1
|
Xie W, Yu J, Huang L, For LS, Zheng Z, Chen X, Wang Y, Liu Z, Peng C, Wong KC. DeepSeq2Drug: An expandable ensemble end-to-end anti-viral drug repurposing benchmark framework by multi-modal embeddings and transfer learning. Comput Biol Med 2024; 175:108487. [PMID: 38653064 DOI: 10.1016/j.compbiomed.2024.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Drug repurposing is promising in multiple scenarios, such as emerging viral outbreak controls and cost reductions of drug discovery. Traditional graph-based drug repurposing methods are limited to fast, large-scale virtual screens, as they constrain the counts for drugs and targets and fail to predict novel viruses or drugs. Moreover, though deep learning has been proposed for drug repurposing, only a few methods have been used, including a group of pre-trained deep learning models for embedding generation and transfer learning. Hence, we propose DeepSeq2Drug to tackle the shortcomings of previous methods. We leverage multi-modal embeddings and an ensemble strategy to complement the numbers of drugs and viruses and to guarantee the novel prediction. This framework (including the expanded version) involves four modal types: six NLP models, four CV models, four graph models, and two sequence models. In detail, we first make a pipeline and calculate the predictive performance of each pair of viral and drug embeddings. Then, we select the best embedding pairs and apply an ensemble strategy to conduct anti-viral drug repurposing. To validate the effect of the proposed ensemble model, a monkeypox virus (MPV) case study is conducted to reflect the potential predictive capability. This framework could be a benchmark method for further pre-trained deep learning optimization and anti-viral drug repurposing tasks. We also build software further to make the proposed model easier to reuse. The code and software are freely available at http://deepseq2drug.cs.cityu.edu.hk.
Collapse
Affiliation(s)
- Weidun Xie
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jixiang Yu
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Lei Huang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Lek Shyuen For
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Zetian Zheng
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xingjian Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuchen Wang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Zhichao Liu
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Chengbin Peng
- College of Information Science and Engineering, Ningbo University, Ningbo, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China; Hong Kong Institute for Data Science, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
3
|
Lü Z, Dai X, Xu J, Liu Z, Guo Y, Gao Z, Meng F. Medicinal chemistry strategies toward broad-spectrum antiviral agents to prevent next pandemics. Eur J Med Chem 2024; 271:116442. [PMID: 38685143 DOI: 10.1016/j.ejmech.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
The pandemic and tremendous impact of severe acute respiratory syndrome coronavirus 2 alert us, despite great achievements in prevention and control of infectious diseases, we still lack universal and powerful antiviral strategies to rapidly respond to the potential threat of serious infectious disease. Various highly contagious and pathogenic viruses, as well as other unknown viruses may appear or reappear in human society at any time, causing a catastrophic epidemic. Developing broad-spectrum antiviral drugs with high security and efficiency is of great significance for timely meeting public health emergency and protecting the lives and health of the people. Hence, in this review, we summarized diverse broad-spectrum antiviral targets and corresponding agents from a medicinal chemistry prospective, compared the pharmacological advantages and disadvantages of different targets, listed representative agents, showed their structures, pharmacodynamics and pharmacokinetics characteristics, and conducted a critical discussion on their development potential, in the hope of providing up-to-date guidance for the development of broad-spectrum antivirals and perspectives for applications of antiviral therapy.
Collapse
Affiliation(s)
- Zirui Lü
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xiandong Dai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jianjie Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fanhua Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
4
|
Chachaj-Brekiesz A, Kobierski J, Wnętrzak A, Dynarowicz-Latka P, Pietruszewska P. Insight into the Molecular Mechanism of Surface Interactions of Phosphatidylcholines─Langmuir Monolayer Study Complemented with Molecular Dynamics Simulations. J Phys Chem B 2024; 128:1473-1482. [PMID: 38320120 PMCID: PMC10875670 DOI: 10.1021/acs.jpcb.3c06810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Mutual interactions between components of biological membranes are pivotal for maintaining their proper biophysical properties, such as stability, fluidity, or permeability. The main building blocks of biomembranes are lipids, among which the most important are phospholipids (mainly phosphatidylcholines (PCs)) and sterols (mainly cholesterol). Although there is a plethora of reports on interactions between PCs, as well as between PCs and cholesterol, their molecular mechanism has not yet been fully explained. Therefore, to resolve this issue, we carried out systematic investigations based on the classical Langmuir monolayer technique complemented with molecular dynamics simulations. The studies involved systems containing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) analogues possessing in the structure one or two polar functional groups similar to those of DPPC. The interactions and rheological properties of binary mixtures of DPPC analogues with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and cholesterol were compared with reference systems (DPPC/POPC and DPPC/cholesterol). This pointed to the importance of the ternary amine group in PC/cholesterol interactions, while in PC mixtures, the phosphate group played a key role. In both cases, the esterified glycerol group had an effect on the magnitude of interactions. The obtained results are crucial for establishing structure-property relationships as well as for designing substitutes for natural lipids.
Collapse
Affiliation(s)
- Anna Chachaj-Brekiesz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30–387 Kraków, Poland
| | - Jan Kobierski
- Department
of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30–688 Kraków, Poland
| | - Anita Wnętrzak
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30–387 Kraków, Poland
| | | | | |
Collapse
|
5
|
He Y, Zhou J, Gao H, Liu C, Zhan P, Liu X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur J Med Chem 2024; 265:116069. [PMID: 38160620 DOI: 10.1016/j.ejmech.2023.116069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Viral infections are amongst the most prevalent diseases that pose a significant threat to human health. Targeting viral proteins or host factors represents two primary strategies for the development of antiviral drugs. In contrast to virus-targeting antivirals (VTAs), host-targeting antivirals (HTAs) offer advantages in terms of overcoming drug resistance and effectively combating a wide range of viruses, including newly emerging ones. Therefore, targeting host factors emerges as an extremely promising strategy with the potential to address critical challenges faced by VTAs. In recent years, extensive research has been conducted on the discovery and development of HTAs, leading to the approval of maraviroc, a chemokine receptor type 5 (CCR5) antagonist used for the treatment of HIV-1 infected individuals, with several other potential treatments in various stages of development for different viral infections. This review systematically summarizes advancements made in medicinal chemistry regarding various host targets and classifies them into four distinct catagories based on their involvement in the viral life cycle: virus attachment and entry, biosynthesis, nuclear import and export, and viral release.
Collapse
Affiliation(s)
- Yong He
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Jiahui Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Huizhan Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, PR China.
| |
Collapse
|
6
|
Luo YH, Zhang T, Cao JL, Hou WS, Wang AQ, Jin CH. Monkeypox: An outbreak of a rare viral disease. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:1-10. [PMID: 38177001 DOI: 10.1016/j.jmii.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Monkeypox is a viral zoonotic disease rarely found outside Africa. Monkeypox can be spread from person to person through close contact with an infected person, and the rate of transmission is not very high. In addition, monkeypox and variola virus are both pox viruses, and the spread of monkeypox virus was also controlled to some extent by the smallpox campaign, so monkeypox was not widely paid attention to. However, as smallpox vaccination is phased out in various countries or regions, people's resistance to orthopoxviruses is decreasing, especially among people who have not been vaccinated against smallpox. This has led to a significant increase in the frequency and geographical distribution of human monkeypox cases in recent years, and the monkeypox virus has become the orthopoxvirus that poses the greatest threat to public health. Since the last large-scale monkeypox infection was detected in 2022, the number of countries or territories affected has exceeded 100. Many confirmed and suspected cases of monkeypox have been found in individuals who have not travelled to affected areas, and the route of infection is not obvious, making this outbreak of monkeypox a cause for concern globally. The purpose of this systematic review is to further understand the pathophysiological and epidemiological characteristics of monkeypox, as well as existing prevention and treatment methods, with a view to providing evidence for the control of monkeypox.
Collapse
Affiliation(s)
- Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jing-Long Cao
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Wen-Shuang Hou
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - An-Qi Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China; National Coarse Cereals Engineering Research Center, Daqing, 163319, China.
| |
Collapse
|
7
|
Kumar S. The Overview of Potential Antiviral Bioactive Compounds in Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:331-336. [PMID: 38801588 DOI: 10.1007/978-3-031-57165-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses belong to the family of double-stranded DNA viruses, and it is pathogenic for humans and spread worldwide. These viruses cause infections and various diseases in human. So, it is required to develop new drugs for the treatment of smallpox or other poxvirus infections. Very few potential compounds for the treatment of poxvirus such as smallpox, chickenpox, and monkeypox have been reported. Most of the compounds has used as vaccines. Cidofovir is most commonly used as a vaccine for the treatment of poxviruses. There are no phytochemicals reported for the treatment of poxviruses. Very few phytochemicals are under investigation for the treatment of poxviruses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Sant Kavi Baba Baijnath Government P.G. College Harakh, Barabanki (UP), 225121, India.
- Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh, 224001, India.
| |
Collapse
|
8
|
Nusshag C, Schreiber P, Uhrig J, Zeier M, Krautkrämer E. In-cell Western assay to quantify infection with pathogenic orthohantavirus Puumala virus in replication kinetics and antiviral drug testing. Virus Res 2023; 337:199230. [PMID: 37777116 PMCID: PMC10590686 DOI: 10.1016/j.virusres.2023.199230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) represents a serious zoonotic disease caused by orthohantaviruses in Eurasia. A specific antiviral therapy is not available. HFRS is characterized by acute kidney injury (AKI) with often massive proteinuria. Infection of kidney cells may contribute to the clinical picture. However, orthohantaviral replication in kidney cells is not well characterized. Therefore, we aimed to perform a reliable high-throughput assay that allows the quantification of infection rates and testing of antiviral compounds in different cell types. We quantified relative infection rates of Eurasian pathogenic Puumala virus (PUUV) by staining of nucleocapsid protein (N protein) in an in-cell Western (ICW) assay. Vero E6 cells, derived from the African green monkey and commonly used in viral cell culture studies, and the human podocyte cell line CIHP (conditionally immortalized human podocytes) were used to test the ICW assay for replication kinetics and antiviral drug testing. Quantification of infection by ICW revealed reliable results for both cell types, as shown by their correlation with immunofluorescence quantification results by counting infected cells. Evaluation of antiviral efficacy of ribavirin by ICW assay revealed differences in the toxicity (TC) and inhibitory concentrations (IC) between Vero E6 cells and podocytes. IC5O of ribavirin in podocytes is about 12-fold lower than in Vero E6 cells. In summary, ICW assay together with relevant human target cells represents an important tool for the study of hantaviral replication and drug testing.
Collapse
Affiliation(s)
- Christian Nusshag
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, Heidelberg 69120, Germany
| | - Pamela Schreiber
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, Heidelberg 69120, Germany
| | - Josephine Uhrig
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, Heidelberg 69120, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, Heidelberg 69120, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, Heidelberg 69120, Germany.
| |
Collapse
|
9
|
Hishiki T, Morita T, Akazawa D, Ohashi H, Park ES, Kataoka M, Mifune J, Shionoya K, Tsuchimoto K, Ojima S, Azam AH, Nakajima S, Kawahara M, Yoshikawa T, Shimojima M, Kiga K, Maeda K, Suzuki T, Ebihara H, Takahashi Y, Watashi K. Identification of IMP Dehydrogenase as a Potential Target for Anti-Mpox Virus Agents. Microbiol Spectr 2023; 11:e0056623. [PMID: 37409948 PMCID: PMC10434032 DOI: 10.1128/spectrum.00566-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Mpox virus (formerly monkeypox virus [MPXV]) is a neglected zoonotic pathogen that caused a worldwide outbreak in May 2022. Given the lack of an established therapy, the development of an anti-MPXV strategy is of vital importance. To identify drug targets for the development of anti-MPXV agents, we screened a chemical library using an MPXV infection cell assay and found that gemcitabine, trifluridine, and mycophenolic acid (MPA) inhibited MPXV propagation. These compounds showed broad-spectrum anti-orthopoxvirus activities and presented lower 90% inhibitory concentrations (0.026 to 0.89 μM) than brincidofovir, an approved anti-smallpox agent. These three compounds have been suggested to target the postentry step to reduce the intracellular production of virions. Knockdown of IMP dehydrogenase (IMPDH), the rate-limiting enzyme of guanosine biosynthesis and a target of MPA, dramatically reduced MPXV DNA production. Moreover, supplementation with guanosine recovered the anti-MPXV effect of MPA, suggesting that IMPDH and its guanosine biosynthetic pathway regulate MPXV replication. By targeting IMPDH, we identified a series of compounds with stronger anti-MPXV activity than MPA. This evidence shows that IMPDH is a potential target for the development of anti-MPXV agents. IMPORTANCE Mpox is a zoonotic disease caused by infection with the mpox virus, and a worldwide outbreak occurred in May 2022. The smallpox vaccine has recently been approved for clinical use against mpox in the United States. Although brincidofovir and tecovirimat are drugs approved for the treatment of smallpox by the U.S. Food and Drug Administration, their efficacy against mpox has not been established. Moreover, these drugs may present negative side effects. Therefore, new anti-mpox virus agents are needed. This study revealed that gemcitabine, trifluridine, and mycophenolic acid inhibited mpox virus propagation and exhibited broad-spectrum anti-orthopoxvirus activities. We also suggested IMP dehydrogenase as a potential target for the development of anti-mpox virus agents. By targeting this molecule, we identified a series of compounds with stronger anti-mpox virus activity than mycophenolic acid.
Collapse
Affiliation(s)
- Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Morita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Akazawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Ohashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junki Mifune
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Kana Tsuchimoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Nakajima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kawahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- MIRAI, Japan Science and Technology Agency (JST), Saitama, Japan
| |
Collapse
|
10
|
Rodríguez-Cuadrado FJ, Pinto-Pulido EL, Fernández-Parrado M. RF - Potential Treatments for Monkeypox. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:629-630. [PMID: 35779571 PMCID: PMC9628757 DOI: 10.1016/j.ad.2022.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- F J Rodríguez-Cuadrado
- Servicio de Dermatología, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, España.
| | - E L Pinto-Pulido
- Servicio de Dermatología, Hospital Universitario Príncipe de Asturias, Madrid, España
| | - M Fernández-Parrado
- Servicio de Dermatología, Hospital Universitario de Navarra, Pamplona, España
| |
Collapse
|
11
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
12
|
Begum JPS, Ngangom L, Semwal P, Painuli S, Sharma R, Gupta A. Emergence of monkeypox: a worldwide public health crisis. Hum Cell 2023; 36:877-893. [PMID: 36749539 PMCID: PMC9903284 DOI: 10.1007/s13577-023-00870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
The human monkeypox virus (MPV), a zoonotic illness that was hitherto solely prevalent in Central and West Africa, has lately been discovered to infect people all over the world and has become a major threat to global health. Humans unintentionally contract this zoonotic orthopoxvirus, which resembles smallpox, when they come into contact with infected animals. Studies show that the illness can also be transferred through frequent proximity, respiratory droplets, and household linens such as towels and bedding. However, MPV infection does not presently have a specified therapy. Smallpox vaccinations provide cross-protection against MPV because of antigenic similarities. Despite scant knowledge of the genesis, epidemiology, and ecology of the illness, the incidence and geographic distribution of monkeypox outbreaks have grown recently. Polymerase chain reaction technique on lesion specimens can be used to detect MPV. Vaccines like ACAM2000, vaccinia immune globulin intravenous (VIG-IV), and JYNNEOS (brand name: Imvamune or Imvanex) as well as FDA-approved antiviral medications such as brincidofovir (brand name: Tembexa), tecovirimat (brand name: TPOXX or ST-246), and cidofovir (brand name: Vistide) are used as therapeutic medications against MPV. In this overview, we provide an outline of the MPV's morphology, evolution, mechanism, transmission, diagnosis, preventative measures, and therapeutic approaches. This study offers the fundamental information required to prevent and manage any further spread of this emerging virus.
Collapse
Affiliation(s)
- J. P. Shabaaz Begum
- grid.448909.80000 0004 1771 8078Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Leirika Ngangom
- grid.448909.80000 0004 1771 8078Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Prabhakar Semwal
- grid.448909.80000 0004 1771 8078Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand 248002 India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Prem Nagar, Dehradun, Uttarakhand 248007 India
| | - Rohit Sharma
- grid.411507.60000 0001 2287 8816Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043 USA ,South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045 USA ,BioIntegrate, Lawrenceville, GA 30043 USA ,Regenerative Orthopaedics, Uttar Pradesh, Noida, 201301 India
| |
Collapse
|
13
|
Rosa RB, Ferreira de Castro E, Vieira da Silva M, Paiva Ferreira DC, Jardim ACG, Santos IA, Marinho MDS, Ferreira França FB, Pena LJ. In vitro and in vivo models for monkeypox. iScience 2023; 26:105702. [PMID: 36471873 PMCID: PMC9712139 DOI: 10.1016/j.isci.2022.105702] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The emergence and rapid spread outside of monkeypox virus (MPXV) to non-endemic areas has led to another global health emergency in the midst of the COVID-19 pandemic. The scientific community has sought to rapidly develop in vitro and in vivo models that could be applied in research with MPXV. In vitro models include two-dimensional (2D) cultures of immortalized cell lines or primary cells and three-dimensional (3D) cultures. In vitro models are considered cost-effective and can be done in highly controlled conditions; however, they do not always resemble physiological conditions. In this way, several in vivo models are being characterized to meet the growing demand for new studies related to MPXV. In this review, we summarize the main MPXV models that have already been developed and discuss how they can contribute to advance the understanding of its pathogenesis, replication, and transmission, as well as identifying antivirals to treat infected patients.
Collapse
Affiliation(s)
- Rafael Borges Rosa
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | - Emilene Ferreira de Castro
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | - Murilo Vieira da Silva
- Rodents Animal Facilities Complex, Federal University of Uberlândia (REBIR-UFU), Uberlândia 38400-902, Brazil
| | | | | | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-302, Brazil
| | | | | | - Lindomar José Pena
- Department of Virology and Experimental Therapy (LAVITE), Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife 50740-465, Brazil
| |
Collapse
|
14
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Ahmad S, Hasan H, Ahmad Suhaimi NA, Albakri KA, Abedalbaset Alzyoud A, Kadir R, Mohamud R. Comprehensive literature review of monkeypox. Emerg Microbes Infect 2022; 11:2600-2631. [PMID: 36263798 PMCID: PMC9627636 DOI: 10.1080/22221751.2022.2132882] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/02/2022] [Indexed: 11/03/2022]
Abstract
The current outbreak of monkeypox (MPX) infection has emerged as a global matter of concern in the last few months. MPX is a zoonosis caused by the MPX virus (MPXV), which is one of the Orthopoxvirus species. Thus, it is similar to smallpox caused by the variola virus, and smallpox vaccines and drugs have been shown to be protective against MPX. Although MPX is not a new disease and is rarely fatal, the current multi-country MPX outbreak is unusual because it is occurring in countries that are not endemic for MPXV. In this work, we reviewed the extensive literature available on MPXV to summarize the available data on the major biological, clinical and epidemiological aspects of the virus and the important scientific findings. This review may be helpful in raising awareness of MPXV transmission, symptoms and signs, prevention and protective measures. It may also be of interest as a basis for performance of studies to further understand MPXV, with the goal of combating the current outbreak and boosting healthcare services and hygiene practices.Trial registration: ClinicalTrials.gov identifier: NCT02977715..Trial registration: ClinicalTrials.gov identifier: NCT03745131..Trial registration: ClinicalTrials.gov identifier: NCT00728689..Trial registration: ClinicalTrials.gov identifier: NCT02080767..
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | | | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | | | | | | | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
15
|
Li X, Peng T. Strategy, Progress, and Challenges of Drug Repurposing for Efficient Antiviral Discovery. Front Pharmacol 2021; 12:660710. [PMID: 34017257 PMCID: PMC8129523 DOI: 10.3389/fphar.2021.660710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging or re-emerging viruses are still major threats to public health. Prophylactic vaccines represent the most effective way to prevent virus infection; however, antivirals are more promising for those viruses against which vaccines are not effective enough or contemporarily unavailable. Because of the slow pace of novel antiviral discovery, the high disuse rates, and the substantial cost, repurposing of the well-characterized therapeutics, either approved or under investigation, is becoming an attractive strategy to identify the new directions to treat virus infections. In this review, we described recent progress in identifying broad-spectrum antivirals through drug repurposing. We defined the two major categories of the repurposed antivirals, direct-acting repurposed antivirals (DARA) and host-targeting repurposed antivirals (HTRA). Under each category, we summarized repurposed antivirals with potential broad-spectrum activity against a variety of viruses and discussed the possible mechanisms of action. Finally, we proposed the potential investigative directions of drug repurposing.
Collapse
Affiliation(s)
- Xinlei Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, College of Basic Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Indari O, Jakhmola S, Manivannan E, Jha HC. An Update on Antiviral Therapy Against SARS-CoV-2: How Far Have We Come? Front Pharmacol 2021; 12:632677. [PMID: 33762954 PMCID: PMC7982669 DOI: 10.3389/fphar.2021.632677] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 pandemic has spread worldwide at an exponential rate affecting millions of people instantaneously. Currently, various drugs are under investigation to treat an enormously increasing number of COVID-19 patients. This dreadful situation clearly demands an efficient strategy to quickly identify drugs for the successful treatment of COVID-19. Hence, drug repurposing is an effective approach for the rapid discovery of frontline arsenals to fight against COVID-19. Successful application of this approach has resulted in the repurposing of some clinically approved drugs as potential anti-SARS-CoV-2 candidates. Several of these drugs are either antimalarials, antivirals, antibiotics or corticosteroids and they have been repurposed based on their potential to negate virus or reduce lung inflammation. Large numbers of clinical trials have been registered to evaluate the effectiveness and clinical safety of these drugs. Till date, a few clinical studies are complete and the results are primary. WHO also conducted an international, multi-country, open-label, randomized trials-a solidarity trial for four antiviral drugs. However, solidarity trials have few limitations like no placebos were used, additionally any drug may show effectiveness for a particular population in a region which may get neglected in solidarity trial analysis. The ongoing randomized clinical trials can provide reliable long-term follow-up results that will establish both clinical safety and clinical efficacy of these drugs with respect to different regions, populations and may aid up to worldwide COVID-19 treatment research. This review presents a comprehensive update on majorly repurposed drugs namely chloroquine, hydroxychloroquine, remdesivir, lopinavir-ritonavir, favipiravir, ribavirin, azithromycin, umifenovir, oseltamivir as well as convalescent plasma therapy used against SARS-CoV-2. The review also summarizes the data recorded on the mechanism of anti-SARS-CoV-2 activity of these repurposed drugs along with the preclinical and clinical findings, therapeutic regimens, pharmacokinetics, and drug-drug interactions.
Collapse
Affiliation(s)
- Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | | | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
17
|
Huchting J. Targeting viral genome synthesis as broad-spectrum approach against RNA virus infections. Antivir Chem Chemother 2020; 28:2040206620976786. [PMID: 33297724 PMCID: PMC7734526 DOI: 10.1177/2040206620976786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zoonotic spillover, i.e. pathogen transmission from animal to human, has repeatedly introduced RNA viruses into the human population. In some cases, where these viruses were then efficiently transmitted between humans, they caused large disease outbreaks such as the 1918 flu pandemic or, more recently, outbreaks of Ebola and Coronavirus disease. These examples demonstrate that RNA viruses pose an immense burden on individual and public health with outbreaks threatening the economy and social cohesion within and across borders. And while emerging RNA viruses are introduced more frequently as human activities increasingly disrupt wild-life eco-systems, therapeutic or preventative medicines satisfying the “one drug-multiple bugs”-aim are unavailable. As one central aspect of preparedness efforts, this review digs into the development of broadly acting antivirals via targeting viral genome synthesis with host- or virus-directed drugs centering around nucleotides, the genomes’ universal building blocks. Following the first strategy, selected examples of host de novo nucleotide synthesis inhibitors are presented that ultimately interfere with viral nucleic acid synthesis, with ribavirin being the most prominent and widely used example. For directly targeting the viral polymerase, nucleoside and nucleotide analogues (NNAs) have long been at the core of antiviral drug development and this review illustrates different molecular strategies by which NNAs inhibit viral infection. Highlighting well-known as well as recent, clinically promising compounds, structural features and mechanistic details that may confer broad-spectrum activity are discussed. The final part addresses limitations of NNAs for clinical development such as low efficacy or mitochondrial toxicity and illustrates strategies to overcome these.
Collapse
Affiliation(s)
- Johanna Huchting
- Chemistry Department, Institute for Organic Chemistry, Faculty of Mathematics, Computer Science and Natural Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
Hucke FIL, Bugert JJ. Current and Promising Antivirals Against Chikungunya Virus. Front Public Health 2020; 8:618624. [PMID: 33384981 PMCID: PMC7769948 DOI: 10.3389/fpubh.2020.618624] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF) and is categorized as a(n) (re)emerging arbovirus. CHIKV has repeatedly been responsible for outbreaks that caused serious economic and public health problems in the affected countries. To date, no vaccine or specific antiviral therapies are available. This review gives a summary on current antivirals that have been investigated as potential therapeutics against CHIKF. The mode of action as well as possible compound targets (viral and host targets) are being addressed. This review hopes to provide critical information on the in vitro efficacies of various compounds and might help researchers in their considerations for future experiments.
Collapse
|
19
|
Balakrishnan A, Mun AB. Ribavirin inhibits Chandipura virus replication in Vero cells. J Med Virol 2020; 92:2969-2975. [PMID: 32543712 DOI: 10.1002/jmv.26184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/10/2020] [Indexed: 01/04/2023]
Abstract
Chandipura virus (CHPV) is an emerging tropical pathogen in India. The virus has been reported to be associated with an acute encephalitis syndrome in young children with a case fatality rate of 55% to 75%. Clinical management with symptomatic treatment is the only option available to treat infected patients. No vaccines are available for prophylaxis. In light of the prophylactic limitations, antiviral therapy would play an important role in control of CHPV infection. In the present study, ribavirin (RBV), an antiviral drug widely accepted for human use and having an antiviral effect on many RNA and DNA viruses, was tested against the CHPV. A screening assay that scores for the virus-mediated plaque formation in the cultured Vero cells was used. RBV exhibited 50% inhibitory concentration (IC50 ) at 89.84 ± 1.8 µM. The drug was very effective when the cells were treated either within an hour postinfection or 4 to 6 hours before infection. The plaque morphology was different in RBV treated cells; the plaques were smaller in size as compared with the plaques in the virus infected cells. The study reports the antiviral activity of RBV against CHPV, and hence, suggests the possible utility of RBV in CHPV infected patients to mitigate the disease. A further clinical trial is needed before introducing the drug for human use against CHPV infection.
Collapse
Affiliation(s)
| | - Amol B Mun
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
20
|
Sanna G, Madeddu S, Serreli G, Nguyen HT, Le NT, Usai D, Carta A, Cappuccinelli P, Zanetti S, Donadu MG. Antiviral effect of Hornstedtia bella Škorničk essential oil from the whole plant against vaccinia virus (VV). Nat Prod Res 2020; 35:5674-5680. [PMID: 32975126 PMCID: PMC9491107 DOI: 10.1080/14786419.2020.1824228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the prevention of epidemic and pandemic emerging and neglected viral infections, natural products are an important source of lead compounds. Hornstedtia bella Škorničkis is a rhizomatous herb growing in the forest of central Vietnam. Hornstedtia bella essential oil (Hb EO) was recently characterised by our group as endowed of antimicrobial activity against Staphylococcus aureus Methicillin-Resistant strains. Here, we describe for the first time the evaluation of Hb EO against a spectrum of viruses responsible for important human diseases. Hb EO resulted active against Vaccinia virus (VV) (EC50 values 80 μg/mL), closely related to variola virus, causative agent of smallpox. Hb EO was able to strongly reduce the viral VV titer in cell-based assay at not cytotoxic concentration and its potential mode of action was characterised by virucidal activity evaluation followed by time-of-addition assay. Furthermore, Hb EO antiviral activity was implemented in a combination study with the mycophenolic acid.
Collapse
Affiliation(s)
- Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Silvia Madeddu
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Gabriele Serreli
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue, Viet Nam
| | - Nhan Trong Le
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue, Viet Nam
| | - Donatella Usai
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Carta
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Piero Cappuccinelli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
21
|
Identification of Inhibitors of ZIKV Replication. Viruses 2020; 12:v12091041. [PMID: 32961956 PMCID: PMC7551609 DOI: 10.3390/v12091041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) was identified in 1947 in the Zika forest of Uganda and it has emerged recently as a global health threat, with recurring outbreaks and its associations with congenital microcephaly through maternal fetal transmission and Guillain-Barré syndrome. Currently, there are no United States (US) Food and Drug Administration (FDA)-approved vaccines or antivirals to treat ZIKV infections, which underscores an urgent medical need for the development of disease intervention strategies to treat ZIKV infection and associated disease. Drug repurposing offers various advantages over developing an entirely new drug by significantly reducing the timeline and resources required to advance a candidate antiviral into the clinic. Screening the ReFRAME library, we identified ten compounds with antiviral activity against the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV). Moreover, we showed the ability of these ten compounds to inhibit influenza A and B virus infections, supporting their broad-spectrum antiviral activity. In this study, we further evaluated the broad-spectrum antiviral activity of the ten identified compounds by testing their activity against ZIKV. Among the ten compounds, Azaribine (SI-MTT = 146.29), AVN-944 (SI-MTT = 278.16), and Brequinar (SI-MTT = 157.42) showed potent anti-ZIKV activity in post-treatment therapeutic conditions. We also observed potent anti-ZIKV activity for Mycophenolate mofetil (SI-MTT = 20.51), Mycophenolic acid (SI-MTT = 36.33), and AVN-944 (SI-MTT = 24.51) in pre-treatment prophylactic conditions and potent co-treatment inhibitory activity for Obatoclax (SI-MTT = 60.58), Azaribine (SI-MTT = 91.51), and Mycophenolate mofetil (SI-MTT = 73.26) in co-treatment conditions. Importantly, the inhibitory effect of these compounds was strain independent, as they similarly inhibited ZIKV strains from both African and Asian/American lineages. Our results support the broad-spectrum antiviral activity of these ten compounds and suggest their use for the development of antiviral treatment options of ZIKV infection.
Collapse
|
22
|
Jones NP. Immunosuppression in the Management of Presumed Non-infective Uveitis; Are We Sure What We are Treating? Notes on the Antimicrobial Properties of the Systemic Immunosuppressants. Ocul Immunol Inflamm 2020; 28:994-1003. [PMID: 31418624 DOI: 10.1080/09273948.2019.1643030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To describe the antimicrobial effects of immunosuppressants used for presumed autoimmune uveitis, and to discuss the potential importance of these effects in the context of increasing knowledge of the human microbiomes and their influence on inflammation. METHODS Literature review. REVIEW OF EVIDENCE All immunosuppressants have intrinsic antimicrobial effects; these vary considerably between drugs, and include antibacterial, antiviral and antifungal action. Immunosuppression is known to affect the composition of the gut microbiome, and alterations in microbiome composition are known to affect inflammations including uveitis. CONCLUSIONS Oral immunosuppressants are assumed to act on presumed autoimmune uveitis by downregulation of, or other interference with, an aberrant immune response. However, their antimicrobial properties are usually forgotten, and in the context of increasing knowledge of the involvement of microbes in the initiation of, and also potentially the perpetuation of, tissue inflammation, these effects may prove to be a fundamental part of their action.
Collapse
Affiliation(s)
- Nicholas P Jones
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust , Manchester, UK.,Medical Academic Health Science Centre, University of Manchester , Manchester, UK
| |
Collapse
|
23
|
Ji X, Li Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med Res Rev 2020; 40:1519-1557. [PMID: 32060956 PMCID: PMC7228277 DOI: 10.1002/med.21664] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Direct‐acting antiviral agents (DAAs) represent a class of drugs targeting viral proteins and have been demonstrated to be very successful in combating viral infections in clinic. However, DAAs suffer from several inherent limitations, including narrow‐spectrum antiviral profiles and liability to drug resistance, and hence there are still unmet needs in the treatment of viral infections. In comparison, host targeting antivirals (HTAs) target host factors for antiviral treatment. Since host proteins are probably broadly required for various viral infections, HTAs are not only perceived, but also demonstrated to exhibit broad‐spectrum antiviral activities. In addition, host proteins are not under the genetic control of viral genome, and hence HTAs possess much higher genetic barrier to drug resistance as compared with DAAs. In recent years, much progress has been made to the development of HTAs with the approval of chemokine receptor type 5 antagonist maraviroc for human immunodeficiency virus treatment and more in the pipeline for other viral infections. In this review, we summarize various host proteins as antiviral targets from a medicinal chemistry prospective. Challenges and issues associated with HTAs are also discussed.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Wu J, Liu Q, Xie H, Chen R, Huang W, Liang C, Xiao X, Yu Y, Wang Y. Screening and evaluation of potential inhibitors against vaccinia virus from 767 approved drugs. J Med Virol 2019; 91:2016-2024. [PMID: 31294846 DOI: 10.1002/jmv.25544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022]
Abstract
The development of therapies for human smallpox is needed due to the increasing concern over the potential use of smallpox virus as a biological weapon. Here, we report a high-throughput screening for anti-smallpox virus drugs from a 767-small-molecule library, employing two vaccinia virus (VACV) strains containing firefly luciferase (VTT-Fluc and VG9-Fluc) as surrogate viruses. Using an eight-point dose response format assay, 26 compounds of different pharmacological classes were identified with in vitro anti-VACV activities. Mycophenolate mofetil (MMF) and tranilast (TRA) were detected to possess the highest anti-VACV potency (selectivity index values of >334 and >74, respectively); they could inhibit VTT-Fluc replication in nude mice at 5 days post-infection by 99% (10 mg/kg, P < .01) and 59% (45 mg/kg, P = .01), respectively, as indicated by bioluminescent intensity. In conclusion, MMF and TRA are promising anti-smallpox virus candidates for further optimization and repurposing for use in clinical practice.
Collapse
Affiliation(s)
- Jiajing Wu
- National Engineering Technology Research Center of Combination Vaccines, Wuhan Institute of Biological Products, Wuhan, Hubei, China.,Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Qiang Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Hui Xie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Ruifeng Chen
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Chunnan Liang
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Xinyue Xiao
- Institute for Reference Standards and Standardization, National Institutes for Food and Drug Control, Beijing, China
| | - Yongxin Yu
- National Engineering Technology Research Center of Combination Vaccines, Wuhan Institute of Biological Products, Wuhan, Hubei, China.,Division of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
25
|
Schneider SM, Pritchard SM, Wudiri GA, Trammell CE, Nicola AV. Early Steps in Herpes Simplex Virus Infection Blocked by a Proteasome Inhibitor. mBio 2019; 10:e00732-19. [PMID: 31088925 PMCID: PMC6520451 DOI: 10.1128/mbio.00732-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Viruses commandeer host cell 26S proteasome activity to promote viral entry, gene expression, replication, assembly, and egress. Proteasomal degradation activity is critical for herpes simplex virus (HSV) infection. The proteasome inhibitor bortezomib (also known as Velcade and PS-341) is a clinically effective antineoplastic drug that is FDA approved for treatment of hematologic malignancies such as multiple myeloma and mantle cell lymphoma. Low nanomolar concentrations of bortezomib inhibited infection by HSV-1, HSV-2, and acyclovir-resistant strains. Inhibition coincided with minimal cytotoxicity. Bortezomib did not affect attachment of HSV to cells or inactivate the virus directly. Bortezomib acted early in HSV infection by perturbing two distinct proteasome-dependent steps that occur within the initial hours of infection: the transport of incoming viral nucleocapsids to the nucleus and the virus-induced disruption of host nuclear domain 10 (ND10) structures. The combination of bortezomib with acyclovir demonstrated synergistic inhibitory effects on HSV infection. Thus, bortezomib is a novel potential therapeutic for HSV with a defined mechanism of action.IMPORTANCE Viruses usurp host cell functions to advance their replicative agenda. HSV relies on cellular proteasome activity for successful infection. Proteasome inhibitors, such as MG132, block HSV infection at multiple stages of the infectious cycle. Targeting host cell processes for antiviral intervention is an unconventional approach that might limit antiviral resistance. Here we demonstrated that the proteasome inhibitor bortezomib, which is a clinically effective cancer drug, has the in vitro features of a promising anti-HSV therapeutic. Bortezomib inhibited HSV infection during the first hours of infection at nanomolar concentrations that were minimally cytotoxic. The mechanism of bortezomib's inhibition of early HSV infection was to halt nucleocapsid transport to the nucleus and to stabilize the ND10 cellular defense complex. Bortezomib and acyclovir acted synergistically to inhibit HSV infection. Overall, we present evidence for the repurposing of bortezomib as a novel antiherpesviral agent and describe specific mechanisms of action.
Collapse
Affiliation(s)
- Seth M Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - George A Wudiri
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Chasity E Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
26
|
Smee DF, Jung KH, Westover J, Gowen BB. 2'-Fluoro-2'-deoxycytidine is a broad-spectrum inhibitor of bunyaviruses in vitro and in phleboviral disease mouse models. Antiviral Res 2018; 160:48-54. [PMID: 30339848 DOI: 10.1016/j.antiviral.2018.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/13/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
2'-Fluoro-2'-deoxycytidine (2'-FdC) was reported to inhibit various viruses in vitro, including Borna disease, hepatitis C, Lassa fever, influenza and certain herpes viruses, and is inhibitory to influenza viruses in mice. We investigated the antiviral activity of 2'-FdC against several unrelated bunyaviruses in 50% cytopathic effect (CPE) inhibition assays and, with viruses that cause limited CPE, 90% virus yield reduction (VYR) assays. La Crosse (LACV), Maporal, Punta Toro, Rift Valley fever (RVFV), and San Angelo viruses were inhibited in CPE assays at 2.2-9.7 μM concentrations. In VYR assays, Heartland and severe fever with thrombocytopenia syndrome (SFTSV) viruses were inhibited at 0.9 and 3.7 μM, respectively. In contrast, ribavirin inhibited these viruses at an average of 47 μM. Antiviral efficacy studies were also conducted in mice infected with RVFV, SFTSV, and LACV. Against RVFV, 2'-FdC (100 and 200 mg/kg/day) and ribavirin (100 mg/kg/day) treatments each delayed mortality by approximately 6 days compared to placebo. Liver, spleen, and serum viral titers were significantly reduced by antiviral treatments. 2'-FdC (100 and 200 mg/kg/day) prevented death in SFTSV-infected mice, but was not as effective as favipiravir (100 mg/kg/day) based on body weight loss during infection. The 100 mg/kg/day doses of 2'-FdC and favipiravir significantly reduced liver, spleen, and serum viral titers. 2'-FdC and ribavirin afforded no protection against LACV infection in mice, which is encephalitic and thus inherently more difficult to treat. Taken together, our data suggest that 2'-FdC may be a viable candidate for treating certain non-encephalitic bunyavirus infections such as those caused by phleboviruses.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | - Kie-Hoon Jung
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Jonna Westover
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Brian B Gowen
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| |
Collapse
|
27
|
Current Strategies for Inhibition of Chikungunya Infection. Viruses 2018; 10:v10050235. [PMID: 29751486 PMCID: PMC5977228 DOI: 10.3390/v10050235] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 12/31/2022] Open
Abstract
Increasing incidences of Chikungunya virus (CHIKV) infection and co-infections with Dengue/Zika virus have highlighted the urgency for CHIKV management. Failure in developing effective vaccines or specific antivirals has fuelled further research. This review discusses updated strategies of CHIKV inhibition and provides possible future directions. In addition, it analyzes advances in CHIKV lifecycle, drug-target development, and potential hits obtained by in silico and experimental methods. Molecules identified with anti-CHIKV properties using traditional/rational drug design and their potential to succeed in subsequent stages of drug development have also been discussed. Possibilities of repurposing existing drugs based on their in vitro findings have also been elucidated. Probable modes of interference of these compounds at various stages of infection, including entry and replication, have been highlighted. The use of host factors as targets to identify antivirals against CHIKV has been addressed. While most of the earlier antivirals were effective in the early phases of the CHIKV life cycle, this review is also focused on drug candidates that are effective at multiple stages of its life cycle. Since most of these antivirals require validation in preclinical and clinical models, the challenges regarding this have been discussed and will provide critical information for further research.
Collapse
|
28
|
Sucipto TH, Churrotin S, Setyawati HS, Mulyatno KC, Amarullah IH, Ueda S, Kotaki T, Sumarsih S, Wardhani P, Bendryman SS, Aryati A, Soegijanto S, Kameoka M. INHIBITORY ACTIVITY OF COBALT(II)–MORIN COMPLEX AGAINST THE REPLICATION OF DENGUE VIRUS TYPE 2. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2017. [DOI: 10.20473/ijtid.v6i6.6126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dengue virus (DENV) is a significant pathogen emerging worldwide as a cause of infectious disease. Antidengue treatments are urgently required to control the emergence of dengue. DENV is a mosquito-borne disease responsible for acute systemic diseases and serious health conditions. DENVs were distributed in the tropical and sub-tropical areas and transmitted to humans by Aedes agypty and Aedes albopictus. Dengue vaccine or antiviral has not yet been clinically approved for humans, even though there have been great efforts toward this end. Antiviral activity against DENV is an important alternative for the characterization and development of drugs. Metal–organic compounds were reported to exhibit fungicidal, bactericidal, and antiviral activities its inhibitory activity was not significant, at high concentration it was more toxic to replicating cells than to stationary cell monolayers of Vero cells. The aim of this study is to investigate the antiviral effects of Cobalt(II)–Morin complex. This compound was further investigated for its inhibitory effect on the replication of DENV-2 in Vero cells. The replication of DENV was measured by enzyme-linked immunosorbent assay and the value of selectivity index (SI). SI was determined as the ratio of the 50% cytotoxic concentration (CC50) to the 50% inhibitory concentration (IC50). The IC50 value of the Cobalt(II)–Morin complex for DENV-2 was 3.08 µg/ml, and the CC50 value of the complex for Vero cells was 3.36 µg/ml; thus, the SI value was 1.09. The results of this study demonstrate the antidengue serotype 2 inhibitory activity of Cobalt(II)–Morin complex and its high toxicity in Vero cells. Further studies are not required before Co(II)–Morin can be applied in the treatment of DENV-2 infections.
Collapse
|
29
|
Xu S, Yamamoto N. mRNA-Seq reveals accumulation followed by reduction of small nuclear and nucleolar RNAs in yeast exposed to antiviral ribavirin. FEMS Yeast Res 2017; 17:4085638. [PMID: 28934414 DOI: 10.1093/femsyr/fox067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ribavirin is an antiviral drug that is used to treat a wide range of human viral infections. However, the side effects are reported, and the mechanisms on eukaryotic cells are still largely unknown. Here we report our observation of accumulation followed by reduction of small nuclear (sn)RNAs and small nucleolar (sno)RNAs in Saccharomyces cerevisiae exposed to ribavirin. The three strains reported to contain dsRNA virus-like particle(s) were exposed to 100 μM of ribavirin, and snRNAs and snoRNAs from a total of 31 snR genes were differentially detected between the samples exposed to ribavirin and the respective negative controls by mRNA-Seq. Our results suggest that polyadenylated snRNAs and snoRNAs accumulated at 1 h but reduced to the subbasal levels at 4 h of ribavirin exposure. The tendency was reproducible across the three tested strains. Our study showed ribavirin affected snRNAs and snoRNAs in yeast. There may be a need to scrutinize the relationships between the side effects and such non-coding RNAs in humans who are treated with ribavirin.
Collapse
Affiliation(s)
- Siyu Xu
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
30
|
Carrillo-Bustamante P, Nguyen THT, Oestereich L, Günther S, Guedj J, Graw F. Determining Ribavirin's mechanism of action against Lassa virus infection. Sci Rep 2017; 7:11693. [PMID: 28916737 PMCID: PMC5601963 DOI: 10.1038/s41598-017-10198-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Ribavirin is a broad spectrum antiviral which inhibits Lassa virus (LASV) replication in vitro but exhibits a minor effect on viremia in vivo. However, ribavirin significantly improves the disease outcome when administered in combination with sub-optimal doses of favipiravir, a strong antiviral drug. The mechanisms explaining these conflicting findings have not been determined, so far. Here, we used an interdisciplinary approach combining mathematical models and experimental data in LASV-infected mice that were treated with ribavirin alone or in combination with the drug favipiravir to explore different putative mechanisms of action for ribavirin. We test four different hypotheses that have been previously suggested for ribavirin’s mode of action: (i) acting as a mutagen, thereby limiting the infectivity of new virions; (ii) reducing viremia by impairing viral production; (iii) modulating cell damage, i.e., by reducing inflammation, and (iv) enhancing antiviral immunity. Our analysis indicates that enhancement of antiviral immunity, as well as effects on viral production or transmission are unlikely to be ribavirin’s main mechanism mediating its antiviral effectiveness against LASV infection. Instead, the modeled viral kinetics suggest that the main mode of action of ribavirin is to protect infected cells from dying, possibly reducing the inflammatory response.
Collapse
Affiliation(s)
- Paola Carrillo-Bustamante
- Center for Modeling and Simulation in the Biosciences (BIOMS), BioQuant-Center, Heidelberg University, Heidelberg, Germany.
| | - Thi Huyen Tram Nguyen
- INSERM, IAME, UMR, 1137, Paris, France.,Université Paris Diderot, IAME, UMR, 1137, Sorbonne Paris Cité, France
| | - Lisa Oestereich
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg, Germany
| | - Stephan Günther
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg, Germany
| | - Jeremie Guedj
- INSERM, IAME, UMR, 1137, Paris, France.,Université Paris Diderot, IAME, UMR, 1137, Sorbonne Paris Cité, France
| | - Frederik Graw
- Center for Modeling and Simulation in the Biosciences (BIOMS), BioQuant-Center, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
31
|
Sucipto TH, Churrotin S, Setyawati H, Kotaki T, Martak F, Soegijanto S. ANTIVIRAL ACTIVITY OF COPPER(II)CHLORIDE DIHYDRATE AGAINST DENGUE VIRUS TYPE-2 IN VERO CELL. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2017. [DOI: 10.20473/ijtid.v6i4.3806] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infection of dengue virus (DENV) was number of globally significant emerging pathogen. Antiviral dengue therapies ar importantly needed to control emerging dengue. Dengue virus (DENV) is mosquito-borne arboviruses responsible for causing acute systemic diseases and grievous health conditions in humans. To date, there is no clinically approved dengue vaccine or antiviral for humans, even though there have been great efforts towards this end. Copper and copper compounds have more effective in inactivation viruses, likes an influenza virus and human immunodeficiency virus (HIV). Purpose in this project was investigated of Copper(II)chloride Dihydrate antiviral compound were further tested for inhibitory effect on the replication of DENV-2 in cell culture. DENV replication was measures by Enzyme linked Immunosorbent Assay (ELISA) with selectivity index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for compound. The maximal inhibitory concentration (IC50) of Copper(II)chloride Dihydrate against dengue virus type-2 was 0.13 μg/ml. The cytotoxic concentration (CC50) of compound against Vero cell was 5.03 μg/ml. The SI values for Copper(II)chloride Dihydrate 38.69. Result of this study suggest that Copper(II)chloride Dihydrate demonstated significant anti-DENV-2 inhibitory activities and not toxic in the Vero cells. Copper mechanisms play an important role in the prevention of copper toxicity, exposure to excessive levels of copper can result in a number of adverse health effects, as a result increased reactive oxygen species and oxidative damage to lipid, DNA, and proteins have been observed in human cell culture models or clinical syndromes of severe copper deficiency and inhibition was attributed to released cupric ions which react with cysteine residues on the surface of the protease.
Collapse
|
32
|
Smee DF, Prichard MN. Comparison of three dimensional synergistic analyses of percentage versus logarithmic data in antiviral studies. Antiviral Res 2017; 145:1-5. [PMID: 28676302 DOI: 10.1016/j.antiviral.2017.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/26/2023]
Abstract
Cell culture antiviral experiments were conducted in order to understand the relationship between percentage data generated by plaque reduction (PR) and logarithmic data derived by virus yield reduction (VYR) assays, using three-dimensional MacSynergy II software. The relationship between percentage and logarithmic data has not been investigated previously. Interpretation of drug-drug interactions is based on a Volume of Synergy (VS) calculation, which can be positive (synergy), negative (antagonistic), or neutral (no or minimal interaction). Interactions of two known inhibitors of vaccinia virus replication, cidofovir and 6-azauridine, used in combination by PR assay yielded a VS value of 265, indicative of strong synergy. By VYR, the VS value was only 37, or weak synergy using the same criterion, even though profound log10 reductions in virus titer occurred at multiple drug combinations. These results confirm that the differences in VS values is dependent of the measurement scale, and not that the degree of synergy differed between the assays. We propose that for logarithmic data, the calculated VS values will be lower for significant synergy and antagonism and that volumes of >10 μM2log10 PFU/ml (or other units such as μM2log10 genomic equivalents/ml or μM2log10 copies/ml) and <-10 μM2log10 PFU/ml are likely to be indicative of strong synergy and strong antagonism, respectively. Data presented here show that the interaction of cidofovir and 6-azauridine was strongly synergistic in vitro.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322-5600, USA.
| | - Mark N Prichard
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, 35233-1711, USA
| |
Collapse
|
33
|
Dash PK, Agarwal A, Sharma S, Saha A, Joshi G, Gopalan N, Sukumaran D, Parida MM. Development of a SYBR green I-based quantitative RT-PCR for Ross River virus: Application in vector competence studies and antiviral drug evaluation. J Virol Methods 2016; 234:107-14. [PMID: 27105737 PMCID: PMC7119768 DOI: 10.1016/j.jviromet.2016.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 11/16/2022]
Abstract
Ross River virus (RRV) is an emerging Alphavirus and is presently endemic in many parts of Oceania. Keeping in mind its emergence, we developed a molecular detection system and utilized it to study vector competence and evaluate activity of antiviral compounds against RRV. A SYBR Green I-based quantitative RT-PCR for detection of RRV was developed targeting the E2 gene, with a detection limit of 100 RNA copies/reaction. The specificity was confirmed with closely related Alphaviruses and Flaviviruses. The assay was applied to study the vector competence of Indian Aedes aegypti for RRV, which revealed 100% infection and dissemination rate with 75% transmission rate. Viral RNA was found in saliva as early as 3day post infection (dpi). Further application of the assay in antiviral drug evaluation revealed the superior in vitro activity of ribavirin compared to chloroquine in Vero cells. Successful demonstration of this assay to detect RRV in low titre mosquito samples makes it a sensitive tool in vector surveillance. This study also showed that Indian Ae. aegypti are well competent to transmit RRV highlighting the risk of its introduction to naïve territories across continents. Further validation of this assay, revealed its utility in screening of potential antivirals against RRV.
Collapse
Affiliation(s)
- Paban Kumar Dash
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M.P., India.
| | - Ankita Agarwal
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M.P., India
| | - Shashi Sharma
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M.P., India
| | - Amrita Saha
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M.P., India
| | - Gaurav Joshi
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M.P., India
| | - Natarajan Gopalan
- Vector Management Division, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M.P., India
| | - Devanathan Sukumaran
- Vector Management Division, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M.P., India
| | - Man Mohan Parida
- Division of Virology, Defence R and D Establishment, Jhansi Road, Gwalior 474 002, M.P., India
| |
Collapse
|
34
|
Oestereich L, Rieger T, Lüdtke A, Ruibal P, Wurr S, Pallasch E, Bockholt S, Krasemann S, Muñoz-Fontela C, Günther S. Efficacy of Favipiravir Alone and in Combination With Ribavirin in a Lethal, Immunocompetent Mouse Model of Lassa Fever. J Infect Dis 2015; 213:934-8. [PMID: 26531247 PMCID: PMC4760419 DOI: 10.1093/infdis/jiv522] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/26/2015] [Indexed: 01/16/2023] Open
Abstract
We studied the therapeutic potential of favipiravir (T-705) for Lassa fever, both alone and in combination with ribavirin. Favipiravir suppressed Lassa virus replication in cell culture by 5 log10 units. In a novel lethal mouse model, it lowered the viremia level and the virus load in organs and normalized levels of cell-damage markers. Treatment with 300 mg/kg per day, commenced 4 days after infection, when the viremia level had reached 4 log10 virus particles/mL, rescued 100% of Lassa virus–infected mice. We found a synergistic interaction between favipiravir and ribavirin in vitro and an increased survival rate and extended survival time when combining suboptimal doses in vivo.
Collapse
Affiliation(s)
- Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, Partner Site Hamburg
| | - Toni Rieger
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, Partner Site Hamburg
| | - Anja Lüdtke
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, Partner Site Hamburg Heinrich Pette Institute, Leibniz Institute for Experimental Virology
| | - Paula Ruibal
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, Partner Site Hamburg Heinrich Pette Institute, Leibniz Institute for Experimental Virology
| | - Stephanie Wurr
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, Partner Site Hamburg
| | - Elisa Pallasch
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, Partner Site Hamburg
| | - Sabrina Bockholt
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, Partner Site Hamburg
| | - Susanne Krasemann
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, Partner Site Hamburg Heinrich Pette Institute, Leibniz Institute for Experimental Virology
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine German Center for Infection Research, Partner Site Hamburg
| |
Collapse
|
35
|
Yan D, Weisshaar M, Lamb K, Chung HK, Lin MZ, Plemper RK. Replication-Competent Influenza Virus and Respiratory Syncytial Virus Luciferase Reporter Strains Engineered for Co-Infections Identify Antiviral Compounds in Combination Screens. Biochemistry 2015; 54:5589-604. [PMID: 26307636 PMCID: PMC4719150 DOI: 10.1021/acs.biochem.5b00623] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myxoviruses such as influenza A virus (IAV) and respiratory syncytial virus (RSV) are major human pathogens, mandating the development of novel therapeutics. To establish a high-throughput screening protocol for the simultaneous identification of pathogen- and host-targeted hit candidates against either pathogen or both, we have attempted co-infection of cells with IAV and RSV. However, viral replication kinetics were incompatible, RSV signal window was low, and an IAV-driven minireplicon reporter assay used in initial screens narrowed the host cell range and restricted the assay to single-cycle infections. To overcome these limitations, we developed an RSV strain carrying firefly luciferase fused to an innovative universal small-molecule assisted shut-off domain, which boosted assay signal window, and a hyperactive fusion protein that synchronized IAV and RSV reporter expression kinetics and suppressed the identification of RSV entry inhibitors sensitive to a recently reported RSV pan-resistance mechanism. Combined with a replication-competent recombinant IAV strain harboring nanoluciferase, the assay performed well on a human respiratory cell line and supports multicycle infections. Miniaturized to 384-well format, the protocol was validated through screening of a set of the National Institutes of Health Clinical Collection (NCC) in quadruplicate. These test screens demonstrated favorable assay parameters and reproducibility. Application to a LOPAC library of bioactive compounds in a proof-of-concept campaign detected licensed antimyxovirus therapeutics, ribavirin and the neuraminidase inhibitor zanamivir, and identified two unexpected RSV-specific hit candidates, Fenretinide and the opioid receptor antagonist BNTX-7. Hits were evaluated in direct and orthogonal dose-response counterscreens using a standard recRSV reporter strain expressing Renilla luciferase.
Collapse
Affiliation(s)
- Dan Yan
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| | - Marco Weisshaar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| | - Kristen Lamb
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| | | | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| |
Collapse
|
36
|
Bioactive nucleoside analogues possessing selected five-membered azaheterocyclic bases. Eur J Med Chem 2015; 97:409-18. [DOI: 10.1016/j.ejmech.2014.11.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 11/23/2022]
|
37
|
Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep 2015; 32:29-48. [PMID: 25315648 DOI: 10.1039/c4np00085d] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to April 2014. The development of drugs with broad-spectrum antiviral activities is a long pursued goal in drug discovery. It has been shown that blocking co-opted host-factors abrogates the replication of many viruses, yet the development of such host-targeting drugs has been met with scepticism mainly due to toxicity issues and poor translation to in vivo models. With the advent of new and more powerful screening assays and prediction tools, the idea of a drug that can efficiently treat a wide range of viral infections by blocking specific host functions has re-bloomed. Here we critically review the state-of-the-art in broad-spectrum antiviral drug discovery. We discuss putative targets and treatment strategies, with particular focus on natural products as promising starting points for antiviral lead development.
Collapse
Affiliation(s)
- J P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
38
|
Synergistic suppression of dengue virus replication using a combination of nucleoside analogs and nucleoside synthesis inhibitors. Antimicrob Agents Chemother 2015; 59:2086-93. [PMID: 25624323 DOI: 10.1128/aac.04779-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen in humans. Currently, there is no clinically approved vaccine or antiviral for DENV. Combination therapy is a common practice in antiviral treatment and a potential approach to search for new treatments for infectious pathogens. In this study, we performed a combination treatment in cell culture by using three distinct classes of inhibitors, including ribavirin (a guanosine analog with several antiviral mechanisms), brequinar (a pyrimidine biosynthesis inhibitor), and INX-08189 (a guanosine analog). The compound pairs were evaluated for antiviral activity by use of a DENV-2 luciferase replicon assay. Our result indicated that the combination of ribavirin and INX-08189 exhibited strong antiviral synergy. This result suggests that synergy can be achieved with compound pairs in which one compound suppresses the synthesis of the nucleoside for which the other compound is a corresponding nucleoside analog. In addition, we found that treatment of cells with brequinar alone could activate interferon-stimulated response elements (ISREs); furthermore, brequinar and NITD-982 (another pyrimidine biosynthesis inhibitor) potentiated interferon-induced ISRE activation. Compared to treatment with brequinar, treatment of cells with ribavirin alone could also induce ISRE activation, but to a lesser extent; however, when cells were cotreated with ribavirin and beta interferon, ribavirin did not augment the interferon-induced ISRE activation.
Collapse
|
39
|
Oestereich L, Rieger T, Neumann M, Bernreuther C, Lehmann M, Krasemann S, Wurr S, Emmerich P, de Lamballerie X, Ölschläger S, Günther S. Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in a mouse model for Crimean-Congo hemorrhagic fever. PLoS Negl Trop Dis 2014; 8:e2804. [PMID: 24786461 PMCID: PMC4006714 DOI: 10.1371/journal.pntd.0002804] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/09/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mice lacking the type I interferon receptor (IFNAR-/- mice) reproduce relevant aspects of Crimean-Congo hemorrhagic fever (CCHF) in humans, including liver damage. We aimed at characterizing the liver pathology in CCHF virus-infected IFNAR-/- mice by immunohistochemistry and employed the model to evaluate the antiviral efficacy of ribavirin, arbidol, and T-705 against CCHF virus. METHODOLOGY/PRINCIPAL FINDINGS CCHF virus-infected IFNAR-/- mice died 2-6 days post infection with elevated aminotransferase levels and high virus titers in blood and organs. Main pathological alteration was acute hepatitis with extensive bridging necrosis, reactive hepatocyte proliferation, and mild to moderate inflammatory response with monocyte/macrophage activation. Virus-infected and apoptotic hepatocytes clustered in the necrotic areas. Ribavirin, arbidol, and T-705 suppressed virus replication in vitro by ≥3 log units (IC50 0.6-2.8 µg/ml; IC90 1.2-4.7 µg/ml). Ribavirin [100 mg/(kg×d)] did not increase the survival rate of IFNAR-/- mice, but prolonged the time to death (p<0.001) and reduced the aminotransferase levels and the virus titers. Arbidol [150 mg/(kg×d)] had no efficacy in vivo. Animals treated with T-705 at 1 h [15, 30, and 300 mg/(kg×d)] or up to 2 days [300 mg/(kg×d)] post infection survived, showed no signs of disease, and had no virus in blood and organs. Co-administration of ribavirin and T-705 yielded beneficial rather than adverse effects. CONCLUSIONS/SIGNIFICANCE Activated hepatic macrophages and monocyte-derived cells may play a role in the proinflammatory cytokine response in CCHF. Clustering of infected hepatocytes in necrotic areas without marked inflammation suggests viral cytopathic effects. T-705 is highly potent against CCHF virus in vitro and in vivo. Its in vivo efficacy exceeds that of the current standard drug for treatment of CCHF, ribavirin.
Collapse
Affiliation(s)
- Lisa Oestereich
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg, Germany
| | - Toni Rieger
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg, Germany
| | - Melanie Neumann
- Mouse Pathology Core Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Lehmann
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg, Germany
| | - Susanne Krasemann
- Mouse Pathology Core Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Wurr
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg, Germany
| | - Petra Emmerich
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg, Germany
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | - Stephan Ölschläger
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Hamburg, Germany
| |
Collapse
|
40
|
|
41
|
Hart BJ, Dyall J, Postnikova E, Zhou H, Kindrachuk J, Johnson RF, Olinger GG, Frieman MB, Holbrook MR, Jahrling PB, Hensley L. Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. J Gen Virol 2014; 95:571-577. [PMID: 24323636 PMCID: PMC3929173 DOI: 10.1099/vir.0.061911-0] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) presents a novel emerging threat to public health worldwide. Several treatments for infected individuals have been suggested including IFN, ribavirin and passive immunotherapy with convalescent plasma. Administration of IFN-α2b and ribavirin has improved outcomes of MERS-CoV infection in rhesus macaques when administered within 8 h post-challenge. However, detailed and systematic evidence on the activity of other clinically available drugs is limited. Here we compared the susceptibility of MERS-CoV with different IFN products (IFN-α2b, IFN-γ, IFN-universal, IFN-α2a and IFN-β), as well as with two antivirals, ribavirin and mycophenolic acid (MPA), against MERS-CoV (Hu/Jordan-N3/2012) in vitro. Of all the IFNs tested, IFN-β showed the strongst inhibition of MERS-CoV in vitro, with an IC₅₀ of 1.37 U ml(-1), 41 times lower than the previously reported IC₅₀ (56.08 U ml(-1)) of IFN-α2b. IFN-β inhibition was confirmed in the virus yield reduction assay, with an IC90 of 38.8 U ml(-1). Ribavirin did not inhibit viral replication in vitro at a dose that would be applicable to current treatment protocols in humans. In contrast, MPA showed strong inhibition, with an IC₅₀ of 2.87 µM. This drug has not been previously tested against MERS-CoV and may provide an alternative to ribavirin for treatment of MERS-CoV. In conclusion, IFN-β, MPA or a combination of the two may be beneficial in the treatment of MERS-CoV or as a post-exposure intervention in high-risk patients with known exposures to MERS-CoV.
Collapse
Affiliation(s)
- Brit J. Hart
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederik, MD, USA
| | - Julie Dyall
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederik, MD, USA
| | - Elena Postnikova
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederik, MD, USA
| | - Huanying Zhou
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederik, MD, USA
| | - Jason Kindrachuk
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederik, MD, USA
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Gene G. Olinger
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederik, MD, USA
| | - Matthew B. Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederik, MD, USA
| | - Peter B. Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederik, MD, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Lisa Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederik, MD, USA
| |
Collapse
|
42
|
Krajczyk A, Kulinska K, Kulinski T, Hurst BL, Day CW, Smee DF, Ostrowski T, Januszczyk P, Zeidler J. Antivirally active ribavirin analogues--4,5-disubstituted 1,2,3-triazole nucleosides: biological evaluation against certain respiratory viruses and computational modelling. Antivir Chem Chemother 2014; 23:161-71. [PMID: 23538746 DOI: 10.3851/imp2564] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ribavirin is a broad-spectrum antiviral agent that derives some of its activity from inhibition of cellular inosine monophosphate dehydrogenase (IMPDH), resulting in lower guanosine triphosphate (GTP) levels. Here we report the biological activities of three ribavirin analogues. METHODS Antiviral activities of test compounds were performed by in vitro cytopathic effect inhibition assays against influenza A (H1N1, H3N2 and H5N1), influenza B, measles, parainfluenza type 3 (PIV-3) and respiratory syncytial viruses. Compounds were modelled into the ribavirin 5'-monophosphate binding site of the crystallographic structure of the human type II IMPDH (hIMPDH2) ternary complex. Effects of compounds on intracellular GTP levels were performed by strong anion exchange HPLC analysis. RESULTS Of the three compounds evaluated, the 5-ethynyl nucleoside (ETCAR) exhibited virus-inhibitory activities (at 1.2-20 μM, depending upon the virus) against most of the viruses, except for weak activity against PIV-3 (62 μM). Antiviral activity of ETCAR was similar to ribavirin; however, cytotoxicity of ETCAR was greater than ribavirin. Replacing the 5-ethynyl group with a 5-propynyl or bromo substituent (BrCAR) considerably reduced antiviral activity. Computational studies of ternary complexes of hIMPDH2 enzyme with 5'-monophosphates of the compounds helped rationalize the observed differences in biological activity. All compounds suppressed GTP levels in cells; additionally, BrCAR suppressed adenosine triphosphate and elevated uridine triphosphate levels. CONCLUSIONS Three compounds related to ribavirin inhibited IMPDH and had weak to moderate antiviral activity. Cytotoxicity adversely affected the antiviral selectivity of ETCAR. As with ribavirin, reduction in intracellular GTP may play a role in virus inhibition.
Collapse
Affiliation(s)
- Anna Krajczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Potent antiviral activity of brequinar against the emerging Cantagalo virus in cell culture. Int J Antimicrob Agents 2011; 38:435-41. [DOI: 10.1016/j.ijantimicag.2011.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/22/2022]
|
44
|
Depletion of GTP pool is not the predominant mechanism by which ribavirin exerts its antiviral effect on Lassa virus. Antiviral Res 2011; 91:89-93. [PMID: 21616094 DOI: 10.1016/j.antiviral.2011.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/30/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023]
Abstract
Ribavirin (1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide) is the standard treatment for Lassa fever, though its mode of action is unknown. One possibility is depletion of the intracellular GTP pool via inhibition of the cellular enzyme inosine monophosphate dehydrogenase (IMPDH). This study compared the anti-arenaviral effect of ribavirin with that of two other IMPDH inhibitors, mycophenolic acid (MPA) and 5-ethynyl-1-β-d-ribofuranosylimidazole-4-carboxamide (EICAR). All three compounds were able to inhibit Lassa virus replication by ≥2 log units in cell culture. Restoring the intracellular GTP pool by exogenous addition of guanosine reversed the inhibitory effects of MPA and EICAR, while ribavirin remained fully active. Analogous experiments performed with Zaire Ebola virus showed that IMPDH inhibitors are also active against this virus, although to a lesser extent than against Lassa virus. In conclusion, the experiments with MPA and EICAR indicate that replication of Lassa and Ebola virus is sensitive to depletion of the GTP pool mediated via inhibition of IMPDH. However, this is not the predominant mechanism by which ribavirin exerts its in-vitro antiviral effect on Lassa virus.
Collapse
|
45
|
Smee DF, Bailey KW, Wong MH, Tarbet EB. Topical treatment of cutaneous vaccinia virus infections in immunosuppressed hairless mice with selected antiviral substances. Antivir Chem Chemother 2011; 21:201-8. [PMID: 21566266 DOI: 10.3851/imp1734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Certain nucleoside, nucleotide and pyrophosphate analogues may be useful for treating severe complications arising as a result of virus dissemination following smallpox (live vaccinia virus) vaccinations, especially in immunocompromised individuals. We used an immunosuppressed hairless mouse model to study the effects of 10 antiviral agents on progressive vaccinia infections. METHODS Hairless mice were immunosuppressed by treatment with cyclophosphamide (100 mg/kg) every 4 days starting 1 day prior to vaccinia virus (WR strain) infection of wounded skin. Topical treatments with antiviral agents were applied twice a day for 7 days starting 5 days after virus exposure. RESULTS Topical 1% cidofovir cream treatment was effective in significantly reducing primary lesion severity and decreasing the number of satellite lesions. Topical 1% cyclic HPMPC and 1% phosphonoacetic acid were not quite as active as cidofovir. Ribavirin (5%) treatment reduced lesion severity and diminished the numbers of satellite lesions, but the mice died significantly sooner than placebos. 2-Amino-7-[(1,3,-dihydroxy-2-propoxy)methyl]purine (compound S2242; 1%) moderately reduced primary lesion sizes. Ineffective treatments included 5% arabinosyladenine, 1% arabinosylcytosine, 1% 5-chloro-arabinosylcytosine, 5% arabinosylhypoxanthine 5-monophosphate and 5% viramidine. CONCLUSIONS Of the compounds tested, topically applied cidofovir was the most effective treatment of cutaneous vaccinia virus infections in immunosuppressed mice. Topical treatment with cidofovir could be considered as an adjunct to intravenous drug therapy for serious infections.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.
| | | | | | | |
Collapse
|
46
|
Smee DF, Hurst BL, Egawa H, Takahashi K, Kadota T, Furuta Y. Intracellular metabolism of favipiravir (T-705) in uninfected and influenza A (H5N1) virus-infected cells. J Antimicrob Chemother 2009; 64:741-6. [PMID: 19643775 DOI: 10.1093/jac/dkp274] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To determine the metabolism of favipiravir (T-705, 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) to its ribosylated, triphosphorylated form (T-705 RTP) in uninfected and influenza A/Duck/MN/1525/81 (H5N1) virus-infected cells. Effects of treatment on intracellular guanosine triphosphate (GTP) pools and influenza virus-inhibitory activity were also assessed. METHODS A strong anion exchange HPLC separation method with UV detection was used to quantify T-705 RTP and GTP levels in Madin-Darby canine kidney cells. Antiviral activity was determined by virus yield reduction assay. RESULTS Accumulation of T-705 RTP in uninfected cells increased linearly from 3 to 320 pmol/10(6) cells in cells exposed to 1-1000 microM extracellular T-705 for 24 h, approaching maximum levels by 9 h. Virus infection did not result in greater T-705 RTP accumulation compared with uninfected cells. Catabolism of T-705 RTP occurred after removal of T-705 from the extracellular medium, with a half-life of decay of 5.6 +/- 0.6 h. Based upon these results, short-term incubation of T-705 with H5N1 virus-infected cells was predicted to provide an antiviral benefit. Indeed, 4-8 h 10-100 microM T-705 treatment of cells resulted in virus yield reductions, but less than continuous exposure. A 100-fold higher extracellular concentration of T-705 was required to inhibit intracellular GTP levels compared with ribavirin, which helps explain ribavirin's greater toxicity. CONCLUSIONS The favourable intracellular metabolic properties of T-705 combined with its reduced cell-inhibitory properties make this compound an attractive candidate for treating human influenza virus infections.
Collapse
Affiliation(s)
- Donald F Smee
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Parker S, Handley L, Buller RM. Therapeutic and prophylactic drugs to treat orthopoxvirus infections. Future Virol 2008; 3:595-612. [PMID: 19727418 DOI: 10.2217/17460794.3.6.595] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the global eradication of smallpox in 1979, the causative agent, variola, no longer circulates in human populations. Other human poxvirus infections, such as those caused by vaccinia, cowpox virus and molluscum, are usually relatively benign in immunocompetent individuals. Conversely, monkeypox virus infections cause high levels of mortality and morbidity in Africa and the virus appears to be increasing its host range, virulence and demographic environs. Furthermore, there are concerns that clandestine stocks of variola virus exist. The re-introduction of aerosolized variola (or perhaps monkeypox virus) into human populations would result in high levels of morbidity and mortality. The attractiveness of variola as a bioweapon and, to a certain extent, monkeypox virus is its inherent ability to spread from person-to-person. The threat posed by the intentional release of variola or monkeypox virus, or a monkeypox virus epizoonosis, will require the capacity to rapidly diagnose the disease and to intervene with antivirals, as intervention is likely to take place during the initial diagnosis, approximately 10-15 days postinfection. Preimmunization of 'at-risk populations' with vaccines will likely not be practical, and the therapeutic use of vaccines has been shown to be ineffective after 4 days of infection with variola. However, a combination of vaccine and antivirals for those infected may be an option. Here we describe historical, current and future therapies to treat orthopoxvirus diseases.
Collapse
Affiliation(s)
- Scott Parker
- Department of Molecular Microbiology & Immunology, Saint Louis University Health Sciences Center, St Louis, MO 63104, USA
| | | | | |
Collapse
|
48
|
Smee DF, Humphreys DE, Hurst BL, Barnard DL. Antiviral activities and phosphorylation of 5-halo-2'-deoxyuridines and N-methanocarbathymidine in cells infected with vaccinia virus. Antivir Chem Chemother 2008; 19:15-24. [PMID: 18610554 DOI: 10.1177/095632020801900103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The antipoxviral activities and phosphorylation of N-methanocarbathymidine ([N]-MCT) and four 5-halo-2'-deoxyuridines, namely 5-fluoro-(FdU), 5-chloro-(CldU), 5-bromo-(BrdU), and 5-iodo-(IdU) derivatives, were explored. METHODS Antiviral activities and nucleoside metabolism were determined in C127I mouse, LLC-MK2 monkey, and A549 human cells infected with thymidine-kinase-containing and -deficient (TK+ and TK-) vaccinia (WR strain) viruses. RESULTS The antiviral potencies of CldU, BrdU and IdU were increased 16-26-fold in LLC-MK2 cells infected with TK+ compared with TK- virus infections, but enhancement of activity was much less in the other cell lines. (N)-MCT was nearly equally active against TK+ and TK- viruses in the three cell lines. Antiviral activity of FdU was associated with cytotoxicity. Uninfected and infected cells metabolized compounds to mono-, di- and triphosphates. The thymidine, BrdU and IdU triphosphate levels were higher in C127I and LLC-MK2 cells infected with TK+ than with TK- virus. (N)-MCT monophosphate levels were much higher in TK+ virus-infected cells, but without corresponding increases in (N)-MCT triphosphate. Furthermore, TK+ virus infections did not appreciably alter (N)-MCT triphosphate levels in other mouse (L929), monkey (MA-104 and Vero) and human cell lines (A549). Antiviral potency of the compounds was greater in C127I than in LLC-MK2 cells, yet lower intracellular triphosphate levels were found in C127I cells. CONCLUSION We conclude that viral TK plays an important role in increasing the antiviral potencies of these compounds in some cell lines, but minimally in others. These findings may have implications in treating infected animals with compounds that are dependent upon poxvirus TK for their activation, because viral TK activity may vary greatly due to cell type.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA.
| | | | | | | |
Collapse
|
49
|
Nair V, Shu Q. Inosine monophosphate dehydrogenase as a probe in antiviral drug discovery. Antivir Chem Chemother 2008; 18:245-58. [PMID: 18046958 DOI: 10.1177/095632020701800501] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inosine monophosphate (IMP) dehydrogenase (IMPDH) is a significant enzyme in the purine nucleotide biosynthetic pathway. IMPDH is viewed as an important biological target in the quest for drugs in the antiviral therapeutic area. This review article is focused on the chemistry and biology of IMPDH inhibitors and the use of IMPDH inhibition data as a probe in antiviral drug discovery. Examples of both inosine 5' monophosphate and NAD+ site-directed inhibitors are presented. Correlation of antiviral activities with IMPDH inhibition is discussed.
Collapse
Affiliation(s)
- Vasu Nair
- The Center for Drug Discovery, Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA.
| | | |
Collapse
|
50
|
Identification of novel antipoxviral agents: mitoxantrone inhibits vaccinia virus replication by blocking virion assembly. J Virol 2007; 81:13392-402. [PMID: 17928345 DOI: 10.1128/jvi.00770-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather, it blocks processing of viral structural proteins and assembly of mature progeny virions. The isolation of mitoxantrone-resistant vaccinia strains underscores that a viral protein is the likely target of the drug. Whole-genome sequencing of mitoxantrone-resistant viruses pinpointed missense mutations in the N-terminal domain of vaccinia DNA ligase. Despite its favorable activity in cell culture, mitoxantrone administered intraperitoneally at the maximum tolerated dose failed to protect mice against a lethal intranasal infection with vaccinia virus.
Collapse
|