The calendar year was divided into twelve periods according to the length of daylight and the routinely changing time difference between sun time and official time. The daily mean of suicide mortality was calculated for each of these periods and the 95% confidence intervals of the daily means were used to evaluate the statistical significance of the means. In addition, daily changes in sunshine hours and mean temperature were compared to the daily means of suicide mortality in two locations during these afore mentioned periods. Results A significant peak of the daily mean value of suicide mortality occurred in Finland between May 15th and July 25th, a period that lies symmetrically around the solstice. Concerning the suicide mortality among men in the northern location (Oulu), the peak was postponed as compared with the southern location (Helsinki). The daily variation in temperature or in sunshine did not have significant association with suicide mortality in these two locations. Conclusions The period with the longest length of the day associated with the increased suicide mortality. Furthermore, since the peak of suicide mortality seems to manifest later during the year in the north, some other physical or biological signals, besides the variation in daylight, may be involved. In order to have novel means for suicide prevention, the assessment of susceptibility to the circadian misalignment might help.
Collapse
Affiliation(s)
- Laura Hiltunen
- National Institute for Health and Welfare, Department of Mental Health and Substance Abuse Services, P,O, Box 30 (Mannerheimintie 166), FI-00271 Helsinki, Finland.
| | | | | | | |
Collapse
|
29
|
Cermakian N, Lamont EW, Boudreau P, Boivin DB. Circadian clock gene expression in brain regions of Alzheimer 's disease patients and control subjects. J Biol Rhythms 2011; 26:160-70. [PMID: 21454296 DOI: 10.1177/0748730410395732] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian oscillators have been observed throughout the rodent brain. In the human brain, rhythmic expression of clock genes has been reported only in the pineal gland, and little is known about their expression in other regions. The investigators sought to determine whether clock gene expression could be detected and whether it varies as a function of time of day in the bed nucleus of the stria terminalis (BNST) and cingulate cortex, areas known to be involved in decision making and motivated behaviors, as well as in the pineal gland, in the brains of Alzheimer's disease (AD) patients and aged controls. Relative expression levels of PERIOD1 (PER1 ), PERIOD2 (PER2), and Brain and muscle Arnt-like protein-1 (BMAL1) were detected by quantitative PCR in all 3 brain regions. A harmonic regression model revealed significant 24-h rhythms of PER1 in the BNST of AD subjects. A significant rhythm of PER2 was found in the cingulate cortex and BNST of control subjects and in all 3 regions of AD patients. In controls, BMAL1 did not show a diurnal rhythm in the cingulate cortex but significantly varied with time of death in the pineal and BNST and in all 3 regions for AD patients. Notable differences in the phase of clock gene rhythms and phase relationships between genes and regions were observed in the brains of AD compared to those of controls. These results indicate the presence of multiple circadian oscillators in the human brain and suggest altered synchronization among these oscillators in the brain of AD patients.
Collapse
Affiliation(s)
- Nicolas Cermakian
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Blvd., Montreal (QC) H4H 1R3 Canada.
| | | | | | | |
Collapse
|
30
|
Meng QY, Chen XN, Zhao J, Swaab DF, Zhou JN. Distribution of retinoic acid receptor-α immunoreactivity in the human hypothalamus. Neuroscience 2010; 174:132-42. [PMID: 21130848 DOI: 10.1016/j.neuroscience.2010.11.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 11/27/2010] [Accepted: 11/30/2010] [Indexed: 11/16/2022]
Abstract
Retinoids, a family of molecules that is derived from vitamin A, are involved in a complex signaling pathway that regulates gene expression and controls neuronal differentiation in the central nervous system. The physiological actions of retinoids are mainly mediated by retinoic acid receptors. Here we describe the distribution of retinoic acid receptor α (RARα) in the human hypothalamus by immunohistochemistry. RARα immunoreactivity showed a widespread pattern throughout the hypothalamus, with high density in the suprachiasmatic nucleus (SCN), paraventricular nucleus (PVN), supraoptic nucleus (SON), infundibular nucleus and medial mamillary nucleus. No staining was observed in the sexually dimorphic nucleus of preoptic area, tuberomamillary nucleus and lateral hypothalamic area. RARα was co-localized with vasopressin (AVP) neurons in the SCN, PVN and SON, and co-localized with corticotropin releasing hormone (CRH) neurons in the PVN. These findings provide a neurobiological basis for the participation of retinoids in the regulation of various hypothalamic functions. As shown earlier, the co-localization of RARα in CRH neurons suggests that retinoids might directly modulate the hypothalamus-pituitary-adrenal axis in the PVN, which may have implications for the stress response and its involvement in mood disorders. Functional studies in the other sites of RARα localization have to follow in the future.
Collapse
Affiliation(s)
- Q-Y Meng
- Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, Anhui, PR China
| | | | | | | | | |
Collapse
|
31
|
Kalsbeek A, Fliers E, Hofman MA, Swaab DF, Buijs RM. Vasopressin and the output of the hypothalamic biological clock. J Neuroendocrinol 2010; 22:362-72. [PMID: 20088910 DOI: 10.1111/j.1365-2826.2010.01956.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physiological effects of vasopressin as a peripheral hormone were first reported more than 100 years ago. However, it was not until the first immunocytochemical studies were carried out in the early 1970s, using vasopressin antibodies, and the discovery of an extensive distribution of vasopressin-containing fibres outside the hypothalamus, that a neurotransmitter role for vasopressin could be hypothesised. These studies revealed four additional vasopressin systems next to the classical magnocellular vasopressin system in the paraventricular and supraoptic nuclei: a sexually dimorphic system originating from the bed nucleus of the stria terminalis and the medial amygdala, an autonomic and endocrine system originating from the medial part of the paraventricular nucleus, and the circadian system originating from the hypothalamic suprachiasmatic nuclei (SCN). At about the same time as the discovery of the neurotransmitter function of vasopressin, it also became clear that the SCN contain the main component of the mammalian biological clock system (i.e. the endogenous pacemaker). This review will concentrate on the significance of the vasopressin neurones in the SCN for the functional output of the biological clock that is contained within it. The vasopressin-containing subpopulation is a characteristic feature of the SCN in many species, including humans. The activity of the vasopressin neurones in the SCN shows a pronounced daily variation in its activity that has also been demonstrated in human post-mortem brains. Animal experiments show an important role for SCN-derived vasopressin in the control of neuroendocrine day/night rhythms such as that of the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes. The remarkable correlation between a diminished presence of vasopressin in the SCN and a deterioration of sleep-wake rhythms during ageing and depression make it likely that, also in humans, the vasopressin neurones contribute considerably to the rhythmic output of the SCN.
Collapse
Affiliation(s)
- A Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
32
|
Bao AM, Swaab DF. Corticotropin-Releasing Hormone and Arginine Vasopressin in Depression. HORMONES OF THE LIMBIC SYSTEM 2010; 82:339-65. [DOI: 10.1016/s0083-6729(10)82018-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Perreau-Lenz S, Pévet P, Buijs RM, Kalsbeek A. The Biological Clock: The Bodyguard of Temporal Homeostasis. Chronobiol Int 2009; 21:1-25. [PMID: 15129821 DOI: 10.1081/cbi-120027984] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In order for any organism to function properly, it is crucial that it be table to control the timing of its biological functions. An internal biological clock, located, in mammals, in the suprachiasmatic nucleus of the hypothalamus (SCN), therefore carefully guards this temporal homeostasis by delivering its message of time throughout the body. In view of the large variety of body functions (behavioral, physiological, and endocrine) as well as the large variety in their preferred time of main activity along the light:dark cycle, it seems logical to envision different means of time distribution by the SCN. In the present review, we propose that even though it presents a unimodal circadian rhythm of general electrical and metabolic activity, the SCN seems to use several sorts of output connections that are active at different times along the light:dark cycle to control the rhythmic expression of different body functions. Although the SCN is suggested to use diffusion of synchronizing factors in the rhythmic control of behavioral functions, it also needs neuronal connections for the control of endocrine functions. The distribution of the time-of-day message to neuroendocrine systems is either directly onto endocrine neurons or via intermediate neurons located in specific SCN targets. In addition, the SCN uses its connections with the autonomic nervous system for spreading its time-of-day message, either by setting the sensitivity of endocrine glands (i.e., thyroid, adrenal, ovary) or by directly controlling an endocrine output (i.e., melatonin synthesis). Moreover, the SCN seems to use different neurotransmitters released at different times along the light:dark cycle for each of the different connection types presented. Clearly, the temporal homeostasis of endocrine functions results from a diverse set of biological clock outputs.
Collapse
|
34
|
Meng QY, Wang W, Chen XN, Xu TL, Zhou JN. Distribution of acid-sensing ion channel 3 in the rat hypothalamus. Neuroscience 2009; 159:1126-34. [PMID: 19356693 DOI: 10.1016/j.neuroscience.2009.01.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/15/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
Acid-sensing ion channels (ASICs), the members of the epithelial sodium channel/degenerin (ENaC/DEG) superfamily, are proton-gated voltage-insensitive cation channels. Six ASIC subunits have been identified and characterized in the mammalian nervous system so far. Of these subunits, ASIC3 has been shown to be predominantly expressed in the peripheral nervous system of rodents and implicated in mechnosensation, chemosensation and pain perception. Little is known on ASIC3 in the brain. We thus employed reverse transcription-polymerase chain reaction (RT-PCR) and Western blot to examine the expression of ASIC3 in various rat brain regions, including hippocampus, amygdala, caudate putamen, prefrontal cortex, and hypothalamus. Specific attention was paid to the distribution of ASIC3 in the hypothalamus of rats by using immunohistochemistry. ASIC3 immunoreactivity showed a widespread pattern throughout the hypothalamus, with the highest density in paraventricular nucleus, supraoptic nucleus, suprachiasmatic nucleus, arcuate nucleus, dorsomedial nucleus, median preoptic nucleus, ventromedial preoptic nucleus, and dorsal tuberomammillary nucleus. This study may contribute to the understanding of ASIC3 functions in the CNS.
Collapse
Affiliation(s)
- Q-Y Meng
- Department of Neurobiology, School of Life Science, University of Science and Technology of China, Huangshan Road 433, Hefei 230027, Anhui, PR China
| | | | | | | | | |
Collapse
|
35
|
Bao AM, Meynen G, Swaab DF. The stress system in depression and neurodegeneration: focus on the human hypothalamus. ACTA ACUST UNITED AC 2007; 57:531-53. [PMID: 17524488 DOI: 10.1016/j.brainresrev.2007.04.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/19/2007] [Accepted: 04/21/2007] [Indexed: 11/28/2022]
Abstract
The stress response is mediated by the hypothalamo-pituitary-adrenal (HPA) system. Activity of the corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) forms the basis of the activity of the HPA-axis. The CRH neurons induce adrenocorticotropin (ACTH) release from the pituitary, which subsequently causes cortisol release from the adrenal cortex. The CRH neurons co-express vasopressin (AVP) which potentiates the CRH effects. CRH neurons project not only to the median eminence but also into brain areas where they, e.g., regulate the adrenal innervation of the autonomic system and affect mood. The hypothalamo-neurohypophysial system is also involved in stress response. It releases AVP from the PVN and the supraoptic nucleus (SON) and oxytocin (OXT) from the PVN via the neurohypophysis into the bloodstream. The suprachiasmatic nucleus (SCN), the hypothalamic clock, is responsible for the rhythmic changes of the stress system. Both centrally released CRH and increased levels of cortisol contribute to the signs and symptoms of depression. Symptoms of depression can be induced in experimental animals by intracerebroventricular injection of CRH. Depression is also a frequent side effect of glucocorticoid treatment and of the symptoms of Cushing's syndrome. The AVP neurons in the hypothalamic PVN and SON are also activated in depression, which contributes to the increased release of ACTH from the pituitary. Increased levels of circulating AVP are also associated with the risk for suicide. The prevalence, incidence and morbidity risk for depression are higher in females than in males and fluctuations in sex hormone levels are considered to be involved in the etiology. About 40% of the activated CRH neurons in mood disorders co-express nuclear estrogen receptor (ER)-alpha in the PVN, while estrogen-responsive elements have been found in the CRH gene promoter region, and estrogens stimulate CRH production. An androgen-responsive element in the CRH gene promoter region initiates a suppressing effect on CRH expression. The decreased activity of the SCN is the basis for the disturbances of circadian and circannual fluctuations in mood, sleep and hormonal rhythms found in depression. Neuronal loss was also reported in the hippocampus of stressed or corticosteroid-treated rodents and primates. Because of the inhibitory control of the hippocampus on the HPA-axis, damage to this structure was expected to disinhibit the HPA-axis, and to cause a positive feedforward cascade of increasing glucocorticoid levels over time. This 'glucocorticoid cascade hypothesis' of stress and hippocampal damage was proposed to be causally involved in age-related accumulation of hippocampal damage in disorders like Alzheimer's disease and depression. However, in postmortem studies we could not find the presumed hippocampal damage of steroid overexposure in either depressed patients or in patients treated with synthetic steroids.
Collapse
Affiliation(s)
- A-M Bao
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| | | | | |
Collapse
|
36
|
Wu YH, Swaab DF. Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer's disease. Sleep Med 2007; 8:623-36. [PMID: 17383938 DOI: 10.1016/j.sleep.2006.11.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 11/09/2006] [Accepted: 11/11/2006] [Indexed: 12/15/2022]
Abstract
Circadian rhythm disturbances, such as sleep disorders, are frequently seen in aging and are even more pronounced in Alzheimer's disease (AD). Alterations in the biological clock, the suprachiasmatic nucleus (SCN), and the pineal gland during aging and AD are considered to be the biological basis for these circadian rhythm disturbances. Recently, our group found that pineal melatonin secretion and pineal clock gene oscillation were disrupted in AD patients, and surprisingly even in non-demented controls with the earliest signs of AD neuropathology (neuropathological Braak stages I-II), in contrast to non-demented controls without AD neuropathology. Furthermore, a functional disruption of the SCN was observed from the earliest AD stages onwards, as shown by decreased vasopressin mRNA, a clock-controlled major output of the SCN. The observed functional disconnection between the SCN and the pineal from the earliest AD stage onwards seems to account for the pineal clock gene and melatonin changes and underlies circadian rhythm disturbances in AD. This paper further discusses potential therapeutic strategies for reactivation of the circadian timing system, including melatonin and bright light therapy. As the presence of melatonin MT1 receptor in the SCN is extremely decreased in late AD patients, supplementary melatonin in the late AD stages may not lead to clear effects on circadian rhythm disorders.
Collapse
Affiliation(s)
- Ying-Hui Wu
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | |
Collapse
|
37
|
Swaab DF. The human hypothalamus in metabolic and episodic disorders. PROGRESS IN BRAIN RESEARCH 2006; 153:3-45. [PMID: 16876566 DOI: 10.1016/s0079-6123(06)53001-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D F Swaab
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105BA Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 2005; 4:141-94. [PMID: 15996533 DOI: 10.1016/j.arr.2005.03.003] [Citation(s) in RCA: 634] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 03/14/2005] [Indexed: 01/10/2023]
Abstract
Corticotropin-releasing hormone (CRH) plays a central role in the regulation of the hypothalamic-pituitary-adrenal (HPA)-axis, i.e., the final common pathway in the stress response. The action of CRH on ACTH release is strongly potentiated by vasopressin, that is co-produced in increasing amounts when the hypothalamic paraventricular neurons are chronically activated. Whereas vasopressin stimulates ACTH release in humans, oxytocin inhibits it. ACTH release results in the release of corticosteroids from the adrenal that, subsequently, through mineralocorticoid and glucocorticoid receptors, exert negative feedback on, among other things, the hippocampus, the pituitary and the hypothalamus. The most important glucocorticoid in humans is cortisol, present in higher levels in women than in men. During aging, the activation of the CRH neurons is modest compared to the extra activation observed in Alzheimer's disease (AD) and the even stronger increase in major depression. The HPA-axis is hyperactive in depression, due to genetic factors or due to aversive stimuli that may occur during early development or adult life. At least five interacting hypothalamic peptidergic systems are involved in the symptoms of major depression. Increased production of vasopressin in depression does not only occur in neurons that colocalize CRH, but also in neurons of the supraoptic nucleus (SON), which may lead to increased plasma levels of vasopressin, that have been related to an enhanced suicide risk. The increased activity of oxytocin neurons in the paraventricular nucleus (PVN) may be related to the eating disorders in depression. The suprachiasmatic nucleus (SCN), i.e., the biological clock of the brain, shows lower vasopressin production and a smaller circadian amplitude in depression, which may explain the sleeping problems in this disorder and may contribute to the strong CRH activation. The hypothalamo-pituitary thyroid (HPT)-axis is inhibited in depression. These hypothalamic peptidergic systems, i.e., the HPA-axis, the SCN, the SON and the HPT-axis, have many interactions with aminergic systems that are also implicated in depression. CRH neurons are strongly activated in depressed patients, and so is their HPA-axis, at all levels, but the individual variability is large. It is hypothesized that particularly a subgroup of CRH neurons that projects into the brain is activated in depression and induces the symptoms of this disorder. On the other hand, there is also a lot of evidence for a direct involvement of glucocorticoids in the etiology and symptoms of depression. Although there is a close association between cerebrospinal fluid (CSF) levels of CRH and alterations in the HPA-axis in depression, much of the CRH in CSF is likely to be derived from sources other than the PVN. Furthermore, a close interaction between the HPA-axis and the hypothalamic-pituitary-gonadal (HPG)-axis exists. Organizing effects during fetal life as well as activating effects of sex hormones on the HPA-axis have been reported. Such mechanisms may be a basis for the higher prevalence of mood disorders in women as compared to men. In addition, the stress system is affected by changing levels of sex hormones, as found, e.g., in the premenstrual period, ante- and postpartum, during the transition phase to the menopause and during the use of oral contraceptives. In depressed women, plasma levels of estrogen are usually lower and plasma levels of androgens are increased, while testosterone levels are decreased in depressed men. This is explained by the fact that both in depressed males and females the HPA-axis is increased in activity, parallel to a diminished HPG-axis, while the major source of androgens in women is the adrenal, whereas in men it is the testes. It is speculated, however, that in the etiology of depression the relative levels of sex hormones play a more important role than their absolute levels. Sex hormone replacement therapy indeed seems to improve mood in elderly people and AD patients. Studies of rats have shown that high levels of cumulative corticosteroid exposure and rather extreme chronic stress induce neuronal damage that selectively affects hippocampal structure. Studies performed under less extreme circumstances have so far provided conflicting data. The corticosteroid neurotoxicity hypothesis that evolved as a result of these initial observations is, however, not supported by clinical and experimental observations. In a few recent postmortem studies in patients treated with corticosteroids and patients who had been seriously and chronically depressed no indications for AD neuropathology, massive cell loss, or loss of plasticity could be found, while the incidence of apoptosis was extremely rare and only seen outside regions expected to be at risk for steroid overexposure. In addition, various recent experimental studies using good stereological methods failed to find massive cell loss in the hippocampus following exposure to stress or steroids, but rather showed adaptive and reversible changes in structural parameters after stress. Thus, the HPA-axis in AD is only moderately activated, possibly due to the initial (primary) hippocampal degeneration in this condition. There are no convincing arguments to presume a causal, primary role for cortisol in the pathogenesis of AD. Although cortisol and CRH may well be causally involved in the signs and symptoms of depression, there is so far no evidence for any major irreversible damage in the human hippocampus in this disorder.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
39
|
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal component of the mammalian biological clock, the neural timing system that generates and coordinates a broad spectrum of physiological, endocrine and behavioural circadian rhythms. The pacemaker of the SCN oscillates with a near 24 h period and is entrained to the diurnal light-dark cycle. Consistent with its role in circadian timing, investigations in rodents and non-human primates furthermore suggest that the SCN is the locus of the brain's endogenous calendar, enabling organisms to anticipate seasonal environmental changes. The present review focuses on the neuronal organization and dynamic properties of the biological clock and the means by which it is synchronized with the environmental lighting conditions. It is shown that the functional activity of the biological clock is entrained to the seasonal photic cycle and that photoperiod (day length) may act as an effective zeitgeber. Furthermore, new insights are presented, based on electrophysiological and molecular studies, that the mammalian circadian timing system consists of coupled oscillators and that the clock genes of these oscillators may also function as calendar genes. In summary, there are now strong indications that the neuronal changes and adaptations in mammals that occur in response to a seasonally changing environment are driven by an endogenous circadian clock located in the SCN, and that this neural calendar is reset by the seasonal fluctuations in photoperiod.
Collapse
Affiliation(s)
- Michel A Hofman
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Abstract
The pineal hormone, melatonin, has widespread effects on the body. The aim of this review is to consider the specific interactions between melatonin and human physiological functions associated with sport and exercise medicine. Separate researchers have reported that melatonin concentrations increase, decrease and remain unaffected by bouts of exercise. Such conflicting findings may be explained by inter-study differences in lighting conditions and the time of day the study participants have exercised. Age and fitness status have also been identified as intervening factors in exercise-mediated changes in melatonin concentration. The administration of exogenous melatonin leads to hypnotic and hypothermic responses in humans, which can be linked to immediate reductions in short-term mental and physical performance. Depending on the dose of melatonin, these effects may still be apparent 3-5 hours after administration for some types of cognitive performance, but effects on physical performance seem more short-lived. The hypothesis that the hypothermic effects of melatonin lead to improved endurance performance in hot environments is not supported by evidence from studies involving military recruits who exercised at relatively low intensities. Nevertheless, no research group has examined such a hypothesis with athletes as study participants and with the associated more intense levels of exercise. The fact that melatonin has also been found to preserve muscle and liver glycogen in exercised rats adds weight to the notion that melatonin might affect endurance exercise in humans. Melatonin has been successfully used to alleviate jet lag symptoms of travellers and there is also a smaller amount of evidence that the hormone helps shiftworkers adjust to nocturnal regimens. Nevertheless, the symptoms of jet lag and shiftwork problems have primarily included sleep characteristics rather than performance variables. The few studies that have involved athletes and performance-related symptoms have produced equivocal results. Melatonin has also been found to be useful for treating some sleeping disorders, but interactions between sleep, melatonin and exercise have not been studied extensively with trained study participants. It is unknown whether melatonin plays a role in some exercise training-related problems such as amenorrhoea and over-training syndrome.
Collapse
Affiliation(s)
- Greg Atkinson
- School of Sport and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, UK.
| | | | | | | |
Collapse
|
41
|
Verhagen LAW, Pévet P, Saboureau M, Sicard B, Nesme B, Claustrat B, Buijs RM, Kalsbeek A. Temporal organization of the 24-h corticosterone rhythm in the diurnal murid rodent Arvicanthis ansorgei Thomas 1910. Brain Res 2004; 995:197-204. [PMID: 14672809 DOI: 10.1016/j.brainres.2003.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arvicanthis ansorgei is a diurnal murid rodent from sub-Saharan Africa. The present study reports on the temporal organization of one of the major hormonal rhythms, i.e. the adrenal steroid hormone corticosterone, in an attempt to characterize further the diurnal nature of this species. The data were obtained by means of two different physiological methods: blood sampling and intracerebral microdialysis. The results show a 12-h rhythm of corticosterone release with peak values close to the light-dark (ZT10) and dark-light transition (ZT22-24), which is clearly different from that in a nocturnal animal. Both corticosterone peaks are closely correlated with the occurrence of two major bouts of running wheel activity. As far as we are aware, this is the first demonstration of a hormonal rhythm with a clear crepuscular appearance (peak values around dusk and dawn). In conclusion, these data show that also in a rodent with a diurnal/crepuscular activity pattern, the tight association between the daily corticosterone peak and the onset of activity is maintained. In addition, intracerebral microdialysis is a suitable technique to measure hormonal rhythms when repeated blood sampling is not possible.
Collapse
Affiliation(s)
- Linda A W Verhagen
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Brain Research (NIBR), Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Scheer FA, Kalsbeek A, Buijs RM. Cardiovascular control by the suprachiasmatic nucleus: neural and neuroendocrine mechanisms in human and rat. Biol Chem 2003; 384:697-709. [PMID: 12817466 DOI: 10.1515/bc.2003.078] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The risk for cardiovascular incidents is highest in the early morning, which seems partially due to endogenous factors. Endogenous circadian rhythms in mammalian physiology and behavior are regulated by the suprachiasmatic nucleus (SCN). Recently, anatomical evidence has been provided that SCN functioning is disturbed in patients with essential hypertension. Here we review neural and neuroendocrine mechanisms by which the SCN regulates the cardiovascular system. First, we discuss evidence for an endogenous circadian rhythm in cardiac activity, both in humans and rats, which is abolished after SCN lesioning in rats. The immediate impact of retinal light exposure at night on SCN-output to the cardiovascular system, which signals 'day' in both diurnal (human) and nocturnal (rat) mammals with opposite effects on physiology, is discussed. Furthermore, we discuss the impact of melatonin treatment on the SCN and its potential medical relevance in patients with essential hypertension. Finally, we argue that regional differentiation of the SCN and autonomous nervous system is required to explain the multitude of circadian rhythms. Insights into the mechanisms by which the SCN affects the cardiovascular system may provide new strategies for the treatment of disease conditions known to coincide with circadian rhythm disturbances, as is presented for essential hypertension.
Collapse
Affiliation(s)
- Frank A Scheer
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Brain Research, NL-1105 Amsterdam AZ, The Netherlands
| | | | | |
Collapse
|
43
|
Hofman MA, Swaab DF. A brain for all seasons: cellular and molecular mechanisms of photoperiodic plasticity. PROGRESS IN BRAIN RESEARCH 2002; 138:255-80. [PMID: 12432774 DOI: 10.1016/s0079-6123(02)38082-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Michel A Hofman
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
44
|
Lindblom N, Heiskala H, Kaski M, Leinonen L, Laakso ML. Sleep fragmentation in mentally retarded people decreases with increasing daylength in spring. Chronobiol Int 2002; 19:441-59. [PMID: 12025935 DOI: 10.1081/cbi-120002880] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We studied the sleep-wake behavior of mentally retarded people from late winter to early summer at 60 degrees N. During this time the daylength increased 8 h 51 min. The data were collected by observing the sleep-wake status of 293 subjects at 20-min intervals for five randomized 24h periods (= recording days). The intervals during which the individual recording days of the same order (1st, 2nd, etc.) were carried out, were called recording periods. Consequently, there were five recording periods, each containing 293 individual recording days. Even though there was overlap among the recording periods, the median daylength from one period to another increased approximately by 100 min. In the initial statistical analysis, the number of wake-sleep transitions was found to differ significantly among the five recording periods (Friedman test, p < 0.001). The mean ranks in the Friedman test suggested that the number of wake-sleep transitions was highest during the 1st and lowest during the 5th recording period. In further statistical analyses using a program for mixed effects regression analysis (MIXOR 2.0) it was found that the increase in daylength during the study period was associated with a simultaneous decrease of approximately 0.5 wake-sleep transitions in the whole study population (p < 0.001). The decrease in the number of wake-sleep transitions was significant only in the subgroups of subjects with a daylength change of more than 350 min between the 1st and 5th recording days (Wilcoxon tests, p < 0.005). This suggests that after a marked prolongation of the natural photoperiod, the reduction in sleep episodes was more probable than after smaller changes in daylength. It is concluded that the sleep of mentally retarded people living in a rehabilitation center at a northern latitude is more fragmented in winter than in early summer and that the change is related probably to the simultaneous increase in the length of the natural photoperiod. The sleep quality of persons living in institutional settings might be improved by increasing the intensity and/or duration of daily artificial light exposure during the darker seasons.
Collapse
Affiliation(s)
- Niki Lindblom
- Rinnekoti Sleep Research Centre, Rinnekoti Foundation, Espoo, Finland.
| | | | | | | | | |
Collapse
|
45
|
Schwartz WJ, de la Iglesia HO, Zlomanczuk P, Illnerová H. Encoding le quattro stagioni within the mammalian brain: photoperiodic orchestration through the suprachiasmatic nucleus. J Biol Rhythms 2001; 16:302-11. [PMID: 11506376 DOI: 10.1177/074873001129002024] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Within the suprachiasmatic nucleus (SCN) is a pacemaker that not only drives circadian rhythmicity but also directs the circadian organization of photoperiodic (seasonal) timekeeping. Recent evidence using electrophysiological, molecular, and genetic tools now strongly supports this conclusion. Important questions remain regarding the SCN's precise role(s) in the brain's photoperiodic circuits, especially among different species, and the cellular and molecular mechanisms for its photoperiodic "memory." New data suggesting that SCN "clock" genes may also function as "calendar" genes are a first step toward understanding how a photoperiodic clock is built from cycling molecules.
Collapse
Affiliation(s)
- W J Schwartz
- Department of Neurology, University of Massachusetts Medical School, Worcester 01655, USA.
| | | | | | | |
Collapse
|
46
|
Goncharuk VD, van Heerikhuize J, Dai JP, Swaab DF, Buijs RM. Neuropeptide changes in the suprachiasmatic nucleus in primary hypertension indicate functional impairment of the biological clock. J Comp Neurol 2001; 431:320-30. [PMID: 11170008 DOI: 10.1002/1096-9861(20010312)431:3<320::aid-cne1073>3.0.co;2-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abnormalities in autonomic activity resulting in disturbances of the diurnal rhythm of many physiologic processes were recently revealed in hypertensive patients. These findings suggest deteriorations in the functioning of the suprachiasmatic nucleus (SCN), which is known to be the biological clock of mammals. To test this hypothesis, we carried out an immunocytochemical study of the SCN of primary hypertension patients who had died due to myocardial infarction or brain hemorrhage, and compared them with those of individuals with a normal blood pressure who had never had any autonomic disturbances and died from myocardial infarction after chest trauma or from hypothermia. We found that the staining for the three main neuronal populations of the SCN; i.e., vasopressin, vasoactive intestinal polypeptide, and neurotensin, reduced by more than 50% in the hypertensives compared with controls. The present data indicate a serious dysregulation of the biological clock in hypertensive patients. Such a disturbance may cause a harmful hemodynamic imbalance with a negative effect on circulation, especially in the morning, when the inactivity-activity balance changes. The difficulty in adjusting from inactivity to activity might be involved in the morning clustering of cardiovascular events.
Collapse
Affiliation(s)
- V D Goncharuk
- Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Swaab DF, Fliers E, Hoogendijk WJ, Veltman DJ, Zhou JN. Interaction of prefrontal cortical and hypothalamic systems in the pathogenesis of depression. PROGRESS IN BRAIN RESEARCH 2001; 126:369-96. [PMID: 11105658 DOI: 10.1016/s0079-6123(00)26025-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D F Swaab
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Deboer T, Vyazovskiy VV, Tobler I. Long photoperiod restores the 24-h rhythm of sleep and EEG slow-wave activity in the Djungarian hamster (Phodopus sungorus). J Biol Rhythms 2000; 15:429-36. [PMID: 11039920 DOI: 10.1177/074873040001500508] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photoperiod influences the distribution of sleep and waking and electroencephalogram (EEG) power density in the Djungarian hamster. In an experimental procedure combining short photoperiod (SP) and low ambient temperature, the light-dark difference in the amount of sleep was decreased, and the changes in slow-wave activity (SWA) (mean EEG power density between 0.75 and 4.0 Hz) in nonrapid eye movement (NREM) sleep within 24 h were abolished. These findings, obtained in three different groups of animals, suggested that at the lower ambient temperature, the influence of the circadian clock on sleep-wake behavior was diminished. However, it remained unclear whether the changes were due to the photoperiod, ambient temperature, or both. Here, the authors show that EEG and electromyogram recordings in a single group of animals sequentially adapted to a short and long photoperiod (LP) at low ambient temperature (approximately 15 degrees C) confirm that EEG power is reduced in SP. Moreover, the nocturnal sleep-wake behavior and the changes in SWA in NREM sleep over 24 h were restored by returning the animals to LP and retaining ambient temperature at 15 degrees C. Therefore, the effects cannot be attributed to ambient temperature alone but are due to a combined effect of temperature and photoperiod. When the Djungarian hamster adapts to winter conditions, it appears to uncouple sleep regulation from the circadian clock.
Collapse
Affiliation(s)
- T Deboer
- Institute of Pharmacology and Toxicology, University of Zürich, Switzerland
| | | | | |
Collapse
|
49
|
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is implicated in the timing of a wide variety of circadian processes. Since the environmental light-dark cycle is the main zeitgeber for many of the rhythms, photic information may have a synchronizing effect on the endogenous clock of the SCN by inducing periodic changes in the biological activity of certain groups of neurons. By studying the brains obtained at autopsy of human subjects, marked diurnal oscillations were observed in the neuropeptide content of the SCN. Vasopressin, for example, one of the most abundant peptides in the human SCN, exhibited a diurnal rhythm, with low values at night and peak values during the early morning. However, with advancing age, these diurnal fluctuations deteriorated, leading to a disrupted cycle with a reduced amplitude in elderly people. These findings suggest that the synthesis of some peptides in the human SCN exhibits an endogenous circadian rhythmicity, and that the temporal organization of these rhythms becomes progressively disturbed in senescence.
Collapse
Affiliation(s)
- M A Hofman
- Netherlands Institute for Brain Research, Amsterdam
| |
Collapse
|
50
|
Smale L, Boverhof J. The suprachiasmatic nucleus and intergeniculate leaflet of Arvicanthis niloticus, a diurnal murid rodent from East Africa. J Comp Neurol 1999; 403:190-208. [PMID: 9886043 DOI: 10.1002/(sici)1096-9861(19990111)403:2<190::aid-cne4>3.0.co;2-k] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Little is known about the neural substrates controlling circadian rhythms in day-active compared to night-active mammals primarily because of the lack of a suitable diurnal rodent with which to address the issue. The murid rodent, Arvicanthis niloticus, was recently shown to exhibit a predominantly diurnal pattern of activity and body temperature, and may be suitable for research on the neural mechanisms underlying circadian rhythms. This paper describes, in A. niloticus, the anatomy of two neural structures that play important roles in the control of circadian rhythms, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL). Immunohistochemical techniques were used to examine the distribution of neuroactive peptides in the SCN and IGL, and retinal projections to these structures were traced with anterograde transport of the beta subunit of cholera toxin. In A. niloticus, distinct subdivisions of the SCN contained cell bodies with immunoreactive (IR) vasopressin, vasoactive intestinal polypeptide, gastrin-releasing peptide, and corticotropin-releasing factor. The SCN did not contain cell bodies with met-enkephalin-IR and substance P-IR, but did contain fibers with substance P-IR and neuropeptide Y-IR. Retinal fibers were present throughout the SCN, but were most densely concentrated along its ventral edge, particularly in the contralateral SCN. Retinal fibers also extended to a variety of hypothalamic regions outside the SCN, including the supraoptic nucleus and the subparaventricular region. The IGL contained cells with neuropeptide Y-IR and enkephalin-IR cells. Retinal fibers projected to both the ipsilateral and contralateral IGL. The anatomy of the SCN and IGL were compared and contrasted with that previously described for other nocturnal and diurnal species.
Collapse
Affiliation(s)
- L Smale
- Department of Psychology, Michigan State University, East Lansing 48824, USA.
| | | |
Collapse
|