1
|
Lu Y, Tian Y, Liu X, Tian Y, Zhao X, Li Q, Lu Y, Wang X. NETs exacerbate placental inflammation and injury through high mobility group protein B1 during preeclampsia. Placenta 2024; 159:131-139. [PMID: 39718052 DOI: 10.1016/j.placenta.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Inflammatory stress at the maternal-fetal interface plays an important role in the occurrence and development of preeclampsia(PE) caused by different etiologies. Many pathological neutrophil extracellular traps (NETs) at the maternal-fetal interface are believed to be among the main pathogenic factors leading to preeclampsia and the worsening of its symptoms. However, the underlying mechanism is largely unclear. This study aimed to elucidate the role of high mobility group box 1 (HMGB1) in NETs involved in the pathogenesis of PE. METHODS The concentration of NETs was detected in the plasma of patients with PE using enzyme-linked immunosorbent assay (ELISA). Placental samples were collected from patients with PE to detect the expression of HMGB1 through Western Blot and PCR. For in vitro experiments, human trophoblast HTR-8/SVneo cells were treated with NETs, and their proliferation, invasion, migration, and apoptosis ability; degree of oxidative stress; and secretion of inflammatory factors were detected. RESULTS Compared with that in normal pregnant women, an increase in the release of NETs was observed in the peripheral blood of patients with PE. HMGB1 was increased in the placenta of PE patients and colocalized with NETs. The treatment of human trophoblast HTR-8/SVneo cells with NETs resulted in the inhibition of HTR-8/SVneo cell invasion and migration and increases in the release of reactive oxygen species (ROS), and several inflammatory factors (IL-1β, IL-6, IL-8, and TNF-α). These damaging effects can be reversed by the HMGB1 scavenger glycyrrhizin, which indicates that NETs can mediate trophoblast damage and the expression of several inflammatory factors through HMGB1. CONCLUSION NETs can cause trophoblast inflammation-related functional damage through HMGB1 during the occurrence and development of preeclampsia. HMGB1 produces a marked effect in the PE cascade of oxidative stress involving NETs. Inhibiting HMGB1 to suppress NETs damage is a possible approach for the future treatment of PE.
Collapse
Affiliation(s)
- Yurong Lu
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yijia Tian
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xiao Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yongjie Tian
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xudong Zhao
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China
| | - Qinwen Li
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China.
| | - Yuan Lu
- Department of Obstetrics, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, The Laboratory of Placenta-related Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Jinan, Shandong, 250014, China.
| |
Collapse
|
2
|
Batnozic Varga M, Held M, Wagner J, Arvaj N, Sestan M, Sapina M, Kifer N, Grguric D, Crkvenac Gornik K, Gagro A, Frkovic M, Jelusic M. The Association of HMGB1 and RAGE Gene Polymorphisms with IgA Vasculitis. Biochem Genet 2024; 62:2268-2278. [PMID: 37902913 DOI: 10.1007/s10528-023-10536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/22/2023] [Indexed: 11/01/2023]
Abstract
High-mobility group box 1 (HMGB1) is a pleiotropic cytokine that propagates inflammation by its extracellular action of interacting with the receptor for advanced glycation end products (RAGE). Both HMGB1 and RAGE play multiple roles in the pathogenesis of a variety of inflammatory and autoimmune diseases. We investigated the association of five single-nucleotide polymorphisms (SNPs) of the HMGB1 gene (rs1412125, rs2249825, rs1045411, rs1060348, rs41369348) and four SNPs of the RAGE gene (rs1800624, rs1800625, rs2070600, rs3134940) with the susceptibility and clinical features of paediatric patients with IgA vasculitis (IgAV), also known as Henoch-Schönlein's purpura. This case‒control study included 103 children with IgAV (experimental group) and 150 age-matched healthy individuals (control group). The strength of the association between different groups and alleles or genotypes of HMGB1 and RAGE was estimated using odds ratios (ORs) and 95% confidence intervals (CIs). The HMGB1 polymorphisms rs41369348, rs1045411, rs2249825 and rs1412125 were associated with the development of generalized purpuric rash, and rs1412125 was associated with IgAV nephritis (IgAVN). The RAGE polymorphism rs2070600 might be linked to the development of arthritis in IgAV patients. There was no statistically significant association between the analysed polymorphisms and susceptibility to IgAV. This is the first study to propose an association between several HMGB1 and RAGE polymorphisms and different phenotypes in the clinical course of IgAV in a paediatric population. Further research on other polymorphisms of HMGB1 and RAGE should be conducted in a larger number of patients.
Collapse
Affiliation(s)
- Mateja Batnozic Varga
- Department of Paediatrics, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine Osijek, University Hospital Centre Osijek, Osijek, Croatia
| | - Martina Held
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nena Arvaj
- Department of Medical Biology and Genetics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Mario Sestan
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Matej Sapina
- Department of Paediatrics, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine Osijek, University Hospital Centre Osijek, Osijek, Croatia
| | - Nastasia Kifer
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Danica Grguric
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Kristina Crkvenac Gornik
- Department of Laboratory Diagnostics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Alenka Gagro
- Department of Paediatrics, Children's Hospital Zagreb, Zagreb, Croatia
| | - Marijan Frkovic
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | - Marija Jelusic
- Division of Clinical Immunology, Rheumatology and Allergology, Department of Paediatrics, University of Zagreb School of Medicine, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
3
|
Wang Y, Du C, Zhang Y, Zhu L. Composition and Function of Neutrophil Extracellular Traps. Biomolecules 2024; 14:416. [PMID: 38672433 PMCID: PMC11048602 DOI: 10.3390/biom14040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate fibrous structures released by neutrophils in response to specific stimuli. These structures are composed of depolymerized chromatin adorned with histones, granule proteins, and cytosolic proteins. NETs are formed via two distinct pathways known as suicidal NETosis, which involves NADPH oxidase (NOX), and vital NETosis, which is independent of NOX. Certain proteins found within NETs exhibit strong cytotoxic effects against both pathogens and nearby host cells. While NETs play a defensive role against pathogens, they can also contribute to tissue damage and worsen inflammation. Despite extensive research on the pathophysiological role of NETs, less attention has been paid to their components, which form a unique structure containing various proteins that have significant implications in a wide range of diseases. This review aims to elucidate the components of NETs and provide an overview of their impact on host defense against invasive pathogens, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Chunjing Du
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
4
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
5
|
Li Y, Wu Y, Huang J, Cao X, An Q, Peng Y, Zhao Y, Luo Y. A variety of death modes of neutrophils and their role in the etiology of autoimmune diseases. Immunol Rev 2024; 321:280-299. [PMID: 37850797 DOI: 10.1111/imr.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Neutrophils are important in the context of innate immunity and actively contribute to the progression of diverse autoimmune disorders. Distinct death mechanisms of neutrophils may exhibit specific and pivotal roles in autoimmune diseases and disease pathogenesis through the orchestration of immune homeostasis, the facilitation of autoantibody production, the induction of tissue and organ damage, and the incitement of pathological alterations. In recent years, more studies have provided in-depth examination of various neutrophil death modes, revealing nuances that challenge conventional understanding and underscoring their potential clinical utility in diagnosis and treatment. This review explores the multifaceted processes and characteristics of neutrophil death, with a focus on tailored investigations within various autoimmune diseases. It also highlights the potential interplay between neutrophil death and the landscape of autoimmune disorders. The review encapsulates the pertinent pathways implicated in various neutrophil death mechanisms across diverse autoimmune diseases while also charts possible avenues for future research.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinlan Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingang Huang
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xue Cao
- Department of Rheumatology and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Qiyuan An
- School of Inspection and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yun Peng
- Department of Rheumatology and Clinical Immunology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Yi Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Chen Y, Wu X, Chen X, Li M, Luo C, Shi Y, Li J, Wu L. Correlations of baseline neutrophil-lymphocyte ratio with prognosis of patients with lupus nephritis: A single-center experience. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:196-203. [PMID: 38125645 PMCID: PMC10729594 DOI: 10.2478/rir-2023-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023]
Abstract
Objective We aimed to evaluate the correlations among the neutrophil-to-lymphocyte ratio (NLR), lupus nephritis (LN) clinical characteristics, and renal prognosis of patients with LN. Methods We enrolled 122 patients who were diagnosed with LN at the Rheumatology Department of the People's Hospital, Xinjiang Uygur Autonomous Region from January 2013 to April 2022. We determined the occurrence of renal adverse events in patients with LN by reviewing medical records and follow-up data. Correlations were analyzed using the Spearman test, and the quartile method was applied to classify all of the 122 patients who had completed follow-up into low, medium, and high NLR groups. The Kaplan-Meier survival curve was used to conduct survival analysis, and Cox regression analyses were used to explore possible potential risk factors. Results The baseline NLR of patients with LN was positively correlated with C-reactive protein (CRP), serum creatinine, blood urea nitrogen, and systemic lupus erythematosus disease activity index scores (P < 0.05) and negatively correlated with estimated glomerular filtration rate (eGFR) and serum albumin (P < 0.05). Patients who completed follow-up were divided into three NLR groups based on their NLR values: 30 in the low (NLR ≤ 2.21), 62 in the medium (NLR > 2.21 and NLR ≤ 6.17), and 30 in the high NLR group (NLR > 6.17). The patient survival time before developing poor renal prognosis was significantly different among the three groups (P < 0.05). High NLR (hazard ratio [HR] = 3.453, 95% confidence interval [CI]: 1.260-9.464), CRP (HR = 1.009, 95% CI: 1.002-1.017), eGFR (HR = 0.979, 95% CI: 0.963-0.995), and 24-h proteinuria values (HR = 1.237, 95% CI: 1.025-1.491) as well as anti-double stranded DNA antibody positivity (HR = 3.056, 95% CI:1.069-8.736) were independent risk factors associated with a poor renal prognosis for patients with LN. Conclusion The baseline NLR in peripheral blood can be used as a reference index for evaluating renal function and disease activity in patients with LN, and a high NLR has predictive value for the prognosis of patients with LN.
Collapse
Affiliation(s)
- Yi Chen
- Department of Rheumatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Xinjiang Rheumatoid Arthritis Clinical Medical Research Center, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xue Wu
- Department of Rheumatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Xinjiang Rheumatoid Arthritis Clinical Medical Research Center, Urumqi, Xinjiang Uygur Autonomous Region, China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region, China
| | - Xiaomei Chen
- Department of Rheumatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Xinjiang Rheumatoid Arthritis Clinical Medical Research Center, Urumqi, Xinjiang Uygur Autonomous Region, China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region, China
| | - Mengmeng Li
- Department of Rheumatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Xinjiang Rheumatoid Arthritis Clinical Medical Research Center, Urumqi, Xinjiang Uygur Autonomous Region, China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang Uyghur Autonomous Region, China
| | - Cainan Luo
- Department of Rheumatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Xinjiang Rheumatoid Arthritis Clinical Medical Research Center, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yamei Shi
- Department of Rheumatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Xinjiang Rheumatoid Arthritis Clinical Medical Research Center, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jing Li
- Department of Rheumatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Lijun Wu
- Department of Rheumatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
- Xinjiang Rheumatoid Arthritis Clinical Medical Research Center, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
7
|
Li SJ, Ruan DD, Wu WZ, Wu M, Wu QY, Wang HL, Ji YY, Zhang YP, Lin XF, Fang ZT, Liao LS, Luo JW, Gao MZ, Wu JB. Potential regulatory role of the Nrf2/HMGB1/TLR4/NF-κB signaling pathway in lupus nephritis. Pediatr Rheumatol Online J 2023; 21:130. [PMID: 37872565 PMCID: PMC10594751 DOI: 10.1186/s12969-023-00909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
OBJECTIVES Systemic lupus erythematosus is an autoimmune disease that involves multiple organ systems. One of its major complications, lupus nephritis (LN), is associated with a high mortality rate, and children-onset LN have a more severe course and worse prognosis than adults. Oxidative stress and inflammatory responses are involved in LN development and pathogenesis. Thus, this study aimed to explore the role of signaling regulation of the Nrf2/HMGB1/TLR/NF-κB pathway in LN pathogenesis and unravel the expression of TLR4+CXCR4+ plasma cells subset (PCs) in LN. METHODS C57BL/6 and MRL/lpr mice were divided into four groups: control, model, vector control, and Nrf2 overexpression groups. The vector control and Nrf2 overexpression groups were injected with adenoviral vectors into the kidney in situ. Pathological changes in kidney tissues were observed by hematoxylin-eosin staining. The expression of Nrf2, HMGB1, TLR4, NF-κB, and downstream inflammatory factors in kidney samples was analyzed by quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The ratios of TLR4+CXCR4+ PC subsets in the blood and kidneys of mice were determined by flow cytometry. RESULTS In MRL/lpr mice, Nrf2 was downregulated while HMGB1/TLR4/NF-κB pathway proteins were upregulated. Nrf2 overexpression decreased the expression of HMGB1, TLR4, NF-κB, and its downstream inflammatory cytokines (IL-1β and TNFα). These cytokines were negatively correlated with an increase in Nrf2 content. PC and TLR4 + CXCR4 + PCs in the blood and kidney samples were significantly increased in MRL/lpr mice; however, they were decreased upon Nrf2 overexpression. CONCLUSION This study showed severe kidney injury in an LN mouse model and an increased ratio of TLR4 + CXCR4 + PCs. Furthermore, we observed that Nrf2 regulates LN immune response through the Nrf2/HMGB1/TLR4/NF-κB pathway, which can be considered an important target for LN treatment. The clinical value of the findings of our study requires further investigation.
Collapse
Affiliation(s)
- Shi-Jie Li
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Dan-Dan Ruan
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Wei-Zhen Wu
- Xiyuan Clinical Medical College of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Min Wu
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Qiu-Yan Wu
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Han-Lu Wang
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yuan-Yuan Ji
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yan-Ping Zhang
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Xin-Fu Lin
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Zhu-Ting Fang
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Li-Sheng Liao
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hematology, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Jie-Wei Luo
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Mei-Zhu Gao
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Nephrology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Jia-Bin Wu
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- School of Medicine, Fuzhou Second Hospital, Xiamen University, Fuzhou, 350007, China.
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China.
| |
Collapse
|
8
|
Sadeghi M, Dehnavi S, Jamialahmadi T, Johnston TP, Sahebkar A. Neutrophil extracellular trap: A key player in the pathogenesis of autoimmune diseases. Int Immunopharmacol 2023; 116:109843. [PMID: 36764274 DOI: 10.1016/j.intimp.2023.109843] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Numerous studies suggest that neutrophils might have a crucial role in the pathogenesis of systemic autoimmune diseases through neutrophil extracellular trap (NET) formation, production of pro-inflammatory cytokines, and organ destruction. NET components that are released into extracellular spaces can be considered autoantigens, which contribute to causing a break in self-tolerance. Subsequently, this leads to the development of autoimmune responses in predisposed individuals. Additionally, an imbalance between NET formation and NET degradation may prolong immune system contact with these modified autoantigens and enhance NET-induced tissue damage. In this review, we discuss the generation and clearance of the NET, as well as the role of NETosis in the pathogenesis of autoimmune disorders, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV), multiple sclerosis (MS), psoriasis, antiphospholipid syndrome (APS), and Type-1 diabetes mellitus (T1DM).
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Artykbaeva GM, Saatov TS. Relationship between severe acute respiratory syndrome coronavirus 2 and diabetes mellitus (review). DIABETES MELLITUS 2023. [DOI: 10.14341/dm12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Infections caused by SARE-CoV-2 are complicated with the concurrent pathologies, to name hypertension, diabetes mellitus and cardiovascular diseases. High level of glucose in blood weakens the immunity and increase the SARS-CoV-2 replication. Diabetes mellitus aggravates the COVID-19 outcome. The intrusion of SARS-CoV-2 into a host-cell occurs by means of its association with the angiotensin-converting enzyme-2 (ACE 2). Stimulating immune responses the COVID-19 infection causes the cytokine storm, and may result in the lethal outcome in the diabetics.Recent laboratory studies demonstrated that the type1 and type2 diabetes mellitus is the main consequence in 14% of the patients after corona infection. Thus, in 2% of 14% diabetes started progressing due to the corona virus. In the other, diabetes debut occurred as the direct and negative consequence of the disease. Hyperglycemia results in the formation of protein molecules known as the advanced glycation end products (AGEs). The AGEs and their receptors (RAGE) are of high significance in the host-cell’s virus invasion. Consequently, more strict glucose control is necessary for optimal outcome and reduction in mortality. The better control for the COVID-19 course can be provided by the targeted effect on the RAGE axis. The review helps elucidate the molecular mechanism underlying the exacerbation of pathophysiology in the diabetic COVID-19 patients.
Collapse
Affiliation(s)
- G. M. Artykbaeva
- Institute of biophysics and biochemistry, National University of Uzbekistan named after Mirzo Ulugbek
| | - T. S. Saatov
- Institute of biophysics and biochemistry, National University of Uzbekistan named after Mirzo Ulugbek
| |
Collapse
|
10
|
Serum S100A12 levels in children with childhood-onset systemic lupus erythematosus, systemic juvenile arthritis, and systemic undefined recurrent fevers. Z Rheumatol 2023; 82:74-79. [PMID: 34940892 DOI: 10.1007/s00393-021-01142-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND We compared serum levels of S100A12, a proinflammatory protein predominantly secreted by neutrophils, in children with newly diagnosed childhood-onset systemic lupus erythematosus (cSLE), systemic juvenile arthritis (sJIA), and systemic undefined recurrent fevers (SURFS) to examine its role as a diagnostic and discriminative marker of inflammation and to indirectly point out the importance of neutrophils and innate immunity in the pathogenesis of these diseases. MATERIALS AND METHODS In a cross-sectional study, the serum levels of S100A12 protein of 68 children (19 with cSLE, 18 with sJIA, 7 with SURFS, and 24 controls) were determined by enzyme-linked immunosorbent assay and compared between groups and with clinical and laboratory findings. RESULTS The median serum S100A12 levels were 469 ng/mL in the cSLE group, 6103 ng/mL in the sJIA group, 480 ng/mL in the SURFS group, and 44 ng/mL in the control group. Children with cSLE, sJIA, and SURFS had significantly higher serum S100A12 levels compared to the control group (p < 0.0001). sJIA patients had the highest levels of S100A12 in comparison to other patients (p < 0.0001), while there was no significant difference between children with cSLE and SURFS. CONCLUSION Elevated serum SA100A12 levels in children with cSLE, sJIA, and SURFS may indicate intense neutrophil activation, which may play an important role in innate immunity in chronic inflammation in these diseases. Serum S100A12 levels could be used as a diagnostic marker of inflammation and be suitable for distinguishing sJIA and other disorders.
Collapse
|
11
|
Schoen J, Euler M, Schauer C, Schett G, Herrmann M, Knopf J, Yaykasli KO. Neutrophils' Extracellular Trap Mechanisms: From Physiology to Pathology. Int J Mol Sci 2022; 23:12855. [PMID: 36361646 PMCID: PMC9653572 DOI: 10.3390/ijms232112855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Neutrophils are an essential part of the innate immune system and the first line of defense against invading pathogens. They phagocytose, release granular contents, produce reactive oxygen species, and form neutrophil extracellular traps (NETs) to fight pathogens. With the characterization of NETs and their components, neutrophils were identified as players of the innate adaptive crosstalk. This has placed NETs at the center not only of physiological but also pathological processes. Aside from their role in pathogen uptake and clearance, NETs have been demonstrated to contribute to the resolution of inflammation by forming aggregated NETs able to degrade inflammatory mediators. On the other hand, NETs have the potential to foster severe pathological conditions. When homeostasis is disrupted, they occlude vessels and ducts, serve as sources of autoantigens and danger or damage associated molecular patterns, directly damage tissues, and exaggerate complement activity and inflammation. This review focusses on the understanding of NETs from their formation to their functions in both physiological and pathological processes.
Collapse
Affiliation(s)
- Janina Schoen
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Maximilien Euler
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Kursat Oguz Yaykasli
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Abstract
Smoking is a well-established risk factor for chronic obstructive pulmonary disease (COPD). Chronic lung inflammation continues even after smoking cessation and leads to COPD progression. To date, anti-inflammatory therapies are ineffective in improving pulmonary function and COPD symptoms, and new molecular targets are urgently needed to deal with this challenge. The receptor for advanced glycation end-products (RAGE) was shown to be relevant in COPD pathogenesis, since it is both a genetic determinant of low lung function and a determinant of COPD susceptibility. Moreover, RAGE is involved in the physiological response to cigarette smoke exposure. Since innate and acquired immunity plays an essential role in the development of chronic inflammation and emphysema in COPD, here we summarized the roles of RAGE and its ligand HMGB1 in COPD immunity.
Collapse
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xuejiao Sun
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
13
|
Block H, Rossaint J, Zarbock A. The Fatal Circle of NETs and NET-Associated DAMPs Contributing to Organ Dysfunction. Cells 2022; 11:1919. [PMID: 35741047 PMCID: PMC9222025 DOI: 10.3390/cells11121919] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens or sterile injuries. Pattern recognition receptors (PRR) sense molecules released from inflamed or damaged cells, or foreign molecules resulting from invading pathogens. PRRs can in turn induce inflammatory responses, comprising the generation of cytokines or chemokines, which further induce immune cell recruitment. Neutrophils represent an essential factor in the early immune response and fulfill numerous tasks to fight infection or heal injuries. The release of neutrophil extracellular traps (NETs) is part of it and was originally attributed to the capture and elimination of pathogens. In the last decade studies revealed a detrimental role of NETs during several diseases, often correlated with an exaggerated immune response. Overwhelming inflammation in single organs can induce remote organ damage, thereby further perpetuating release of inflammatory molecules. Here, we review recent findings regarding damage-associated molecular patterns (DAMPs) which are able to induce NET formation, as well as NET components known to act as DAMPs, generating a putative fatal circle of inflammation contributing to organ damage and sequentially occurring remote organ injury.
Collapse
Affiliation(s)
| | | | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, 48149 Muenster, Germany; (H.B.); (J.R.)
| |
Collapse
|
14
|
Dong Y, Ming B, Dong L. The Role of HMGB1 in Rheumatic Diseases. Front Immunol 2022; 13:815257. [PMID: 35250993 PMCID: PMC8892237 DOI: 10.3389/fimmu.2022.815257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
HMGB1, a highly conserved non-histone nuclear protein, is widely expressed in mammalian cells. HMGB1 in the nucleus binds to the deoxyribonucleic acid (DNA) to regulate the structure of chromosomes and maintain the transcription, replication, DNA repair, and nucleosome assembly. HMGB1 is actively or passively released into the extracellular region during cells activation or necrosis. Extracellular HMGB1 as an alarmin can initiate immune response alone or combined with other substances such as nucleic acid to participate in multiple biological processes. It has been reported that HMGB1 is involved in various inflammatory responses and autoimmunity. This review article summarizes the physiological function of HMGB1, the post-translational modification of HMGB1, its interaction with different receptors, and its recent advances in rheumatic diseases and strategies for targeted therapy.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Qing J, Song W, Tian L, Samuel SB, Li Y. Potential Small Molecules for Therapy of Lupus Nephritis Based on Genetic Effect and Immune Infiltration. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2259164. [PMID: 35502341 PMCID: PMC9056222 DOI: 10.1155/2022/2259164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Lupus nephritis (LN) is the most common and significant complication of systemic lupus erythematosus (SLE) due to its poor prognosis and mortality rates in SLE patients. There is a critical need for new drugs as the pathogenesis of LN remains to be elucidated and immunosuppressive therapy comes with many deficiencies. In this study, 23 hub genes (IFI6, PLSCR1, XAF1, IFI16, IFI44, MX1, IFI44L, IFIT3, IFIT2, IFI27, DDX58, EIF2AK2, IFITM1, RTP4, IFITM3, TRIM22, PARP12, IFIH1, OAS1, HERC6, RSAD2, DDX60, and MX2) were identified through bioinformatics and network analysis and are closely related to interferon production and function. Interestingly, immune cell infiltration analysis and correlation analysis demonstrate a positive correlation between the expression of 23 hub genes and monocyte infiltration in glomeruli and M2 macrophage infiltration in the tubulointerstitium of LN patients. Additionally, the CTD database, DsigDB database, and DREIMT database were used to explore the bridging role of genes in chemicals and LN as well as the potential influence of these chemicals on immune cells. After comparison and discussion, six small molecules (Acetohexamide, Suloctidil, Terfenadine, Prochlorperazine, Mefloquine, and Triprolidine) were selected for their potential ability in treating lupus nephritis.
Collapse
Affiliation(s)
- Jianbo Qing
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenzhu Song
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lingling Tian
- Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi 030000, China
| | - Sonia Biju Samuel
- Department of Medicine, Albany Medical Center. 43 New Scotland Ave, Albany, New York 12208, USA
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, Shanxi 030000, China
| |
Collapse
|
16
|
Liu P, Peng Z, Xiang Y, Duan Y, Huang H, Peng Z, Zhang Y, Yang B, Ou J, He Z. Causes and predictors of mortality from lupus nephritis in Southern Hunan, China. Mod Rheumatol 2022; 32:338-344. [PMID: 33909520 DOI: 10.1080/14397595.2021.1920097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The objective of the study was to explore the causes and predictors of mortality in a cohort of LN with LN in southern Hunan, China. METHODS We analyzed 236 patients with biopsy-proven LN during 2010-2018. Demographic data, laboratory data, SLEDAI scores, treatment strategies, and comorbidity were collected. Cox regression analysis was carried out to determine the independent predictors of mortality. RESULTS The patients had mean disease duration of 67.9 ± 28.2 months. Class IV LN was the predominant biopsy class within the cohort (38.1%). After 1 year therapy, the majority of patients achieved complete remission (72.9%) and 44 (18.6%) patients achieved partial remission. The 5- and 10-years survival rates for our cohort were 94.4 and 85.2%, respectively. There were 18 deaths (7.6%), of which the main causes were infection (50%) alone and cardiovascular diseases (27.8%). Independent predictors of mortality in our cohort were: platelet-to-neutrophil ratio (PNR) [hazard ratio (HR) 5.910; confidence interval (CI) 1.253-27.875], onset age (HR 1.090; CI 1.035-1.147), and SLEDAI scores (HR 1.258; CI 1.068-1.482). CONCLUSION We firstly revealed that PNR might be a promising predictor of mortality and reported the causes and prognostic predictors of mortality in LN from southern Hunan, China.
Collapse
Affiliation(s)
- Peng Liu
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Zhong Peng
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Yazhou Xiang
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Yingjie Duan
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Hong Huang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Zhiyong Peng
- Department of Cardiology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Yong Zhang
- Department of Nephrology, Hua Yuan County People's Hospital, Tujia-Miao Autonomous Prefecture of Xiangxi, Xiangxi, Hunan Province, China
| | - Bo Yang
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Jihong Ou
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Zhangxiu He
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
17
|
Chen Y, Han L, Qiu X, Wang G, Zheng J. Neutrophil Extracellular Traps in Digestive Cancers: Warrior or Accomplice. Front Oncol 2021; 11:766636. [PMID: 34868992 PMCID: PMC8639597 DOI: 10.3389/fonc.2021.766636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Characterized as a complex of extracellular DNA fibers and granule proteins, neutrophil extracellular traps (NETs) are generated specifically by neutrophils which play a critical role in host defense and immune regulation. NETs have been initially found crucial for neutrophil anti-microbial function. Recent studies suggest that NETs are involved in tumorigenesis and cancer progression. However, the function of NETs in cancer remains unclear, which might be due to the variation of research models and the heterogeneity of cancers. Although most of malignant tumors have similar biological behaviors, significant differences indeed exist in various systems. Malignant tumors of the digestive system cause the most incidence and mortality of cancer worldwide. In this review, we would focus on research developments on NETs in digestive cancers to provide insights on their role in digestive cancer progression and future research directions.
Collapse
Affiliation(s)
- Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyan Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Fu X, Liu H, Huang G, Dai SS. The emerging role of neutrophils in autoimmune-associated disorders: effector, predictor, and therapeutic targets. MedComm (Beijing) 2021; 2:402-413. [PMID: 34766153 PMCID: PMC8554667 DOI: 10.1002/mco2.69] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are essential components of the immune system and have vital roles in the pathogenesis of autoimmune disorders. As effector cells, neutrophils promote autoimmune disease by releasing cytokines and chemokines cascades that accompany inflammation, neutrophil extracellular traps (NETs) regulating immune responses through cell-cell interactions. More recent evidence has extended functions of neutrophils. Accumulating evidence implicated neutrophils contribute to tissue damage during a broad range of disorders, involving rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary sjögren's syndrome (pSS), multiple sclerosis (MS), crohn's disease (CD), and gout. A variety of studies have reported on the functional role of neutrophils as therapeutic targets in autoimmune diseases. However, challenges and controversies in the field remain. Enhancing our understanding of neutrophils' role in autoimmune disorders may further advance the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohong Fu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science Third Military Medical University (Army Medical University) Chongqing China
| |
Collapse
|
19
|
Wang H, Zhang Y, Wang Q, Wei X, Wang H, Gu K. The regulatory mechanism of neutrophil extracellular traps in cancer biological behavior. Cell Biosci 2021; 11:193. [PMID: 34758877 PMCID: PMC8579641 DOI: 10.1186/s13578-021-00708-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
As the predominant host defense against pathogens, neutrophil extracellular traps (NETs) have attracted increasing attention due to their vital roles in infectious inflammation in the past few years. Interestingly, NETs also play important roles in noninfectious conditions, such as rheumatism and cancer. The process of NETs formation can be regulated and the form of cell death accompanied by the formation of NETs is regarded as "NETosis". A large amount of evidence has confirmed that many stimuli can facilitate the release of NETs from neutrophils. Furthermore, it has been illustrated that NETs promote tumor growth and progression via many molecular pathways. Meanwhile, NETs also can promote metastasis in many kinds of cancers based on multiple studies. In addition, some researchs have found that NETs can promote coagulation and cancer-associated thrombosis. In the present review, it will highlight how NETosis, which is stimulated by various stimuli and signaling pathways, affects cancer biological behaviors via NETs. Given their crucial roles in cancer, NETs will become possible therapeutic targets for inhibiting proliferation, metastasis and thrombosis in cancer patients.
Collapse
Affiliation(s)
- Hui Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Yiyin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Qianling Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Xiaoli Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
| |
Collapse
|
20
|
Yang SR, Hua KF, Yang CY, Chen A, Weng JC, Tsai YL, Wan CJ, Wu CY, Lee CC, Chan JF, Hsieh CY, Hsu YJ, Wu CC, Mukhopadhyay D, Huang HS, Liu FC, Ka SM. Cf-02, a novel benzamide-linked small molecule, blunts NF-κB activation and NLRP3 inflammasome assembly and improves acute onset of accelerated and severe lupus nephritis in mice. FASEB J 2021; 35:e21785. [PMID: 34314075 PMCID: PMC10083056 DOI: 10.1096/fj.202100047r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
In the present study, acute onset of severe lupus nephritis was successfully treated in mice using a new, benzamide-linked, small molecule that targets immune modulation and the NLRP3 inflammasome. Specifically, 6-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenyl)-2H-benzo[e][1,3]oxazine-2,4(3H)-dione (Cf-02) (a) reduced serum levels of IgG anti-dsDNA, IL-1β, IL-6, and TNF-α, (b) inhibited activation of dendritic cells and differentially regulated T cell functions, and (c) suppressed the NF-κB/NLRP3 inflammasome axis, targeting priming and activating signals of the inflammasome. Moreover, treatment with Cf-02 significantly inhibited secretion of IL-1β in lipopolysaccharide-stimulated macrophages, but this effect was abolished by autophagy induction. These results recommend Cf-02 as a promising drug candidate for the serious renal conditions associated with systemic lupus erythematosus. Future investigations should examine whether Cf-02 may also be therapeutic in other types of chronic kidney disease involving NLRP3 inflammasome-driven signaling.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Department of Medicine, Graduate Institute of Aerospace and Undersea Medicine, Academy of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jui-Chun Weng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Jun Wan
- Department of Medicine, Graduate Institute of Aerospace and Undersea Medicine, Academy of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Yao Wu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chung Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jia-Feng Chan
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Chih-Yu Hsieh
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Department of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
21
|
Yang N, Zhao Y, Wu X, Zhang N, Song H, Wei W, Liu ML. Recent advances in Extracellular Vesicles and their involvements in vasculitis. Free Radic Biol Med 2021; 171:203-218. [PMID: 33951487 PMCID: PMC9107955 DOI: 10.1016/j.freeradbiomed.2021.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023]
Abstract
Systemic vasculitis is a heterogeneous group of multisystem autoimmune disorders characterized by inflammation of blood vessels. Although many progresses in diagnosis and immunotherapies have been achieved over the past decades, there are still many unanswered questions about vasculitis from pathological understanding to more advanced therapies. Extracellular vesicles (EVs) are double-layer phospholipid membrane vesicles harboring various cargoes. EVs can be classified into exosomes, microvesicles (MVs), and apoptotic bodies depending on their size and origin of cellular compartment. EVs can be released by almost all cell types and may be involved in physical and pathological processes including inflammation and autoimmune responses. In systemic vasculitis, EVs may have pathogenic involvement in inflammation, autoimmune responses, thrombosis, endothelium injury, angiogenesis and intimal hyperplasia. EV-associated redox reaction may also be involved in vasculitis pathogenesis by inducing inflammation, endothelial injury and thrombosis. Additionally, EVs may serve as specific biomarkers for diagnosis or monitoring of disease activity and therapeutic efficacy, i.e. AAV-associated renal involvement. In this review, we have discussed the recent advances of EVs, especially their roles in pathogenesis and clinical involvements in vasculitis.
Collapse
Affiliation(s)
- Nan Yang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Yin Zhao
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Xiuhua Wu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Na Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China
| | - Haoming Song
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, 300052, PR China.
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Corporal Michael J. Crescenz VA Medical Center (Philadelphia), Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Liu Y, Kaplan MJ. Neutrophil Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:317-333. [PMID: 34215366 DOI: 10.1016/j.rdc.2021.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent identifications of a subset of proinflammatory neutrophils, low-density granulocytes, and their ability to readily form neutrophil extracellular traps led to a resurgence of interest in neutrophil dysregulation in the pathogenesis of systemic lupus erythematosus (SLE). This article presents an overview on how neutrophil dysregulation modulates the innate and adaptive immune responses in SLE and their putative roles in disease pathogenesis. The therapeutic potential of targeting this pathogenic process in the treatment of SLE is also discussed.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD 20892-1930, USA.
| |
Collapse
|
23
|
The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells 2021; 10:cells10051044. [PMID: 33925132 PMCID: PMC8145631 DOI: 10.3390/cells10051044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
High mobility group box-1 protein (HMGB1), a member of the high mobility group protein superfamily, is an abundant and ubiquitously expressed nuclear protein. Intracellular HMGB1 is released by immune and necrotic cells and secreted HMGB1 activates a range of immune cells, contributing to the excessive release of inflammatory cytokines and promoting processes such as cell migration and adhesion. Moreover, HMGB1 is a typical damage-associated molecular pattern molecule that participates in various inflammatory and immune responses. In these ways, it plays a critical role in the pathophysiology of inflammatory diseases. Herein, we review the effects of HMGB1 on various immune cell types and describe the molecular mechanisms by which it contributes to the development of inflammatory disorders. Finally, we address the therapeutic potential of targeting HMGB1.
Collapse
|
24
|
Cross-Talk among Polymorphonuclear Neutrophils, Immune, and Non-Immune Cells via Released Cytokines, Granule Proteins, Microvesicles, and Neutrophil Extracellular Trap Formation: A Novel Concept of Biology and Pathobiology for Neutrophils. Int J Mol Sci 2021; 22:ijms22063119. [PMID: 33803773 PMCID: PMC8003289 DOI: 10.3390/ijms22063119] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are traditionally regarded as professional phagocytic and acute inflammatory cells that engulf the microbial pathogens. However, accumulating data have suggested that PMNs are multi-potential cells exhibiting many important biological functions in addition to phagocytosis. These newly found novel activities of PMN include production of different kinds of cytokines/chemokines/growth factors, release of neutrophil extracellular traps (NET)/ectosomes/exosomes and trogocytosis (membrane exchange) with neighboring cells for modulating innate, and adaptive immune responses. Besides, PMNs exhibit potential heterogeneity and plasticity in involving antibody-dependent cellular cytotoxicity (ADCC), cancer immunity, autoimmunity, inflammatory rheumatic diseases, and cardiovascular diseases. Interestingly, PMNs may also play a role in ameliorating inflammatory reaction and wound healing by a subset of PMN myeloid-derived suppressor cells (PMN-MDSC). Furthermore, PMNs can interact with other non-immune cells including platelets, epithelial and endothelial cells to link hemostasis, mucosal inflammation, and atherogenesis. The release of low-density granulocytes (LDG) from bone marrow initiates systemic autoimmune reaction in systemic lupus erythematosus (SLE). In clinical application, identification of certain PMN phenotypes may become prognostic factors for severe traumatic patients. In the present review, we will discuss these newly discovered biological and pathobiological functions of the PMNs.
Collapse
|
25
|
Yang SR, Hsu WH, Wu CY, Shang HS, Liu FC, Chen A, Hua KF, Ka SM. Accelerated, severe lupus nephritis benefits from treatment with honokiol by immunoregulation and differentially regulating NF-κB/NLRP3 inflammasome and sirtuin 1/autophagy axis. FASEB J 2020; 34:13284-13299. [PMID: 32813287 DOI: 10.1096/fj.202001326r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Using honokiol (HNK), a major anti-inflammatory bioactive compound in Magnolia officinalis, we show a potent therapeutic outcome against an accelerated, severe form of lupus nephritis (ASLN). The latter may follow infectious insults that act as environmental triggers in the patients. In the current study, an ASLN model in NZB/W F1 mice was treated with HNK by daily gavage after onset of the disease. We show that HNK ameliorated the ASLN by improving renal function, albuminuria, and renal pathology, especially reducing cellular crescents, neutrophil influx, fibrinoid necrosis in glomeruli, and glomerulonephritis activity scores. Meanwhile, HNK differentially regulated T cell functions, reduced serum anti-dsDNA autoantibodies, and inhibited NLRP3 inflammasome activation in the mice. The latter involved: (a) suppressed production of reactive oxygen species and NF-κB activation-mediated priming signal of the inflammasome, (b) reduced mitochondrial damage, and (c) enhanced sirtuin 1 (SIRT1)/autophagy axis activation. In conclusion, HNK represents a new drug candidate for acute, severe episodes of LN capable of alleviating renal lesions in ASLN mice by negatively regulating T cell functions and by enhancing SIRT1/autophagy axis-lessened NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Han Hsu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Yao Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
26
|
Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci 2020; 259:118203. [PMID: 32781069 DOI: 10.1016/j.lfs.2020.118203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/20/2022]
Abstract
High mobility group box 1 (HMGB1) is a highly conserved nucleoprotein involving in numerous biological processes, and well known to trigger immune responses as the damage-associated molecular pattern (DAMP) in the extracellular environment. The role of HMGB1 is distinct due to its multiple functions in different subcellular location. In the nucleus, HMGB1 acts as a chaperone to regulate DNA events including DNA replication, repair and nucleosome stability. While in the cytoplasm, it is engaged in regulating autophagy and apoptosis. A great deal of research has explored its function in the pathogenesis of renal diseases. This review mainly focuses on the role of HMGB1 and summarizes the pathway and treatment targeting HMGB1 in the various renal diseases which may open the windows of opportunities for the development of desirable therapeutic ends in these pathological conditions.
Collapse
Affiliation(s)
- Zhi Zhao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei 430030, China.
| |
Collapse
|
27
|
De Francesco EM, Vella V, Belfiore A. COVID-19 and Diabetes: The Importance of Controlling RAGE. Front Endocrinol (Lausanne) 2020; 11:526. [PMID: 32760352 PMCID: PMC7375019 DOI: 10.3389/fendo.2020.00526] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, and ARNAS Garibaldi, P.O. Garibaldi-Nesima, Catania, Italy
| |
Collapse
|
28
|
Abstract
The high-mobility group box 1 (HMGB1) has been shown to exert proinflammatory effects on many cells of the innate immune system. Originally identified as a nuclear protein, HMGB1 has been found to play an important role in mediating inflammation when released from apoptotic or necrotic cells as a damage-associated molecular pattern (DAMP). Systemic lupus erythematosus (SLE) is a disease of non-resolving inflammation, characterized by the presence of autoantibodies and systemic inflammation involving multiple organ systems. SLE patients have impaired clearance of apoptotic debris, which releases HMGB1 and other DAMPs extracellularly. HMGB1 activity is implicated in multiple disease phenotypes in SLE, including lupus nephritis and neuropsychiatric lupus. Elucidating the various properties of HMGB1 in SLE provides a better understanding of the disease and opens up new opportunities for designing potential therapeutics.
Collapse
Affiliation(s)
- Tianye Liu
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
29
|
Fousert E, Toes R, Desai J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells 2020; 9:cells9040915. [PMID: 32276504 PMCID: PMC7226846 DOI: 10.3390/cells9040915] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
Following fifteen years of research, neutrophil extracellular traps (NETs) are widely reported in a large range of inflammatory infectious and non-infectious diseases. Cumulating evidences from in vitro, in vivo and clinical diagnostics suggest that NETs may play a crucial role in inflammation and autoimmunity in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Most likely, NETs contribute to breaking self-tolerance in autoimmune diseases in several ways. During this review, we discuss the current knowledge on how NETs could drive autoimmune responses. NETs can break self-tolerance by being a source of autoantigens for autoantibodies found in autoimmune diseases, such as anti-citrullinated protein antibodies (ACPAs) in RA, anti-dsDNA in SLE and anti-myeloperoxidase and anti-protein 3 in AAV. Moreover, NET components could accelerate the inflammatory response by mediating complement activation, acting as danger-associated molecular patterns (DAMPs) and inflammasome activators, for example. NETs also can activate other immune cells, such as B cells, antigen-presenting cells and T cells. Additionally, impaired clearance of NETs in autoimmune diseases prolongs the presence of active NETs and their components and, in this way, accelerate immune responses. NETs have not only been implicated as drivers of inflammation, but also are linked to resolution of inflammation. Therefore, NETs may be central regulators of inflammation and autoimmunity, serve as biomarkers, as well as promising targets for future therapeutics of inflammatory autoimmune diseases.
Collapse
|
30
|
Wardowska A, Komorniczak M, Skoniecka A, Bułło-Piontecka B, Lisowska KA, Dębska-Ślizień MA, Pikuła M. Alterations in peripheral blood B cells in systemic lupus erythematosus patients with renal insufficiency. Int Immunopharmacol 2020; 83:106451. [PMID: 32248020 DOI: 10.1016/j.intimp.2020.106451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is one of the autoimmune diseases, believed to be closely related to hyperactivity of B cells, overproduction of autoantibodies and immune complex formation and deposition in affected tissue. The autoreactive inflammation leads to multiorgan damage with kidney dysfunction in the forefront. Studies on lupus nephritis (LN), affecting the majority of SLE patients, are mainly focused on cells causing local inflammation. The aim of our work was to detect alterations in more accessible peripheral blood B cells in the course of SLE focusing on the influence of renal insufficiency (RI) on those parameters. METHODS We performed a comprehensive flow cytometry analysis of B cell subpopulations, analyzed gene expression patterns with qPCR, and examined serum cytokine levels with multiplex cytokine/chemokine assay. RESULTS We discovered distribution of specific B cell subsets, especially CD38+ cells, plasmablasts, associated with the presence and severity of the disease. Changes in expression of MBD2, DNMT1 and APRIL genes were not only associated with activity of SLE but also were significantly changed in patients with RI. CONCLUSIONS All these results shed new light on the role of circulating B cells, their subpopulations, function, and activity in the SLE with kidney manifestation.
Collapse
Affiliation(s)
- Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland.
| | - Michał Komorniczak
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Bułło-Piontecka
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | | | - M Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|