1
|
Garcia-Marin V, Kelly JG, Hawken MJ. Neuronal composition of processing modules in human V1: laminar density for neuronal and non-neuronal populations and a comparison with macaque. Cereb Cortex 2024; 34:bhad512. [PMID: 38183210 PMCID: PMC10839852 DOI: 10.1093/cercor/bhad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
The neuronal composition of homologous brain regions in different primates is important for understanding their processing capacities. Primary visual cortex (V1) has been widely studied in different members of the catarrhines. Neuronal density is considered to be central in defining the structure-function relationship. In human, there are large variations in the reported neuronal density from prior studies. We found the neuronal density in human V1 was 79,000 neurons/mm3, which is 35% of the neuronal density previously determined in macaque V1. Laminar density was proportionally similar between human and macaque. In V1, the ocular dominance column (ODC) contains the circuits for the emergence of orientation preference and spatial processing of a point image in many mammalian species. Analysis of the total neurons in an ODC and of the full number of neurons in macular vision (the central 15°) indicates that humans have 1.3× more neurons than macaques even though the density of neurons in macaque is 3× the density in human V1. We propose that the number of neurons in a functional processing unit rather than the number of neurons under a mm2 of cortex is more appropriate for cortical comparisons across species.
Collapse
Affiliation(s)
| | - Jenna G Kelly
- Center for Neural Science, New York University, New York City, NY 10003, United States
| | - Michael J Hawken
- Center for Neural Science, New York University, New York City, NY 10003, United States
| |
Collapse
|
2
|
Moon S, Alsarkhi L, Lin TT, Inoue R, Tahiri A, Colson C, Cai W, Shirakawa J, Qian WJ, Zhao JY, El Ouaamari A. Transcriptome and secretome profiling of sensory neurons reveals sex differences in pathways relevant to insulin sensing and insulin secretion. FASEB J 2023; 37:e23185. [PMID: 37695721 PMCID: PMC10503313 DOI: 10.1096/fj.202300941r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Sensory neurons in the dorsal root ganglia (DRG) convey somatosensory and metabolic cues to the central nervous system and release substances from stimulated terminal endings in peripheral organs. Sex-biased variations driven by the sex chromosome complement (XX and XY) have been implicated in the sensory-islet crosstalk. However, the molecular underpinnings of these male-female differences are not known. Here, we aim to characterize the molecular repertoire and the secretome profile of the lower thoracic spinal sensory neurons and to identify molecules with sex-biased insulin sensing- and/or insulin secretion-modulating activity that are encoded independently of circulating gonadal sex hormones. We used transcriptomics and proteomics to uncover differentially expressed genes and secreted molecules in lower thoracic T5-12 DRG sensory neurons derived from sexually immature 3-week-old male and female C57BL/6J mice. Comparative transcriptome and proteome analyses revealed differential gene expression and protein secretion in DRG neurons in males and females. The transcriptome analysis identified, among others, higher insulin signaling/sensing capabilities in female DRG neurons; secretome screening uncovered several sex-specific candidate molecules with potential regulatory functions in pancreatic β cells. Together, these data suggest a putative role of sensory interoception of insulin in the DRG-islet crosstalk with implications in sensory feedback loops in the regulation of β-cell activity in a sex-biased manner. Finally, we provide a valuable resource of molecular and secretory targets that can be leveraged for understanding insulin interoception and insulin secretion and inform the development of novel studies/approaches to fathom the role of the sensory-islet axis in the regulation of energy balance in males and females.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lamyaa Alsarkhi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Azeddine Tahiri
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Cecilia Colson
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey. New Brunswick, NJ, 08901, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Abdelfattah El Ouaamari
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
- Department of Pharmacology, New York Medical College, Valhalla, NY 01595, USA
| |
Collapse
|
3
|
The Impact of Gender-affirming Hormone Therapy on Anatomic Structures of the Brain Among Transgender Individuals. J Psychiatr Pract 2022; 28:328-334. [PMID: 35797690 DOI: 10.1097/pra.0000000000000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite the growing numbers of individuals who identify as transgender, this population continues to face worse mental health outcomes compared with the general population. Transgender individuals attempt suicide at a rate that is almost 9 times that of the general population. Few studies have reported on the positive effect of gender-affirming hormone therapy on mental health outcomes in transgender individuals. It is likely that this effect is due in part to the physiological responses that occur as a result of hormone therapy that mitigate incongruencies between one's gender identity and assigned sex. To our knowledge, only limited studies have shown a connection between gender-affirming hormone therapy, its effect on the brain's structure, and long-term effects that this may have on mental health outcomes. The authors propose that, in addition to the physiological responses that occur as a direct result of hormone therapy and the validation that results from receiving gender-affirming medical care, mental health outcomes in transgender individuals may also improve due to the role that hormone therapy plays in altering the brain's structure, possibly shaping the brain to become more like that of the gender with which an individual identifies. In this article, the authors review the current literature on the effects that gender-affirming hormone therapy has on mental health outcomes and anatomic structures of the brain in transgender individuals.
Collapse
|
4
|
Thulborn KR. Gender differences in cell volume fraction (CVF): a structural parameter reflecting the energy efficiency of maintaining the resting membrane potential. NMR IN BIOMEDICINE 2022; 35:e4693. [PMID: 35044017 DOI: 10.1002/nbm.4693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The cell volume fraction (CVF) of the human brain is high (~82%) and is preserved across healthy aging while the brain declines in volume. These two observations, supported by several independent techniques, suggest that CVF is an important structural parameter. A new biophysical model is presented that incorporates CVF into the Goldman equation of classical membrane electrophysiology. The Goldman equation contains few structural constraints beyond two compartments separated by a semipermeable membrane supporting ion gradients. As potassium is the most permeable ion in the resting state, the resting membrane potential is determined by the potassium ion gradient. This biophysical model indicates that the sodium-potassium ion pumps use less energy at high CVF to maintain the resting membrane potential, explaining the high value of CVF and its conservation with healthy aging. CVF is measured to be statistically significantly higher in the brains of males compared with females, suggesting a structural requirement for higher energy efficiency in the larger male brain to support the greater number of neurons and synapses. As CVF can be measured in humans using quantitative sodium MRI and has potential implications for brain health, CVF may be a quantitative parameter that is useful for assessment of brain health, especially in patients with diseases such as dementia and psychiatric disease that do not have anatomical correlates detectable by clinical proton MRI.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
5
|
Li Y, Zhu S, Xie K, Feng X, Chen L, Wu X, Sun Z, Shu G, Wang S, Zhu C, Gao P, Jiang Q, Wang L. TLR4 in Tph2 neurons modulates anxiety-related behaviors in a sex-dependent manner. Neuropharmacology 2022; 216:109175. [PMID: 35787402 DOI: 10.1016/j.neuropharm.2022.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
TLR4 belongs to the TLR receptor family and can induce a proinflammatory response to invading pathogens. Recent studies have identified that TLR4 is associated with major anxiety disorder. Tph2 is a rate-limiting enzyme for 5-HT biosynthesis that is expressed at high levels in the DRN, which includes the main 5-HT projection to the hippocampus and prefrontal cortex and regulates anxiety disorder. Here, we show that TLR4 expressed in Tph2 neurons in the DRN can modulate anxiety-like behaviors in a sex-dependent manner. Deletion of TLR4 in Tph2 neurons decreases anxiety-like behaviors in male but not in female mice. Meanwhile, a similar phenotype was found by selectively ablating TLR4 in the DRN of adult male but not female mice using AAV-Cre-GFP virus. Inhibition of TLR4 in DRN by infusion of LPS-RS via intra-Aq is sufficient to reverse anxiety-like behavior induced by chronic immobilization stress (CIS). The underlying mechanisms seem to involve alterations in the excitability of Tph2 neurons and key components of 5-HT transmission, including synthesis, reuptake, and transmission. Our results suggest that TLR4 in Tph2 neurons is a key modulator in anxiety-like behaviors and the 5-HT system in the brain between different sexes.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuqing Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Kailai Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiajie Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Lvshuang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zhonghua Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong, 510642, China; National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
6
|
Napolitano A, Schiavi S, La Rosa P, Rossi-Espagnet MC, Petrillo S, Bottino F, Tagliente E, Longo D, Lupi E, Casula L, Valeri G, Piemonte F, Trezza V, Vicari S. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front Psychiatry 2022; 13:889636. [PMID: 35633791 PMCID: PMC9136002 DOI: 10.3389/fpsyt.2022.889636] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a worldwide prevalence of about 1%, characterized by impairments in social interaction, communication, repetitive patterns of behaviors, and can be associated with hyper- or hypo-reactivity of sensory stimulation and cognitive disability. ASD comorbid features include internalizing and externalizing symptoms such as anxiety, depression, hyperactivity, and attention problems. The precise etiology of ASD is still unknown and it is undoubted that the disorder is linked to some extent to both genetic and environmental factors. It is also well-documented and known that one of the most striking and consistent finding in ASD is the higher prevalence in males compared to females, with around 70% of ASD cases described being males. The present review looked into the most significant studies that attempted to investigate differences in ASD males and females thus trying to shade some light on the peculiar characteristics of this prevalence in terms of diagnosis, imaging, major autistic-like behavior and sex-dependent uniqueness. The study also discussed sex differences found in animal models of ASD, to provide a possible explanation of the neurological mechanisms underpinning the different presentation of autistic symptoms in males and females.
Collapse
Affiliation(s)
- Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- NESMOS, Neuroradiology Department, S. Andrea Hospital Sapienza University, Rome, Italy
| | - Sara Petrillo
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Bottino
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisabetta Lupi
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Casula
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanni Valeri
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Stefano Vicari
- Child Neuropsychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Catholic University, Rome, Italy
| |
Collapse
|
7
|
Gourmaud S, Stewart DA, Irwin DJ, Roberts N, Barbour AJ, Eberwine G, O’Brien WT, Vassar R, Talos DM, Jensen FE. The role of mTORC1 activation in seizure-induced exacerbation of Alzheimer's disease. Brain 2022; 145:324-339. [PMID: 34264340 PMCID: PMC9126019 DOI: 10.1093/brain/awab268] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
The risk of seizures is 10-fold higher in patients with Alzheimer's disease than the general population, yet the mechanisms underlying this susceptibility and the effects of these seizures are poorly understood. To elucidate the proposed bidirectional relationship between Alzheimer's disease and seizures, we studied human brain samples (n = 34) from patients with Alzheimer's disease and found that those with a history of seizures (n = 14) had increased amyloid-β and tau pathology, with upregulation of the mechanistic target of rapamycin (mTOR) pathway, compared with patients without a known history of seizures (n = 20). To establish whether seizures accelerate the progression of Alzheimer's disease, we induced chronic hyperexcitability in the five times familial Alzheimer's disease mouse model by kindling with the chemoconvulsant pentylenetetrazol and observed that the mouse model exhibited more severe seizures than the wild-type. Furthermore, kindled seizures exacerbated later cognitive impairment, Alzheimer's disease neuropathology and mTOR complex 1 activation. Finally, we demonstrated that the administration of the mTOR inhibitor rapamycin following kindled seizures rescued enhanced remote and long-term memory deficits associated with earlier kindling and prevented seizure-induced increases in Alzheimer's disease neuropathology. These data demonstrated an important link between chronic hyperexcitability and progressive Alzheimer's disease pathology and suggest a mechanism whereby rapamycin may serve as an adjunct therapy to attenuate progression of the disease.
Collapse
Affiliation(s)
- Sarah Gourmaud
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Stewart
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Duke University School of Medicine, Durham, NC 27708, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Roberts
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron J Barbour
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Eberwine
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T O’Brien
- Neurobehavior Testing Core, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert Vassar
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Delia M Talos
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frances E Jensen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Kelava I, Chiaradia I, Pellegrini L, Kalinka AT, Lancaster MA. Androgens increase excitatory neurogenic potential in human brain organoids. Nature 2022; 602:112-116. [PMID: 35046577 PMCID: PMC7612328 DOI: 10.1038/s41586-021-04330-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The biological basis of male-female brain differences has been difficult to elucidate in humans. The most notable morphological difference is size, with male individuals having on average a larger brain than female individuals1,2, but a mechanistic understanding of how this difference arises remains unknown. Here we use brain organoids3 to show that although sex chromosomal complement has no observable effect on neurogenesis, sex steroids-namely androgens-lead to increased proliferation of cortical progenitors and an increased neurogenic pool. Transcriptomic analysis and functional studies demonstrate downstream effects on histone deacetylase activity and the mTOR pathway. Finally, we show that androgens specifically increase the neurogenic output of excitatory neuronal progenitors, whereas inhibitory neuronal progenitors are not increased. These findings reveal a role for androgens in regulating the number of excitatory neurons and represent a step towards understanding the origin of sex-related brain differences in humans.
Collapse
Affiliation(s)
- Iva Kelava
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.
| | - Ilaria Chiaradia
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Laura Pellegrini
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alex T Kalinka
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
9
|
Bergamino M, Keeling EG, Baxter LC, Sisco NJ, Walsh RR, Stokes AM. Sex Differences in Alzheimer's Disease Revealed by Free-Water Diffusion Tensor Imaging and Voxel-Based Morphometry. J Alzheimers Dis 2022; 85:395-414. [PMID: 34842185 PMCID: PMC9015709 DOI: 10.3233/jad-210406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Imaging biomarkers are increasingly used in Alzheimer's disease (AD), and the identification of sex differences using neuroimaging may provide insight into disease heterogeneity, progression, and therapeutic targets. OBJECTIVE The purpose of this study was to investigate differences in grey matter (GM) volume and white matter (WM) microstructural disorganization between males and females with AD using voxel-based morphometry (VBM) and free-water-corrected diffusion tensor imaging (FW-DTI). METHODS Data were downloaded from the OASIS-3 database, including 158 healthy control (HC; 86 females) and 46 mild AD subjects (24 females). VBM and FW-DTI metrics (fractional anisotropy (FA), axial and radial diffusivities (AxD and RD, respectively), and FW index) were compared using effect size for the main effects of group, sex, and their interaction. RESULTS Significant group and sex differences were observed, with no significant interaction. Post-hoc comparisons showed that AD is associated with reduced GM volume, reduced FW-FA, and higher FW-RD/FW-index, consistent with neurodegeneration. Females in both groups exhibited higher GM volume than males, while FW-DTI metrics showed sex differences only in the AD group. Lower FW, lower FW-FA and higher FW-RD were observed in females relative to males in the AD group. CONCLUSION The combination of VBM and DTI may reveal complementary sex-specific changes in GM and WM associated with AD and aging. Sex differences in GM volume were observed for both groups, while FW-DTI metrics only showed significant sex differences in the AD group, suggesting that WM tract disorganization may play a differential role in AD pathophysiology between females and males.
Collapse
Affiliation(s)
| | - Elizabeth G. Keeling
- Neuroimaging Research, Barrow Neurological Institute,School of Life Sciences, Arizona State University
| | | | | | - Ryan R. Walsh
- Muhammad Ali Parkinson Center at Barrow Neurological
Institute
| | | |
Collapse
|
10
|
Hsu CCH, Huang CC, Tsai SJ, Chen LK, Li HC, Lo CYZ, Lin CP. Differential Age Trajectories of White Matter Changes Between Sexes Correlate with Cognitive Performances. Brain Connect 2021; 11:759-771. [PMID: 33858197 DOI: 10.1089/brain.2020.0961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Aging is accompanied by a gradual deterioration in multiple cognitive abilities and brain structures. Both cognitive function and white matter (WM) structure are found to be associated with neurodegeneration diseases and correlated with sex during aging. However, it is still unclear whether the brain structural change could be attributable to sex, and how sex would affect cognitive performances during aging. Materials and Methods: Diffusion magnetic resonance imaging (MRI) scans were performed on 1127 healthy participants (age range: 21-89) at a single site. The age trajectories of the WM tract microstructure were delineated to estimate the turning age and changing rate between sexes. The canonical correlation analysis and moderated mediation analysis were used to examine the relationship between sex-linked WM tracts and cognitive performances. Results: The axon intactness and demyelination of sex-linked tracts during aging were multifaceted. Sex-linked tracts in females peak around 5 years later than those in males but change significantly faster after the turning age. Projection and association tracts (e.g., corticospinal tracts and parahippocampal cingulum) contributed to a significant decrease in visuospatial functions (VS) and executive functions (E). We discovered that there is a stronger indirect effect of sex-linked tracts on cognitive functions in females than in males. Conclusion: Our findings suggest that the vulnerable projection and association tracts in females may induce negative impacts on integrating multiple functions, which results in a faster decrease in VS and E.
Collapse
Affiliation(s)
- Chih-Chin Heather Hsu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Center of Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chu-Chung Huang
- Key Laboratory of Brain Functional Genomics (MOE & STCSM), Affiliated Mental Health Center (ECNU), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,Shanghai Changning Mental Health Center, Shanghai, China
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Kung Chen
- Center of Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Hui-Chun Li
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
11
|
van Eijk L, Zietsch BP. Testing the extreme male brain hypothesis: Is autism spectrum disorder associated with a more male-typical brain? Autism Res 2021; 14:1597-1608. [PMID: 34008924 DOI: 10.1002/aur.2537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/24/2021] [Accepted: 04/14/2021] [Indexed: 11/11/2022]
Abstract
Autism spectrum disorder (ASD) is more common in males than females and has been linked to male-typical behavior. Accordingly, the "Extreme Male Brain" hypothesis suggests that ASD is associated with an exaggeratedly male-typical brain. To test this hypothesis, we derived a data-driven measure of individual differences along a male-female dimension based on sex differences in subcortical brain shape (i.e., brain maleness) by training our algorithm on two population samples (Queensland Twin IMaging study and Human Connectome Project; combined N = 2153). We then applied this algorithm to two clinical datasets (Autism Brain Imaging Data Exchange I and II; ASD N = 1060; neurotypical controls N = 1166) to obtain a brain maleness score for each individual, representing maleness of their brain on a male-female continuum. Consistent with the Extreme Male Brain hypothesis, we found a higher mean brain maleness score in the ASD group than in controls (d = 0.20 [0.12-0.29]), parallel to higher scores for control males than control females (d = 1.17 [1.05-1.29]). Further, brain maleness was positively associated with autistic symptoms. We tested the possibility this finding was driven by the ASD group's larger brains than controls (d = 0.17 [0.08-0.25]), given that males had larger brains than females (d = 0.96 [0.84-1.07]). Indeed, after adjusting for differences in brain size, the brain maleness difference between the ASD group and controls disappeared, and no association with autistic symptoms remained (after controlling for multiple comparisons), suggesting greater maleness of the autistic brain is driven by brain size. Brain maleness may be influenced by the same factors that influence brain size. LAY SUMMARY: A popular theory proposes that individuals with autistic spectrum disorder (ASD) have an "extreme male brain", but this has not been subject to rigorous, direct tests. We developed a measure of individual differences along a male-female dimension and then derived this measure for 1060 individuals with ASD and 1166 neurotypical controls. Individuals with ASD had slightly more male-type brains. However, this difference is accounted for by males and individuals with ASD having relatively larger brains than females and controls, respectively.
Collapse
Affiliation(s)
- Liza van Eijk
- Department of Psychology, College of Healthcare Sciences, Division of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia.,The Australian e-Health Research Centre, CSIRO, Herston, Queensland, Australia.,Centre for Psychology and Evolution, School of Psychology, University of Queensland, St Lucia, Queensland, Australia.,Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - Brendan P Zietsch
- Centre for Psychology and Evolution, School of Psychology, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
12
|
Lin F, Han X, Wang Y, Ding W, Sun Y, Zhou Y, Lei H. Sex-specific effects of cigarette smoking on caudate and amygdala volume and resting-state functional connectivity. Brain Imaging Behav 2021; 15:1-13. [PMID: 31898088 DOI: 10.1007/s11682-019-00227-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent studies have demonstrated sex-specific differences in etiology, course and brain dysfunction that are associated with cigarette smoking. However, little is known about sex-specific differences in subcortical structure and function. In this study, structural and resting-state functional magnetic resonance imaging (fMRI) data were collected from 60 cigarette smokers (25 females) and 67 nonsmokers (28 females). The structural MRI was applied to identify deficits in sex-specific subcortical volume. Using resting-state fMRI, sex-related alterations in resting-state functional connectivity (rsFC) were investigated in subcortical nuclei with volume deficits as seed regions. Compared to nonsmokers, male but not female smokers demonstrated a significantly smaller volume in the left caudate, while female but not male smokers showed a smaller volume in the right amygdala. Resting-state FC analysis revealed that male but not female smokers had increased rsFC between the left caudate and the left prefrontal cortex but decreased rsFC within the bilateral caudate and between the right amygdala and right orbitofrontal cortex (OFC). Furthermore, the right amygdala volume was negatively correlated with the impulsivity score in female but not male smokers. The rsFC of the right amygdala-OFC circuit was negatively associated with the craving score in male but not female smokers. These findings indicate that cigarette smoking may have differential effects on the caudate and amygdala volumes as well as rsFC between men and women, contributing to our knowledge of sex-specific effects of nicotine addiction. Such sex-specific differences in subcortical structure and function may provide a methodological framework for the development of sex-specific relapse prevention therapies.
Collapse
Affiliation(s)
- Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xu Han
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yao Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weina Ding
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Synaptic density in healthy human aging is not influenced by age or sex: a 11C-UCB-J PET study. Neuroimage 2021; 232:117877. [PMID: 33639258 DOI: 10.1016/j.neuroimage.2021.117877] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/29/2022] Open
Abstract
RATIONALE 11C-UCB-J binds to synaptic vesicle glycoprotein 2A, a protein ubiquitously expressed in presynaptic nerve terminals, and can therefore serve as in vivo proxy of synaptic density. There are discrepancies in postmortem data on stability of synaptic density with healthy aging. In this study, healthy aging and sex as potential modifiers of 11C-UCB-J binding were investigated in healthy volunteers over 7 adult decades, assuming that the number of SV2A vesicles per synapse is not influenced by age or sex. METHODS 80 healthy volunteers underwent 11C-UCB-J PET and structural T1 and T2 MR imaging. Grey matter changes with aging were firstly evaluated by voxel-based morphometry (VBM). Parametric 11C-UCB-J standardized uptake value ratio (SUVR) images were calculated using the centrum semiovale as reference tissue. To correct for atrophy-related partial volume effects, a region-based voxel-wise type partial volume correction (PVC) was applied in FreeSurfer. The correlations of 11C-UCB-J binding with age and with sex were investigated by a voxel-based and volume-of-interest (VOI)-based approach, and with and without PVC to assess the contribution of underlying morphology changes upon aging. RESULTS Full results were available for 78 participants (19-85y; 33 M/45 F). VBM grey matter concentration changes with aging were most predominant in the perisylvian and frontal regions. After PVC, no significantly decreased 11C-UCB-J SUVR with aging was found in the voxel-based analysis, whereas the VOI-based analysis showed a slight decrease in the caudate nucleus (-1.7% decrease per decade, p= 0.0025) only. There was no association between sex and 11C-UCB-J SUVR, nor an interaction between aging and sex for this parameter. CONCLUSION In vivo, PET using 11C-UCB-J does not support a cortical decrease of synaptic density with aging, whereas subcortically a small effect with aging in the caudate nucleus was observed. In addition, no association between synaptic density and sex was detected, which allows pooling of datasets of both sexes.
Collapse
|
14
|
La Rosa P, Bartoli G, Farioli Vecchioli S, Cesari E, Pagliarini V, Sette C. Androgen Receptor signaling promotes the neural progenitor cell pool in the developing cortex. J Neurochem 2020; 157:1153-1166. [PMID: 32959393 DOI: 10.1111/jnc.15192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023]
Abstract
Neural Progenitor Cells (NPCs) are multipotent cells that are able to self-renew and differentiate into neurons. The size of the initial pool of NPCs during the brain development strongly affects the number of neurons that compose cortical multi-layer during development. Gonadal hormones can influence the balance between self-renewal and differentiation processes. Herein, we investigated the role of dihydrotestosterone (DHT), the active metabolite of testosterone, in the regulation of NPC stemness and differentiation. First, we evaluated the expression of the androgen receptor (AR), the transcription factor activated by DHT that mediates the physiological effects of androgens, in NPCs. Western blot analysis showed that DHT-mediated activation of AR induces mitogenic signaling pathways (PI3K/AKT and MAPK/ERK) in NPCs, whereas luciferase activity assays demonstrated the induction of AR transcriptional activity. AR activation mediated by DHT treatment strongly increased the proliferation of NPCs and reduced their propensity to differentiate into neurons. Furthermore, the effects of AR activation were mediated, at least in part, by increased expression of Aldehyde Dehydrogenase 1 Family Member A3 enzyme (ALDH1A3). Pharmacological inhibition of ALDH activity with N,N-diethylaminobenzaldehyde (DEAB) reduced the effect of DHT on NPC proliferation in vitro. Furthermore, inhibition of AR activity by Enzalutamide reduced the NPC pool in the developing cortex of male C57/BL6 mouse embryos. These findings indicate that androgens engage an AR-dependent signaling pathway that impact on neurogenesis by increasing the NPC pool in the developing mouse cortex.
Collapse
Affiliation(s)
- Piergiorgio La Rosa
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Bartoli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Claudio Sette
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
15
|
Hatton SN, Huynh KH, Bonilha L, Abela E, Alhusaini S, Altmann A, Alvim MKM, Balachandra AR, Bartolini E, Bender B, Bernasconi N, Bernasconi A, Bernhardt B, Bargallo N, Caldairou B, Caligiuri ME, Carr SJA, Cavalleri GL, Cendes F, Concha L, Davoodi-bojd E, Desmond PM, Devinsky O, Doherty CP, Domin M, Duncan JS, Focke NK, Foley SF, Gambardella A, Gleichgerrcht E, Guerrini R, Hamandi K, Ishikawa A, Keller SS, Kochunov PV, Kotikalapudi R, Kreilkamp BAK, Kwan P, Labate A, Langner S, Lenge M, Liu M, Lui E, Martin P, Mascalchi M, Moreira JCV, Morita-Sherman ME, O’Brien TJ, Pardoe HR, Pariente JC, Ribeiro LF, Richardson MP, Rocha CS, Rodríguez-Cruces R, Rosenow F, Severino M, Sinclair B, Soltanian-Zadeh H, Striano P, Taylor PN, Thomas RH, Tortora D, Velakoulis D, Vezzani A, Vivash L, von Podewils F, Vos SB, Weber B, Winston GP, Yasuda CL, Zhu AH, Thompson PM, Whelan CD, Jahanshad N, Sisodiya SM, McDonald CR. White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study. Brain 2020; 143:2454-2473. [PMID: 32814957 PMCID: PMC7567169 DOI: 10.1093/brain/awaa200] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/07/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
The epilepsies are commonly accompanied by widespread abnormalities in cerebral white matter. ENIGMA-Epilepsy is a large quantitative brain imaging consortium, aggregating data to investigate patterns of neuroimaging abnormalities in common epilepsy syndromes, including temporal lobe epilepsy, extratemporal epilepsy, and genetic generalized epilepsy. Our goal was to rank the most robust white matter microstructural differences across and within syndromes in a multicentre sample of adult epilepsy patients. Diffusion-weighted MRI data were analysed from 1069 healthy controls and 1249 patients: temporal lobe epilepsy with hippocampal sclerosis (n = 599), temporal lobe epilepsy with normal MRI (n = 275), genetic generalized epilepsy (n = 182) and non-lesional extratemporal epilepsy (n = 193). A harmonized protocol using tract-based spatial statistics was used to derive skeletonized maps of fractional anisotropy and mean diffusivity for each participant, and fibre tracts were segmented using a diffusion MRI atlas. Data were harmonized to correct for scanner-specific variations in diffusion measures using a batch-effect correction tool (ComBat). Analyses of covariance, adjusting for age and sex, examined differences between each epilepsy syndrome and controls for each white matter tract (Bonferroni corrected at P < 0.001). Across 'all epilepsies' lower fractional anisotropy was observed in most fibre tracts with small to medium effect sizes, especially in the corpus callosum, cingulum and external capsule. There were also less robust increases in mean diffusivity. Syndrome-specific fractional anisotropy and mean diffusivity differences were most pronounced in patients with hippocampal sclerosis in the ipsilateral parahippocampal cingulum and external capsule, with smaller effects across most other tracts. Individuals with temporal lobe epilepsy and normal MRI showed a similar pattern of greater ipsilateral than contralateral abnormalities, but less marked than those in patients with hippocampal sclerosis. Patients with generalized and extratemporal epilepsies had pronounced reductions in fractional anisotropy in the corpus callosum, corona radiata and external capsule, and increased mean diffusivity of the anterior corona radiata. Earlier age of seizure onset and longer disease duration were associated with a greater extent of diffusion abnormalities in patients with hippocampal sclerosis. We demonstrate microstructural abnormalities across major association, commissural, and projection fibres in a large multicentre study of epilepsy. Overall, patients with epilepsy showed white matter abnormalities in the corpus callosum, cingulum and external capsule, with differing severity across epilepsy syndromes. These data further define the spectrum of white matter abnormalities in common epilepsy syndromes, yielding more detailed insights into pathological substrates that may explain cognitive and psychiatric co-morbidities and be used to guide biomarker studies of treatment outcomes and/or genetic research.
Collapse
Affiliation(s)
- Sean N Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics,
University of California San Diego, La Jolla 92093 CA, USA
| | - Khoa H Huynh
- Center for Multimodal Imaging and Genetics, University of California San
Diego, La Jolla 92093 CA, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina,
Charleston 29425 SC, USA
| | - Eugenio Abela
- Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry,
Psychology and Neuroscience, Kings College London, London SE5 9NU UK
| | - Saud Alhusaini
- Neurology Department, Yale School of Medicine, New Haven 6510 CT,
USA
- Molecular and Cellular Therapeutics, The Royal College of Surgeons in
Ireland, Dublin, Ireland
| | - Andre Altmann
- Centre of Medical Image Computing, Department of Medical Physics and Biomedical
Engineering, University College London, London WC1V 6LJ, UK
| | - Marina K M Alvim
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Akshara R Balachandra
- Center for Multimodal Imaging and Genetics, UCSD School of
Medicine, La Jolla 92037 CA, USA
- Boston University School of Medicine, Boston 2118 MA, USA
| | - Emanuele Bartolini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories,
Children’s Hospital A. Meyer-University of Florence, Florence, Italy
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano,
Prato, Italy
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital
Tübingen, Tübingen 72076, Germany
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill
University, Montreal H3A 2B4 QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill
University, Montreal H3A 2B4 QC, Canada
| | - Boris Bernhardt
- Montreal Neurological Institute, McGill University, Montreal
H3A2B4 QC, Canada
| | - Núria Bargallo
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques
August Pi i Sunyer (IDIBAPS), Barcelona 8036 Barcelona, Spain
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill
University, Montreal H3A 2B4 QC, Canada
| | - Maria E Caligiuri
- Neuroscience Research Center, University Magna Graecia, viale Europa,
Germaneto, 88100, Catanzaro, Italy
| | - Sarah J A Carr
- Neuroscience, Institute of Psychiatry, Psychology and
Neuroscience, De Crespigny Park, London SE5 8AF, UK
| | - Gianpiero L Cavalleri
- Royal College of Surgeons in Ireland, School of Pharmacy and Biomolecular
Sciences, Dublin D02 YN77 Ireland
- FutureNeuro Research Centre, Science Foundation Ireland, Dublin
D02 YN77, Ireland
| | - Fernando Cendes
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autonoma de
Mexico, Queretaro 76230, Mexico
| | - Esmaeil Davoodi-bojd
- Radiology and Research Administration, Henry Ford Hospital, 1
Detroit 48202 MI, USA
| | - Patricia M Desmond
- Department of Radiology, Royal Melbourne Hospital, University of
Melbourne, Melbourne 3050 Victoria, Australia
| | | | - Colin P Doherty
- Division of Neurology, Trinity College Dublin, TBSI, Pearce
Street, Dublin D02 R590, Ireland
- FutureNeuro SFI Centre for Neurological Disease, RCSI, St Stephen’s
Green, Dublin D02 H903, Ireland
| | - Martin Domin
- Functional Imaging Unit, University Medicine Greifswald,
Greifswald 17475 M/V, Germany
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of
Neurology, Queen Square, London WC1N 3BG, UK
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont-St-Peter,
Buckinghamshire SL9 0RJ, UK
| | - Niels K Focke
- Clinical Neurophysiology, University Medicine Göttingen, 37099
Göttingen, Germany
- Department of Epileptology, University of Tübingen, 72076
Tübingen, Germany
| | | | - Antonio Gambardella
- Royal College of Surgeons in Ireland, School of Pharmacy and Biomolecular
Sciences, Dublin D02 YN77 Ireland
- Institute of Neurology, University Magna Graecia, 88100,
Catanzaro, Italy
| | | | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories,
Children’s Hospital A. Meyer-University of Florence, Florence, Italy
| | - Khalid Hamandi
- The Wales Epilepsy Unit, Cardiff and Vale University Health
Board, Cardiff CF144XW, UK
- Brain Research Imaging Centre, Cardiff University, Cardiff CF24
4HQ, UK
| | - Akari Ishikawa
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Simon S Keller
- Institute of Translational Medicine, University of Liverpool,
Liverpool L69 3BX, UK
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Peter V Kochunov
- Maryland Psychiatric Research Center, 55 Wade Ave, Baltimore
21228, MD, USA
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, University Hospital
Tübingen, Tübingen 72076 BW, Germany
- Department of Diagnostic and Interventional Neuroradiology, University Hospital
Tübingen, Tübingen 72076 BW, Germany
| | - Barbara A K Kreilkamp
- Institute of Translational Medicine, University of Liverpool,
Liverpool L69 3BX, UK
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash
University, Melbourne 3004 Victoria, Australia
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
| | - Angelo Labate
- Neuroscience Research Center, University Magna Graecia, viale Europa,
Germaneto, 88100, Catanzaro, Italy
- Institute of Neurology, University Magna Graecia, 88100,
Catanzaro, Italy
| | - Soenke Langner
- Institute for Diagnostic Radiology and Neuroradiology, Ernst Moritz Arndt
University Greifswald Faculty of Medicine, Greifswald 17475, Germany
- Institute for Diagnostic and Interventional Radiology, Pediatric and
Neuroradiology, Rostock University Medical Centre, Rostock 18057, Germany
| | - Matteo Lenge
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories,
Children’s Hospital A. Meyer-University of Florence, Florence, Italy
- Functional and Epilepsy Neurosurgery Unit, Children’s Hospital A.
Meyer-University of Florence, Florence 50139, Italy
| | - Min Liu
- Department of Neurology, Montreal Neurological Institute,
Montreal H3A 2B4 QC, Canada
| | - Elaine Lui
- Department of Radiology, Royal Melbourne Hospital, University of
Melbourne, Melbourne 3050 Victoria, Australia
- Department of Medicine and Radiology, University of Melbourne,
3Parkville 3050 Victoria, Australia
| | - Pascal Martin
- Department of Epileptology, University of Tübingen, 72076
Tübingen, Germany
| | - Mario Mascalchi
- Meyer Children Hospital University of Florence, Florence 50130
Tuscany, Italy
| | - José C V Moreira
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Marcia E Morita-Sherman
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
- Cleveland Clinic, Cleveland 44195 OH, USA
| | - Terence J O’Brien
- Department of Neuroscience, Central Clinical School, Monash
University, Melbourne 3004 Victoria, Australia
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne 3004 Victoria,
Australia
| | - Heath R Pardoe
- Department of Neurology, New York University School of Medicine,
New York City 10016 NY, USA
| | - José C Pariente
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques
August Pi i Sunyer (IDIBAPS), Barcelona 8036 Barcelona, Spain
| | - Letícia F Ribeiro
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Mark P Richardson
- Division of Neuroscience, King’s College London, Institute of
Psychiatry, London SE5 8AB, UK
| | - Cristiane S Rocha
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Raúl Rodríguez-Cruces
- Montreal Neurological Institute, McGill University, Montreal
H3A2B4 QC, Canada
- Institute of Neurobiology, Universidad Nacional Autonoma de
Mexico, Queretaro 76230, Mexico
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, University Hospital Frankfurt,
Germany, Frankfurt 60528 Hesse, Germany
- Center for Personalized Translational Epilepsy Research (CePTER),
Goethe-University Frankfurt, Frankfurt a. M. 60528, Germany
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147
Liguria, Italy
| | - Benjamin Sinclair
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne 3004 Victoria,
Australia
| | - Hamid Soltanian-Zadeh
- Radiology and Research Administration, Henry Ford Health System,
Detroit 48202-2692 MI, USA
- School of Electrical and Computer Engineering, University of
Tehran, Tehran 14399-57131, Iran
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genoa 16147 Liguria, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal
and Child Health, University of Genova, Genova, Italy
| | - Peter N Taylor
- School of Computing, Newcastle University, Urban Sciences Building, Science
Square, Newcastle upon Tyne NE4 5TG, UK
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle
University, Newcastle upon Tyne NE2 4HH, UK
- Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Domenico Tortora
- Radiology and Research Administration, Henry Ford Health System,
Detroit 48202-2692 MI, USA
| | - Dennis Velakoulis
- Royal Melbourne Hospital, Melbourne 3050 Victoria, Australia
- University of Melbourne, Parkville, Melbourne 3050 Victoria,
Australia
| | - Annamaria Vezzani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano
20156 Italy
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Monash
University, Melbourne 3004 Victoria, Australia
- Department of Medicine, University of Melbourne, Royal Melbourne
Hospital, Parkville 3050 Victoria, Australia
| | - Felix von Podewils
- Epilepsy Center, University Medicine Greifswald, Greifswald 17489
Mecklenburg-Vorpommern, Germany
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London,
London, WC1V 6LJ, UK
- Epilepsy Society, MRI Unit, Chalfont St Peter, Buckinghamshire,
SL9 0RJ, UK
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of
Bonn, Venusberg Campus 1, Bonn 53127 NRW, Germany
| | - Gavin P Winston
- Epilepsy Society, MRI Unit, Chalfont St Peter, Buckinghamshire,
SL9 0RJ, UK
- Department of Medicine, Division of Neurology, Queen's
University, Kingston K7L 3N6 ON, Canada
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont-St-Peter,
Buckinghamshire, SL9 0RJ UK
| | - Clarissa L Yasuda
- Department of Neurology, University of Campinas - UNICAMP, Campinas 13083-888
São Paulo, Brazil
| | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and
Informatics, USC Keck School of Medicine, Los Angeles 90232 CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and
Informatics, USC Keck School of Medicine, Los Angeles 90232 CA, USA
| | - Christopher D Whelan
- Molecular and Cellular Therapeutics, The Royal College of Surgeons in
Ireland, Dublin, Ireland
- Research and Early Development (RED), Biogen Inc., Cambridge, MA
02139, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and
Informatics, USC Keck School of Medicine, Los Angeles 90232 CA, USA
| | - Sanjay M Sisodiya
- MRI Unit, Chalfont Centre for Epilepsy, Chalfont-St-Peter,
Buckinghamshire, SL9 0RJ UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, SL9 0RJ Bucks,
UK
| | - Carrie R McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics,
University of California San Diego, La Jolla 92093 CA, USA
| |
Collapse
|
16
|
Hurtubise JM, Gorbet DJ, Hynes LM, Macpherson AK, Sergio LE. White Matter Integrity and Its Relationship to Cognitive-Motor Integration in Females with and without Post-Concussion Syndrome. J Neurotrauma 2020; 37:1528-1536. [PMID: 31928154 DOI: 10.1089/neu.2019.6765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fifteen percent of individuals who sustain a concussion go on to develop post-concussion syndrome (PCS). These persistent symptoms are believed to be attributed to damage to white matter tracts and impaired neurotransmission. Specifically, declines in white matter integrity after concussion have been found along the long-coursing axons underlying the frontoparietal network. This network is essential for the performance of visuomotor transformation tasks requiring cognitive-motor integration (CMI). We have previously observed deficits in performance on CMI-based tasks in those who have a history of concussion, but were asymptomatic. The aim of this study was to investigate performance on a CMI task, as well as white matter integrity differences along frontoparietal-cerebellar white matter tracts, in those with PCS compared to healthy controls. We hypothesized an association between the behavioral and brain structural measures. Twenty-six female participants (13 with PCS for ≥6 months and 13 healthy controls) completed four computer-based visuomotor CMI tasks. In addition, diffusion tensor images (DTIs) were acquired. No statistically significant differences were found in CMI performance between groups (p > 0.05). Further, there were no statistically significant differences between groups on any DTI metrics (p > 0.05). However, examination of the data collapsed across participants revealed significant associations between performance on a CMI task and white matter integrity. Further investigation into additional causes of symptoms in those with PCS (including psychological and cervicogenic factors) will strengthen our understanding of this diverse group. Nonetheless, this study demonstrates that white matter integrity is related to levels of performance in tasks that require rule-based movement control.
Collapse
Affiliation(s)
- Johanna M Hurtubise
- Centre for Sport and Exercise Education, Camosun College, Victoria, British Columbia, Canada
| | - Diana J Gorbet
- School of Kinesiology and Health Science, York University, Sherman Health Science Research Centre, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Sherman Health Science Research Centre, Toronto, Ontario, Canada
| | - Loriann M Hynes
- School of Kinesiology and Health Science, York University, Sherman Health Science Research Centre, Toronto, Ontario, Canada
| | - Alison K Macpherson
- School of Kinesiology and Health Science, York University, Sherman Health Science Research Centre, Toronto, Ontario, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, Sherman Health Science Research Centre, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Sherman Health Science Research Centre, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Lei Y, Wang J, Wang D, Li C, Liu B, Fang X, You J, Guo M, Lu XY. SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex. Mol Psychiatry 2020; 25:1094-1111. [PMID: 30705425 PMCID: PMC7192847 DOI: 10.1038/s41380-019-0352-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, is a key regulator of cellular metabolism. Recent genome-wide association studies identified genetic variants of SIRT1 linked to major depressive disorders. SIRT1 is widely expressed in the brain; however, neuronal substrates that mediate SIRT1 action on depressive behaviors remain largely unknown. Here we show that selective deletion of SIRT1 in forebrain excitatory neurons causes depression-like phenotypes in male but not female mice. AAV-Cre-mediated SIRT1 knockdown in the medial prefrontal cortex (mPFC) of adult male mice induces depressive-like behaviors. Whole-cell patch-clamp recordings demonstrate that loss of SIRT1 decreases intrinsic excitability and spontaneous excitatory synaptic transmission in layer V pyramidal neurons in the prelimbic mPFC. Consistent with neuronal hypoexcitability, SIRT1 knockout reduces mitochondrial density and expression levels of genes involved in mitochondrial biogenesis and dynamics in the prelimbic mPFC. When a SIRT1 activator (SRT2104) is injected into the mPFC or lateral ventricle of wild-type mice, it reverses chronic unpredictable stress-induced anhedonia and behavioral despair, indicating an antidepressant-like effect. These results suggest that SIRT1 in mPFC excitatory neurons is required for normal neuronal excitability and synaptic transmission and regulates depression-related behaviors in a sex-specific manner.
Collapse
Affiliation(s)
- Yun Lei
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jiangong Wang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Bin Liu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xing Fang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jingjing You
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ming Guo
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
18
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Tibullo D, Li Volti G, Barbagallo I, Vicario N, Musumeci G, Di Rosa M. Middle-aged healthy women and Alzheimer's disease patients present an overlapping of brain cell transcriptional profile. Neuroscience 2019; 406:333-344. [DOI: 10.1016/j.neuroscience.2019.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
|
19
|
Godwin D, Alpert KI, Wang L, Mamah D. Regional cortical thinning in young adults with schizophrenia but not psychotic or non-psychotic bipolar I disorder. Int J Bipolar Disord 2018; 6:16. [PMID: 29992455 PMCID: PMC6161965 DOI: 10.1186/s40345-018-0124-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/06/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Schizophrenia shares some genetic risk and clinical symptoms with bipolar disorder. Clinical heterogeneity across subjects is thought to contribute to variable structural imaging findings across studies. The current study investigates cortical thickness in young adults diagnosed with schizophrenia or bipolar I disorder with a history of hyperthymic mania. We hypothesize that cortical thickness will be most similar between SCZ and the psychotic bipolar 1 disorder subtype. METHODS Patients with schizophrenia (n = 52), psychotic bipolar I disorder (PBD; n = 49) and non-psychotic bipolar I disorder (NPBD; n = 24) and healthy controls (n = 40) were scanned in a 3T Trio MRI. The thickness of 34 cortical regions was estimated with FreeSurfer, and analyzed using univariate analyses of variance. Relationships to psychotic (SAPS) and negative (SANS) symptoms were investigated using linear regression. RESULTS Cortical thickness showed significant group effects, after covarying for sex, age, and intracranial volume (p = 0.001). SCZ subjects had thinner paracentral, inferior parietal, supramarginal and fusiform cortices compared to CON. Caudal anterior cingulate cortical thickness was increased in SCZ, PBD and NPBD. Cortical thickness in PBD and NPBD were not significantly different from controls. Significant partial correlations were observed for SAPS severity with middle temporal (r = - 0.26; p = 0.001) and fusiform (- 0.26; p = 0.001) cortical thickness. CONCLUSIONS Individuals with SCZ displayed significantly reduced cortical thickness in several cortical regions compared to both CON and bipolar. We found that SCZ participants had significant cortical thinning relative to CON and bipolar disorder most significantly in the frontal (i.e. paracentral), parietal (i.e. inferior parietal, supramarginal), and temporal (i.e. middle temporal, fusiform) cortices.
Collapse
Affiliation(s)
- Douglass Godwin
- Department of Psychiatry, Washington University Medical School, St. Louis, USA
| | - Kathryn I. Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, USA
| |
Collapse
|
20
|
Cittern D, Edalat A. A Neural Model of Empathic States in Attachment-Based Psychotherapy. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2017; 1:132-167. [PMID: 30090856 PMCID: PMC6067830 DOI: 10.1162/cpsy_a_00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 04/21/2017] [Indexed: 01/09/2023]
Abstract
We build on a neuroanatomical model of how empathic states can motivate caregiving behavior, via empathy circuit-driven activation of regions in the hypothalamus and amygdala, which in turn stimulate a mesolimbic-ventral pallidum pathway, by integrating findings related to the perception of pain in self and others. On this basis, we propose a network to capture states of personal distress and (weak and strong forms of) empathic concern, which are particularly relevant for psychotherapists conducting attachment-based interventions. This model is then extended for the case of self-attachment therapy, in which conceptualized components of the self serve as both the source of and target for empathic resonance. In particular, we consider how states of empathic concern involving an other that is perceived as being closely related to the self might enhance the motivation for self-directed bonding (which in turn is proposed to lead the individual toward more compassionate states) in terms of medial prefrontal cortex-mediated activation of these caregiving pathways. We simulate our model computationally and discuss the interplay between the bonding and empathy protocols of the therapy.
Collapse
Affiliation(s)
- David Cittern
- Algorithmic Human Development, Department of Computing, Imperial College London, London, United Kingdom
| | - Abbas Edalat
- Algorithmic Human Development, Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Kurth F, Jancke L, Luders E. Sexual dimorphism of Broca's region: More gray matter in female brains in Brodmann areas 44 and 45. J Neurosci Res 2017; 95:626-632. [PMID: 27870461 DOI: 10.1002/jnr.23898] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/17/2016] [Accepted: 08/01/2016] [Indexed: 01/17/2023]
Abstract
Although a sexual dimorphism in brain structure is generally well established, evidence for sex differences in Brodmann areas (BA) 44 and 45 is inconclusive. This may be due to the difficulty of accurately defining BA 44 and BA 45 in magnetic resonance images, given that these regions are variable in their location and extent and that they do not match well with macroanatomic landmarks. Here we set out to test for possible sex differences in the local gray matter of BA 44/45 by integrating imaging-based signal intensities with cytoarchitectonically defined tissue probabilities in a sample of 50 male and 50 female subjects. In addition to testing for sex differences with respect to left- and right-hemispheric measures of BA 44/45, we also assessed possible sex differences in BA 44/45 asymmetry. Our analyses revealed significantly larger gray matter volumes in females compared with males for BA 44 and BA 45 bilaterally. However, there was a lack of significant sex differences in BA 44/45 asymmetry. These results corroborate reports of a language-related female superiority, particularly with respect to verbal fluency and verbal memory tasks. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Florian Kurth
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, California.,Department of Neurology, UCLA School of Medicine, Los Angeles, California
| | - Lutz Jancke
- Department of Neuropsychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program (URPP) "Dynamic of Healthy Aging," University of Zurich, Zurich, Switzerland
| | - Eileen Luders
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, California.,Department of Neurology, UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
22
|
The clinico-radiological spectrum of Dyke-Davidoff-Masson syndrome in adults. Neurol Sci 2017; 38:1823-1828. [PMID: 28733757 DOI: 10.1007/s10072-017-3074-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/14/2017] [Indexed: 02/07/2023]
Abstract
Dyke-Davidoff-Masson syndrome (DDMS) is characterized by cerebral hemiatrophy, seizure, contralateral hemiplegia/hemiparesis, and mental retardation. In this study, clinical and radiological investigations of seven patients who were diagnosed with DDMS as adult age were evaluated and discussed. Seven patients (four male, three female) were included. The mean age ± SD of the patients was 46 ± 21 years. Clinical presentation of six patients was epileptic seizure. One patient was presented with head trauma due to a fall. Two patients had complex partial seizures, three patients had generalized tonic-clonic seizures (GTC), and one had GTC and myoclonic seizure. Mental retardation was in five patients. A congenital cause was detected in one patient in the etiologic investigation and acquired causes in two patients. In four patients, the etiology was not identified. We observed left-hemisphere involvement in four patients and right-hemisphere involvement in three patients. Brain imaging was performed by CT only in four patients and by MRI only in three patients. All patients were diagnosed with DDMS at adulthood. Atrophy in basal ganglia was detected in five patients, and atrophy in brain stem in four patients. Calvarial thickening was observed in four patients. Three patients had hyperpneumatization in mastoid cells. Sinus hyperpneumatization, including the paranasal and frontal sinuses, was seen in six patients. DDMS can also be diagnosed in adulthood symptomatically (mild-severe) or asymptomatically in adulthood. As a result, DDMS is a syndrome with wide clinical and radiological spectra that can be variably symptomatic at different stages of life.
Collapse
|
23
|
Sigalas C, Konsolaki E, Skaliora I. Sex differences in endogenous cortical network activity: spontaneously recurring Up/Down states. Biol Sex Differ 2017; 8:21. [PMID: 28630662 PMCID: PMC5471918 DOI: 10.1186/s13293-017-0143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/06/2017] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Several molecular and cellular processes in the vertebrate brain exhibit differences between males and females, leading to sexual dimorphism in the formation of neural circuits and brain organization. While studies on large-scale brain networks provide ample evidence for both structural and functional sex differences, smaller-scale local networks have remained largely unexplored. In the current study, we investigate sexual dimorphism in cortical dynamics by means of spontaneous Up/Down states, a type of network activity that is exhibited during slow-wave sleep, quiet wakefulness, and anesthesia and is thought to represent the default activity of the cortex. METHODS Up state activity was monitored by local field potential recordings in coronal brain slices of male and female mice across three ages with distinct secretion profiles of sex hormones: (i) pre-puberty (17-21 days old), (ii) 3-9 adult (months old), and (iii) old (19-24 months old). RESULTS Female mice of all ages exhibited longer and more frequent Up states compared to aged-matched male mice. Power spectrum analysis revealed sex differences in the relative power of Up state events, with female mice showing reduced power in the delta range (1-4 Hz) and increased power in the theta range (4-8 Hz) compared to male mice. No sex differences were found in the characteristics of Up state peak voltage and latency. CONCLUSIONS The present study revealed for the first time sex differences in intracortical network activity, using an ex vivo paradigm of spontaneously occurring Up/Down states. We report significant sex differences in Up state properties that are already present in pre-puberty animals and are maintained through adulthood and old age.
Collapse
Affiliation(s)
- Charalambos Sigalas
- Neurophysiology Laboratory, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efessiou Street, Athens, 115 27 Greece
| | - Eleni Konsolaki
- Psychology Department, Deree - The American College of Greece, Athens, 153 42 Greece
| | - Irini Skaliora
- Neurophysiology Laboratory, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efessiou Street, Athens, 115 27 Greece
| |
Collapse
|
24
|
White ER, Pinar C, Bostrom CA, Meconi A, Christie BR. Mild Traumatic Brain Injury Produces Long-Lasting Deficits in Synaptic Plasticity in the Female Juvenile Hippocampus. J Neurotrauma 2017; 34:1111-1123. [DOI: 10.1089/neu.2016.4638] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emily R. White
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Cristina Pinar
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Crystal A. Bostrom
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Alicia Meconi
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R. Christie
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
- Centre for Brain Health and Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Hopkins WD, Li X, Crow T, Roberts N. Vertex- and atlas-based comparisons in measures of cortical thickness, gyrification and white matter volume between humans and chimpanzees. Brain Struct Funct 2017; 222:229-245. [PMID: 27100220 PMCID: PMC8401708 DOI: 10.1007/s00429-016-1213-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 03/06/2016] [Indexed: 12/27/2022]
Abstract
What changes in cortical organisation characterise global and localised variation between humans and chimpanzees remains a topic of considerable interest in evolutionary neuroscience. Here, we examined regional variation in cortical thickness, gyrification and white matter in samples of human and chimpanzee brains. Both species were MRI scanned on the same platform using identical procedures. The images were processed and segmented by FSL and FreeSurfer and the relative changes in cortical thickness, gyrification and white matter across the entire cortex were compared between species. In general, relative to chimpanzees, humans had significantly greater gyrification and significantly thinner cortex, particularly in the frontal lobe. Human brains also had disproportionately higher white matter volumes in the frontal lobe, particularly in prefrontal regions. Collectively, the findings suggest that after the split from the common ancestor, white matter expansion and subsequently increasing gyrification occurred in the frontal lobe possibly due to increased selection for human cognitive and motor specialisations.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, P.O. Box 5030, 30302, Atlanta, Georgia.
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 30329, Atlanta, Georgia.
| | - Xiang Li
- Clinical Research Imaging Centre (CRIC), School of Clinical Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH13 0HT, UK
| | - Tim Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Neil Roberts
- Clinical Research Imaging Centre (CRIC), School of Clinical Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH13 0HT, UK
| |
Collapse
|
26
|
Orczyk JJ, Batka R, Gore A, Maio-Lexa M, Kulkarni A, Garraghty PE. Female rat transcriptome response to infraorbital nerve transection differs from that of males: RNA-seq. J Comp Neurol 2017; 525:140-150. [PMID: 27224679 DOI: 10.1002/cne.24045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/06/2022]
Abstract
The effects of infraorbital nerve (ION) transection on gene expression in the adult female rat barrel cortex were investigated using RNA sequencing. After a 24-hour survival duration, 28 genes were differentially regulated by ION transection. Differentially expressed genes suggest microglial activity, increased retrograde ciliary transport, and a decrease in inhibition. These changes may be functionally comparable to changes in the male barrel cortex, where changes in genes related to morphology, neuronal activity, and neuronal excitability were observed. However, the patterns in changes in gene expression are vastly different between male and female rats. The results strongly caution against the practice of generalizing data from one sex to both sexes. This cautionary note has potentially profound implications for a range of research lines, including substance abuse and stress, both research domains in which subjects have been predominantly males. Future research needs to employ sex as a classification variable, as sex differences can generally be expected. Future research is also needed to confirm that changes in gene expression observed with RNA-seq correlate with changes in protein expression. J. Comp. Neurol. 525:140-150, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John J Orczyk
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Richard Batka
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Ashleigh Gore
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Michelena Maio-Lexa
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Akhil Kulkarni
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Preston E Garraghty
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
27
|
Characterizing Population EEG Dynamics throughout Adulthood. eNeuro 2016; 3:eN-NWR-0275-16. [PMID: 27957533 PMCID: PMC5150228 DOI: 10.1523/eneuro.0275-16.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/31/2016] [Accepted: 11/16/2016] [Indexed: 11/26/2022] Open
Abstract
For decades, electroencephalography (EEG) has been a useful tool for investigating the neural mechanisms underlying human psychological processes. However, the amount of time needed to gather EEG data means that most laboratory studies use relatively small sample sizes. Using the Muse, a portable and wireless four-channel EEG headband, we obtained EEG recordings from 6029 subjects 18–88 years in age while they completed a category exemplar task followed by a meditation exercise. Here, we report age-related changes in EEG power at a fine chronological scale for δ, θ, α, and β bands, as well as peak α frequency and α asymmetry measures for both frontal and temporoparietal sites. We found that EEG power changed as a function of age, and that the age-related changes depended on sex and frequency band. We found an overall age-related shift in band power from lower to higher frequencies, especially for females. We also found a gradual, year-by-year slowing of the peak α frequency with increasing age. Finally, our analysis of α asymmetry revealed greater relative right frontal activity. Our results replicate several previous age- and sex-related findings and show how some previously observed changes during childhood extend throughout the lifespan. Unlike previous age-related EEG studies that were limited by sample size and restricted age ranges, our work highlights the advantage of using large, representative samples to address questions about developmental brain changes. We discuss our findings in terms of their relevance to attentional processes and brain-based models of emotional well-being and aging.
Collapse
|
28
|
Grabowska A. Sex on the brain: Are gender-dependent structural and functional differences associated with behavior? J Neurosci Res 2016; 95:200-212. [DOI: 10.1002/jnr.23953] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/13/2016] [Accepted: 09/06/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Grabowska
- SWPS University of Social Sciences and Humanities; Warsaw Poland
- Department of Neurophysiology; Nencki Institute of Experimantal Biology, Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
29
|
Segmenting and validating brain tissue definitions in the presence of varying tissue contrast. Magn Reson Imaging 2016; 35:98-116. [PMID: 27569366 DOI: 10.1016/j.mri.2016.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/06/2016] [Accepted: 08/20/2016] [Indexed: 11/23/2022]
Abstract
We propose a method for segmenting brain tissue as either gray matter or white matter in the presence of varying tissue contrast, which can derive from either differential changes in tissue water content or increasing myelin content of white matter. Our method models the spatial distribution of intensities as a Markov Random Field (MRF) and estimates the parameters for the MRF model using a maximum likelihood approach. Although previously described methods have used similar models to segment brain tissue, accurate model of the conditional probabilities of tissue intensities and adaptive estimates of tissue properties to local intensities generates tissue definitions that are accurate and robust to variations in tissue contrast with age and across illnesses. Robustness to variations in tissue contrast is important to understand normal brain development and to identify the brain bases of neurological and psychiatric illnesses. We used simulated brains of varying tissue contrast to compare both visually and quantitatively the performance of our method with the performance of prior methods. We assessed validity of the cortical definitions by associating cortical thickness with various demographic features, clinical measures, and medication use in our three large cohorts of participants who were either healthy or who had Bipolar Disorder (BD), Autism Spectrum Disorder (ASD), or familial risk for Major Depressive Disorder (MDD). We assessed validity of the tissue definitions using synthetic brains and data for three large cohort of individuals with various neuropsychiatric disorders. Visual inspection and quantitative analyses showed that our method accurately and robustly defined the cortical mantle in brain images with varying contrast. Furthermore, associating the thickness with various demographic and clinical measures generated findings that were novel and supported by histological analyses or were supported by previous MRI studies, thereby validating the cortical definitions generated by the proposed method: (1) Although cortical thickness decreased with age in adolescents, in adults cortical thickness did not correlate significantly with age. Our synthetic data showed that the previously reported thinning of cortex in adults is likely due to decease in tissue contrast, thereby suggesting that the method generated cortical definitions in adults that were invariant to tissue contrast. In adolescents, cortical thinning with age was preserved likely due to widespread dendritic and synaptic pruning, even though the effects of decreasing tissue contrast were minimized. (3) The method generated novel finding of both localized increases and decreases in thickness of males compared to females after controlling for the differing brain sizes, which are supported by the histological analyses of brain tissue in males and females. (4) The proposed method, unlike prior methods, defined thicker cortex in BD individuals using lithium. The novel finding is supported by the studies that showed lithium treatment increased dendritic arborization and neurogenesis, thereby leading to thickening of cortex. (5) In both BD and ASD participants, associations of more severe symptoms with thinner cortex showed that correcting for the effects of tissue contrast preserved the biological consequences of illnesses. Therefore, consistency of the findings across the three large cohorts of participants, in images acquired on either 1.5T or 3T MRI scanners, and with findings from prior histological analyses provides strong evidence that the proposed method generated valid and accurate definitions of the cortex while controlling for the effects of tissue contrast.
Collapse
|
30
|
Guillamon A, Junque C, Gómez-Gil E. A Review of the Status of Brain Structure Research in Transsexualism. ARCHIVES OF SEXUAL BEHAVIOR 2016; 45:1615-48. [PMID: 27255307 PMCID: PMC4987404 DOI: 10.1007/s10508-016-0768-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/22/2015] [Accepted: 04/29/2016] [Indexed: 05/22/2023]
Abstract
The present review focuses on the brain structure of male-to-female (MtF) and female-to-male (FtM) homosexual transsexuals before and after cross-sex hormone treatment as shown by in vivo neuroimaging techniques. Cortical thickness and diffusion tensor imaging studies suggest that the brain of MtFs presents complex mixtures of masculine, feminine, and demasculinized regions, while FtMs show feminine, masculine, and defeminized regions. Consequently, the specific brain phenotypes proposed for MtFs and FtMs differ from those of both heterosexual males and females. These phenotypes have theoretical implications for brain intersexuality, asymmetry, and body perception in transsexuals as well as for Blanchard's hypothesis on sexual orientation in homosexual MtFs. Falling within the aegis of the neurohormonal theory of sex differences, we hypothesize that cortical differences between homosexual MtFs and FtMs and male and female controls are due to differently timed cortical thinning in different regions for each group. Cross-sex hormone studies have reported marked effects of the treatment on MtF and FtM brains. Their results are used to discuss the early postmortem histological studies of the MtF brain.
Collapse
Affiliation(s)
- Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, c/Juand del Rosal, 10, 28040, Madrid, Spain.
- Academia de Psicología de España, Madrid, Spain.
| | - Carme Junque
- Departamento de Psiquiatría y Psicobiología Clínica, Universidad de Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | - Esther Gómez-Gil
- Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
- Unidad de Identidad de Género, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
31
|
Martínez-Pinilla E, Ordóñez C, Del Valle E, Navarro A, Tolivia J. Regional and Gender Study of Neuronal Density in Brain during Aging and in Alzheimer's Disease. Front Aging Neurosci 2016; 8:213. [PMID: 27679571 PMCID: PMC5020132 DOI: 10.3389/fnagi.2016.00213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
Background: Learning processes or language development are only some of the cognitive functions that differ qualitatively between men and women. Gender differences in the brain structure seem to be behind these variations. Indeed, this sexual dimorphism at neuroanatomical level is accompanied unequivocally by differences in the way that aging and neurodegenerative diseases affect men and women brains. Objective: The aim of this study is the analysis of neuronal density in four areas of the hippocampus, and entorhinal and frontal cortices to analyze the possible gender influence during normal aging and in Alzheimer's disease (AD). Methods: Human brain tissues of different age and from both sexes, without neurological pathology and with different Braak's stages of AD, were studied. Neuronal density was quantified using the optical dissector. Results: Our results showed the absence of a significant neuronal loss during aging in non-pathological brains in both sexes. However, we have demonstrated specific punctual significant variations in neuronal density related with the age and gender in some regions of these brains. In fact, we observed a higher neuronal density in CA3 and CA4 hippocampal areas of non-pathological brains of young men compared to women. During AD, we observed a negative correlation between Braak's stages and neuronal density in hippocampus, specifically in CA1 for women and CA3 for men, and in frontal cortex for both, men and women. Conclusion: Our data demonstrated a sexual dimorphism in the neuronal vulnerability to degeneration suggesting the need to consider the gender of the individuals in future studies, regarding neuronal loss in aging and AD, in order to avoid problems in interpreting data.
Collapse
Affiliation(s)
- Eva Martínez-Pinilla
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Cristina Ordóñez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Eva Del Valle
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Ana Navarro
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| | - Jorge Tolivia
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Instituto de Neurociencias del Principado de Asturias, Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
32
|
Romeo DM, Brogna C, Sini F, Romeo MG, Cota F, Ricci D. Early psychomotor development of low-risk preterm infants: Influence of gestational age and gender. Eur J Paediatr Neurol 2016; 20:518-23. [PMID: 27142353 DOI: 10.1016/j.ejpn.2016.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/03/2016] [Accepted: 04/10/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND The influence of gestational age and gender in the neurodevelopment of infants during the first year of age is not yet fully elucidated. AIMS The purpose of this study was to identify the early occurrence of neurodevelopmental differences, between very preterm, late preterm and term born infants and the possible influence of the gender on the neurodevelopment in early infancy. METHODS A total of 188 low-risk infants, 69 very preterms, 71 late-preterms, and 48 term infants were assessed at 3, 6, 9, 12 months corrected age using the Hammersmith Infant Neurological Examination (HINE). At two years of age infants performed the Mental Developmental Index (MDI) of the Bayley Scales of Infant Development. RESULTS The main results indicate that both very preterms and late-preterms showed significant lower global scores than term born infants at each evaluation (p < 0.001) at HINE and namely, at 3 months for the subsections "cranial nerve" and "posture" and at every age for "tone"; no gender differences has been evidenced in neurological performances. At the MDI, very preterms showed significant lower scores (p < 0.01) than both late-preterm and term born infants; gender differences were observed for preterms only (very and late), with best performances for females. CONCLUSIONS Our results point out the presence of gestational age and gender-dependent differences in the development of infants assessed during the first 2 years of life.
Collapse
Affiliation(s)
| | - Claudia Brogna
- Pediatric Neurology Unit, Catholic University Rome, Italy; Unit of Child and Adolescent NeuroPsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University "Campus Bio-Medico", Rome, Italy
| | - Francesca Sini
- Pediatric Neurology Unit, Catholic University Rome, Italy
| | - Mario G Romeo
- Neonatal Intensive Care Unit, Department of Paediatrics, University of Catania, Italy
| | - Francesco Cota
- Neonatal Intensive Care Unit, Catholic University Rome, Italy
| | - Daniela Ricci
- Pediatric Neurology Unit, Catholic University Rome, Italy
| |
Collapse
|
33
|
Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat Commun 2016; 7:10717. [PMID: 26892004 PMCID: PMC4762891 DOI: 10.1038/ncomms10717] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/14/2016] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorder (ASD) is more prevalent in males, and the mechanisms behind this sex-differential risk are not fully understood. Two competing, but not mutually exclusive, hypotheses are that ASD risk genes are sex-differentially regulated, or alternatively, that they interact with characteristic sexually dimorphic pathways. Here we characterized sexually dimorphic gene expression in multiple data sets from neurotypical adult and prenatal human neocortical tissue, and evaluated ASD risk genes for evidence of sex-biased expression. We find no evidence for systematic sex-differential expression of ASD risk genes. Instead, we observe that genes expressed at higher levels in males are significantly enriched for genes upregulated in post-mortem autistic brain, including astrocyte and microglia markers. This suggests that it is not sex-differential regulation of ASD risk genes, but rather naturally occurring sexually dimorphic processes, potentially including neuron–glial interactions, that modulate the impact of risk variants and contribute to the sex-skewed prevalence of ASD. Autism spectrum disorder is approximately 4.5 times more likely to occur in boys than girls. Here, Werling, Geschwind and Parikshak characterized sexually dimorphic gene expression in the non-diseased, post-mortem, adult and prenatal human brain, and show genes expressed at higher levels in males are significantly enriched for genes upregulated in autistic brain.
Collapse
|
34
|
Ghayour Najafabadi M, Rahbar Nikoukar L, Memari A, Ekhtiari H, Beygi S. Does Ramadan Fasting Adversely Affect Cognitive Function in Young Females? SCIENTIFICA 2015; 2015:432428. [PMID: 26697263 PMCID: PMC4677254 DOI: 10.1155/2015/432428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/15/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
We examined the effects of Ramadan fasting on cognitive function in 17 female athletes. Data were obtained from participants of two fasting (n = 9) and nonfasting (n = 8) groups at three periods of the study (before Ramadan, at the third week in Ramadan, and after Ramadan). Digit span test (DST) and Stroop color test were employed to assess short-term memory and inhibition/cognitive flexibility at each time point. There were no significant changes for DST and Stroop task 1 in both groups, whereas Stroop task 2 and task 3 showed significant improvements in Ramadan condition (p < 0.05). Interference indices did not change significantly across the study except in post-Ramadan period of fasting group (p < 0.05). Group × week interaction was significant only for error numbers (p < 0.05). Athletes in nonfasting showed a significant decrease in number of errors in Ramadan compared to baseline (p < 0.05). The results suggest that Ramadan fasting may not adversely affect cognitive function in female athletes.
Collapse
Affiliation(s)
- Mahboubeh Ghayour Najafabadi
- Neuroscience Institute, Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Sports Sciences and Physical Education, University of Tehran, Tehran, Iran
| | - Laya Rahbar Nikoukar
- Neuroscience Institute, Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Memari
- Neuroscience Institute, Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Ekhtiari
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
- Translational Neuroscience Program, Institute for Cognitive Science Studies, Tehran, Iran
| | - Sara Beygi
- Neuroscience Institute, Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Goldstein JM, Lancaster K, Longenecker JM, Abbs B, Holsen LM, Cherkerzian S, Whitfield-Gabrieli S, Makris N, Tsuang MT, Buka SL, Seidman LJ, Klibanski A. Sex differences, hormones, and fMRI stress response circuitry deficits in psychoses. Psychiatry Res 2015; 232:226-36. [PMID: 25914141 PMCID: PMC4439265 DOI: 10.1016/j.pscychresns.2015.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 02/05/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022]
Abstract
Response to stress is dysregulated in psychosis (PSY). fMRI studies showed hyperactivity in hypothalamus (HYPO), hippocampus (HIPP), amygdala (AMYG), anterior cingulate (ACC), orbital and medial prefrontal (OFC; mPFC) cortices, with some studies reporting sex differences. We predicted abnormal steroid hormone levels in PSY would be associated with sex differences in hyperactivity in HYPO, AMYG, and HIPP, and hypoactivity in PFC and ACC, with more severe deficits in men. We studied 32 PSY cases (50.0% women) and 39 controls (43.6% women) using a novel visual stress challenge while collecting blood. PSY males showed BOLD hyperactivity across all hypothesized regions, including HYPO and ACC by FWE-correction. Females showed hyperactivity in HIPP and AMYG and hypoactivity in OFC and mPFC, the latter FWE-corrected. Interaction of group by sex was significant in mPFC (F = 7.00, p = 0.01), with PSY females exhibiting the lowest activity. Male hyperactivity in HYPO and ACC was significantly associated with hypercortisolemia post-stress challenge, and mPFC with low androgens. Steroid hormones and neural activity were dissociated in PSY women. Findings suggest disruptions in neural circuitry-hormone associations in response to stress are sex-dependent in psychosis, particularly in prefrontal cortex.
Collapse
Affiliation(s)
- Jill M Goldstein
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Division of Psychiatric Neuroscience, Athinoula A. Martinos Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Katie Lancaster
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA.
| | - Julia M Longenecker
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA.
| | - Brandon Abbs
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA.
| | - Laura M Holsen
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Division of Psychiatric Neuroscience, Athinoula A. Martinos Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Sara Cherkerzian
- Connors Center for Women׳s Health and Gender Biology, Division of Women׳s Health, Brigham and Women׳s Hospital, Boston, MA, USA.
| | - Susan Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Nicolas Makris
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Division of Psychiatric Neuroscience, Athinoula A. Martinos Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Ming T Tsuang
- Center for Behavior Genomics, Department of Psychiatry, University of California at San Diego, San Diego, CA, USA.
| | - Stephen L Buka
- Department of Community Health, Brown University, Providence, RI, USA.
| | - Larry J Seidman
- Division of Psychiatric Neuroscience, Athinoula A. Martinos Center, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Division of Public Psychiatry, Massachusetts Mental Health Center and Harvard Medical School, Boston, MA, USA.
| | - Anne Klibanski
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
36
|
Escorial S, Román FJ, Martínez K, Burgaleta M, Karama S, Colom R. Sex differences in neocortical structure and cognitive performance: A surface-based morphometry study. Neuroimage 2014; 104:355-65. [PMID: 25255941 DOI: 10.1016/j.neuroimage.2014.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Accepted: 09/16/2014] [Indexed: 11/29/2022] Open
Abstract
On average, men show larger brain volumes than women. Regional differences have been also observed, although most of the available studies apply voxel-based morphometry (VBM). Reports applying surface-based morphometry (SBM) have been focused mainly on cortical thickness (CT). Here we apply SBM for obtaining global and regional indices of CT, cortical surface area (CSA), and cortical gray matter volume (CGMV) from samples of men (N=40) and women (N=40) matched for their performance on four cognitive factors varying in their complexity: processing speed, attention control, working memory capacity, and fluid intelligence. These were the main findings: 1) CT and CSA produced very weak correlations in both sexes, 2) men showed larger values in CT, CSA, and CGMV, and 3) cognitive performance was unrelated to brain structural variation within sexes. Therefore, we found substantial group differences in brain structure, but there was no relationship with cognitive performance both between and within-sexes.
Collapse
Affiliation(s)
| | | | - Kenia Martínez
- Universidad Autónoma de Madrid, Spain; Hospital Gregorio Marañón, Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Li Q, Pardoe H, Lichter R, Werden E, Raffelt A, Cumming T, Brodtmann A. Cortical thickness estimation in longitudinal stroke studies: A comparison of 3 measurement methods. NEUROIMAGE-CLINICAL 2014; 8:526-35. [PMID: 26110108 PMCID: PMC4475863 DOI: 10.1016/j.nicl.2014.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 08/17/2014] [Accepted: 08/21/2014] [Indexed: 01/27/2023]
Abstract
There is considerable controversy about the causes of cognitive decline after stroke, with evidence for both the absence and coexistence of Alzheimer pathology. A reduction in cortical thickness has been shown to be an important biomarker for the progression of many neurodegenerative diseases, including Alzheimer's disease (AD). However, brain volume changes following stroke are not well described. Cortical thickness estimation presents an ideal way to detect regional and global post-stroke brain atrophy. In this study, we imaged a group of patients in the first month after stroke and at 3 months. We compared three methods of estimating cortical thickness on unmasked images: one surface-based (FreeSurfer) and two voxel-based methods (a Laplacian method and a registration method, DiRecT). We used three benchmarks for our analyses: accuracy of segmentation (especially peri-lesional performance), reproducibility, and biological validity. We found important differences between these methods in cortical thickness values and performance in high curvature areas and peri-lesional regions, but similar reproducibility metrics. FreeSurfer had less reliance on manual boundary correction than the other two methods, while reproducibility was highest in the Laplacian method. A discussion of the caveats for each method and recommendations for use in a stroke population is included. We conclude that both surface- and voxel-based methods are valid for estimating cortical thickness in stroke populations.
Collapse
Affiliation(s)
- Qi Li
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Heath Pardoe
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia ; University of Melbourne, Melbourne, Australia ; Comprehensive Epilepsy Center, New York University, New York, USA
| | - Renee Lichter
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia ; University of Melbourne, Melbourne, Australia
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia ; University of Melbourne, Melbourne, Australia
| | - Audrey Raffelt
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Toby Cumming
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia ; University of Melbourne, Melbourne, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia ; University of Melbourne, Melbourne, Australia
| |
Collapse
|
38
|
Chêne G, Beiser A, Au R, Preis SR, Wolf PA, Dufouil C, Seshadri S. Gender and incidence of dementia in the Framingham Heart Study from mid-adult life. Alzheimers Dement 2014; 11:310-320. [PMID: 24418058 DOI: 10.1016/j.jalz.2013.10.005] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 08/05/2013] [Accepted: 10/05/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Gender-specific risks for dementia and Alzheimer's disease (AD) starting in midlife remain largely unknown. METHODS Prospectively ascertained dementia/AD and cause-specific mortality in Framingham Heart Study (FHS) participants was used to generate 10- to 50-year risk estimates of dementia/AD on the basis of the Kaplan-Meier method (cumulative incidence) or accounting for competing risk of death (lifetime risk [LTR]). RESULTS Overall, 777 cases of incident dementia (601 AD) occurred in 7901 participants (4333 women) over 136,266 person-years. Whereas cumulative incidences were similar in women and men, LTRs were higher in women older than 85 years of age. LTR of dementia/AD at age 45 was 1 in 5 in women and 1 in 10 in men. Cardiovascular mortality was higher in men with rate ratios decreasing from approximately 6 at 45 to 54 years of age to less than 2 after age 65. CONCLUSION Selective survival of men with a healthier cardiovascular risk profile and hence lower propensity to dementia might partly explain the higher LTR of dementia/AD in women.
Collapse
Affiliation(s)
- Geneviève Chêne
- Inserm U897 & CIC-EC7; Univ Bordeaux Segalen, Isped (Bordeaux School of Public Health); CHU de Bordeaux
| | - Alexa Beiser
- Department of Neurology, Boston University School of Medicine, Boston, MA.,Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Rhoda Au
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Sarah R Preis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Philip A Wolf
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Carole Dufouil
- Inserm U897 & CIC-EC7; Univ Bordeaux Segalen, Isped (Bordeaux School of Public Health); CHU de Bordeaux
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
39
|
Creze M, Versheure L, Besson P, Sauvage C, Leclerc X, Jissendi-Tchofo P. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade. Hum Brain Mapp 2013; 35:2817-35. [PMID: 24142374 DOI: 10.1002/hbm.22369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 01/29/2023] Open
Abstract
Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P < 0.01) on posterior cingulate and middle temporal cortices (age), and the fronto-orbital cortex (gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P < 0.05) on the temporopolar, inferior, and middle temporal-entorrhinal cortices bilaterally, as well as left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade.
Collapse
Affiliation(s)
- Maud Creze
- Department of Radiology, Neuroradiology Section, University Hospital North, Amiens, France; Department of Neuroradiology, MRI 3T Research, Plateforme Imagerie du vivant, IMPRT IFR 114, University Hospital of Lille, France
| | | | | | | | | | | |
Collapse
|
40
|
Regional and hemispheric variation in cortical thickness in chimpanzees (Pan troglodytes). J Neurosci 2013; 33:5241-8. [PMID: 23516289 DOI: 10.1523/jneurosci.2996-12.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent advances in structural magnetic resonance imaging technology and analysis now allows for accurate in vivo measurement of cortical thickness, an important aspect of cortical organization that has historically only been conducted on postmortem brains. In this study, for the first time, we examined regional and lateralized cortical thickness in a sample of 71 chimpanzees for comparison with previously reported findings in humans. We also measured gray and white matter volumes for each subject. The results indicated that chimpanzees showed significant regional variation in cortical thickness with lower values in primary motor and sensory cortex compared with association cortex. Furthermore, chimpanzees showed significant rightward asymmetries in cortical thickness for a number of regions of interest throughout the cortex and leftward asymmetries in white but not gray matter volume. We also found that total and region-specific cortical thickness was significantly negatively correlated with white matter volume. Thus, chimpanzees with greater white matter volumes had thinner cortical thickness. The collective findings are discussed within the context of previous findings in humans and theories on the evolution of cortical organization and lateralization in primates.
Collapse
|
41
|
Liu F, McCullough LD. Interactions between age, sex, and hormones in experimental ischemic stroke. Neurochem Int 2012; 61:1255-65. [PMID: 23068990 DOI: 10.1016/j.neuint.2012.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/27/2022]
Abstract
Age, sex, and gonadal hormones have profound effects on ischemic stroke outcomes, although how these factors impact basic stroke pathophysiology remains unclear. There is a plethora of inconsistent data reported throughout the literature, primarily due to differences in the species examined, the timing and methods used to evaluate injury, the models used, and confusion regarding differences in stroke incidence as seen in clinical populations vs. effects on acute neuroprotection or neurorepair in experimental stroke models. Sex and gonadal hormone exposure have considerable independent impact on stroke outcome, but these factors also interact with each other, and the contribution of each differs throughout the lifespan. The contribution of sex and hormones to experimental stroke will be the focus of this review. Recent advances and our current understanding of age, sex, and hormone interactions in ischemic stroke with a focus on inflammation will be discussed.
Collapse
Affiliation(s)
- Fudong Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | | |
Collapse
|
42
|
Gutiérrez Lombana W, Gutiérrez Vidal SE. Pain and gender differences: A clinical approach. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2012. [DOI: 10.1016/j.rcae.2012.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
43
|
Renner C, Hummelsheim H, Kopczak A, Steube D, Schneider HJ, Schneider M, Kreitschmann-Andermahr I, Jordan M, Uhl E, Stalla GK. The influence of gender on the injury severity, course and outcome of traumatic brain injury. Brain Inj 2012; 26:1360-71. [DOI: 10.3109/02699052.2012.667592] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Gutiérrez Lombana W, Gutiérrez Vidal SE. Diferencias de sexo en el dolor. Una aproximación a la clínica. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2012. [DOI: 10.1016/j.rca.2012.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
O'Dwyer L, Lamberton F, Bokde ALW, Ewers M, Faluyi YO, Tanner C, Mazoyer B, O'Neill D, Bartley M, Collins R, Coughlan T, Prvulovic D, Hampel H. Sexual dimorphism in healthy aging and mild cognitive impairment: a DTI study. PLoS One 2012; 7:e37021. [PMID: 22768288 PMCID: PMC3388101 DOI: 10.1371/journal.pone.0037021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/12/2012] [Indexed: 11/18/2022] Open
Abstract
Previous PET and MRI studies have indicated that the degree to which pathology translates into clinical symptoms is strongly dependent on sex with women more likely to express pathology as a diagnosis of AD, whereas men are more resistant to clinical symptoms in the face of the same degree of pathology. Here we use DTI to investigate the difference between male and female white matter tracts in healthy older participants (24 women, 16 men) and participants with mild cognitive impairment (21 women, 12 men). Differences between control and MCI participants were found in fractional anisotropy (FA), radial diffusion (DR), axial diffusion (DA) and mean diffusion (MD). A significant main effect of sex was also reported for FA, MD and DR indices, with male control and male MCI participants having significantly more microstructural damage than their female counterparts. There was no sex by diagnosis interaction. Male MCIs also had significantly less normalised grey matter (GM) volume than female MCIs. However, in terms of absolute brain volume, male controls had significantly more brain volume than female controls. Normalised GM and WM volumes were found to decrease significantly with age with no age by sex interaction. Overall, these data suggest that the same degree of cognitive impairment is associated with greater structural damage in men compared with women.
Collapse
Affiliation(s)
- Laurence O'Dwyer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Background Sexual dimorphism in human brain structure is well recognised, but little is known about gender differences in white matter microstructure. We used diffusion tensor imaging to explore differences in fractional anisotropy (FA), an index of microstructural integrity. Methods A whole brain analysis of 135 matched subjects (90 men and 45 women) using a 1.5 T scanner. A region of interest (ROI) analysis was used to confirm those results where proximity to CSF raised the possibility of partial-volume artefact. Results Men had higher fractional anisotropy (FA) in cerebellar white matter and in the left superior longitudinal fasciculus; women had higher FA in the corpus callosum, confirmed by ROI. Discussion The size of the differences was substantial - of the same order as that attributed to some pathology – suggesting gender may be a potentially significant confound in unbalanced clinical studies. There are several previous reports of difference in the corpus callosum, though they disagree on the direction of difference; our findings in the cerebellum and the superior longitudinal fasciculus have not previously been noted. The higher FA in women may reflect greater efficiency of a smaller corpus callosum. The relatively increased superior longitudinal fasciculus and cerebellar FA in men may reflect their increased language lateralisation and enhanced motor development, respectively.
Collapse
|
47
|
Andersen ML, Sawyer EK, Howell LL. Contributions of neuroimaging to understanding sex differences in cocaine abuse. Exp Clin Psychopharmacol 2012; 20:2-15. [PMID: 21875225 PMCID: PMC3269558 DOI: 10.1037/a0025219] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A consistent observation in drug abuse research is that males and females show differences in their response to drugs of abuse. In order to understand the neurobiology underlying cocaine abuse and effective treatments, it is important to consider the role of sex differences. Sex hormones have been investigated in both behavioral and molecular studies, but further evidence addressing drug abuse and dependence in both sexes would expand our knowledge of sex differences in response to drugs of abuse. Neuroimaging is a powerful tool that can offer insight into the biological bases of these differences and meet the challenges of directly examining drug-induced changes in brain function. As such, neuroimaging has drawn much interest in recent years. Specifically, positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI) technology have emerged as effective noninvasive approaches for human and animal models. Studies have revealed sex-specific changes in patterns of brain activity in response to acute cocaine injection and after prolonged cocaine use. SPECT and PET studies have demonstrated changes in the dopamine transporter but are less clear on other components of the dopaminergic system. This review highlights contributions of neuroimaging toward understanding the role of sex differences in the drug abuse field, specifically regarding cocaine, and identifies relevant questions that neuroimaging can effectively address.
Collapse
Affiliation(s)
- ML Andersen
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - EK Sawyer
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - LL Howell
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA,Corresponding Author: Leonard L. Howell, PhD, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, Atlanta, GA 30329, P: 404-727-7786, F: 404-727-1266,
| |
Collapse
|
48
|
|
49
|
Abbs B, Liang L, Makris N, Tsuang M, Seidman LJ, Goldstein JM. Covariance modeling of MRI brain volumes in memory circuitry in schizophrenia: Sex differences are critical. Neuroimage 2011; 56:1865-74. [PMID: 21497198 DOI: 10.1016/j.neuroimage.2011.03.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/23/2011] [Accepted: 03/29/2011] [Indexed: 12/28/2022] Open
Abstract
Women have consistently demonstrated better verbal memory on tests that evaluate immediate and delayed free recall. In patients with schizophrenia, these verbal memory processes are relatively more preserved in women than men. However an understanding of the brain anatomy of the female advantage for verbal memory is still unclear. 29 females and 59 males with schizophrenia made comparable to 21 female and 27 male healthy volunteers were scanned using structural magnetic resonance imaging (sMRI) in order to assess volumes of regions across the entire brain. Sex differences within and between groups in the covariance structure of memory circuitry regions were evaluated using a novel approach to covariance analysis (the Box M Test). Brain areas of interest included the prefrontal cortex (PFC), inferior parietal lobule (iPAR), anterior cingulate gyrus (ACG), parahippocampus, and hippocampus (HIPP). Results showed significant differences in the covariance matrices of females and males with schizophrenia compared with their healthy counterparts, in particular the relationships between iPAR-PFC, iPAR-ACG, and HIPP-PFC. Sex differences in the iPAR-PFC relationship were significantly associated with sex differences in verbal memory performance. In control women, but not in men ACG volume correlated strongly with memory performance. In schizophrenia, ACG volume was reduced in females, but not in men, relative to controls. Findings suggest that the relationship between iPAR and PFC is particularly important for understanding the relative preservation of verbal memory processing in females with schizophrenia and may compensate for ACG volume reductions. These results illustrate the utility of a unique covariance structure modeling approach that yields important new knowledge for understanding the nature of schizophrenia.
Collapse
Affiliation(s)
- Brandon Abbs
- Brigham and Women's Hospital, Connors Center for Women's Health and Gender Biology, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA
| | | | | | | | | | | |
Collapse
|
50
|
Crespo-Facorro B, Roiz-Santiáñez R, Pérez-Iglesias R, Mata I, Rodríguez-Sánchez JM, Tordesillas-Gutiérrez D, de la Foz VOG, Tabarés-Seisdedos R, Sánchez E, Andreasen N, Magnotta V, Vázquez-Barquero JL. Sex-specific variation of MRI-based cortical morphometry in adult healthy volunteers: the effect on cognitive functioning. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:616-23. [PMID: 21237230 PMCID: PMC3880827 DOI: 10.1016/j.pnpbp.2011.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/17/2010] [Accepted: 01/04/2011] [Indexed: 11/16/2022]
Abstract
Previous investigations have revealed sex-specific differences in brain morphometry. The effect of sex on cortical thickness may be influencing cognitive differences between sexes. With this exploratory study, we aimed to investigate the effect of sex in MRI-based cerebral cortex morphometry in healthy young volunteers and how the variability in cortical measures might affect cognitive functioning in men and women. 76 young healthy volunteers (45 men and 31 women) underwent a 1.5 T MR scan and 53 of them completed a comprehensive cognitive battery. Overall no gross significant differences between sexes were found in cortical thickness, surface area and curvature indexes. However, there was a significant group by hemisphere interaction in the total cortical thickness (F(1,72)=5.02; p=0.03). A greater leftward asymmetry was observed in cortical thickness in males. Only females show significant associations between cortical thickness and cognitive functioning (IQ and executive functioning). In conclusion, our findings do not support the notion of sexual dimorphism in cortical mantle morphology. The results also suggest that variability in cortical thickness may affect cognitive functioning in females but not in males.
Collapse
Affiliation(s)
- Benedicto Crespo-Facorro
- University Hospital Marqués de Valdecilla, CIBERSAM, IFIMAV, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain.
| | - Roberto Roiz-Santiáñez
- University Hospital Marqués de Valdecilla, CIBERSAM, IFIMAV, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Rocío Pérez-Iglesias
- University Hospital Marqués de Valdecilla, CIBERSAM, IFIMAV, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Ignacio Mata
- University Hospital Marqués de Valdecilla, CIBERSAM, IFIMAV, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Jose Manuel Rodríguez-Sánchez
- University Hospital Marqués de Valdecilla, CIBERSAM, IFIMAV, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Diana Tordesillas-Gutiérrez
- University Hospital Marqués de Valdecilla, CIBERSAM, IFIMAV, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Victor Ortíz-García de la Foz
- University Hospital Marqués de Valdecilla, CIBERSAM, IFIMAV, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Rafael Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, CIBERSAM, Department of Medicine, University of Valencia, Valencia, Spain
| | - Elena Sánchez
- University Hospital Marqués de Valdecilla, Department of Neuroradiology, Santander, Spain
| | - Nancy Andreasen
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Vicent Magnotta
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA,Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, USA
| | - José Luis Vázquez-Barquero
- University Hospital Marqués de Valdecilla, CIBERSAM, IFIMAV, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|