1
|
Che XQ, Zhan SK, Song JJ, Deng YL, Wei-Liu, Peng-Huang, Jing-Zhang, Sun ZF, Che ZQ, Liu J. Altered immune pathways in patients of temporal lobe epilepsy with and without hippocampal sclerosis. Sci Rep 2024; 14:13661. [PMID: 38871732 PMCID: PMC11176392 DOI: 10.1038/s41598-024-63541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Over the past decades, the immune responses have been suspected of participating in the mechanisms for epilepsy. To assess the immune related pathway in temporal lobe epilepsy (TLE), we explored the altered immune pathways in TLE patients with and without hippocampal sclerosis (HS). We analyzed RNA-seq data from 3 TLE-HS and 3 TLE-nonHS patients, including identification of differentially expressed RNA, function pathway enrichment, the protein-protein interaction network and construction of ceRNA regulatory network. We illustrated the immune related landscape of molecules and pathways on human TLE-HS. Also, we identified several differential immune related genes like HSP90AA1 and SOD1 in TLE-HS patients. Further ceRNA regulatory network analysis found SOX2-OT connected to miR-671-5p and upregulated the target gene SPP1 in TLE-HS patients. Also, we identified both SOX2-OT and SPP1 were significantly upregulated in five different databases including TLE-HS patients and animal models. Our findings established the first immune related genes and possible regulatory pathways in TLE-HS patients and animal models, which provided a novel insight into disease pathogenesis in both patients and animal models. The immune related SOX2-OT/miR-671-5p/SPP1 axis may be the potential therapeutic target for TLE-HS.
Collapse
Affiliation(s)
- Xiang-Qian Che
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Kun Zhan
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao-Jiao Song
- Department of Teaching Office, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Lei Deng
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Liu
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Huang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Zhang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhan-Fang Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zai-Qian Che
- Department of Emergency, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Jun Liu
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Bonzanni M, Braga A, Saito T, Saido TC, Tesco G, Haydon PG. Adenosine deficiency facilitates CA1 synaptic hyperexcitability in the presymptomatic phase of a knock in mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590882. [PMID: 38712028 PMCID: PMC11071633 DOI: 10.1101/2024.04.24.590882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The disease's trajectory of Alzheimer's disease (AD) is associated with and worsened by hippocampal hyperexcitability. Here we show that during the asymptomatic stage in a knock in mouse model of Alzheimer's disease (APPNL-G-F/NL-G-F; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion. Both pharmacologic (adenosine kinase inhibitor) and non-pharmacologic (ketogenic diet) restorations of the adenosine tone successfully normalize hippocampal neuronal activity. Our results demonstrated that neuronal hyperexcitability during the asymptomatic stage of a KI model of Alzheimer's disease originated at the synaptic compartment and is associated with adenosine deficient tone. These results extend our comprehension of the hippocampal vulnerability associated with the asymptomatic stage of Alzheimer's disease.
Collapse
Affiliation(s)
- Mattia Bonzanni
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Alice Braga
- Department of Neuroscience, Tufts University, Boston, MA, USA
- Current address: Centre for Cardiovascular and 811 Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Philip G Haydon
- Department of Neuroscience, Tufts University, Boston, MA, USA
| |
Collapse
|
3
|
Brigo F, Lattanzi S. Diagnosing epileptic seizures in patients with Alzheimer's disease and deciding on the appropriate treatment plan. Expert Rev Neurother 2024; 24:361-370. [PMID: 38426448 DOI: 10.1080/14737175.2024.2325038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the predominant cause of dementia and a significant contributor to morbidity among the elderly. Patients diagnosed with AD face an increased risk of epileptic seizures. AREAS COVERED Herein, the authors review the challenges in the diagnosis of seizures in patients with AD, the risks of seizures related to medications used in AD and the pharmacological treatment of seizures in AD. The authors also provide the reader with their expert opinion on the subject matter and future perspectives. EXPERT OPINION Healthcare professionals should maintain a vigilant approach to suspecting seizures in AD patients. Acute symptomatic seizures triggered by metabolic disturbances, infections, toxins, or drug-related factors often have a low risk of recurrence. In such cases, addressing the underlying cause may suffice without initiating antiseizure medications (ASMs). However, unprovoked seizures in certain AD patients carry a higher risk of recurrence over time, warranting the use of ASMs. Although data is limited, both lamotrigine and levetiracetam appear to be reasonable choices for controlling seizures in elderly AD patients. Decisions should be informed by the best available evidence, the treating physician's clinical experience, and the patient's preferences.
Collapse
Affiliation(s)
- Francesco Brigo
- Innovation, Research and Teaching Service (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Bolzano, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
4
|
Wei YJJ, Shrestha N, Chiang C, DeKosky ST. Prevalence and trend of central nervous system-active medication polypharmacy among US commercially insured adults with vs without early-onset dementia: a multi-year cross-sectional study. Alzheimers Res Ther 2024; 16:30. [PMID: 38326897 PMCID: PMC10851564 DOI: 10.1186/s13195-024-01405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Limited data exist on the prevalence and trend of central nervous system (CNS)-active medication polypharmacy among adults with early-onset dementia (EOD) and whether these estimates differ for adults without EOD but with chronic pain, depression, or epilepsy, conditions managed by CNS-active medications. METHODS A multi-year, cross-sectional study using 2012-2021 MarketScan Commercial Claims data was conducted among adults aged 30 to 64 years with EOD and those without EOD but having a diagnosis of chronic pain, depression, or epilepsy as comparison groups. For each disease cohort, the primary outcome was CNS-active medication polypharmacy defined as concurrent use of ≥ 3 CNS-active medications on the US Beers Criteria list that overlapped for > 30 consecutive days during 12 months following a randomly selected medical encounter with the disease diagnosis. A separate multivariate modified Poisson regression model was used to estimate time trends in CNS polypharmacy in each disease cohort. Differences in trend estimates between EOD and non-EOD disease cohorts were examined by an interaction between EOD status and yearly time. RESULTS From 2013 to 2020, the annual crude prevalence of CNS polypharmacy was higher among adults with EOD (21.2%-25.0%) than adults with chronic pain (5.1%-5.9%), depression (14.8%-21.7%), or epilepsy (20.0%-22.3%). The adjusted annual prevalence of CNS polypharmacy among patients with EOD did not significantly change between 2013 and 2020 (adjusted prevalence rate ratio [aPRR], 0.94; 95% CI, 0.88-1.01), whereas a significant decreasing trend was observed among non-EOD cohorts with chronic pain (aPRR, 0.66; 95% CI, 0.63-0.69), depression (aPRR, 0.81; 95% CI, 0.77-0.85), and epilepsy (aPRR, 0.86; 95% CI, 0.83-0.89). The interaction analysis indicated that patients with epilepsy and depression (vs with EOD) had a decreasing probability of CNS-active medication polypharmacy over time (aPRR, 0.98 [95% CI, 0.98-0.99]; P < .001 for interaction for both conditions). CONCLUSIONS The prevalence of CNS polypharmacy among US commercially insured adults with EOD (vs without) was higher and remained unchanged from 2013 to 2021. Medication reviews of adults with EOD and CNS polypharmacy are needed to ensure that benefits outweigh risks associated with combined use of these treatments.
Collapse
Affiliation(s)
- Yu-Jung Jenny Wei
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, 500 West 12Th Avenue, Columbus, OH, 43210-1291, USA.
| | - Nistha Shrestha
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, 500 West 12Th Avenue, Columbus, OH, 43210-1291, USA
| | - ChienWei Chiang
- Department of Biomedical Informatics, College of Medicine and Wexner Medical Center, The Ohio State University, Ohio, 43210, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
5
|
Ueda S, Kuzuya A, Kawata M, Okawa K, Honjo C, Wada T, Matsumoto M, Goto K, Miyamoto M, Yonezawa A, Tanabe Y, Ikeda A, Kinoshita A, Takahashi R. Acute inhibition of AMPA receptors by perampanel reduces amyloid β-protein levels by suppressing β-cleavage of APP in Alzheimer's disease models. FASEB J 2023; 37:e23252. [PMID: 37850918 DOI: 10.1096/fj.202300837r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Hippocampal hyperexcitability is a promising therapeutic target to prevent Aβ deposition in AD since enhanced neuronal activity promotes presynaptic Aβ production and release. This article highlights the potential application of perampanel (PER), an AMPA receptor (AMPAR) antagonist approved for partial seizures, as a therapeutic agent for AD. Using transgenic AD mice combined with in vivo brain microdialysis and primary neurons under oligomeric Aβ-evoked neuronal hyperexcitability, the acute effects of PER on Aβ metabolism were investigated. A single oral administration of PER rapidly decreased ISF Aβ40 and Aβ42 levels in the hippocampus of J20, APP transgenic mice, without affecting the Aβ40 /Aβ42 ratio; 5 mg/kg PER resulted in declines of 20% and 31%, respectively. Moreover, PER-treated J20 manifested a marked decrease in hippocampal APP βCTF levels with increased FL-APP levels. Consistently, acute treatment of PER reduced sAPPβ levels, a direct byproduct of β-cleavage of APP, released to the medium in primary neuronal cultures under oligomeric Aβ-induced neuronal hyperexcitability. To further evaluate the effect of PER on ISF Aβ clearance, a γ-secretase inhibitor was administered to J20 1 h after PER treatment. PER did not influence the elimination of ISF Aβ, indicating that the acute effect of PER is predominantly on Aβ production. In conclusion, acute treatment of PER reduces Aβ production by suppressing β-cleavage of amyloid-β precursor protein effectively, indicating a potential effect of PER against Aβ pathology in AD.
Collapse
Affiliation(s)
- Sakiho Ueda
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kuzuya
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayoshi Kawata
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Kohei Okawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chika Honjo
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takafumi Wada
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Matsumoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuya Goto
- Department of Regulation of Neurocognitive Disorders, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Miyamoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Yasuto Tanabe
- Department of Regulation of Neurocognitive Disorders, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ayae Kinoshita
- School of Human Health Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Lu O, Kouser T, Skylar-Scott IA. Alzheimer's disease and epilepsy: shared neuropathology guides current and future treatment strategies. Front Neurol 2023; 14:1241339. [PMID: 37936917 PMCID: PMC10626492 DOI: 10.3389/fneur.2023.1241339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Epilepsy is a cause of profound disability in patients with Alzheimer's disease (AD). The risk of being diagnosed with AD increases the risk for epilepsy, and in parallel, a history of epilepsy increases the likelihood of the development of AD. This bi-directional relationship may be due to underlying shared pathophysiologic hallmarks, including decreased cerebrospinal fluid amyloid beta 42 (Aβ42), increased hyperphosphorylated tau protein, and hippocampal hyperexcitability. Additionally, there are practical treatment considerations in patients with co-morbid AD and epilepsy-namely, there is a higher risk of seizures associated with medications commonly prescribed for Alzheimer's disease patients, including antidepressants and antipsychotics such as trazodone, serotonin norepinephrine reuptake inhibitors (SNRIs), and first-generation neuroleptics. Anti-amyloid antibodies like aducanumab and lecanemab present new and unique considerations in patients with co-morbid AD and epilepsy given the risk of seizures associated with amyloid-related imaging abnormalities (ARIA) seen with this drug class. Finally, we identify and detail five active studies, including two clinical trials of levetiracetam in the respective treatment of cognition and neuropsychiatric features of AD, a study characterizing the prevalence of epilepsy in AD via prolonged EEG monitoring, a study characterizing AD biomarkers in late-onset epilepsy, and a study evaluating hyperexcitability in AD. These ongoing trials may guide future clinical decision-making and the development of novel therapeutics.
Collapse
Affiliation(s)
- Olivia Lu
- Stanford Neuroscience Clinical Research Group, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Taimur Kouser
- Stanford University School of Medicine, Palo Alto, CA, United States
| | - Irina A. Skylar-Scott
- Memory Disorders Division, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
7
|
Fang Y, Si X, Wang J, Wang Z, Chen Y, Liu Y, Yan Y, Tian J, Zhang B, Pu J. Alzheimer Disease and Epilepsy: A Mendelian Randomization Study. Neurology 2023; 101:e399-e409. [PMID: 37225432 PMCID: PMC10435057 DOI: 10.1212/wnl.0000000000207423] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Observational studies suggested a bidirectional relationship between Alzheimer disease (AD) and epilepsies. However, it remains debated whether and in which direction a causal association exists. This study aims to explore the relationship between genetic predisposition to AD, CSF biomarkers of AD (β-amyloid [Aβ] 42 and phosphorylated tau [pTau]), and epilepsies with 2-sample, bidirectional Mendelian randomization (MR) method. METHODS Genetic instruments were obtained from large-scale genome-wide meta-analysis of AD (Ncase/proxy = 111,326, Ncontrol = 677,663), CSF biomarkers of AD (Aβ42 and pTau, N = 13,116), and epilepsy (Ncase = 15,212, Ncontrol = 29,677) of European ancestry. Epilepsy phenotypes included all epilepsy, generalized epilepsy, focal epilepsy, childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy, generalized epilepsy with tonic-clonic seizures, focal epilepsy with hippocampal sclerosis (focal HS), and lesion-negative focal epilepsy. Main analyses were performed using generalized summary data-based MR. Sensitivity analyses included inverse variance weighted, MR pleiotropy residual sum and outlier, MR-Egger, weighted mode, and weighted median. RESULTS For forward analysis, genetic predisposition to AD was associated with an increased risk of generalized epilepsy (odds ratio [OR] 1.053, 95% CI 1.002-1.105, p = 0.038) and focal HS (OR 1.013, 95% CI 1.004-1.022, p = 0.004). These associations were consistent across sensitivity analyses and replicated using a separate set of genetic instruments from another AD genome-wide association study. For reverse analysis, there was a suggestive effect of focal HS on AD (OR 3.994, 95% CI 1.172-13.613, p = 0.027). In addition, genetically predicted lower CSF Aβ42 was associated with an increased risk of generalized epilepsy (β = 0.090, 95% CI 0.022-0.158, p = 0.010). DISCUSSION This MR study supports a causal link between AD, amyloid pathology, and generalized epilepsy. This study also indicates a close association between AD and focal HS. More effort should be made to screen seizure in AD, unravel its clinical implications, and explore its role as a putative modifiable risk factor.
Collapse
Affiliation(s)
- Yi Fang
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoli Si
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Wang
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyun Wang
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Chen
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Liu
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Yan
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Tian
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baorong Zhang
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiali Pu
- From the Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Scambray KA, Nguyen HL, Sajjadi SA. Association of vascular and degenerative brain pathologies and past medical history from the National Alzheimer's Coordinating Center Database. J Neuropathol Exp Neurol 2023; 82:390-401. [PMID: 36947583 PMCID: PMC10117154 DOI: 10.1093/jnen/nlad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The relationship between past medical histories (PMH) and dementia-related neuropathologies is not well understood. Using the National Alzheimer's Coordinating Center (NACC) database, we explored the relationship between patient-reported PMH and various vascular and degenerative neuropathologies. We examined the following PMH: transient ischemic attack (TIA), stroke, traumatic brain injury, seizures, hypertension, cardiovascular events, hypercholesterolemia, B12 deficiency, diabetes mellitus, and thyroid disease. We dichotomized the following neuropathologies: atherosclerosis, arteriolosclerosis, cerebral amyloid angiopathy (CAA), Alzheimer disease neuropathology (ADNP), Lewy bodies (LB), hippocampal sclerosis, frontotemporal lobar degeneration (FTLD), and TAR DNA-binding protein-43 (TDP-43). Separate logistic regression models assessed the relationship between the outcome of individual neuropathologies and all PMHs. Additional logistic regressions were stratified by sex to further examine these associations. Hypertension history was associated with an increased likelihood of atherosclerosis (OR = 1.7) and arteriolosclerosis (OR = 1.3), but decreased odds of ADNP (OR = 0.81), CAA (OR = 0.79), and LB (OR = 0.78). History of TIA was associated with an increased likelihood of atherosclerosis (OR = 1.3) and arteriolosclerosis (OR = 1.4) and lower odds of ADNP (OR = 0.72). Seizure history was associated with an increased likelihood of ADNP (OR = 1.9) and lower odds of FTLD (OR = 0.49). Hypertension history was associated with a greater likelihood of vascular pathologies yet a lower likelihood of ADNP and other neurodegenerative pathologies.
Collapse
Affiliation(s)
- Kiana A Scambray
- Department of Neurology, University of California, Irvine, Irvine, California, USA
| | - Hannah L Nguyen
- Department of Neurology, University of California, Irvine, Irvine, California, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, Irvine, California, USA
- Department of Pathology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
9
|
Yang F, Chen L, Yu Y, Xu T, Chen L, Yang W, Wu Q, Han Y. Alzheimer's disease and epilepsy: An increasingly recognized comorbidity. Front Aging Neurosci 2022; 14:940515. [PMID: 36438002 PMCID: PMC9685172 DOI: 10.3389/fnagi.2022.940515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Both Alzheimer's disease (AD) and epilepsy are common chronic diseases in older people. Seizures and epileptiform discharges are very prevalent in AD and can occur since any stage of AD. Increasing evidence indicates that AD and epilepsy may be comorbid. Several factors may be related to the underlying mechanism of the comorbidity. Identifying seizures in patients with AD is a challenge because seizures are often clinically non-motor and may overlap with some AD symptoms. Not only seizures but also epileptiform discharges may exacerbate the cognitive decline in AD patients, highlighting the importance of early recognition and treatment. This review provides a comprehensive overview of seizures in AD from multiple aspects to provide more insight.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanbing Han
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Early death in a mouse model of Alzheimer's disease exacerbated by microglial loss of TAM receptor signaling. Proc Natl Acad Sci U S A 2022; 119:e2204306119. [PMID: 36191221 PMCID: PMC9564325 DOI: 10.1073/pnas.2204306119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recurrent seizure is a common comorbidity in early-stage Alzheimer's disease (AD) and may contribute to AD pathogenesis and cognitive decline. Similarly, many mouse models of Alzheimer's disease that overproduce amyloid beta are prone to epileptiform seizures that may result in early sudden death. We studied one such model, designated APP/PS1, and found that mutation of the TAM receptor tyrosine kinase (RTK) Mer or its ligand Gas6 greatly exacerbated early death. Lethality was tied to violent seizures that appeared to initiate in the dentate gyrus (DG) of the hippocampus, where Mer plays an essential role in the microglial phagocytosis of both apoptotic and newborn cells normally generated during adult neurogenesis. We found that newborn DG neurons and excitatory synapses between the DG and the cornu ammonis field 3 (CA3) field of the hippocampus were increased in TAM-deficient mice, and that premature death and adult neurogenesis in these mice were coincident. In contrast, the incidence of lethal seizures and the deposition of dense-core amyloid plaques were strongly anticorrelated. Together, these results argue that TAM-mediated phagocytosis sculpts synaptic connectivity in the hippocampus, and that seizure-inducing amyloid beta polymers are present prior to the formation of dense-core plaques.
Collapse
|
11
|
Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 2022; 12:257. [PMID: 35732622 PMCID: PMC9217953 DOI: 10.1038/s41398-022-02024-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to loss of cognitive abilities and ultimately, death. With no cure available, limited treatments mostly focus on symptom management. Identifying early changes in the disease course may provide new therapeutic targets to halt or reverse disease progression. Clinical studies have shown that cortical and hippocampal hyperactivity are a feature shared by patients in the early stages of disease, progressing to hypoactivity during later stages of neurodegeneration. The exact mechanisms causing neuronal excitability changes are not fully characterized; however, animal and cell models have provided insights into some of the factors involved in this phenotype. In this review, we summarize the evidence for neuronal excitability changes over the course of AD onset and progression and the molecular mechanisms underpinning these differences. Specifically, we discuss contributors to aberrant neuronal excitability, including abnormal levels of intracellular Ca2+ and glutamate, pathological amyloid β (Aβ) and tau, genetic risk factors, including APOE, and impaired inhibitory interneuron and glial function. In light of recent research indicating hyperexcitability could be a predictive marker of cognitive dysfunction, we further argue that the hyperexcitability phenotype could be leveraged to improve the diagnosis and treatment of AD, and present potential targets for future AD treatment development.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Natalie Matosin
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia. .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
12
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
13
|
B. Szabo A, Cretin B, Gérard F, Curot J, J. Barbeau E, Pariente J, Dahan L, Valton L. Sleep: The Tip of the Iceberg in the Bidirectional Link Between Alzheimer's Disease and Epilepsy. Front Neurol 2022; 13:836292. [PMID: 35481265 PMCID: PMC9035794 DOI: 10.3389/fneur.2022.836292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that a pathophysiological link might exist between Alzheimer's disease (AD) and epilepsy dates back to the identification of the first cases of the pathology itself and is now strongly supported by an ever-increasing mountain of literature. An overwhelming majority of data suggests not only a higher prevalence of epilepsy in Alzheimer's disease compared to healthy aging, but also that AD patients with a comorbid epileptic syndrome, even subclinical, have a steeper cognitive decline. Moreover, clinical and preclinical investigations have revealed a marked sleep-related increase in the frequency of epileptic activities. This characteristic might provide clues to the pathophysiological pathways underlying this comorbidity. Furthermore, the preferential sleep-related occurrence of epileptic events opens up the possibility that they might hasten cognitive decline by interfering with the delicately orchestrated synchrony of oscillatory activities implicated in sleep-related memory consolidation. Therefore, we scrutinized the literature for mechanisms that might promote sleep-related epileptic activity in AD and, possibly dementia onset in epilepsy, and we also aimed to determine to what degree and through which processes such events might alter the progression of AD. Finally, we discuss the implications for patient care and try to identify a common basis for methodological considerations for future research and clinical practice.
Collapse
Affiliation(s)
- Anna B. Szabo
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- *Correspondence: Anna B. Szabo
| | - Benjamin Cretin
- Clinical Neuropsychology Unit, Neurology Department, CM2R (Memory Resource and Research Centre), University Hospital of Strasbourg, Strasbourg, France
- CNRS, ICube Laboratory, UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), Team IMIS, University of Strasbourg, Strasbourg, France
- CMRR d'Alsace, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Pôle Tête et Cou, Strasbourg, France
| | - Fleur Gérard
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Jonathan Curot
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuel J. Barbeau
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
| | - Jérémie Pariente
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Toulouse NeuroImaging Center (ToNIC), INSERM-University of Toulouse Paul Sabatier, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de Recherche Cerveau & Cognition (CerCo), UMR 5549, CNRS-UPS, Toulouse, France
- Neurology Department, Hôpital Purpan Centre Hospitalier Universitaire de Toulouse, Toulouse, France
- Luc Valton
| |
Collapse
|
14
|
Teplyshova AM, Datieva VK. [Alzheimer disease and epilepsy]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:23-29. [PMID: 34870910 DOI: 10.17116/jnevro202112110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer Disease (AD) is a progressive neurodegenerative disorder characterized by loss of memory, difficulty in thinking, changes in behavior and personality disorders. The risk of developing epileptic seizures (ES) in patients with AD increases significantly. Animal and human studies have shown a close relationship between the pathogenesis of ES and AD. The exact prevalence of ES in AD remains unclear due to methodological difficulties, in particular, detection of ES in patients with cognitive impairment. EP types differ in sporadic and hereditary forms of AD. Antiepileptic therapy in AD has its own characteristics. Certain antiepileptic drugs can have a positive effect on cognitive function.
Collapse
Affiliation(s)
| | - V K Datieva
- State Outpatient Clinic No 62, Moscow, Russia
| |
Collapse
|
15
|
Haoudy S, Jonveaux T, Puisieux S, Epstein J, Hopes L, Maillard L, Aron O, Tyvaert L. Epilepsy in Early Onset Alzheimer's Disease. J Alzheimers Dis 2021; 85:615-626. [PMID: 34864663 DOI: 10.3233/jad-210681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Epilepsy seems to be an important comorbidity in patients with early onset Alzheimer's disease (EOAD). Currently, seizures are still underestimated in this population. However, seizures may interact with AD evolution with possible acceleration of cognitive decline. OBJECTIVE To better define the epileptic disorders observed in patients with EOAD. METHODS All patients diagnosed as EOAD in our hospital between 2013 and 2019 with positive CSF biomarkers for AD were selected. The usual follow-up was extended with a 3-h EEG and a consultation with an epilepsy expert. Information on epilepsy and AD were collected and analyzed. RESULTS Among the 25 included patients, 10 (40%) were classified as epileptic. Seizure types were tonic-clonic (25%), typical temporal seizures (25%), myoclonus (25%), focal extra-temporal seizures (8%), and other seizure types (17%). AD-E patients had a significant lower MMSE (15.3±8.4 AD-E versus 22.1±5.1 AD-NE, p = 0.036) and a lower autonomy (IADL 4.1±2.7 AD-E versus 6.4±1.9 AD-NE, p = 0.046) at AD diagnosis with comparable ages between AD-E and AD-NE. Epileptic patients seemed to present a faster cognitive decline ([ΔMMSE per year 1.7±1.3 AD-E versus 0.9±1.4 AD-NE; p = 0.09). All patients with severe cognitive impairment (MMSE ≤ 10) had an epileptic comorbidity. CONCLUSION Epilepsy is a frequent comorbidity in EOAD patients, with a percentage of 40%in our study. This comorbidity may be associated with a severe form of EOAD. The role of epilepsy in the acceleration of cognitive decline and the positive impact of antiepileptic drugs on cognition need further research.
Collapse
Affiliation(s)
- Sarah Haoudy
- Department of Neurology, University Hospital Nancy, France
| | - Thérèse Jonveaux
- Department of Neurology, University Hospital Nancy, France.,CMRR, University Hospital Nancy, France.,Laboratoire Lorrain de Psychologie et deNeurosciences de la Dynamique des Comportements 2LPN EA 7489
| | | | - Jonathan Epstein
- Department of Clinical Epidemiology, INSERM, University of Lorraine and University Hospital Nancy, France
| | - Lucie Hopes
- Department of Neurology, University Hospital Nancy, France
| | - Louis Maillard
- Department of Neurology, University Hospital Nancy, France.,UMR 7039 CRAN Nancy, France.,University of Lorraine Nancy, France
| | - Olivier Aron
- Department of Neurology, University Hospital Nancy, France.,UMR 7039 CRAN Nancy, France
| | - Louise Tyvaert
- Department of Neurology, University Hospital Nancy, France.,UMR 7039 CRAN Nancy, France.,University of Lorraine Nancy, France
| |
Collapse
|
16
|
Zelano J. Recurrence risk after a first remote symptomatic seizure in adults: Epilepsy or not? Epilepsia Open 2021; 6:634-644. [PMID: 34561959 PMCID: PMC8633470 DOI: 10.1002/epi4.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022] Open
Abstract
The ILAE practical definition of epilepsy has a one seizure possibility to diagnose epilepsy after a first seizure if the recurrence risk is very high. The recurrence risk after a first seizure in brain disorders (first remote seizure) is often high, but varies with etiology, so more specific information is needed for clinical practice. This review describes etiology-specific recurrence risks in adults with a first remote seizure in stroke, traumatic brain injury, infections, dementia, multiple sclerosis, and tumors. Most studies are short, single center, and retrospective. Inclusion criteria, outcome ascertainment, and results vary. Few patient categories are clearly above the epilepsy threshold of recurrence risk, and there are surprisingly little data for important etiologies like brain infections. Beside stroke, severe TBI could have a sufficiently high recurrence risk for early epilepsy diagnosis, but more studies are needed, preferably prospective ones. The literature is uninformative regarding which seizures qualify as remote. The clinical implication of the low level of available evidence is that for other etiologies than stroke, seizure recurrence remains the most appropriate indicator of epilepsy for most patients with a first remote seizure. Nonetheless, there are worrying indications of a diagnostic drift, which puts patients with a preexisting brain disorder at risk of misdiagnosis. Although there are drawbacks to an intermediate term like "possible epilepsy," it could perhaps be useful in cases when the recurrence risk is high, but epilepsy criteria are not definitely met after a first remote seizure.
Collapse
Affiliation(s)
- Johan Zelano
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Wallenberg Center of Molecular and Translational Medicine, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
17
|
Vöglein J, Kostova I, Arzberger T, Noachtar S, Dieterich M, Herms J, Schmitz P, Ruf V, Windl O, Roeber S, Simons M, Höglinger GU, Danek A, Giese A, Levin J. Seizure prevalence in neurodegenerative diseases-a study of autopsy proven cases. Eur J Neurol 2021; 29:12-18. [PMID: 34472165 DOI: 10.1111/ene.15089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Knowledge about the seizure prevalence in the whole symptomatic course, from disease onset to death, in neurodegenerative diseases (ND) is lacking. Therefore, the aim was to investigate seizure prevalence and associated clinical implications in neuropathologically diagnosed ND. METHODS Clinical records of cases from the Neurobiobank Munich, Germany, were analyzed. Neuropathological diagnoses of the assessed cases included Alzheimer disease (AD), corticobasal degeneration (CBD), frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Seizure prevalence during the whole symptomatic disease phase was assessed and compared amongst ND. Associations between first clinical symptom and seizure prevalence and between seizures and disease duration were examined. RESULTS In all, 454 patients with neuropathologically diagnosed ND and with available and meaningful clinical records were investigated (AD, n = 144; LBD, n = 103; PSP, n = 93; FTLD, n = 53; MSA, n = 36; CBD, n = 25). Seizure prevalence was 31.3% for AD, 20.0% for CBD, 12.6% for LBD, 11.3% for FTLD, 8.3% for MSA and 7.5% for PSP. Seizure prevalence was significantly higher in AD compared to FTLD (p = 0.005), LBD (p = 0.001), MSA (p = 0.005) and PSP (p < 0.001). No other significant differences regarding seizure prevalence were found between the studied ND. Cognitive first symptoms in ND were associated with an increased seizure prevalence (21.1% vs. 11.0% in patients without cognitive first symptoms) and motor first symptoms with a decreased seizure prevalence (10.3% vs. 20.5% in patients without motor first symptoms). Seizures were associated with a longer disease duration in MSA (12.3 vs. 7.0 years in patients without seizures; p = 0.017). CONCLUSIONS Seizures are a clinically relevant comorbidity in ND, particularly in AD. Knowledge of the first clinical symptom in ND may allow for estimation of seizure risk.
Collapse
Affiliation(s)
- Jonathan Vöglein
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Irena Kostova
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Department for Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Soheyl Noachtar
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peer Schmitz
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Otto Windl
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Technical University of Munich, Munich, Germany.,Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
18
|
Tok S, Ahnaou A, Drinkenburg W. Functional Neurophysiological Biomarkers of Early-Stage Alzheimer's Disease: A Perspective of Network Hyperexcitability in Disease Progression. J Alzheimers Dis 2021; 88:809-836. [PMID: 34420957 PMCID: PMC9484128 DOI: 10.3233/jad-210397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer’s disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD.
Collapse
Affiliation(s)
- Sean Tok
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| | - Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| |
Collapse
|
19
|
Johnson EL, Krauss GL, Kucharska-Newton A, Lam AD, Sarkis R, Gottesman RF. Mortality in Patients With Late-Onset Epilepsy: Results From the Atherosclerosis Risk in Communities Study. Neurology 2021; 97:e1132-e1140. [PMID: 34282048 DOI: 10.1212/wnl.0000000000012483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the risk of mortality and causes of death in persons with late-onset epilepsy (LOE) compared to those without epilepsy in a community-based sample, adjusting for demographics and comorbid conditions. METHODS This is an analysis of the prospective Atherosclerosis Risk in Communities (ARIC) study, initiated in 1987-1989 among 15,792 mostly black and white men and women in 4 U.S. communities. We used Centers for Medicare Services fee-for-service claims codes to identify cases of incident epilepsy starting at or after age 67. We used Cox proportional hazards analysis to identify the hazard of mortality associated with LOE and to adjust for demographics and vascular risk factors. We used death certificate data to identify dates and causes of death. RESULTS Analyses included 9090 participants, of whom 678 developed LOE during median 11.5 years of follow-up after age 67. Participants who developed LOE were at an increased hazard of mortality compared to those who did not, with adjusted hazard ratio 2.39 (95% CI 2.12-2.71). We observed excess mortality due to stroke, dementia, neurologic conditions, and end-stage renal disease in participants with compared to without LOE. Only 4 deaths (1.1%) were directly attributed to seizure-related causes. CONCLUSIONS Persons who develop LOE are at increased risk of death compared to those without epilepsy, even after adjusting for comorbidities. The majority of this excess mortality is due to stroke and dementia.
Collapse
Affiliation(s)
- Emily L Johnson
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Gregory L Krauss
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Anna Kucharska-Newton
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Epidemiology, University of Kentucky, Lexington, KY
| | - Alice D Lam
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Rani Sarkis
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD.,Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD
| |
Collapse
|
20
|
Tombini M, Assenza G, Ricci L, Lanzone J, Boscarino M, Vico C, Magliozzi A, Di Lazzaro V. Temporal Lobe Epilepsy and Alzheimer's Disease: From Preclinical to Clinical Evidence of a Strong Association. J Alzheimers Dis Rep 2021; 5:243-261. [PMID: 34113782 PMCID: PMC8150253 DOI: 10.3233/adr-200286] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increasing evidence coming from both experimental and humans' studies strongly suggest the existence of a link between epilepsy, in particular temporal lobe epilepsy (TLE), and Alzheimer's disease (AD). Patients with mild cognitive impairment and AD are more prone to have seizures, and seizures seem to facilitate amyloid-β and tau deposits, thus promoting neurodegenerative processes. Consistent with this view, long-lasting drug-resistant TLE and AD have been shown to share several pathological and neuroimaging features. Even if studies addressing prevalence of interictal and subclinical epileptiform activity in these patients are not yet conclusive, their findings raise the possibility that epileptiform activity might negatively impact memory and hasten cognitive decline, either directly or by association with unrecognized silent seizures. In addition, data about detrimental effect of network hyperexcitability in temporal regions in the premorbid and early stages ofADopen up newtherapeutic opportunities for antiseizure medications and/or antiepileptic strategies that might complement or enhance existing therapies, and potentially modify disease progression. Here we provide a review of evidence linking epileptiform activity, network hyperexcitability, and AD, and their role promoting and accelerating neurodegenerative process. Finally, the effects of antiseizure medications on cognition and their optimal administration in patients with AD are summarized.
Collapse
Affiliation(s)
- Mario Tombini
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Giovanni Assenza
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Jacopo Lanzone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Marilisa Boscarino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Carlo Vico
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Alessandro Magliozzi
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
21
|
Xu Y, Lavrencic L, Radford K, Booth A, Yoshimura S, Anstey KJ, Anderson CS, Peters R. Systematic review of coexistent epileptic seizures and Alzheimer's disease: Incidence and prevalence. J Am Geriatr Soc 2021; 69:2011-2020. [PMID: 33740274 DOI: 10.1111/jgs.17101] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND/OBJECTIVES Coexistent seizures add complexity to the burden of Alzheimer's disease (AD). We aim to estimate the incidence and prevalence of coexistent seizures and AD and summarize characteristics. DESIGN A systematic review and meta-analysis (PROSPERO protocol registration CRD42020150479). SETTING Population-, community-, hospital-, or nursing home-based. PARTICIPANTS AND MEASUREMENTS Thirty-nine studies reporting on seizure incidence and prevalence in 21,198 and 380,777 participants with AD, respectively, and AD prevalence in 727,446 participants with seizures. When statistical heterogeneity and inconsistency (assessed by Q statistic and I2 ) were not shown, rates were synthesized using random effect. RESULTS Studies were conducted in Australia, Brazil, Finland, France, Ireland, Italy, Japan, Netherlands, Portugal, Sweden, Taiwan, United Kingdom, and United States. The incidence of seizures among people with clinically diagnosed AD ranged from 4.2 to 31.5 per 1000 person-years. Prevalence of seizures among people with clinically diagnosed AD ranged from 1.5% to 12.7% generally, but it rose to the highest (49.5% of those with early-onset AD) in one study. Meta-analysis reported a combined seizure prevalence rate among people with pathologically verified AD at 16% (95% confidence interval [CI] 14-19). Prevalence of seizure in autosomal dominant AD (ADAD) ranged from 2.8% to 41.7%. Being younger was associated with higher risk of seizure occurrence. Eleven percent of people with adult-onset seizures had AD (95%CI, 7-14). CONCLUSION Seizures are common in those with AD, and seizure monitoring may be particularly important for younger adults and those with ADAD.
Collapse
Affiliation(s)
- Ying Xu
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Louise Lavrencic
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kylie Radford
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew Booth
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Sohei Yoshimura
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kaarin J Anstey
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Craig S Anderson
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,The George Institute for Global Health, Peking University Health Science Centre, Beijing, China.,Neurology Department, Sydney Local Area Health District, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Ruth Peters
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,School of Psychology, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia.,School of Public Health, Imperial College London, London, UK
| |
Collapse
|
22
|
Lamoureux L, Marottoli FM, Tseng KY, Tai LM. APOE4 Promotes Tonic-Clonic Seizures, an Effect Modified by Familial Alzheimer's Disease Mutations. Front Cell Dev Biol 2021; 9:656521. [PMID: 33796539 PMCID: PMC8007905 DOI: 10.3389/fcell.2021.656521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Seizures are emerging as a common symptom in Alzheimer's disease (AD) patients, often attributed to high levels of amyloid β (Aβ). However, the extent that AD disease risk factors modulate seizure activity in aging and AD-relevant contexts is unclear. APOE4 is the greatest genetic risk factor for AD and has been linked to seizures independent of AD and Aβ. The goal of the present study was to evaluate the role of APOE genotype in modulating seizures in the absence and presence of high Aβ levels in vivo. To achieve this goal, we utilized EFAD mice, which express human APOE3 or APOE4 in the absence (EFAD-) or presence (EFAD+) of familial AD mutations that result in Aβ overproduction. When quantified during cage change day, we found that unlike APOE3, APOE4 is associated with tonic-clonic seizures. Interestingly, there were lower tonic-clonic seizures in E4FAD+ mice compared to E4FAD- mice. Restraint handing and auditory stimuli failed to recapitulate the tonic-clonic phenotype in EFAD mice that express APOE4. However, after chemical-induction with pentylenetetrazole, there was a higher incidence of tonic-clonic seizures with APOE4 compared to APOE3. Interestingly, the distribution of seizures to the tonic-clonic phenotype was higher with FAD mutations. These data support that APOE4 is associated with higher tonic-clonic seizures in vivo, and that FAD mutations impact tonic-clonic seizures in a paradigm dependent manner.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Biological Resources Laboratory, University of Illinois at Chicago, Chicago, IL, United States
| | - Felecia M Marottoli
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Leon M Tai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Keret O, Hoang TD, Xia F, Rosen HJ, Yaffe K. Association of Late-Onset Unprovoked Seizures of Unknown Etiology With the Risk of Developing Dementia in Older Veterans. JAMA Neurol 2021; 77:710-715. [PMID: 32150220 DOI: 10.1001/jamaneurol.2020.0187] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance The incidence of unprovoked seizures and epilepsy increases considerably in late life, with approximately one-third of seizures being of unknown etiology. While individuals with dementia have a high risk of developing unprovoked seizures, it is unknown whether older adults with late-onset unprovoked seizures of unknown etiology (LOSU) are at risk of developing dementia. Objective To determine whether incident LOSU is associated with a higher risk of dementia among older US veterans. Design, Setting, and Participants This retrospective multicenter cohort study was conducted using data from US Veterans Health Administration medical centers from October 2001 to September 2015. Data were generated from all veteran inpatient and outpatient encounters that occurred within Veterans Health Administration facilities. A random sample of 941 524 veterans 55 years and older was generated. A total of 649 262 veterans previously diagnosed (using International Classification of Diseases, Ninth Revision, Clinical Modification codes) with dementia, unprovoked seizures, epilepsy, and conditions that could lead to seizures (brain tumors, trauma, infections, stroke, and neurotoxin exposure) as well as veterans without follow-up data were excluded. Data were analyzed from October 2018 to July 2019. Exposures Late-onset unprovoked seizures of unknown etiology were defined as a new diagnosis of epilepsy or unprovoked seizures without a diagnosis of a secondary cause for seizures. Incident LOSU was assessed during a 5-year baseline period. Main Outcomes and Measures Veterans were assessed for incident dementia diagnosis during an outcome period. Fine-Gray proportional hazards models were used to determine whether LOSU was associated with greater risk of incident dementia. Models were adjusted for demographic variables, cardiovascular risk factors, depression, and traumatic brain injury. Results Of the 292 262 included veterans, 282 628 (96.7%) were male, and the mean (SD) age was 73.0 [8.8] years. During the baseline period, 2166 veterans developed LOSU. The mean (SD) follow-up after LOSU was 6.1 (2.9) years. After multivariable adjustment, veterans with LOSU had greater risk of dementia compared with veterans without seizures (hazard ratio, 1.89; 95% CI, 1.62-2.20). A sensitivity analysis imposing a 2-year lag between incident LOSU and dementia diagnosis led to similar results. Conclusions and Relevance These findings suggest LOSU in older veterans is associated with a 2-fold risk of developing dementia. While seizures are commonly thought to occur in late stages of dementia, these findings suggest unexplained seizures in older adults may be a first sign of neurodegenerative disease.
Collapse
Affiliation(s)
- Ophir Keret
- Global Brain Health Institute, University of California, San Francisco
| | - Tina D Hoang
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Northern California Institute for Research and Education, The Veterans Health Research Institute, San Francisco, California
| | - Feng Xia
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Northern California Institute for Research and Education, The Veterans Health Research Institute, San Francisco, California
| | - Howard J Rosen
- Global Brain Health Institute, University of California, San Francisco.,Department of Neurology, University of California, San Francisco
| | - Kristine Yaffe
- Global Brain Health Institute, University of California, San Francisco.,San Francisco Veterans Affairs Health Care System, San Francisco, California.,Northern California Institute for Research and Education, The Veterans Health Research Institute, San Francisco, California.,Department of Neurology, University of California, San Francisco.,Department of Psychiatry, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| |
Collapse
|
24
|
|
25
|
Ghoweri AO, Ouillette L, Frazier HN, Anderson KL, Lin RL, Gant JC, Parent R, Moore S, Murphy GG, Thibault O. Electrophysiological and Imaging Calcium Biomarkers of Aging in Male and Female 5×FAD Mice. J Alzheimers Dis 2020; 78:1419-1438. [PMID: 33164928 PMCID: PMC7836067 DOI: 10.3233/jad-200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND In animal models and tissue preparations, calcium dyshomeostasis is a biomarker of aging and Alzheimer's disease that is associated with synaptic dysfunction, neuritic pruning, and dysregulated cellular processes. It is unclear, however, whether the onset of calcium dysregulation precedes, is concurrent with, or is the product of pathological cellular events (e.g., oxidation, amyloid-β production, and neuroinflammation). Further, neuronal calcium dysregulation is not always present in animal models of amyloidogenesis, questioning its reliability as a disease biomarker. OBJECTIVE Here, we directly tested for the presence of calcium dysregulation in dorsal hippocampal neurons in male and female 5×FAD mice on a C57BL/6 genetic background using sharp electrodes coupled with Oregon-green Bapta-1 imaging. We focused on three ages that coincide with the course of amyloid deposition: 1.5, 4, and 10 months old. METHODS Outcome variables included measures of the afterhyperpolarization, short-term synaptic plasticity, and calcium kinetics during synaptic activation. Quantitative analyses of spatial learning and memory were also conducted using the Morris water maze. Main effects of sex, age, and genotype were identified on measures of electrophysiology and calcium imaging. RESULTS Measures of resting Oregon-green Bapta-1 fluorescence showed significant reductions in the 5×FAD group compared to controls. Deficits in spatial memory, along with increases in Aβ load, were detectable at older ages, allowing us to test for temporal associations with the onset of calcium dysregulation. CONCLUSION Our results provide evidence that reduced, rather than elevated, neuronal calcium is identified in this 5×FAD model and suggests that this surprising result may be a novel biomarker of AD.
Collapse
Affiliation(s)
- Adam O Ghoweri
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lara Ouillette
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Hilaree N Frazier
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Katie L Anderson
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ruei-Lung Lin
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - John C Gant
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Rachel Parent
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Shannon Moore
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,5037 BSRB, Molecular and Integrative Physiology, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Geoffrey G Murphy
- 5037 BSRB, Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,5037 BSRB, Molecular and Integrative Physiology, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Thibault
- UKMC MS313, Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
26
|
Risk of epilepsy diagnosis after a first unprovoked seizure in dementia. Seizure 2020; 82:118-124. [DOI: 10.1016/j.seizure.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 09/03/2020] [Indexed: 11/21/2022] Open
|
27
|
Johnson EL, Krauss GL, Kucharska-Newton A, Albert MS, Brandt J, Walker KA, Yasar S, Knopman DS, Vossel KA, Gottesman RF. Dementia in late-onset epilepsy: The Atherosclerosis Risk in Communities study. Neurology 2020; 95:e3248-e3256. [PMID: 33097597 DOI: 10.1212/wnl.0000000000011080] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To determine the risk of dementia after the development of late-onset epilepsy. METHODS We used data from the Atherosclerosis Risk in Communities (ARIC) cohort study, which started in 1987 to 1989 with 15,792 mostly Black and White men and women from 4 US communities. We identified late-onset epilepsy (LOE; seizures starting at age 67 or later) from linked Medicare claims data. We used a Cox proportional hazards regression model to evaluate associations between LOE and dementia through 2017 as ascertained from neuropsychological testing, interviews, and hospital discharge surveillance, and we used multinomial logistic regression to assess the risk of dementia and mild cognitive impairment in the subset with full neuropsychological assessments available. We adjusted for demographics and vascular and Alzheimer disease risk factors. RESULTS Of 9,033 ARIC participants with sufficient Medicare coverage data (4,980 [55.1%] female, 1993 [22.1%] Black), 671 met the definition of LOE. Two hundred seventy-nine (41.6%) participants with and 1,408 (16.8%) without LOE developed dementia (p < 0.001). After a diagnosis of LOE, the adjusted hazard ratio for developing subsequent dementia was 3.05 (95% confidence interval 2.65-3.51). The median time to dementia ascertainment after the onset of LOE was 3.66 years (quartile 1-3, 1.28-8.28 years). INTERPRETATION The risk of incident dementia is substantially elevated in individuals with LOE. Further work is needed to explore causes for the increased risk of dementia in this growing population.
Collapse
Affiliation(s)
- Emily L Johnson
- From the Departments of Neurology (E.L.H., G.L.K., M.S.A., K.A.W., R.F.G.), Psychiatry (J.B.), Medicine (S.Y.), and Epidemiology (R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.K.-N.), University of North Carolina at Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky, Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester; and N. Bud Grossman Center for Memory Research and Care (K.A.V.), Department of Neurology, and Institute for Translational Neuroscience (K.A.V.), University of Minnesota, Minneapolis.
| | - Gregory L Krauss
- From the Departments of Neurology (E.L.H., G.L.K., M.S.A., K.A.W., R.F.G.), Psychiatry (J.B.), Medicine (S.Y.), and Epidemiology (R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.K.-N.), University of North Carolina at Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky, Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester; and N. Bud Grossman Center for Memory Research and Care (K.A.V.), Department of Neurology, and Institute for Translational Neuroscience (K.A.V.), University of Minnesota, Minneapolis
| | - Anna Kucharska-Newton
- From the Departments of Neurology (E.L.H., G.L.K., M.S.A., K.A.W., R.F.G.), Psychiatry (J.B.), Medicine (S.Y.), and Epidemiology (R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.K.-N.), University of North Carolina at Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky, Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester; and N. Bud Grossman Center for Memory Research and Care (K.A.V.), Department of Neurology, and Institute for Translational Neuroscience (K.A.V.), University of Minnesota, Minneapolis
| | - Marilyn S Albert
- From the Departments of Neurology (E.L.H., G.L.K., M.S.A., K.A.W., R.F.G.), Psychiatry (J.B.), Medicine (S.Y.), and Epidemiology (R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.K.-N.), University of North Carolina at Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky, Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester; and N. Bud Grossman Center for Memory Research and Care (K.A.V.), Department of Neurology, and Institute for Translational Neuroscience (K.A.V.), University of Minnesota, Minneapolis
| | - Jason Brandt
- From the Departments of Neurology (E.L.H., G.L.K., M.S.A., K.A.W., R.F.G.), Psychiatry (J.B.), Medicine (S.Y.), and Epidemiology (R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.K.-N.), University of North Carolina at Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky, Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester; and N. Bud Grossman Center for Memory Research and Care (K.A.V.), Department of Neurology, and Institute for Translational Neuroscience (K.A.V.), University of Minnesota, Minneapolis
| | - Keenan A Walker
- From the Departments of Neurology (E.L.H., G.L.K., M.S.A., K.A.W., R.F.G.), Psychiatry (J.B.), Medicine (S.Y.), and Epidemiology (R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.K.-N.), University of North Carolina at Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky, Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester; and N. Bud Grossman Center for Memory Research and Care (K.A.V.), Department of Neurology, and Institute for Translational Neuroscience (K.A.V.), University of Minnesota, Minneapolis
| | - Sevil Yasar
- From the Departments of Neurology (E.L.H., G.L.K., M.S.A., K.A.W., R.F.G.), Psychiatry (J.B.), Medicine (S.Y.), and Epidemiology (R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.K.-N.), University of North Carolina at Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky, Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester; and N. Bud Grossman Center for Memory Research and Care (K.A.V.), Department of Neurology, and Institute for Translational Neuroscience (K.A.V.), University of Minnesota, Minneapolis
| | - David S Knopman
- From the Departments of Neurology (E.L.H., G.L.K., M.S.A., K.A.W., R.F.G.), Psychiatry (J.B.), Medicine (S.Y.), and Epidemiology (R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.K.-N.), University of North Carolina at Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky, Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester; and N. Bud Grossman Center for Memory Research and Care (K.A.V.), Department of Neurology, and Institute for Translational Neuroscience (K.A.V.), University of Minnesota, Minneapolis
| | - Keith A Vossel
- From the Departments of Neurology (E.L.H., G.L.K., M.S.A., K.A.W., R.F.G.), Psychiatry (J.B.), Medicine (S.Y.), and Epidemiology (R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.K.-N.), University of North Carolina at Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky, Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester; and N. Bud Grossman Center for Memory Research and Care (K.A.V.), Department of Neurology, and Institute for Translational Neuroscience (K.A.V.), University of Minnesota, Minneapolis
| | - Rebecca F Gottesman
- From the Departments of Neurology (E.L.H., G.L.K., M.S.A., K.A.W., R.F.G.), Psychiatry (J.B.), Medicine (S.Y.), and Epidemiology (R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.K.-N.), University of North Carolina at Chapel Hill; Department of Epidemiology (A.K.-N.), University of Kentucky, Lexington; Department of Neurology (D.S.K.), Mayo Clinic, Rochester; and N. Bud Grossman Center for Memory Research and Care (K.A.V.), Department of Neurology, and Institute for Translational Neuroscience (K.A.V.), University of Minnesota, Minneapolis
| |
Collapse
|
28
|
Valls-Carbó A, Gajate V, Romeral M, Gutiérrez-Viedma Á, Parejo-Carbonell B, Cabrera-Martín MN, Matías-Guiu J, Matías-Guiu JA, García-Morales I. Non-Convulsive Status Epilepticus in Behavioral Variant Frontotemporal Dementia. J Alzheimers Dis 2020; 77:985-991. [PMID: 32804149 DOI: 10.3233/jad-200512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epilepsy in frontotemporal dementia is considered to be less frequent than in Alzheimer's disease. We report two cases of patients with non-convulsive status epilepticus associated with behavioral variant frontotemporal dementia. In the first case, status epilepticus was the first symptom of the disease, and consisted of loss of consciousness and mutism. In the second case, status epilepticus led to a clinical worsening one year after the diagnosis. Our study highlights the importance of suspecting non-convulsive status epilepticus in patients with frontotemporal dementia, and including frontotemporal dementia within the differential diagnosis of new-onset seizures.
Collapse
Affiliation(s)
- Adrián Valls-Carbó
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Vicente Gajate
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - María Romeral
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Álvaro Gutiérrez-Viedma
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Parejo-Carbonell
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - María Nieves Cabrera-Martín
- Nuclear Medicine, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matías-Guiu
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Jordi A Matías-Guiu
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| | - Irene García-Morales
- Department of Neurology, Hospital Clinico San Carlos, Health Research Institute "San Carlos" (IdISCC), Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Johnson EL, Krauss GL, Walker KA, Brandt J, Kucharska-Newton A, Mosley TH, Yasar S, Gottesman RF. Late-onset epilepsy and 25-year cognitive change: The Atherosclerosis Risk in Communities (ARIC) study. Epilepsia 2020; 61:1764-1773. [PMID: 32710450 PMCID: PMC7718433 DOI: 10.1111/epi.16616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To define the association between late-onset epilepsy (LOE) and 25-year change in cognitive performance. METHODS The Atherosclerosis Risk in Communities (ARIC) study is a multicenter longitudinal cohort study with participants from four U.S. communities. From linked Medicare claims, we identified cases of LOE, defined as ≥2 seizure-related diagnostic codes starting at age ≥67. The ARIC cohort underwent evaluation with in-person visits at intervals of 3-15 years. Cognition was evaluated 4 times over >25 years (including before the onset of seizures) using the Delayed Word Recall Test (DWRT), Digit Symbol Substitution Test (DSST), and Word Fluency Test (WFT); a global z-score was also calculated. We compared the longitudinal cognitive changes of participants with and without LOE, adjusting for demographics and LOE risk factors. RESULTS From 8033 ARIC participants with midlife cognitive testing and Medicare claims data available (4523 [56%] female, 1392 [17%] Black), we identified 585 cases of LOE. The rate of cognitive decline was increased on all measures in the participants who developed LOE compared to those without LOE. On the measure of global cognition, participants with LOE declined by -0.43 z-score points more over 25 years than did participants without epilepsy (95% confidence interval [CI] -0.59 to -0.27). Prior to the onset of seizures, cognitive decline was more rapid on the DWRT, DSST, and global z-scores in those who would later develop LOE than it was in non-LOE participants. Results were similar after excluding data from participants with dementia. SIGNIFICANCE Global cognition, verbal memory, executive function, and word fluency declined faster over time in persons developing LOE than without LOE. Declines in cognition preceding LOE suggest these are linked; it will be important to investigate causes for midlife cognitive declines associated with LOE.
Collapse
Affiliation(s)
- Emily L Johnson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregory L Krauss
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Keenan A Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jason Brandt
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna Kucharska-Newton
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Bachmann C, Tetzlaff T, Duarte R, Morrison A. Firing rate homeostasis counteracts changes in stability of recurrent neural networks caused by synapse loss in Alzheimer's disease. PLoS Comput Biol 2020; 16:e1007790. [PMID: 32841234 PMCID: PMC7505475 DOI: 10.1371/journal.pcbi.1007790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/21/2020] [Accepted: 03/17/2020] [Indexed: 11/19/2022] Open
Abstract
The impairment of cognitive function in Alzheimer's disease is clearly correlated to synapse loss. However, the mechanisms underlying this correlation are only poorly understood. Here, we investigate how the loss of excitatory synapses in sparsely connected random networks of spiking excitatory and inhibitory neurons alters their dynamical characteristics. Beyond the effects on the activity statistics, we find that the loss of excitatory synapses on excitatory neurons reduces the network's sensitivity to small perturbations. This decrease in sensitivity can be considered as an indication of a reduction of computational capacity. A full recovery of the network's dynamical characteristics and sensitivity can be achieved by firing rate homeostasis, here implemented by an up-scaling of the remaining excitatory-excitatory synapses. Mean-field analysis reveals that the stability of the linearised network dynamics is, in good approximation, uniquely determined by the firing rate, and thereby explains why firing rate homeostasis preserves not only the firing rate but also the network's sensitivity to small perturbations.
Collapse
Affiliation(s)
- Claudia Bachmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Tom Tetzlaff
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Renato Duarte
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Abigail Morrison
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
- Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Epilepsy and Alzheimer’s Disease: Potential mechanisms for an association. Brain Res Bull 2020; 160:107-120. [DOI: 10.1016/j.brainresbull.2020.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
|
32
|
Peña-Ortega F. Brain Arrhythmias Induced by Amyloid Beta and Inflammation: Involvement in Alzheimer’s Disease and Other Inflammation-related Pathologies. Curr Alzheimer Res 2020; 16:1108-1131. [DOI: 10.2174/1567205017666191213162233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
A variety of neurological diseases, including Alzheimer’s disease (AD), involve amyloid beta (Aβ) accumulation and/or neuroinflammation, which can alter synaptic and neural circuit functions. Consequently, these pathological conditions induce changes in neural network rhythmic activity (brain arrhythmias), which affects many brain functions. Neural network rhythms are involved in information processing, storage and retrieval, which are essential for memory consolidation, executive functioning and sensory processing. Therefore, brain arrhythmias could have catastrophic effects on circuit function, underlying the symptoms of various neurological diseases. Moreover, brain arrhythmias can serve as biomarkers for a variety of brain diseases. The aim of this review is to provide evidence linking Aβ and inflammation to neural network dysfunction, focusing on alterations in brain rhythms and their impact on cognition and sensory processing. I reviewed the most common brain arrhythmias characterized in AD, in AD transgenic models and those induced by Aβ. In addition, I reviewed the modulations of brain rhythms in neuroinflammatory diseases and those induced by immunogens, interleukins and microglia. This review reveals that Aβ and inflammation produce a complex set of effects on neural network function, which are related to the induction of brain arrhythmias and hyperexcitability, both closely related to behavioral alterations. Understanding these brain arrhythmias can help to develop therapeutic strategies to halt or prevent these neural network alterations and treat not only the arrhythmias but also the symptoms of AD and other inflammation-related pathologies.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiologia del Desarrollo y Neurofisiologia, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Queretaro, Qro., 76230, Mexico
| |
Collapse
|
33
|
Paudel YN, Angelopoulou E, Jones NC, O’Brien TJ, Kwan P, Piperi C, Othman I, Shaikh MF. Tau Related Pathways as a Connecting Link between Epilepsy and Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4199-4212. [PMID: 31532186 DOI: 10.1021/acschemneuro.9b00460] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Emerging findings point toward an important interconnection between epilepsy and Alzheimer's disease (AD) pathogenesis. Patients with epilepsy (PWE) commonly exhibit cognitive impairment similar to AD patients, who in turn are at a higher risk of developing epilepsy compared to age-matched controls. To date, no disease-modifying treatment strategy is available for either epilepsy or AD, reflecting an immediate need for exploring common molecular targets, which can delineate a possible mechanistic link between epilepsy and AD. This review attempts to disentangle the interconnectivity between epilepsy and AD pathogenesis via the crucial contribution of Tau protein. Tau protein is a microtubule-associated protein (MAP) that has been implicated in the pathophysiology of both epilepsy and AD. Hyperphosphorylation of Tau contributes to the different forms of human epilepsy and inhibition of the same exerted seizure inhibitions and altered disease progression in a range of animal models. Moreover, Tau-protein-mediated therapy has demonstrated promising outcomes in experimental models of AD. In this review, we discuss how Tau-related mechanisms might present a link between the cause of seizures in epilepsy and cognitive disruption in AD. Untangling this interconnection might be instrumental in designing novel therapies that can minimize epileptic seizures and cognitive deficits in patients with epilepsy and AD.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 10679, Greece
| | - Nigel C. Jones
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 10679, Greece
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
| |
Collapse
|
34
|
Zelano J, Brigo F, Garcia‐Patek S. Increased risk of epilepsy in patients registered in the Swedish Dementia Registry. Eur J Neurol 2019; 27:129-135. [DOI: 10.1111/ene.14043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 01/03/2023]
Affiliation(s)
- J. Zelano
- Department of Clinical Neuroscience Institute of Neuroscience and Physiology Sahlgrenska Academy Gothenburg University GothenburgSweden
- Department of Neurology Sahlgrenska University Hospital Gothenburg Sweden
| | - F. Brigo
- Department of Neuroscience, Biomedicine and Movement Science University of Verona VeronaItaly
- Division of Neurology ‘Franz Tappeiner’ Hospital Merano Italy
| | - S. Garcia‐Patek
- Department of Neurobiology, Care Sciences and Society Division of Clinical Geriatrics Karolinska Institutet StockholmSweden
- Internal Medicine Section for Neurology Södersjukhuset Stockholm Sweden
| |
Collapse
|
35
|
Frere S, Slutsky I. Alzheimer's Disease: From Firing Instability to Homeostasis Network Collapse. Neuron 2019; 97:32-58. [PMID: 29301104 DOI: 10.1016/j.neuron.2017.11.028] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) starts from pure cognitive impairments and gradually progresses into degeneration of specific brain circuits. Although numerous factors initiating AD have been extensively studied, the common principles underlying the transition from cognitive deficits to neuronal loss remain unknown. Here we describe an evolutionarily conserved, integrated homeostatic network (IHN) that enables functional stability of central neural circuits and safeguards from neurodegeneration. We identify the critical modules comprising the IHN and propose a central role of neural firing in controlling the complex homeostatic network at different spatial scales. We hypothesize that firing instability and impaired synaptic plasticity at early AD stages trigger a vicious cycle, leading to dysregulation of the whole IHN. According to this hypothesis, the IHN collapse represents the major driving force of the transition from early memory impairments to neurodegeneration. Understanding the core elements of homeostatic control machinery, the reciprocal connections between distinct IHN modules, and the role of firing homeostasis in this hierarchy has important implications for physiology and should offer novel conceptual approaches for AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
36
|
Powell G, Ziso B, Larner AJ. The overlap between epilepsy and Alzheimer's disease and the consequences for treatment. Expert Rev Neurother 2019; 19:653-661. [PMID: 31238746 DOI: 10.1080/14737175.2019.1629289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: Alzheimer's disease may be associated with both clinical and subclinical epileptic seizure activity. Once regarded as an epiphenomenon, epileptiform activity may, in fact, be an integral part of the Alzheimer's phenotype, and may be not only a symptomatic therapeutic target but also a possible mechanism to retard or prevent disease progression. Areas covered: The authors review clinical research articles with a focus on the semiology, epidemiology, and treatment of seizures in Alzheimer's disease, and also look at some experimental animal model studies which have informed clinical thinking on seizure aetiopathogenesis. The evidence base for treatment decisions is sparse. A brief overview of the clinical assessment of Alzheimer's disease patients considering relevant differential diagnoses and diagnostic pitfalls is presented. Expert opinion: Studies of epileptic seizures in Alzheimer's disease have become more frequent over the last 5-10 years. Understanding of seizure semiology, epidemiology, and possible pathogenesis has increased. However, the optimal management of seizures in this context remains unknown, largely due to the paucity of studies sufficient to examine this question. Clearly, such studies will be required, not only to inform clinicians about symptomatic control of seizures in Alzheimer's disease but also to investigate whether this might impact on disease progression.
Collapse
Affiliation(s)
- Graham Powell
- a Mersey Regional Epilepsy Clinic , Walton Centre for Neurology and Neurosurgery , Liverpool , UK
| | - Besa Ziso
- a Mersey Regional Epilepsy Clinic , Walton Centre for Neurology and Neurosurgery , Liverpool , UK
| | - A J Larner
- b Cognitive Function Clinic , Walton Centre for Neurology and Neurosurgery , Liverpool , UK
| |
Collapse
|
37
|
Owona BA, Zug C, Schluesener HJ, Zhang ZY. Amelioration of Behavioral Impairments and Neuropathology by Antiepileptic Drug Topiramate in a Transgenic Alzheimer's Disease Model Mice, APP/PS1. Int J Mol Sci 2019; 20:ijms20123003. [PMID: 31248209 PMCID: PMC6628361 DOI: 10.3390/ijms20123003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is the main cause of dementia in the elderly. The aggregation of β-amyloid peptides is one of the characterizing pathological changes of AD. Topiramate is an antiepileptic drug, which in addition, is used in the treatment of many neuropsychiatric disorders. In this study, the therapeutic effects of topiramate were investigated in a transgenic mouse model of cerebral amyloidosis (APP/PS1 mice). Before, during, and after topiramate treatment, behavioral tests were performed. Following a treatment period of 21 days, topiramate significantly ameliorated deficits in nest-constructing capability as well as in social interaction. Thereafter, brain sections of mice were analyzed, and a significant attenuation of microglial activation as well as β-amyloid deposition was observed in sections from topiramate-treated APP/PS1 mice. Therefore, topiramate could be considered as a promising drug in the treatment of human AD.
Collapse
Affiliation(s)
- Brice Ayissi Owona
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen D-72076, Germany.
| | - Caroline Zug
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen D-72076, Germany.
| | - Hermann J Schluesener
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen D-72076, Germany.
| | - Zhi-Yuan Zhang
- Division of Immunopathology of the Nervous System, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen D-72076, Germany.
| |
Collapse
|
38
|
Horváth A, Szűcs A, Hidasi Z, Csukly G, Barcs G, Kamondi A. Prevalence, Semiology, and Risk Factors of Epilepsy in Alzheimer's Disease: An Ambulatory EEG Study. J Alzheimers Dis 2019; 63:1045-1054. [PMID: 29710705 DOI: 10.3233/jad-170925] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the primary cause of cognitive decline. A growing body of evidence suggests that AD patients have a higher risk to develop epileptic seizures; however, results are contradictory due to different methodological approaches of previous studies. OBJECTIVE We aimed to identify the prevalence, semiology, and risk factors of epilepsy in AD using long-term EEG. METHODS We selected forty-two AD patients and examined them using 24-hour ambulatory EEG. Neurological and epileptological data were collected with retro- and prospective methods. We analyzed the semiology of the identified seizures and the possible risk factors using logistic regression analysis. RESULTS We identified seizures confirmed by EEG in 24%. The majority of the seizures were aware focal (72%) without any motor activity (55%). We found epileptiform discharges without seizures in 28%. Patients with seizures and only with epileptic EEG activity showed similar clinical and demographical features. Higher education (OR:1.8) and lower Addenbrooke Examination Score (OR: 0.9) were identified as risk factors of epilepsy. Increase of 0.1 point in the Verbal-Language/Orientation-Memory ratio (VLOM) was associated with higher epilepsy risk as well (OR:2.9). CONCLUSION Epilepsy is a frequent comorbidity of AD. Since most of the seizures are aware non-motor focal seizures, sensitive EEG techniques are required for precise diagnosis of epilepsy. Long-term ambulatory EEG is a safe and well-tolerated option. Epileptiform EEG in AD signals the presence of concomitant epilepsy. Clinicians have to pay attention to comorbid epilepsy in dementia patients with high education, with high VLOM ratio and severe stage.
Collapse
Affiliation(s)
- András Horváth
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.,National Institute of Clinical Neurosciences, Hungary
| | - Anna Szűcs
- National Institute of Clinical Neurosciences, Hungary
| | - Zoltán Hidasi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Barcs
- National Institute of Clinical Neurosciences, Hungary
| | - Anita Kamondi
- National Institute of Clinical Neurosciences, Hungary.,Department of Neurology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
39
|
Asadollahi M, Atazadeh M, Noroozian M. Seizure in Alzheimer's Disease: An Underestimated Phenomenon. Am J Alzheimers Dis Other Demen 2019; 34:81-88. [PMID: 30595042 PMCID: PMC10852457 DOI: 10.1177/1533317518813551] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is considered as a potential risk factor for the development of seizure due to neurodegeneration and imbalance between stimulatory and inhibitory circuits in the brain. Seizure could occur in any point during the course of AD, and its presentation varies from fluctuation in cognitive domains to more typical seizures. The clinical diagnosis of seizure in patients with dementia may be challenging due to difficulty in history taking and clinical assessment. No paraclinic methods other than electroencephalogram (EEG) could provide arguments for the diagnosis of AD-related seizures (neither imaging modalities nor cerebrospinal fluid biomarkers). Standard 30-minute EEG may not be sufficiently sensitive to detect epileptiform discharges. In the present study, we aim to review different aspects of seizure in AD, including seizure prevalence, risk factors, underlying mechanisms, electroencephalographic findings, clinical presentations, impact of seizures on AD, and treatment options.
Collapse
|
40
|
Johnson EL, Krauss GL, Lee AK, Schneider ALC, Kucharska-Newton AM, Huang J, Jack CR, Gottesman RF. Association between white matter hyperintensities, cortical volumes, and late-onset epilepsy. Neurology 2019; 92:e988-e995. [PMID: 30804067 DOI: 10.1212/wnl.0000000000007010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To identify the association between brain vascular changes and cortical volumes on MRI and late-onset epilepsy. METHODS In 1993-1995, 1,920 participants (median age 62.7, 59.9% female) in the community-based Atherosclerosis Risk in Communities (ARIC) Study underwent MRI, and white matter hyperintensities were measured. In addition, in 2011-2013, 1,964 ARIC participants (median age 72.4, 61.1% female) underwent MRI, and cortical volumes and white matter hyperintensities were measured. We identified cases of late-onset epilepsy (starting at age 60 or later) from ARIC hospitalization records and Medicare claims data. Using the 1993-1995 MRI, we evaluated the association between white matter hyperintensities and subsequent epilepsy using survival analysis. We used the 2011-2013 MRI to conduct cross-sectional logistic regression to examine the association of cortical volumes and white matter hyperintensities with late-onset epilepsy. All models were adjusted for demographics, hypertension, diabetes, smoking, and APOE ε4 allele status. RESULTS Ninety-seven ARIC participants developed epilepsy after having an MRI in 1993-1995 (incidence 3.34 per 1,000 person-years). The degree of white matter hyperintensities measured at ages 49-72 years was associated with the risk of late-onset epilepsy (hazard ratio 1.27 per age-adjusted SD, 95% confidence interval [CI] 1.06-1.54). Lower cortical volume scores were associated cross-sectionally with higher odds of late-onset epilepsy (odds ratio 1.87, 95% CI 1.16-3.02) per age-adjusted SD. CONCLUSIONS This study demonstrates associations between earlier-life white matter hyperintensities on MRI and later-life incident epilepsy, and between cortical volumes measured later in life and late-onset epilepsy. These findings may help illuminate the causes of late-onset epilepsy.
Collapse
Affiliation(s)
- Emily L Johnson
- From the Department of Neurology (E.L.J., G.L.K., A.L.C.S., R.F.G.), Johns Hopkins University School of Medicine; Department of Epidemiology (A.K.L., R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.M.K.-N.), University of North Carolina at Chapel Hill; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; and Department of Radiology (C.R.J.), Mayo Clinic, Rochester, MN.
| | - Gregory L Krauss
- From the Department of Neurology (E.L.J., G.L.K., A.L.C.S., R.F.G.), Johns Hopkins University School of Medicine; Department of Epidemiology (A.K.L., R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.M.K.-N.), University of North Carolina at Chapel Hill; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; and Department of Radiology (C.R.J.), Mayo Clinic, Rochester, MN
| | - Alexandra K Lee
- From the Department of Neurology (E.L.J., G.L.K., A.L.C.S., R.F.G.), Johns Hopkins University School of Medicine; Department of Epidemiology (A.K.L., R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.M.K.-N.), University of North Carolina at Chapel Hill; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; and Department of Radiology (C.R.J.), Mayo Clinic, Rochester, MN
| | - Andrea L C Schneider
- From the Department of Neurology (E.L.J., G.L.K., A.L.C.S., R.F.G.), Johns Hopkins University School of Medicine; Department of Epidemiology (A.K.L., R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.M.K.-N.), University of North Carolina at Chapel Hill; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; and Department of Radiology (C.R.J.), Mayo Clinic, Rochester, MN
| | - Anna M Kucharska-Newton
- From the Department of Neurology (E.L.J., G.L.K., A.L.C.S., R.F.G.), Johns Hopkins University School of Medicine; Department of Epidemiology (A.K.L., R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.M.K.-N.), University of North Carolina at Chapel Hill; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; and Department of Radiology (C.R.J.), Mayo Clinic, Rochester, MN
| | - Juebin Huang
- From the Department of Neurology (E.L.J., G.L.K., A.L.C.S., R.F.G.), Johns Hopkins University School of Medicine; Department of Epidemiology (A.K.L., R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.M.K.-N.), University of North Carolina at Chapel Hill; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; and Department of Radiology (C.R.J.), Mayo Clinic, Rochester, MN
| | - Clifford R Jack
- From the Department of Neurology (E.L.J., G.L.K., A.L.C.S., R.F.G.), Johns Hopkins University School of Medicine; Department of Epidemiology (A.K.L., R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.M.K.-N.), University of North Carolina at Chapel Hill; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; and Department of Radiology (C.R.J.), Mayo Clinic, Rochester, MN
| | - Rebecca F Gottesman
- From the Department of Neurology (E.L.J., G.L.K., A.L.C.S., R.F.G.), Johns Hopkins University School of Medicine; Department of Epidemiology (A.K.L., R.F.G.), Johns Hopkins School of Public Health, Baltimore, MD; Department of Epidemiology (A.M.K.-N.), University of North Carolina at Chapel Hill; Department of Neurology (J.H.), University of Mississippi Medical Center, Jackson; and Department of Radiology (C.R.J.), Mayo Clinic, Rochester, MN
| |
Collapse
|
41
|
Brigo F. Selecting the appropriate pharmacotherapy for epilepsy in patients with Alzheimer’s disease. Expert Opin Pharmacother 2018; 19:1739-1741. [DOI: 10.1080/14656566.2018.1520839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francesco Brigo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Division of Neurology, “Franz Tappeiner” Hospital, Merano, Italy
| |
Collapse
|
42
|
DiFrancesco JC, Tremolizzo L, Polonia V, Giussani G, Bianchi E, Franchi C, Nobili A, Appollonio I, Beghi E, Ferrarese C. Adult-Onset Epilepsy in Presymptomatic Alzheimer's Disease: A Retrospective Study. J Alzheimers Dis 2018; 60:1267-1274. [PMID: 28968234 DOI: 10.3233/jad-170392] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The prevalence of epilepsy with onset in adulthood increases with age, mainly due to the accumulation of brain damage. However, a significant proportion of patients experience seizures of unknown cause. Alzheimer's disease (AD) is associated with an increased risk of seizures. Seizure activity is interpreted as a secondary event related to hyperexcitability caused by amyloid-β aggregation. OBJECTIVE Since neurodegenerative processes begin several years before clinical symptoms, epilepsy could be more frequent in the presymptomatic stages of dementia. METHODS We retrospectively reviewed the prevalence of epilepsy of unknown origin with adult onset before cognitive decline in a large cohort of AD patients (EPS-AD) recruited based on clinical and neuropsychological data. Data of patients with epilepsy followed by AD were compared with two control groups: patients with AD without seizures (no EPS-AD) and a large reference population (RP). RESULTS In AD patients, the prevalence of epilepsy of unknown origin, with onset in the adulthood before cognitive decline is 17.1 times higher compared with the RP (95% CI: 10.3-28.3). In EPS-AD, seizures begin on average 4.6 years (median 2.0) before the onset of cognitive symptoms and cognitive decline starts 3.6 years earlier compared with noEPS-AD. CONCLUSIONS Neurodegenerative processes of dementia could play a key role in the pathogenesis of epilepsy in a subgroup of individuals intended to develop cognitive decline. Adult-onset epilepsy of undefined cause could thus represent a risk factor for the ongoing neurodegenerative damage, even preceding by years the onset of clinical symptoms of dementia.
Collapse
Affiliation(s)
- Jacopo C DiFrancesco
- Department of Neurology, San Gerardo Hospital, Monza, Italy.,School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Monza, Italy
| | - Lucio Tremolizzo
- Department of Neurology, San Gerardo Hospital, Monza, Italy.,School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Monza, Italy
| | - Valeria Polonia
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Monza, Italy
| | - Giorgia Giussani
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research "Mario Negri", Milan, Italy
| | - Elisa Bianchi
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research "Mario Negri", Milan, Italy
| | - Carlotta Franchi
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research "Mario Negri", Milan, Italy
| | - Alessandro Nobili
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research "Mario Negri", Milan, Italy
| | - Ildebrando Appollonio
- Department of Neurology, San Gerardo Hospital, Monza, Italy.,School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Monza, Italy
| | - Ettore Beghi
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research "Mario Negri", Milan, Italy
| | - Carlo Ferrarese
- Department of Neurology, San Gerardo Hospital, Monza, Italy.,School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
43
|
Epilepsy in neuropathologically verified Alzheimer’s disease. Seizure 2018; 58:9-12. [DOI: 10.1016/j.seizure.2018.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
|
44
|
Sánchez MP, García-Cabrero AM, Sánchez-Elexpuru G, Burgos DF, Serratosa JM. Tau-Induced Pathology in Epilepsy and Dementia: Notions from Patients and Animal Models. Int J Mol Sci 2018; 19:ijms19041092. [PMID: 29621183 PMCID: PMC5979593 DOI: 10.3390/ijms19041092] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
Patients with dementia present epilepsy more frequently than the general population. Seizures are more common in patients with Alzheimer’s disease (AD), dementia with Lewy bodies (LBD), frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP) than in other dementias. Missense mutations in the microtubule associated protein tau (MAPT) gene have been found to cause familial FTD and PSP, while the P301S mutation in MAPT has been associated with early-onset fast progressive dementia and the presence of seizures. Brains of patients with AD, LBD, FTD and PSP show hyperphosphorylated tau aggregates, amyloid-β plaques and neuropil threads. Increasing evidence suggests the existence of overlapping mechanisms related to the generation of network hyperexcitability and cognitive decline. Neuronal overexpression of tau with various mutations found in FTD with parkinsonism-linked to chromosome 17 (FTDP-17) in mice produces epileptic activity. On the other hand, the use of certain antiepileptic drugs in animal models with AD prevents cognitive impairment. Further efforts should be made to search for plausible common targets for both conditions. Moreover, attempts should also be made to evaluate the use of drugs targeting tau and amyloid-β as suitable pharmacological interventions in epileptic disorders. The diagnosis of dementia and epilepsy in early stages of those diseases may be helpful for the initiation of treatments that could prevent the generation of epileptic activity and cognitive deterioration.
Collapse
Affiliation(s)
- Marina P Sánchez
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - Ana M García-Cabrero
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
- Department of Immunology and Oncology and Protein Tools Unit, Biotechnology National Center (CNB/CSIC), 28049 Madrid, Spain.
| | - Gentzane Sánchez-Elexpuru
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - Daniel F Burgos
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| | - José M Serratosa
- Laboratory of Neurology, IIS (Instituto Investigación Sanitaria/Health Research Institute)-Jiménez Díaz Foundation, UAM (Universidad Autonoma de Madrid/Autonomous University of Madrid) and Biomedical Research Network Center on Rare Diseases (CIBERER), 28045 Madrid, Spain.
| |
Collapse
|
45
|
Synaptic Adhesion Molecule Pcdh-γC5 Mediates Synaptic Dysfunction in Alzheimer's Disease. J Neurosci 2017; 37:9259-9268. [PMID: 28842416 DOI: 10.1523/jneurosci.1051-17.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022] Open
Abstract
Synaptic dysfunction and neuronal excitatory/inhibitory imbalance have been implicated in Alzheimer's disease (AD) pathogenesis. Although intensive studies have been focused on the excitatory synaptic system, much less is known concerning the mechanisms mediating inhibitory synaptic dysfunction in AD. We reported previously that protocadherin-γC5 (Pcdh-γC5), a member of clustered Pcdh-γ subfamily of cadherin-type synaptic adhesion proteins, functions to promote GABAergic synaptic transmission. We reveal here that Pcdh-γC5 is enriched in vesicular GABA transporter-positive synaptic puncta and its expression levels are increased in neuronal hyperexcitation conditions, upon β-amyloid (Aβ) treatment, and in amyloid precursor protein (APP)/presenilin-1 (PS1)-transgenic mice of both sexes. This is associated with elevated levels of GABAergic proteins and enhanced synaptic inhibition. Genetic knock-down experiments showed that Pcdh-γC5 modulates spontaneous synaptic currents and Aβ-induced synaptic alterations directly. Our results support a model in which Pcdh-γC5 senses neuronal hyperexcitation to augment GABAergic inhibition. This adaptive mechanism may be dysregulated under chronic excitation conditions such as AD, leading to aberrant Pcdh-γC5 expression and associated synaptic dysfunction.SIGNIFICANCE STATEMENT Synaptic dysfunction is causal for Alzheimer's disease (AD). Here, we reveal a novel pathway that contributes GABAergic synaptic dysfunction in AD mediated by protocadherin-γC5. Our study not only identifies a new mechanism mediating excitatory/inhibitory balance in AD, but may also offer a new target for potential therapeutic intervention.
Collapse
|
46
|
Prediction of Epileptic Seizure by Analysing Time Series EEG Signal Using k-NN Classifier. Appl Bionics Biomech 2017; 2017:6848014. [PMID: 28894351 PMCID: PMC5574243 DOI: 10.1155/2017/6848014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 01/04/2023] Open
Abstract
Electroencephalographic signal is a representative signal that contains information about brain activity, which is used for the detection of epilepsy since epileptic seizures are caused by a disturbance in the electrophysiological activity of the brain. The prediction of epileptic seizure usually requires a detailed and experienced analysis of EEG. In this paper, we have introduced a statistical analysis of EEG signal that is capable of recognizing epileptic seizure with a high degree of accuracy and helps to provide automatic detection of epileptic seizure for different ages of epilepsy. To accomplish the target research, we extract various epileptic features namely approximate entropy (ApEn), standard deviation (SD), standard error (SE), modified mean absolute value (MMAV), roll-off (R), and zero crossing (ZC) from the epileptic signal. The k-nearest neighbours (k-NN) algorithm is used for the classification of epilepsy then regression analysis is used for the prediction of the epilepsy level at different ages of the patients. Using the statistical parameters and regression analysis, a prototype mathematical model is proposed which helps to find the epileptic randomness with respect to the age of different subjects. The accuracy of this prototype equation depends on proper analysis of the dynamic information from the epileptic EEG.
Collapse
|
47
|
Cretin B, Philippi N, Bousiges O, Dibitonto L, Sellal F, Martin-Hunyadi C, Blanc F. Do we know how to diagnose epilepsy early in Alzheimer's disease? Rev Neurol (Paris) 2017; 173:374-380. [DOI: 10.1016/j.neurol.2017.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 01/04/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
48
|
Tjong E, McHugh W, Peng Y. Reversible dementia: subclinical seizure in early-onset dementia. Clin Case Rep 2017; 5:321-327. [PMID: 28265399 PMCID: PMC5331190 DOI: 10.1002/ccr3.843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
We report a case of early‐onset dementia with subclinical seizures. Aggressive seizure control improved the patient's cognition. Commonly, an EEG is only performed following overt behavioral seizures. Therefore, subclinical seizures tend to be underdiagnosed. Serial or extended EEG should be seriously considered in patients with early‐onset dementia.
Collapse
Affiliation(s)
- Elysia Tjong
- Department of NeurologyRenown Institute for Neurosciences, Renown HealthUniversity of NevadaRenoNevadaUSA
| | - William McHugh
- Department of NeurologyRenown Institute for Neurosciences, Renown HealthUniversity of NevadaRenoNevadaUSA
| | - Yen‐Yi Peng
- Department of NeurologyRenown Institute for Neurosciences, Renown HealthUniversity of NevadaRenoNevadaUSA
| |
Collapse
|
49
|
Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A: A promising anticonvulsant, disease modifying, and memory enhancing treatment option in Alzheimer's disease. Med Hypotheses 2016; 99:57-62. [PMID: 28110700 DOI: 10.1016/j.mehy.2016.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia. Besides cognitive deterioration, patients with AD are prone to seizures - more than 20% of patients diagnosed with AD experience at least one unprovoked seizure and up to 7% have recurrent seizures. Although available antiepileptic drugs (AEDs) may suppress seizures in patients with AD, they may also worsen cognitive dysfunction and increase the risk of falls. On the basis of preclinical studies, we hypothesize that Huperzine A (HupA), a safe and potent acetylcholinesterase (AChE) inhibitor with potentially disease-modifying qualities in AD, may have a realistic role as an anticonvulsant in AD.
Collapse
Affiliation(s)
- Ugur Damar
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roman Gersner
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Steven Schachter
- Department of Neurology, Beth Israel Deaconess Medical Center, and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Tang M, Ryman DC, McDade E, Jasielec MS, Buckles VD, Cairns NJ, Fagan AM, Goate A, Marcus DS, Xiong C, Allegri RF, Chhatwal JP, Danek A, Farlow MR, Fox NC, Ghetti B, Graff-Radford NR, Laske C, Martins RN, Masters CL, Mayeux RP, Ringman JM, Rossor MN, Salloway SP, Schofield PR, Morris JC, Bateman RJ. Neurological manifestations of autosomal dominant familial Alzheimer's disease: a comparison of the published literature with the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS). Lancet Neurol 2016; 15:1317-1325. [PMID: 27777020 PMCID: PMC5116769 DOI: 10.1016/s1474-4422(16)30229-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/05/2016] [Accepted: 08/25/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Autosomal dominant familial Alzheimer's disease (ADAD) is a rare disorder with non-amnestic neurological symptoms in some clinical presentations. We aimed to compile and compare data from symptomatic participants in the Dominantly Inherited Alzheimer Network observational study (DIAN-OBS) with those reported in the literature to estimate the prevalences of non-amnestic neurological symptoms in participants with ADAD. METHODS We prospectively collected data from the DIAN-OBS database, which recruited participants from study centres in the USA, Europe, and Australia, between Feb 29, 2008, and July 1, 2014. We also did a systematic review of publications to extract individual-level clinical data for symptomatic participants with ADAD. We used data for age of onset (from first report of cognitive decline), disease course from onset to death, and the presence of 13 neurological findings that have been reported in association with ADAD. Using multivariable linear regression, we investigated the prevalences of various non-amnestic neurological symptoms and the contributions of age of onset and specific mutation type on symptoms. FINDINGS The DIAN-OBS dataset included 107 individuals with detailed clinical data (forming the DIAN-OBS cohort). Our systematic review yielded 188 publications reporting on 1228 symptomatic individuals, with detailed neurological examination descriptions available for 753 individuals (forming the published data cohort). The most prevalent non-amnestic cognitive manifestations in participants in the DIAN-OBS cohort were those typical of mild to moderate Alzheimer's disease, including visual agnosia (55·1%, 95% CI 45·7-64·6), aphasia (57·9%, 48·6-67·3), and behavioural changes (61·7%, 51·5-70·0). Non-amnestic cognitive manifestations were less prevalent in the published data cohort (eg, visual agnosia [5·6%, 3·9-7·2], aphasia [23·0%, 20·0-26·0], and behavioural changes [31·7%, 28·4-35·1]). Prevalence of non-cognitive neurological manifestations in the DIAN-OBS cohort was low, including myoclonus and spasticity (9·3%, 95% CI 3·8-15·0), and seizures (2·8%, 0·5-5·9) and moderate for parkinsonism (11·2%, 5·3-17·1). By constrast, prevalence was higher in the published data cohort for myoclonus and spasticity (19·4%, 16·6-22·2 and 15·0%, 12·5-17·6, respectively), parkinsonism (12·5%, 10·1-15·0), and seizures (20·3%, 17·4-23·2). In an analysis of the published data cohort, ischaemic stroke was more prevalent at older ages of onset of symptoms of ADAD (odds ratio 1·09 per 1 year increase in age of onset, 95% CI 1·04-1·14, p=0·0003); and motor symptoms were more common at younger age of onset (myoclonus 0·93, 0·90-0·97, p=0·0007; seizures 0·95, 0·92-0·98, p=0·0018; corticobulbar deficits 0·91, 0·86-0·96, p=0·0012; and cerebellar ataxia 0·82, 0·74-0·91, p=0·0002). In the DIAN-OBS cohort, non-cognitive symptoms were more common at more severe stages of disease. INTERPRETATION The non-cognitive clinical manifestations of Alzheimer's disease seem to affect a small proportion of participants with mild to moderate ADAD, and are probably influenced by disease severity, environmental, and genetic factors. When evaluating patients with potential ADAD, clinicians should note that cognitive symptoms typical of sporadic Alzheimer's disease are the most consistent finding, with some patients manifesting non-cognitive neurological symptoms. Future work is needed to determine the environmental and genetic factors that cause these neurological symptoms. FUNDING National Institutes of Health and German Center for Neurodegenerative Diseases.
Collapse
Affiliation(s)
- Mengxuan Tang
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Davis C Ryman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Mateusz S Jasielec
- Department of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Virginia D Buckles
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Nigel J Cairns
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alison Goate
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Chengjie Xiong
- Department of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ricardo F Allegri
- Neurological Research Institute Raúl Carrea, Buenos Aires, Argentina
| | - Jasmeer P Chhatwal
- Department of Neurology, Center for Alzheimer Research and Treatment, Brigham and Women's Hospital and Massachusetts General Hospital, Boston, MA, USA
| | - Adrian Danek
- Neurologische Klinik Ludwig-Maximilians-Universität Munich, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nick C Fox
- Dementia Research Centre, University College London Institute of Neurology, London, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Christopher Laske
- German Center for Neurodegenerative Diseases and Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Colin L Masters
- Mental Health Research Institute, University of Melbourne, Parkville, VIC, Australia
| | - Richard P Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - John M Ringman
- Memory and Aging Center, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Martin N Rossor
- Dementia Research Centre, University College London Institute of Neurology, London, UK
| | - Stephen P Salloway
- Department of Neurology, Butler Hospital, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Peter R Schofield
- Neuroscience Research Australia and University of New South Wales, Sydney, NSW, Australia
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|