1
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Meléndez-Fernández OH, Liu JA, Nelson RJ. Circadian Rhythms Disrupted by Light at Night and Mistimed Food Intake Alter Hormonal Rhythms and Metabolism. Int J Mol Sci 2023; 24:3392. [PMID: 36834801 PMCID: PMC9963929 DOI: 10.3390/ijms24043392] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Availability of artificial light and light-emitting devices have altered human temporal life, allowing 24-hour healthcare, commerce and production, and expanding social life around the clock. However, physiology and behavior that evolved in the context of 24 h solar days are frequently perturbed by exposure to artificial light at night. This is particularly salient in the context of circadian rhythms, the result of endogenous biological clocks with a rhythm of ~24 h. Circadian rhythms govern the temporal features of physiology and behavior, and are set to precisely 24 h primarily by exposure to light during the solar day, though other factors, such as the timing of meals, can also affect circadian rhythms. Circadian rhythms are significantly affected by night shift work because of exposure to nocturnal light, electronic devices, and shifts in the timing of meals. Night shift workers are at increased risk for metabolic disorder, as well as several types of cancer. Others who are exposed to artificial light at night or late mealtimes also show disrupted circadian rhythms and increased metabolic and cardiac disorders. It is imperative to understand how disrupted circadian rhythms alter metabolic function to develop strategies to mitigate their negative effects. In this review, we provide an introduction to circadian rhythms, physiological regulation of homeostasis by the suprachiasmatic nucleus (SCN), and SCN-mediated hormones that display circadian rhythms, including melatonin and glucocorticoids. Next, we discuss circadian-gated physiological processes including sleep and food intake, followed by types of disrupted circadian rhythms and how modern lighting disrupts molecular clock rhythms. Lastly, we identify how disruptions to hormones and metabolism can increase susceptibility to metabolic syndrome and risk for cardiovascular diseases, and discuss various strategies to mitigate the harmful consequences associated with disrupted circadian rhythms on human health.
Collapse
|
3
|
Abstract
Our physiology and behavior follow precise daily programs that adapt us to the alternating opportunities and challenges of day and night. Under experimental isolation, these rhythms persist with a period of approximately one day (circadian), demonstrating their control by an internal autonomous clock. Circadian time is created at the cellular level by a transcriptional/translational feedback loop (TTFL) in which the protein products of the Period and Cryptochrome genes inhibit their own transcription. Because the accumulation of protein is slow and delayed, the system oscillates spontaneously with a period of ∼24 hours. This cell-autonomous TTFL controls cycles of gene expression in all major tissues and these cycles underpin our daily metabolic programs. In turn, our innumerable cellular clocks are coordinated by a central pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. When isolated in slice culture, the SCN TTFL and its dependent cycles of neural activity persist indefinitely, operating as "a clock in a dish". In vivo, SCN time is synchronized to solar time by direct innervation from specialized retinal photoreceptors. In turn, the precise circadian cycle of action potential firing signals SCN-generated time to hypothalamic and brain stem targets, which co-ordinate downstream autonomic, endocrine, and behavioral (feeding) cues to synchronize and sustain the distributed cellular clock network. Circadian time therefore pervades every level of biological organization, from molecules to society. Understanding its mechanisms offers important opportunities to mitigate the consequences of circadian disruption, so prevalent in modern societies, that arise from shiftwork, aging, and neurodegenerative diseases, not least Huntington's disease.
Collapse
Affiliation(s)
- Andrew P. Patton
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
4
|
Beyond irradiance: Visual signals influencing mammalian circadian function. PROGRESS IN BRAIN RESEARCH 2022; 273:145-169. [DOI: 10.1016/bs.pbr.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Tir S, Steel LCE, Tam SKE, Semo M, Pothecary CA, Vyazovskiy VV, Foster RG, Peirson SN. Rodent models in translational circadian photobiology. PROGRESS IN BRAIN RESEARCH 2022; 273:97-116. [PMID: 35940726 DOI: 10.1016/bs.pbr.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions. Much of our understanding of the fundamental mechanisms of the pRGCs, and the processes that they regulate, comes from mouse and other rodent models. Here we describe the contribution of rodent models to circadian photobiology, including both their strengths and limitations. In addition, we discuss how an appreciation of both rodent and human data is important for translational circadian photobiology. Such an approach enables a bi-directional flow of information whereby an understanding of basic mechanisms derived from mice can be integrated with studies from humans. Progress in this field is being driven forward at several levels of analysis, not least by the use of personalized light measurements and photoreceptor specific stimuli in human studies, and by studying the impact of environmental, rather than laboratory, lighting on different rodent models.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Laura C E Steel
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - S K E Tam
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ma'ayan Semo
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carina A Pothecary
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
6
|
Taillard J, Gronfier C, Bioulac S, Philip P, Sagaspe P. Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation. Brain Sci 2021; 11:1003. [PMID: 34439622 PMCID: PMC8392749 DOI: 10.3390/brainsci11081003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
In the context of geriatric research, a growing body of evidence links normal age-related changes in sleep with many adverse health outcomes, especially a decline in cognition in older adults. The most important sleep alterations that continue to worsen after 60 years involve sleep timing, (especially early wake time, phase advance), sleep maintenance (continuity of sleep interrupted by numerous awakenings) and reduced amount of sigma activity (during non-rapid eye movement (NREM) sleep) associated with modifications of sleep spindle characteristics (density, amplitude, frequency) and spindle-Slow Wave coupling. After 60 years, there is a very clear gender-dependent deterioration in sleep. Even if there are degradations of sleep after 60 years, daytime wake level and especially daytime sleepiness is not modified with age. On the other hand, under sleep deprivation condition, older adults show smaller cognitive impairments than younger adults, suggesting an age-related lower vulnerability to extended wakefulness. These sleep and cognitive age-related modifications would be due to a reduced homeostatic drive and consequently a reduced sleep need, an attenuation of circadian drive (reduction of sleep forbidden zone in late afternoon and wake forbidden zone in early morning), a modification of the interaction of the circadian and homeostatic processes and/or an alteration of subcortical structures involved in generation of circadian and homeostatic drive, or connections to the cerebral cortex with age. The modifications and interactions of these two processes with age are still uncertain, and still require further investigation. The understanding of the respective contribution of circadian and homeostatic processes in the regulation of neurobehavioral function with aging present a challenge for improving health, management of cognitive decline and potential early chronobiological or sleep-wake interventions.
Collapse
Affiliation(s)
- Jacques Taillard
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Integrative Physiology of the Brain Arousal Systems (Waking) Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000 Lyon, France;
| | - Stéphanie Bioulac
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Pierre Philip
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Patricia Sagaspe
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| |
Collapse
|
7
|
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. Clocks, Rhythms, Sex, and Hearts: How Disrupted Circadian Rhythms, Time-of-Day, and Sex Influence Cardiovascular Health. Biomolecules 2021; 11:883. [PMID: 34198706 PMCID: PMC8232105 DOI: 10.3390/biom11060883] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the top cause of mortality in the United States, and ischemic heart disease accounts for 16% of all deaths around the world. Modifiable risk factors such as diet and exercise have often been primary targets in addressing these conditions. However, mounting evidence suggests that environmental factors that disrupt physiological rhythms might contribute to the development of these diseases, as well as contribute to increasing other risk factors that are typically associated with cardiovascular disease. Exposure to light at night, transmeridian travel, and social jetlag disrupt endogenous circadian rhythms, which, in turn, alter carefully orchestrated bodily functioning, and elevate the risk of disease and injury. Research into how disrupted circadian rhythms affect physiology and behavior has begun to reveal the intricacies of how seemingly innocuous environmental and social factors have dramatic consequences on mammalian physiology and behavior. Despite the new focus on the importance of circadian rhythms, and how disrupted circadian rhythms contribute to cardiovascular diseases, many questions in this field remain unanswered. Further, neither time-of-day nor sex as a biological variable have been consistently and thoroughly taken into account in previous studies of circadian rhythm disruption and cardiovascular disease. In this review, we will first discuss biological rhythms and the master temporal regulator that controls these rhythms, focusing on the cardiovascular system, its rhythms, and the pathology associated with its disruption, while emphasizing the importance of the time-of-day as a variable that directly affects outcomes in controlled studies, and how temporal data will inform clinical practice and influence personalized medicine. Finally, we will discuss evidence supporting the existence of sex differences in cardiovascular function and outcomes following an injury, and highlight the need for consistent inclusion of both sexes in studies that aim to understand cardiovascular function and improve cardiovascular health.
Collapse
Affiliation(s)
- O. Hecmarie Meléndez-Fernández
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26505, USA;
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (J.C.W.); (R.J.N.)
| |
Collapse
|
8
|
Liu J, Ghastine L, Um P, Rovit E, Wu T. Environmental exposures and sleep outcomes: A review of evidence, potential mechanisms, and implications. ENVIRONMENTAL RESEARCH 2021; 196:110406. [PMID: 33130170 PMCID: PMC8081760 DOI: 10.1016/j.envres.2020.110406] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 06/02/2023]
Abstract
Environmental exposures and poor sleep outcomes are known to have consequential effects on human health. This integrative review first seeks to present and synthesize existing literature investigating the relationship between exposure to various environmental factors and sleep health. We then present potential mechanisms of action as well as implications for policy and future research for each environmental exposure. Broadly, although studies are still emerging, empirical evidence has begun to show a positive association between adverse effects of heavy metal, noise pollution, light pollution, second-hand smoke, and air pollution exposures and various sleep problems. Specifically, these negative sleep outcomes range from subjective sleep manifestations, such as general sleep quality, sleep duration, daytime dysfunction, and daytime sleepiness, as well as objective sleep measures, including difficulties with sleep onset and maintenance, sleep stage or circadian rhythm interference, sleep arousal, REM activity, and sleep disordered breathing. However, the association between light exposure and sleep is less clear. Potential toxicological mechanisms are thought to include the direct effect of various environmental toxicants on the nervous, respiratory, and cardiovascular systems, oxidative stress, and inflammation. Nevertheless, future research is required to tease out the exact pathways of action to explain the associations between each environmental factor and sleep, to inform possible therapies to negate the detrimental effects, and to increase efforts in decreasing exposure to these harmful environmental factors to improve health.
Collapse
Affiliation(s)
- Jianghong Liu
- University of Pennsylvania School of Nursing, 418 Curie Blvd, Philadelphia, PA, 19104, USA.
| | - Lea Ghastine
- Ohio State University College of Medicine, 370 W 9th Ave, Columbus, OH, 43210, USA
| | - Phoebe Um
- Ohio State University College of Medicine, 370 W 9th Ave, Columbus, OH, 43210, USA
| | - Elizabeth Rovit
- University of Pennsylvania School of Nursing, 418 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Tina Wu
- University of Pennsylvania School of Nursing, 418 Curie Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Taillard J, Sagaspe P, Philip P, Bioulac S. Sleep timing, chronotype and social jetlag: Impact on cognitive abilities and psychiatric disorders. Biochem Pharmacol 2021; 191:114438. [DOI: 10.1016/j.bcp.2021.114438] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
|
10
|
Domínguez-Vías G, Aretxaga G, Prieto I, Segarra AB, Luna JD, Martínez-Cañamero M, Ramírez-Sánchez M. Asymmetrical influence of a standard light/dark cycle and constant light conditions on the alanyl-aminopeptidase activity of the left and right retinas in adult male rats. Exp Eye Res 2020; 198:108149. [PMID: 32693084 DOI: 10.1016/j.exer.2020.108149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
The retina acts as an independent clock informing the central pacemaker, the suprachiasmatic nucleus, under environmental light conditions, with consequences of such inputs for the central and peripheral nervous system. Differences in the behavior of the left and right retinas depending on environmental light conditions may influence the information projected to the brain hemispheres. The retina possesses neuropeptides that act as neurotransmitters or neuromodulators. Alanyl-aminopeptidase (AlaAP, EC 3.4.11.2) activity regulates some of these neuropeptides and therefore reflects their function. We analyzed AlaAP activity in the left and right retinas of adult male rats at successive time points under standard (12/12 h light/dark cycle) and nonstandard (constant light) conditions. AlaAP activity was measured fluorometrically using alanyl-beta-naphthylamide as the substrate. Under standard conditions, there were no differences in the left or right retina between time points, with the left retina predominating, particularly in the light period. In contrast, under constant light, no left versus right differences were observed, but significant differences between time points appeared. In comparison with standard conditions, constant conditions led to significantly higher AlaAP activity. Considering all the left retina data in comparison with all the right retina data, no correlation was found between the left and right retinas under standard conditions, but a significant positive correlation was observed under constant light. These results demonstrate an asymmetrical response of retinal AlaAP activity to changes in environmental light conditions, which may affect the functions in which the substrates of AlaAP are involved and the information projected to the brain hemispheres.
Collapse
Affiliation(s)
- G Domínguez-Vías
- Department of Health Sciences, University of Jaén, 23071, Jaén, Spain; Department of Physiology, Faculty of Health Sciences, University of Granada (Ceuta Campus), 18016, Granada, Spain
| | - G Aretxaga
- Department of Health Sciences, University of Jaén, 23071, Jaén, Spain; Department of Physiology, Medical School, University of the Basque Country, 48080, Leioa, Spain
| | - I Prieto
- Department of Health Sciences, University of Jaén, 23071, Jaén, Spain
| | - A B Segarra
- Department of Health Sciences, University of Jaén, 23071, Jaén, Spain
| | - J D Luna
- Department of Biostatistics, Medical School, University of Granada, 18016, Granada, Spain
| | | | - M Ramírez-Sánchez
- Department of Health Sciences, University of Jaén, 23071, Jaén, Spain; Department of Physiology, Medical School, University of the Basque Country, 48080, Leioa, Spain.
| |
Collapse
|
11
|
Foster RG, Hughes S, Peirson SN. Circadian Photoentrainment in Mice and Humans. BIOLOGY 2020; 9:biology9070180. [PMID: 32708259 PMCID: PMC7408241 DOI: 10.3390/biology9070180] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a λmax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100’s lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed.
Collapse
|
12
|
Silva CC, Domínguez R. Clock control of mammalian reproductive cycles: Looking beyond the pre-ovulatory surge of gonadotropins. Rev Endocr Metab Disord 2020; 21:149-163. [PMID: 31828563 DOI: 10.1007/s11154-019-09525-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several aspects of the physiology and behavior of organisms are expressed rhythmically with a 24-h periodicity and hence called circadian rhythms. Such rhythms are thought to be an adaptive response that allows to anticipate cyclic events in the environment. In mammals, the circadian system is a hierarchically organized net of endogenous oscillators driven by the hypothalamic suprachiasmatic nucleus (SCN). This system is synchronized by the environment throughout afferent pathways and in turn it organizes the activity of tissues by means of humoral secretions and neuronal projections. It has been shown that reproductive cycles are regulated by the circadian system. In rodents, the lesion of the SCN results on alterations of the estrous cycle, sexual behavior, tonic and phasic secretion of gonadotropin releasing hormone (GnRH)/gonadotropins and in the failure of ovulation. Most of the studies regarding the circadian control of reproduction, in particular of ovulation, have only focused on the participation of the SCN in the triggering of the proestrus surge of gonadotropins. Here we review aspects of the evolution and organization of the circadian system with particular focus on its relationship with the reproductive cycle of laboratory rodents. Experimental evidence of circadian control of neuroendocrine events indispensable for ovulation that occur prior to proestrus are discussed. In order to offer a working model of the circadian regulation of reproduction, its participation on aspects ranging from gamete production, neuroendocrine regulation, sexual behavior, mating coordination, pregnancy and deliver of the product should be assessed experimentally.
Collapse
Affiliation(s)
- Carlos-Camilo Silva
- Chronobiology of Reproduction Research Lab-UIBR, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Roberto Domínguez
- Chronobiology of Reproduction Research Lab-UIBR, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, Mexico.
| |
Collapse
|
13
|
Niederkorn JY. The Eye Sees Eye to Eye With the Immune System: The 2019 Proctor Lecture. Invest Ophthalmol Vis Sci 2019; 60:4489-4495. [PMID: 31661549 PMCID: PMC6819053 DOI: 10.1167/iovs.19-28632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Jerry Y. Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
14
|
Felder-Schmittbuhl MP, Buhr ED, Dkhissi-Benyahya O, Hicks D, Peirson SN, Ribelayga CP, Sandu C, Spessert R, Tosini G. Ocular Clocks: Adapting Mechanisms for Eye Functions and Health. Invest Ophthalmol Vis Sci 2019; 59:4856-4870. [PMID: 30347082 PMCID: PMC6181243 DOI: 10.1167/iovs.18-24957] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vision is a highly rhythmic function adapted to the extensive changes in light intensity occurring over the 24-hour day. This adaptation relies on rhythms in cellular and molecular processes, which are orchestrated by a network of circadian clocks located within the retina and in the eye, synchronized to the day/night cycle and which, together, fine-tune detection and processing of light information over the 24-hour period and ensure retinal homeostasis. Systematic or high throughput studies revealed a series of genes rhythmically expressed in the retina, pointing at specific functions or pathways under circadian control. Conversely, knockout studies demonstrated that the circadian clock regulates retinal processing of light information. In addition, recent data revealed that it also plays a role in development as well as in aging of the retina. Regarding synchronization by the light/dark cycle, the retina displays the unique property of bringing together light sensitivity, clock machinery, and a wide range of rhythmic outputs. Melatonin and dopamine play a particular role in this system, being both outputs and inputs for clocks. The retinal cellular complexity suggests that mechanisms of regulation by light are diverse and intricate. In the context of the whole eye, the retina looks like a major determinant of phase resetting for other tissues such as the retinal pigmented epithelium or cornea. Understanding the pathways linking the cell-specific molecular machineries to their cognate outputs will be one of the major challenges for the future.
Collapse
Affiliation(s)
- Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington Medical School, Seattle, Washington, United States
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - David Hicks
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Cristina Sandu
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Strasbourg, France
| | - Rainer Spessert
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
15
|
Troilo D, Smith EL, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, Gawne TJ, Pardue MT, Summers JA, Kee CS, Schroedl F, Wahl S, Jones L. IMI - Report on Experimental Models of Emmetropization and Myopia. Invest Ophthalmol Vis Sci 2019; 60:M31-M88. [PMID: 30817827 PMCID: PMC6738517 DOI: 10.1167/iovs.18-25967] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022] Open
Abstract
The results of many studies in a variety of species have significantly advanced our understanding of the role of visual experience and the mechanisms of postnatal eye growth, and the development of myopia. This paper surveys and reviews the major contributions that experimental studies using animal models have made to our thinking about emmetropization and development of myopia. These studies established important concepts informing our knowledge of the visual regulation of eye growth and refractive development and have transformed treatment strategies for myopia. Several major findings have come from studies of experimental animal models. These include the eye's ability to detect the sign of retinal defocus and undergo compensatory growth, the local retinal control of eye growth, regulatory changes in choroidal thickness, and the identification of components in the biochemistry of eye growth leading to the characterization of signal cascades regulating eye growth and refractive state. Several of these findings provided the proofs of concepts that form the scientific basis of new and effective clinical treatments for controlling myopia progression in humans. Experimental animal models continue to provide new insights into the cellular and molecular mechanisms of eye growth control, including the identification of potential new targets for drug development and future treatments needed to stem the increasing prevalence of myopia and the vision-threatening conditions associated with this disease.
Collapse
Affiliation(s)
- David Troilo
- SUNY College of Optometry, State University of New York, New York, New York, United States
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Debora L. Nickla
- Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Regan Ashby
- Health Research Institute, University of Canberra, Canberra, Australia
| | - Andrei V. Tkatchenko
- Department of Ophthalmology, Department of Pathology and Cell Biology, Columbia University, New York, New York, United States
| | - Lisa A. Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Timothy J. Gawne
- School of Optometry, University of Alabama Birmingham, Birmingham, Alabama, United States
| | - Machelle T. Pardue
- Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, Georgia, United States31
| | - Jody A. Summers
- College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Chea-su Kee
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Falk Schroedl
- Departments of Ophthalmology and Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tuebingen, Zeiss Vision Science Laboratory, Tuebingen, Germany
| | - Lyndon Jones
- CORE, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada
| |
Collapse
|
16
|
Ghareghani M, Reiter RJ, Zibara K, Farhadi N. Latitude, Vitamin D, Melatonin, and Gut Microbiota Act in Concert to Initiate Multiple Sclerosis: A New Mechanistic Pathway. Front Immunol 2018; 9:2484. [PMID: 30459766 PMCID: PMC6232868 DOI: 10.3389/fimmu.2018.02484] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). While the etiology of MS is still largely unknown, scientists believe that the interaction of several endogenous and exogenous factors may be involved in this disease. Epidemiologists have seen an increased prevalence of MS in countries at high latitudes, where the sunlight is limited and where the populations have vitamin D deficiency and high melatonin levels. Although the functions and synthesis of vitamin D and melatonin are contrary to each other, both are involved in the immune system. While melatonin synthesis is affected by light, vitamin D deficiency may be involved in melatonin secretion. On the other hand, vitamin D deficiency reduces intestinal calcium absorption leading to gut stasis and subsequently increasing gut permeability. The latter allows gut microbiota to transfer more endotoxins such as lipopolysaccharides (LPS) into the blood. LPS stimulates the production of inflammatory cytokines within the CNS, especially the pineal gland. This review summarizes the current findings on the correlation between latitude, sunlight and vitamin D, and details their effects on intestinal calcium absorption, gut microbiota and neuroinflammatory mediators in MS. We also propose a new mechanistic pathway for the initiation of MS.
Collapse
Affiliation(s)
- Majid Ghareghani
- CERVO Brain Research Center, Quebec City, QC, Canada.,Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Kazem Zibara
- PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Naser Farhadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
17
|
Yang X, Fu J, Wei X. Expression patterns of zebrafish nocturnin genes and the transcriptional activity of the frog nocturnin promoter in zebrafish rod photoreceptors. Mol Vis 2017; 23:1039-1047. [PMID: 29386877 PMCID: PMC5757853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/28/2017] [Indexed: 02/05/2023] Open
Abstract
Purpose Daily modulation of gene expression is critical for the circadian rhythms of many organisms. One of the modulating mechanisms is based on nocturnin, a deadenylase that degrades mRNA in a circadian fashion. The nocturnin genes are expressed broadly, but their tissue expression patterns differ between mice and the frog Xenopus laevis; this difference suggests that the extent of the regulation of nocturin gene expression varies among species. In this study, we set out to characterize the expression patterns of two zebrafish nocturnin genes; in addition, we asked whether a frog nocturnin promoter has transcriptional activity in zebrafish. Methods We used reverse transcription (RT)-PCR, quantitative real-time PCR (qRT-PCR), and rapid amplification of cDNA ends (RACE) analysis to determine whether the nocturnin-a and nocturnin-b genes are expressed in the eye, in situ hybridization to determine the cellular expression pattern of the nocturnin-b gene in the retina, and confocal microscopy to determine the protein expression pattern of the transgenic reporter green fluorescent protein (GFP) driven by the frog nocturnin promoter. Results We found that the amino acid sequences of zebrafish nocturnin-a and nocturnin-b are highly similar to those of frog, mouse, and human nocturnin homologs. Only nocturnin-b is expressed in the eye. Within the retina, nocturnin-b mRNA was expressed at higher levels in the retinal photoreceptors layer than in other cellular layers. This expression pattern echoes the restricted photoreceptor expression of nocturnin in the frog. We also found that the frog nocturnin promoter can be specifically activated in zebrafish rod photoreceptors. Conclusions The high level of similarities in amino acid sequences of human, mouse, frog, and zebrafish nocturnin homologs suggest these proteins maintain a conserved deadenylation function that is important for regulating retinal circadian rhythmicity. The rod-specific transcriptional activity of the frog nocturnin promoter makes it a useful tool to drive moderate and rod-specific transgenic expression in zebrafish. The results of this study lay the groundwork to study nocturnin-based circadian biology of the zebrafish retina.
Collapse
Affiliation(s)
- Xiaojun Yang
- Neuroscience Center, Shantou University Medical College, Shantou, China
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jinling Fu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiangyun Wei
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine
| |
Collapse
|
18
|
Choi JY, Kim NN, Choi YJ, Park MS, Choi CY. Differential daily rhythms of melatonin in the pineal gland and gut of goldfishCarassius auratusin response to light. BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1094964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Flyktman A, Mänttäri S, Nissilä J, Timonen M, Saarela S. Transcranial light affects plasma monoamine levels and expression of brain encephalopsin in the mouse. ACTA ACUST UNITED AC 2015; 218:1521-6. [PMID: 25805701 DOI: 10.1242/jeb.111864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
Encephalopsin (OPN3) belongs to the light-sensitive transmembrane receptor family mainly expressed in the brain and retina. It is believed that light affects mammalian circadian rhythmicity only through the retinohypothalamic tract, which transmits light information to the suprachiasmatic nucleus in the hypothalamus. However, it has been shown that light penetrates the skull. Here, we present the effect of transcranial light treatment on OPN3 expression and monoamine concentrations in mouse brain and other tissues. Mice were randomly assigned to control group, morning-light group and evening-light group, and animals were illuminated transcranially five times a week for 8 min for a total of 4 weeks. The concentrations of OPN3 and monoamines were analysed using western blotting and HPLC, respectively. We report that transcranial light treatment affects OPN3 expression in different brain areas and plasma/adrenal gland monoamine concentrations. In addition, when light was administered at a different time of the day, the response varied in different tissues. These results provide new information on the effects of light on transmitters mediating mammalian rhythmicity.
Collapse
Affiliation(s)
- Antti Flyktman
- University of Oulu, Department of Biology, P.O. Box 3000, Oulu FIN-90014, Finland
| | - Satu Mänttäri
- Finnish Institute of Occupational Health, Aapistie 1, Oulu FI-90220, Finland
| | - Juuso Nissilä
- University of Oulu, Department of Biology, P.O. Box 3000, Oulu FIN-90014, Finland University of Oulu, Institute of Health Sciences, P.O. Box 5000, Oulu FIN-90014, Finland
| | - Markku Timonen
- University of Oulu, Institute of Health Sciences, P.O. Box 5000, Oulu FIN-90014, Finland
| | - Seppo Saarela
- University of Oulu, Department of Biology, P.O. Box 3000, Oulu FIN-90014, Finland
| |
Collapse
|
20
|
Nakane Y, Yoshimura T. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates. Front Neurosci 2014; 8:115. [PMID: 24959116 PMCID: PMC4033074 DOI: 10.3389/fnins.2014.00115] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/01/2014] [Indexed: 12/15/2022] Open
Abstract
Most vertebrates living outside the tropical zone show robust physiological responses in response
to seasonal changes in photoperiod, such as seasonal reproduction, molt, and migration. The highly
sophisticated photoperiodic mechanism in Japanese quail has been used to uncover the mechanism of
seasonal reproduction. Molecular analysis of quail mediobasal hypothalamus (MBH) revealed that local
thyroid hormone activation within the MBH plays a critical role in the photoperiodic response of
gonads. This activation is accomplished by two gene switches: thyroid hormone-activating (DIO2) and
thyroid hormone-inactivating enzymes (DIO3). Functional genomics studies have shown that long-day
induced thyroid-stimulating hormone (TSH) in the pars tuberalis (PT) of the pituitary gland
regulates DIO2/3 switching. In birds, light information received directly by deep brain
photoreceptors regulates PT TSH. Recent studies demonstrated that Opsin 5-positive cerebrospinal
fluid (CSF)-contacting neurons are deep brain photoreceptors that regulate avian seasonal
reproduction. Although the involvement of TSH and DIO2/3 in seasonal reproduction has been confirmed
in various mammals, the light input pathway that regulates PT TSH in mammals differs from that of
birds. In mammals, the eye is the only photoreceptor organ and light information received by the eye
is transmitted to the pineal gland through the circadian pacemaker, the suprachiasmatic nucleus.
Nocturnal melatonin secretion from the pineal gland indicates the length of night and regulates the
PT TSH. In fish, the regulatory machinery for seasonal reproduction, from light input to
neuroendocrine output, has been recently demonstrated in the coronet cells of the saccus vasculosus
(SV). The SV is unique to fish and coronet cells are CSF-contacting neurons. Here, we discuss the
universality and diversity of signal transduction pathways that regulate vertebrate seasonal
reproduction.
Collapse
Affiliation(s)
- Yusuke Nakane
- Laboratory of Animal Physiology, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University Nagoya, Japan
| | - Takashi Yoshimura
- Laboratory of Animal Physiology, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University Nagoya, Japan ; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya, Japan ; Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University Nagoya, Japan ; Division of Seasonal Biology, Department of Environmental Biology, National Institute for Basic Biology Okazaki, Japan
| |
Collapse
|
21
|
Wang Q, Tikhonenko M, Bozack SN, Lydic TA, Yan L, Panchy NL, Mcsorley KM, Faber MS, Yan Y, Boulton ME, Grant MB, Busik JV. Changes in the daily rhythm of lipid metabolism in the diabetic retina. PLoS One 2014; 9:e95028. [PMID: 24736612 PMCID: PMC3988159 DOI: 10.1371/journal.pone.0095028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/23/2014] [Indexed: 12/14/2022] Open
Abstract
Disruption of circadian regulation was recently shown to cause diabetes and metabolic disease. We have previously demonstrated that retinal lipid metabolism contributed to the development of diabetic retinopathy. The goal of this study was to determine the effect of diabetes on circadian regulation of clock genes and lipid metabolism genes in the retina and retinal endothelial cells (REC). Diabetes had a pronounced inhibitory effect on the negative clock arm with lower amplitude of the period (per) 1 in the retina; lower amplitude and a phase shift of per2 in the liver; and a loss of cryptochrome (cry) 2 rhythmic pattern in suprachiasmatic nucleus (SCN). The positive clock arm was increased by diabetes with higher amplitude of circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1 (bmal1) and phase shift in bmal1 rhythmic oscillations in the retina; and higher bmal1 amplitude in the SCN. Peroxisome proliferator-activated receptor (PPAR) α exhibited rhythmic oscillation in retina and liver; PPARγ had lower amplitude in diabetic liver; sterol regulatory element-binding protein (srebp) 1c had higher amplitude in the retina but lower in the liver in STZ- induced diabetic animals. Both of Elongase (Elovl) 2 and Elovl4 had a rhythmic oscillation pattern in the control retina. Diabetic retinas lost Elovl4 rhythmic oscillation and had lower amplitude of Elovl2 oscillations. In line with the in vivo data, circadian expression levels of CLOCK, bmal1 and srebp1c had higher amplitude in rat REC (rREC) isolated from diabetic rats compared with control rats, while PPARγ and Elovl2 had lower amplitude in diabetic rREC. In conclusion, diabetes causes dysregulation of circadian expression of clock genes and the genes controlling lipid metabolism in the retina with potential implications for the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Maria Tikhonenko
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Svetlana N. Bozack
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Todd A. Lydic
- Department of Chemistry, Michigan State University, East Lansing, Michigan, United States of America
| | - Lily Yan
- Department of Psychology Social Science, Michigan State University, East Lansing, Michigan, United States of America
| | - Nicholas L. Panchy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Kelly M. Mcsorley
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Matthew S. Faber
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Yuanqing Yan
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Michael E. Boulton
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana, United States of America
| | - Maria B. Grant
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
22
|
Shinomiya A, Shimmura T, Nishiwaki-Ohkawa T, Yoshimura T. Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone. Front Endocrinol (Lausanne) 2014; 5:12. [PMID: 24600435 PMCID: PMC3930870 DOI: 10.3389/fendo.2014.00012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/31/2014] [Indexed: 12/15/2022] Open
Abstract
Organisms living outside the tropics measure the changes in the length of the day to adapt to seasonal changes in the environment. Animals that breed during spring and summer are called long-day breeders, while those that breed during fall are called short-day breeders. Although the influence of thyroid hormone in the regulation of seasonal reproduction has been known for several decades, its precise mechanism remained unknown. Recent studies revealed that the activation of thyroid hormone within the mediobasal hypothalamus plays a key role in this phenomenon. This localized activation of the thyroid hormone is controlled by thyrotropin (thyroid-stimulating hormone) secreted from the pars tuberalis of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal production, genes involved in photoperiodic signal transduction pathway could emerge as potential targets to facilitate domestication.
Collapse
Affiliation(s)
- Ai Shinomiya
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Tsuyoshi Shimmura
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Taeko Nishiwaki-Ohkawa
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Division of Seasonal Biology, National Institute for Basic Biology, Okazaki, Japan
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
23
|
Yoshimura T. Thyroid hormone and seasonal regulation of reproduction. Front Neuroendocrinol 2013; 34:157-66. [PMID: 23660390 DOI: 10.1016/j.yfrne.2013.04.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 12/15/2022]
Abstract
Organisms living outside the tropics use changes in photoperiod to adapt to seasonal changes in the environment. Several models have contributed to an understanding of this mechanism at the molecular and endocrine levels. Subtropical birds are excellent models for the study of these mechanisms because of their rapid and dramatic response to changes in photoperiod. Studies of birds have demonstrated that light is perceived by a deep brain photoreceptor and long day-induced thyrotropin (TSH) from the pars tuberalis (PT) of the pituitary gland causes local thyroid hormone activation within the mediobasal hypothalamus (MBH). The locally generated bioactive thyroid hormone, T₃, regulates seasonal gonadotropin-releasing hormone (GnRH) secretion, and hence gonadotropin secretion. In mammals, the eyes are the only photoreceptor involved in photoperiodic time perception and nocturnal melatonin secretion provides an endocrine signal of photoperiod to the PT to regulate TSH. Here, I review the current understanding of the hypothalamic mechanisms controlling seasonal reproduction in mammals and birds.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
24
|
Tkatchenko TV, Shen Y, Braun RD, Bawa G, Kumar P, Avrutsky I, Tkatchenko AV. Photopic visual input is necessary for emmetropization in mice. Exp Eye Res 2013; 115:87-95. [PMID: 23838522 DOI: 10.1016/j.exer.2013.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
It was recently demonstrated that refractive errors in mice stabilize around emmetropic values during early postnatal development, and that they develop experimental myopia in response to both visual form deprivation and imposed optical defocus similar to other vertebrate species. Animal studies also suggest that photopic vision plays critical role in emmetropization in diurnal species; however, it is unknown whether refractive eye development is guided by photopic vision in the mouse, which is a nocturnal species. We used an infrared mouse photorefractor and a high-resolution MRI to clarify the role of photopic visual input in refractive eye development in the mouse. Refractive eye development and form-deprivation myopia in P21-P89 C57BL/6J mice were analyzed under 12:12 h light-dark cycle, constant light and constant darkness regimens. Animals in all experimental groups were myopic at P21 (-13.2 ± 1.6 D, light-dark cycle; -12.5 ± 0.9 D, constant light; -12.5 ± 2.0 D, constant dark). The mean refractive error in the light-dark-cycle-reared animals was -0.5 ± 1.3 D at P32 and, and did not change significantly until P40 (+0.3 ± 0.6 D, P40). Animals in this group became progressively hyperopic between P40 and P89 (+2.2 ± 0.6 D, P67; +3.7 ± 2.0 D, P89). The mean refractive error in the constant-light-reared mice was -1.0 ± 0.7 D at P32 and remained stable until P89 (+0.1 ± 0.6 D, P40; +0.3 ± 0.6 D, P67; 0.0 ± 0.4 D, P89). Dark-reared animals exhibited highly hyperopic refractive errors at P32 (+5.2 ± 1.8 D) and became progressively more hyperopic with age (+8.7 ± 1.9 D, P40; +11.2 ± 1.4 D, P67). MRI analysis revealed that emmetropization in the P40-P89 constant-light-reared animals was associated with larger eyes, a longer axial length and a larger vitreous chamber compared to the light-dark-cycle-reared mice. Constant-light-reared mice also developed 4 times higher degrees of form-deprivation myopia on average compared to light-dark-cycle-reared animals (-12.0 ± 1.4 D, constant light; -2.7 ± 0.7 D, light-dark cycle). Dark-rearing completely prevented the development of form-deprivation myopia (-0.3 ± 0.5 D). Thus, photopic vision plays important role in normal refractive eye development and ocular response to visual form deprivation in the mouse.
Collapse
Affiliation(s)
- Tatiana V Tkatchenko
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Granados-Fuentes D, Herzog ED. The clock shop: coupled circadian oscillators. Exp Neurol 2012; 243:21-7. [PMID: 23099412 DOI: 10.1016/j.expneurol.2012.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/04/2012] [Accepted: 10/16/2012] [Indexed: 01/10/2023]
Abstract
Daily rhythms in neural activity underlie circadian rhythms in sleep-wake and other daily behaviors. The cells within the mammalian suprachiasmatic nucleus (SCN) are intrinsically capable of 24-h timekeeping. These cells synchronize with each other and with local environmental cycles to drive coherent rhythms in daily behaviors. Recent studies have identified a small number of neuropeptides critical for this ability to synchronize and sustain coordinated daily rhythms. This review highlights the roles of specific intracellular and intercellular signals within the SCN that underlie circadian synchrony.
Collapse
|
26
|
Reiter R, Tan D, SanchezBarcelo E, Mediavilla M, Gitto E, Korkmaz A. Circadian mechanisms in the regulation of melatonin synthesis: disruption with light at night and the pathophysiological consequences. ACTA ACUST UNITED AC 2011. [DOI: 10.5455/jeim.101210.ir.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Hatori M, Panda S. The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol Med 2010; 16:435-46. [PMID: 20810319 DOI: 10.1016/j.molmed.2010.07.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/10/2010] [Accepted: 07/13/2010] [Indexed: 12/14/2022]
Abstract
The adaptation of behavior and physiology to changes in the ambient light level is of crucial importance to life. These adaptations include the light modulation of neuroendocrine function and temporal alignment of physiology and behavior to the day:night cycle by the circadian clock. These non-image-forming (NIF) responses can function independent of rod and cone photoreceptors but depend on ocular light reception, suggesting the participation of novel photoreceptors in the eye. The discovery of melanopsin in intrinsically photosensitive retinal ganglion cells (ipRGCs) and genetic proof for its important role in major NIF responses have offered an exciting entry point to comprehend how mammals adapt to the light environment. Here, we review the recent advances in our understanding of the emerging roles of melanopsin and ipRGCs. These findings now offer new avenues to understand the role of ambient light in sleep, alertness, dependent physiologies and potential pharmacological intervention as well as lifestyle modifications to improve the quality of life.
Collapse
Affiliation(s)
- Megumi Hatori
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
28
|
The adjustment and manipulation of biological rhythms by light, nutrition, and abused drugs. Adv Drug Deliv Rev 2010; 62:918-27. [PMID: 20600408 DOI: 10.1016/j.addr.2010.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/28/2010] [Accepted: 06/15/2010] [Indexed: 11/20/2022]
Abstract
Daily restricted feeding entrains the circadian rhythm of mouse clock gene expression in the central nervous system, excluding the suprachiasmatic nucleus (SCN), as well as in the peripheral tissues such as the liver, lung, and heart. In addition to entrainment of the clock genes, daily restricted feeding induces a locomotor activity increase 2-3h before the restricted feeding time initiates. The increase in activity is called the food-anticipatory activity (FAA). In addition to FAA, daily restricted feeding can also entrain peripheral circadian clocks in other organs such as liver, lung, and heart. This type of oscillator is called the food-entrainable peripheral oscillator (FEPO). At present, the mechanisms for restricted feeding-induced entrainment of locomotor activity (FAA) and/or peripheral clock (FEPO) are still unknown. In this review, we describe the role of the central nervous system and peripheral tissues in FAA performance and also in the entrainment of clock gene expression. In addition, the mechanism for entrainment of circadian oscillators by the abuse of drugs, such as methamphetamine, is discussed.
Collapse
|
29
|
Bailes HJ, Lucas RJ. Melanopsin and inner retinal photoreception. Cell Mol Life Sci 2010; 67:99-111. [PMID: 19865798 PMCID: PMC11115928 DOI: 10.1007/s00018-009-0155-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/07/2009] [Accepted: 09/07/2009] [Indexed: 10/20/2022]
Abstract
Over the last ten years there has been growing acceptance that retinal photoreception among mammals extends beyond rods and cones to include a small number of intrinsically photosensitive retinal ganglion cells (ipRGCs). These ipRGCs are capable of responding to light in the absence of rod/cone input thanks to expression of an opsin photopigment called melanopsin. They are specialised for measuring ambient levels of light (irradiance) for a wide variety of so-called non-image-forming light responses. These include synchronisation of circadian clocks to light:dark cycles and the regulation of pupil size, sleep propensity and pineal melatonin production. Here, we provide a review of some of the landmark discoveries in this fast developing field, paying particular emphasis to recent findings and key areas for future investigation.
Collapse
Affiliation(s)
- Helena J Bailes
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
30
|
Abstract
The circadian clock is an evolutionarily, highly conserved feature of most organisms. This internal timing mechanism coordinates biochemical, physiological and behavioral processes to maintain synchrony with the environmental cycles of light, temperature and nutrients. Several studies have shown that light is the most potent cue used by most organisms (humans included) to synchronize daily activities. In mammals, light perception occurs only in the retina; three different types of photoreceptors are present within this tissue: cones, rods and the newly discovered intrinsically photosensitive retinal ganglion cells (ipRGCs). Researchers believe that the classical photoreceptors (e.g., the rods and the cones) are responsible for the image-forming vision, whereas the ipRGCs play a key role in the non-image forming vision. This non-image-forming photoreceptive system communicates not only with the master circadian pacemaker located in the suprachiasmatic nuclei of the hypothalamus, but also with many other brain areas that are known to be involved in the regulation of several functions; thus, this non-image forming system may also affect several aspects of mammalian health independently from the circadian system.
Collapse
Affiliation(s)
- Ketema N Paul
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | |
Collapse
|
31
|
Tkatchenko TV, Shen Y, Tkatchenko AV. Mouse experimental myopia has features of primate myopia. Invest Ophthalmol Vis Sci 2009; 51:1297-303. [PMID: 19875658 DOI: 10.1167/iovs.09-4153] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Several recent studies have suggested that experimental myopia can be induced in mice. However, it is not clear what role the photopic visual input plays in this process and whether mouse myopia is similar to human myopia. The purpose of this study was to carry out an in vivo high-resolution analysis of changes in ocular components and refractive state of the eye upon induction of experimental myopia in mice. METHODS A high-resolution small animal MRI system and a high-resolution automated eccentric infrared photorefractor were used to analyze changes of the refractive state and ocular components in C57BL/6J mice associated with experimental myopia induced by diffusers and -25 D lenses under photopic conditions. RESULTS The authors found that both diffusers and -25 D lenses induce myopia in C57BL/6J mice under photopic conditions (continuous light, 200 +/- 15 lux). The extent of myopic shift induced by -25 D lenses was greater than the shift induced by diffusers (-15.2 +/- 0.7 D, lenses; -12.0 +/- 1.4 D, diffusers). Myopia in mice is attributed to an increase in size of the postequatorial segment of the eye. Experimental myopia in mice can be induced only during the susceptible period in postnatal development, which ends around postnatal day 67. CONCLUSIONS Both diffusers and spectacle lenses induce myopia in mice under photopic conditions, during the susceptible period in postnatal development. Myopia in mice is associated with elongation of the vitreous chamber of the eye, as in humans and nonhuman primates.
Collapse
Affiliation(s)
- Tatiana V Tkatchenko
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
32
|
Abstract
Clock genes in the skin exhibit day-night changes in expression; however, whether these changes are brought by external light or intrinsic mechanisms is unclear. In this study, we demonstrated that expression of the clock and clock-controlled genes showed robust rhythms in mouse skin under constant dark conditions, whereas these rhythms were completely lost in Cry1/Cry2 knockout mice lacking a molecular clock. At the cellular level, the main oscillatory protein in the mammalian molecular clock, PER2, was expressed in the nuclei of keratinocytes in the epidermis and hair follicles, with expression peaking at CT16 (subjective dusk), 4-8 hours after expression of its mRNA. These expression patterns in the skin stopped after the ablation of the central clock in the suprachiasmatic nucleus (SCN), which was not recovered even in animals housed in 12 hour-light/12 hour-dark conditions. These findings demonstrate that the intrinsic oscillating molecular clock exists in the epidermis, and that signaling from the SCN is essential for the maintenance of the epidermal clock, and cannot be compensated by external light.
Collapse
|
33
|
Abstract
Daily rhythms are a ubiquitous feature of living systems. Generally, these rhythms are not just passive consequences of cyclic fluctuations in the environment, but instead originate within the organism. In mammals, including humans, the master pacemaker controlling 24-hour rhythms is localized in the suprachiasmatic nuclei of the hypothalamus. This circadian clock is responsible for the temporal organization of a wide variety of functions, ranging from sleep and food intake, to physiological measures such as body temperature, heart rate and hormone release. The retinal circadian clock was the first extra-SCN circadian oscillator to be discovered in mammals and several studies have now demonstrated that many of the physiological, cellular and molecular rhythms that are present within the retina are under the control of a retinal circadian clock, or more likely a network of hierarchically organized circadian clocks that are present within this tissue. BioEssays 30:624-633, 2008. (c) 2008 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gianluca Tosini
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute. Morehouse School of Medicine, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
34
|
Abstract
The recent discovery of melanopsin-expressing retinal ganglion cells that mediate the pupil light reflex has provided new insights into how the pupil responds to different properties of light. These ganglion cells are unique in their ability to transduce light into electrical energy. There are parallels between the electrophysiologic behavior of these cells in primates and the clinical pupil response to chromatic stimuli. Under photopic conditions, a red light stimulus produces a pupil constriction mediated predominantly by cone input via trans-synaptic activation of melanopsin-expressing retinal ganglion cells, whereas a blue light stimulus at high intensity produces a steady-state pupil constriction mediated primarily by direct intrinsic photoactivation of the melanopsin-expressing ganglion cells. Preliminary data in humans suggest that under photopic conditions, cones primarily drive the transient phase of the pupil light reflex, whereas intrinsic activation of the melanopsin-expressing ganglion cells contributes heavily to sustained pupil constriction. The use of chromatic light stimuli to elicit transient and sustained pupil light reflexes may become a clinical pupil test that allows differentiation between disorders affecting photoreceptors and those affecting retinal ganglion cells.
Collapse
Affiliation(s)
- Aki Kawasaki
- Department of Neuro-Ophthalmology, Hôpital Ophtalmique Jules Gonin and University Eye Clinics of Lausanne, Avenue de France 15, Lausanne 1004, Switzerland.
| | | |
Collapse
|
35
|
Migaud H, Davie A, Martinez Chavez CC, Al-Khamees S. Evidence for differential photic regulation of pineal melatonin synthesis in teleosts. J Pineal Res 2007; 43:327-35. [PMID: 17910600 DOI: 10.1111/j.1600-079x.2007.00480.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to compare the circadian control of melatonin production in teleosts. To do so, the effects of ophthalmectomy on circulating melatonin rhythms were studied along with ex vivo pineal culture in six different teleosts. Results strongly suggested that the circadian control of melatonin production could have dramatically changed with at least three different systems being present in teleosts when one considers the photic regulation of pineal melatonin production. First, salmonids presented a decentralized system in which the pineal gland responds directly to light independently of the eyes. Then, in seabass and cod both the eyes and the pineal gland are required to sustain full night-time melatonin production. Finally, a third type of circadian control of melatonin production is proposed in tilapia and catfish in which the pineal gland would not be light sensitive (or only slightly) and required the eyes to perceive light and inhibit melatonin synthesis. Further studies (anatomical, ultrastructural, retinal projections) are needed to confirm these results. Ex vivo experiments indirectly confirmed these results, as while the pineal gland responded normally to day-night rhythms in salmonids, seabass and cod, only very low levels were obtained at night in tilapia and no melatonin could be measured from isolated pineal glands in catfish. Together, these findings suggest that mechanisms involved in the perception of light and the transduction of this signal through the circadian axis has changed in teleosts possibly as a reflection of the photic environment in which they have evolved in.
Collapse
Affiliation(s)
- H Migaud
- Reproduction and Genetics Group, Institute of Aquaculture, University of Stirling, Stirling, UK.
| | | | | | | |
Collapse
|
36
|
Meijer JH, Michel S, Vansteensel MJ. Processing of daily and seasonal light information in the mammalian circadian clock. Gen Comp Endocrinol 2007; 152:159-64. [PMID: 17324426 DOI: 10.1016/j.ygcen.2007.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/12/2007] [Accepted: 01/19/2007] [Indexed: 11/17/2022]
Abstract
It is necessary for an organism's survival that many physiological functions and behaviours demonstrate daily and seasonal variations. A crucial component for the temporal control in mammals is the circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Neurons in the SCN generate a rhythm in electrical activity with a period of about 24h. The SCN receives photic information from photoreceptive ganglion cells in the retina and processes the information, detecting dawn and dusk as well as encoding day-length. Information processing by the SCN is optimized to extract relevant irradiance information and reduce interferences. Neuronal coupling pathways, including GABAergic signalling, are employed to distribute information and synchronize SCN subregions to form a uniform timing signal. Encoding of day-length is manifested in SCN neuronal activity patterns and may be the product of network interactions rather than being based on the single cell.
Collapse
Affiliation(s)
- Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Postal Zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | |
Collapse
|
37
|
Padmanabhan V, Shih J, Wildsoet CF. Constant light rearing disrupts compensation to imposed- but not induced-hyperopia and facilitates compensation to imposed myopia in chicks. Vision Res 2007; 47:1855-68. [PMID: 17512028 PMCID: PMC2071947 DOI: 10.1016/j.visres.2007.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 03/23/2007] [Accepted: 04/03/2007] [Indexed: 11/19/2022]
Abstract
PURPOSE While rearing chicks in constant light (CL) inhibits anterior segment growth, these conditions also induce excessive enlargement of the vitreous chamber. The mechanisms underlying these effects are poorly understood although it has been speculated that the enlarged vitreous chambers are a product of emmetropization, a compensatory response to the altered anterior segments. We examined the ability of eyes to compensate to defocusing lenses in CL as a direct test of their ability to emmetropize. We also studied recovery responses, i.e. from lens-induced changes in CL as well as CL-induced changes alone or combined with lens-induced changes in eyes returned to normal diurnal lighting (NL). METHODS Hatchling White-Leghorn chicks were reared in either CL or NL (control) lighting conditions (n=36) for 2 weeks, with lenses of either +10 or -10D power fitted to one eye of all chicks at the beginning of the second week. The lenses were removed at the end of the same week, at which time some CL chicks (n=14) were shifted to NL, the rest of the chicks remaining in their respective original lighting conditions. Retinoscopy, IR photo-keratometry and high-frequency A-scan ultrasonography were used to track refractions, corneal radii of curvature and ocular axial dimensions, respectively; data were collected on experimental days 0, 7, 9, 14 and 21. RESULTS Under CL, eyes showed near normal, albeit slightly exaggerated responses to +10D lenses while the response to -10D lenses was disrupted. With +10D lenses, lens-wearing eyes became more hyperopic (RE), and had shorter vitreous chambers (VC) and optical axial lengths (OL) relative to their fellows by the end of the lens period [RE: +10.5+/-1.5D, CL, +8.25+/-2.5D, NL; VC: -0.363+/-0.129mm, CL; -0.306+/-0.110mm, NL; OL: -0.493+/-0.115mm, CL, -0.379+/-0.106mm, NL (mean interocular difference+/-SD)]. With -10D lenses, the NL group showed a myopic shift in RE and increased elongation of both VC depth and OL (RE: -10.75+/-2.0D; VC depth: 0.554+/-0.097mm; OL: 0.746+/-0.166mm), while the CL group showed a small hyperopic shift in RE (+4.0+/-6.0D). Nonetheless, CL eyes were able to recover from lens-induced hyperopia, whether they were left in CL or returned to NL. One week of exposure to NL was sufficient to reverse the effects of 2 weeks of CL on anterior and vitreous chamber dimensions. CONCLUSION CL impairs emmetropization. Specifically, it disrupts compensation to lens-imposed hyperopia but not imposed myopia. However, CL eyes are able to recover from lens-induced hyperopia, suggesting that the mechanisms underlying the compensatory responses to defocusing lenses are different from those involved in recovery responses. The ocular growth effects of CL on young eyes are reversible under NL.
Collapse
Affiliation(s)
- Varuna Padmanabhan
- School of Optometry, 588 Minor Hall, University of California at Berkeley, Berkeley, CA 94720-2020, USA.
| | | | | |
Collapse
|
38
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
39
|
Fu Y, Liao HW, Do MTH, Yau KW. Non-image-forming ocular photoreception in vertebrates. Curr Opin Neurobiol 2005; 15:415-22. [PMID: 16023851 PMCID: PMC2885887 DOI: 10.1016/j.conb.2005.06.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 06/30/2005] [Indexed: 11/23/2022]
Abstract
It has been accepted for a hundred years or more that rods and cones are the only photoreceptive cells in the retina. The light signals generated in rods and cones, after processing by downstream retinal neurons (bipolar, horizontal, amacrine and ganglion cells), are transmitted to the brain via the axons of the ganglion cells for further analysis. In the past few years, however, convincing evidence has rapidly emerged indicating that a small subset of retinal ganglion cells in mammals is also intrinsically photosensitive. Melanopsin is the signaling photopigment in these cells. The main function of the inner-retina photoreceptors is to generate and transmit non-image-forming visual information, although some role in conventional vision (image detection) is also possible.
Collapse
Affiliation(s)
- Yingbin Fu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Cellular events must be organized in the time dimension as well as in the space dimension for many proteins to perform their cellular functions effectively. The intracellular molecular oscillating loops that compose the cell's circadian clock coordinate the timing of the expression of a variety of genes with basic or specific cellular functions. In mammals, the temporal pattern of clock gene expression generated in each SCN neuron is coupled to those of other cells and, amplified, spreads its signals through the brain and then, via feeding behavior, glucocorticoids, and sympathetic nerves, to peripheral organs. These peripheral organs have their own circadian clocks. In some tissues, such as liver, there is also a clock-regulating cell cycle, which interacts strongly with the components and temporal organization of the circadian clock. Some tissues, however, such as testis, express clock genes whose function, if any, remains unclear. Furthermore, circadian clock function may be suspended in differentiating tissue. Thus, the prominence of circadian organization may not apply equally to all tissues under all conditions.
Collapse
Affiliation(s)
- Hitoshi Okamura
- Department of Brain Sciences, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
41
|
Abstract
Circadian photoentrainment is the process by which the brain's internal clock becomes synchronized with the daily external cycle of light and dark. In mammals, this process is mediated exclusively by a novel class of retinal ganglion cells that send axonal projections to the suprachiasmatic nuclei (SCN), the region of the brain that houses the circadian pacemaker. In contrast to their counterparts that mediate image-forming vision, SCN-projecting RGCs are intrinsically sensitive to light, independent of synaptic input from rod and cone photoreceptors. The recent discovery of these photosensitive RGCs has challenged the long-standing dogma of retinal physiology that rod and cone photoreceptors are the only retinal cells that respond directly to light and has explained the perplexing finding that mice lacking rod and cone photoreceptors can still reliably entrain their circadian rhythms to light. These SCN-projecting RGCs selectively express melanopsin, a novel opsin-like protein that has been proposed as a likely candidate for the photopigment in these cells. Research in the past three years has revealed that disruption of the melanopsin gene impairs circadian photo- entrainment, as well as other nonvisual responses to light such as the pupillary light reflex. Until recently, however, there was no direct demonstration that melanopsin formed a functional photopigment capable of catalyzing G-protein activation in a light-dependent manner. Our laboratory has recently succeeded in expressing melanopsin in a heterologous tissue culture system and reconstituting a pigment with the 11-cis-retinal chromophore. In a reconstituted biochemical system, the reconstituted melanopsin was capable of activating transducin, the G-protein of rod photoreceptors, in a light-dependent manner. The absorbance spectrum of this heterologously expressed melanopsin, however, does not match that predicted by previous behavioral and electophysiological studies. Although melanopsin is clearly the leading candidate for the elusive photopigment of the circadian system, further research is needed to resolve the mystery posed by its absorbance spectrum and to fully elucidate its role in circadian photoentrainment.
Collapse
Affiliation(s)
- R. Lane Brown
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland, Baltimore Country, Baltimore, Maryland, USA
- *Correspondence: Phyllis R. Robinson, Ph.D., Department of Biological Sciences, University of Maryland Baltimore, 1000 Hilltop Circle County, Baltimore, MD 21250, USA; Fax: 410-455-3875; E-mail:
| |
Collapse
|
42
|
Rüger M, Gordijn MCM, Beersma DGM, de Vries B, Daan S. Acute and phase-shifting effects of ocular and extraocular light in human circadian physiology. J Biol Rhythms 2004; 18:409-19. [PMID: 14582857 DOI: 10.1177/0748730403256650] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light can influence physiology and performance of humans in two distinct ways. It can acutely change the level of physiological and behavioral parameters, and it can induce a phase shift in the circadian oscillators underlying variations in these levels. Until recently, both effects were thought to require retinal light perception. This view was challenged by Campbell and Murphy, who showed significant phase shifts in core body temperature and melatonin using an extraocular stimulus. Their study employed popliteal skin illumination and exclusively considered phase-shifting effects. In this paper, the authors explore both acute effects and phase-shifting effects of ocular as well as extraocular light. Twelve healthy males participated in a within-subject design and received all of three light conditions--(1) dim ocular light/no light to the knee, (2) dim ocular light/bright extraocular light to the knee, and (3) bright ocular light/no light to the knee--on separate nights in random order. The protocol consisted of an adaptation night followed by a 26-h period of sustained wakefulness, during which a 4-h light pulse was presented at a time when maximal phase delays were expected. The authors found neither immediate nor phase-shifting effects of extraocular light exposure on melatonin, core body temperature (CBT), or sleepiness. Ocular bright-light exposure reduced the nocturnal circadian drop in CBT, suppressed melatonin, and reduced sleepiness significantly. In addition, the 4-h ocular light pulse delayed the CBT rhythm by -55 min compared to the drift of the CBT rhythm in dim light. The melatonin rhythm shifted by -113 min, which differed significantly from the drift in the melatonin rhythm in the dim-light condition (-26 min). The failure to find immediate or phase-shifting effects in response to extraocular light in a within-subjects design in which effects of ocular bright light are confirmed strengthens the doubts raised by other labs of the impact of extraocular light on the human circadian system.
Collapse
Affiliation(s)
- Melanie Rüger
- Department of Animal Behavior, University of Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Herzog ED, Huckfeldt RM. Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus. J Neurophysiol 2003; 90:763-70. [PMID: 12660349 DOI: 10.1152/jn.00129.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) is the master pacemaker that drives circadian rhythms in mammalian physiology and behavior. The abilities to synchronize to daily cycles in the environment and to keep accurate time over a range of physiologic temperatures are two fundamental properties of circadian pacemakers. Recordings from a bioluminescent reporter (Per1-luc) of Period1 gene activity in rats showed that the cultured SCN entrained to daily, 1.5 degrees C cycles of temperature, but did not synchronize to daily light cycles. Temperature entrainment developed by 1 day after birth. Light cycles failed to affect the isolated SCN of rats aged 2 to 339 days. Entrainment to a 3-h shift in the warm-cool cycle was possible in <3 days with 3 degrees C cycles. Importantly, Per1-luc expression in vitro was similar to that seen in vivo where peak expression occurs approximately 1 h prior to the daily increase in temperature. In addition, the firing rate of individual mouse SCN neurons continued to express near 24-h rhythms from 24-37 degrees C. At lower temperatures, the percentage of rhythmic cells was reduced, but periodicity was temperature compensated. The results indicate that normal rhythms in brain temperature may serve to stabilize rhythmicity of the circadian system in vivo and that temperature compensation of this period is determined at the level of individual SCN cells.
Collapse
Affiliation(s)
- Erik D Herzog
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
45
|
Smith EL, Hung LF, Kee CS, Qiao-Grider Y, Ramamirtham R. Continuous ambient lighting and lens compensation in infant monkeys. Optom Vis Sci 2003; 80:374-82. [PMID: 12771663 DOI: 10.1097/00006324-200305000-00012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Protracted daily lighting cycles do not promote abnormal ocular enlargement in infant monkeys as they do in a variety of avian species. However, observations in humans suggest that ambient lighting at night may reduce the efficiency of the emmetropization process in primates. To test this idea, we investigated the ability of infant monkeys reared with continuous light to compensate for optically imposed changes in refractive error. METHODS Beginning at about 3 weeks of age, a hyperopic or myopic anisometropia was imposed on 12 infant rhesus monkeys by securing either a -3 D or +3 D lenses in front of one eye and a zero-powered lens in front of the fellow eye. Six of these monkeys were reared with the normal vivarium lights on continuously, whereas the other six lens-reared monkeys were maintained on a 12-h-light/12-h-dark lighting cycle. The ocular effects of the lens-rearing procedures were assessed periodically during the treatment period by cycloplegic retinoscopy, keratometry, and A-scan ultrasonography. RESULTS Five of six animals in each of the lighting groups demonstrated clear evidence for compensating anisometropic growth. In both lighting groups, eyes that experienced optically imposed hyperopic defocus (-3 D lenses) exhibited faster axial growth rates and became more myopic than their fellow eyes. In contrast, eyes treated with +3 D lenses showed relatively slower axial growth rates and developed more hyperopic refractive errors. The average amount of compensating anisometropia (continuous light, 1.6 +/- 0.5 D vs. control, 2.3 +/- 0.5 D), the structural basis for the refractive errors, and the ability to recover from the induced refractive errors were also not altered by continuous light exposure. CONCLUSION Ambient lighting at night does not appear to overtly compromise the functional integrity of the vision-dependent mechanisms that regulate emmetropization in higher primates.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, Texas 77204-2020, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
When reflected from a surface, light can provide a representation of the spatial environment, whilst gross changes in environment light can signal the time of day. The differing sensory demands of using light to detect environmental space and time appear to have provided the selection pressures for the evolution of different photoreceptor systems in the vertebrates, and probably all animals. This point has been well recognised in the non-mammals, which possess multiple opsin/vitamin A-based photoreceptor populations in a variety of sites distributed both within and outside the CNS. By contrast, eye loss in mammals abolishes all responses to light, and as a result, all photoreception was attributed to the rods and cones of the retina. However, studies over the past decade have provided overwhelming evidence that the mammalian eye contains a novel photoreceptor system that does not depend upon the input from the rods and cones. Mice with eyes but lacking rod and cone photoreceptors can still detect light to regulate their circadian rhythms, suppress pineal melatonin, modify locomotor activity, and modulate pupil size. Furthermore, action spectra for some of these responses in rodents and humans have characterised at least one novel opsin/vitamin A-based photopigment, and molecular studies have identified a number of candidate genes for this photopigment. Parallel studies in fish showing that VA opsin photopigment is expressed within sub-sets of inner retina neurones, demonstrates that mammals are not alone in having inner retinal photoreceptors. It therefore seems likely that inner retinal photoreception will be a feature of all vertebrates. Current studies are directed towards an understanding of their mechanisms, determining the extent to which they contribute to physiology and behaviour in general, and establishing how they may interact with other photoreceptors, including the rods and cones. Progress on each of these topics is moving very rapidly. As a result, we hope this review will serve as an introduction to the cascade of papers that will emerge on these topics in the next few years. We also hope to convince the more casual reader that there is much more to vertebrate photoreceptors than the study of retinal rods and cones.
Collapse
Affiliation(s)
- Russell G Foster
- Department of Integrative and Molecular Neuroscience, Faculty of Medicine, Imperial College of Science, Engineering and Medicine, Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK.
| | | |
Collapse
|
47
|
Yamazaki S, Alones V, Menaker M. Interaction of the retina with suprachiasmatic pacemakers in the control of circadian behavior. J Biol Rhythms 2002; 17:315-29. [PMID: 12164248 DOI: 10.1177/074873040201700405] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the central circadian pacemaker governing the circadian rhythm of locomotor activity in mammals. The mammalian retina also contains circadian oscillators, but their roles are unknown. To test whether the retina influences circadian rhythms of locomotor behavior, the authors compared the activity of bilaterally enucleated hamsters with the activity of intact controls held in constant darkness (DD). Enucleated hamsters showed a broader range of free-running periods (tau) than did intact hamsters held for the same length of time in DD. This effect was independent of the age at enucleation (on postnatal days 1, 7, or 28). The average tau of intact animals kept in DD from days 7 or 28 was significantly longer than that of intact animals kept in DD from day 1 or any of the enucleated groups. This indicates that early exposure to light-dark cycles lengthens the tau and that the eye is required to maintain this effect even in DD. These data suggest that hypothalamic circadian pacemakers may interact continuously with the retina to determine the tau of locomotor activity. Enucleation caused a large decrease in glial fibrillary acidic protein in the SCN but has no (or slight) effects on calbindin, neuropeptide Y, vasopressin, or vasoactive intestinal polypeptide, which suggests that enucleation does not produce major damage to the SCN, an interpretation that is supported by the fact that enucleated animals retain robust circadian rhythmicity. The presence of an intact retina appears to contribute to system-level circadian organization in mammals perhaps as a consequence of interaction between its circadian oscillators and those in the SCN.
Collapse
Affiliation(s)
- Shin Yamazaki
- Department of Biology and National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville 22904-4328, USA.
| | | | | |
Collapse
|
48
|
Lushington K, Galka R, Sassi LN, Kennaway DJ, Dawson D. Extraocular light exposure does not phase shift saliva melatonin rhythms in sleeping subjects. J Biol Rhythms 2002; 17:377-86. [PMID: 12164253 DOI: 10.1177/074873002129002582] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Preliminary work in humans suggests that extraocular light can shift circadian phase. If confirmed, extraocular light may be of therapeutic benefit in the treatment of circadian-related sleep disorders with the advantage over ocular exposure that it can be administered while subjects are asleep. In sleeping subjects, however, the effect of extraocular light exposure on circadian phase has yet to be fully tested. Likewise, there is limited data on the acute effects of extraocular light on sleep and body temperature that may influence its clinical utility Thirteen subjects [3F, 10M; mean (SD) age = 22.1 (3.0)y] participated in a protocol that totaled 7 nights in the laboratory consisting of a screening phase measurement night followed 1 week later by two counterbalanced experimental sessions each of 3 consecutive nights (habituation, treatment, and posttreatment phase measurement night) separated by 4 days. Saliva was collected for melatonin measurement every half hour from 1800 to 0300 h on the screening night and both the posttreatment phase measurement nights. On the treatment nights, continuous measures of rectal temperature and polysomnographic sleep were collected and overnight urine for measurement of total nocturnal urinary 6-sulphatoxymelatonin excretion. To test for the phase-delaying effects of extraocular light, subjects received either placebo or extraocular light (11,000 lux) behind the right knee from 0100 to 0400 h. Treatment had no significant effect on the onset of saliva melatonin secretion, phase of nocturnal core body temperature, or urinary 6-sulfatoxymelatonin excretion, but a small increase was observed in wakefulness over the light administration period. In summary, extraocular light was not shown to delay circadian phase but was shown to increase wakefulness. The authors suggest that the present protocol has limited application as a treatment for circadian-related sleep disorders.
Collapse
Affiliation(s)
- K Lushington
- Centre for Sleep Research, University of South Australia, Australia.
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Kenneth P Wright
- Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Suite 438, Boston, MA 02115, USA.
| | | |
Collapse
|
50
|
Abstract
Vision is much more than just resolving small objects. In fact, the eye sends visual information to the brain that is not consciously perceived. One such pathway entails visual information to the hypothalamus. The retinohypothalamic tract (RHT) mediates light entrainment of circadian rhythms. Retinofugal fibers project to several nuclei of the hypothalamus. These and further projections to the pineal via the sympathetic system provide the anatomical substrate for the neuro-endocrine control of diurnal and longer rhythms. Without the influence of light and dark, many rhythms desynchronize and exhibit free-running periods of approximately 24.2-24.9 hours in humans. This review will demonstrate the mechanism by which the RHT synchronizes circadian rhythms and the importance of preserving light perception in those persons with impending visual loss.
Collapse
|