1
|
Banz BC, Wu J, Camenga DR, Mayes LC, Crowley MJ, Vaca FE. How the cognitive load of simulated driving affects the brain dynamics underlying auditory attention. TRAFFIC INJURY PREVENTION 2024; 25:S167-S174. [PMID: 39485699 DOI: 10.1080/15389588.2024.2373950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVE Distracted driving is a primary contributor to for motor vehicle crashes, the leading cause for injuries and fatalities for youth. Although attention and working memory clearly underlie driving abilities, few studies explore these functions on the brain-level under the cognitive load of driving. To understand the load driving has on auditory attention processing, we examined the differences in dynamic brain response to auditory stimuli during LOAD (while driving in a high-fidelity driving simulator) and No-LOAD conditions (seated in simulator, parked on the side of the road). METHODS Twenty-seven young adult drivers (18-27 y/o; 15 = women) completed a Selective Auditory Attention Task during both a LOAD (driving) and No-LOAD condition in a ½ cab miniSim® high-fidelity driving simulator. During the task, participants responded by pressing the volume control button on the steering wheel when a target tone was presented to a target ear. Electroencephalography-recorded event-related brain responses to the target tones were evaluated through alpha and theta oscillations for two response windows (early: 150-330ms; late: 350-540ms). RESULTS During an early time window, we observed a significant interaction between attended/unattended and LOAD/No-LOAD theta power in the right frontal cortical region (F(1, 24)= 5.4, p=.03, partial η2=.18). During the later window, we observed a significant interaction between attended/unattended and LOAD/No-LOAD alpha response in the posterior cortical region (F(1, 24)=11.81, p=.002, partial η2=.15) and in the right temporal cortical region during the window (F(1, 24)=4.3, p=.05, partial η2=.33). CONCLUSIONS Our data provide insight into the demand that driving has on cognitive faculties and how dual task engagement may draw resources away from driving. We suggest future research directly incorporate vehicle control abilities into study design to understand how brain-based measures relate to driving behaviors.
Collapse
Affiliation(s)
- Barbara C Banz
- Developmental Neurocognitive Driving Simulation Research Center (DrivSim Lab), Department of Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jia Wu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Deepa R Camenga
- Developmental Neurocognitive Driving Simulation Research Center (DrivSim Lab), Department of Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Linda C Mayes
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J Crowley
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Federico E Vaca
- Department of Emergency Medicine, University of California, Irvine, California
| |
Collapse
|
2
|
Dekydtspotter L, Miller AK, Swanson K, Cha JH, Xiong Y, Ahn JH, Gilbert JA, Pope D, Iverson M, Meinert K. Hierarchical neural processing in γ oscillations for syntactic and semantic operations accounts for first- and second-language epistemology. Front Hum Neurosci 2024; 18:1372909. [PMID: 39376494 PMCID: PMC11456458 DOI: 10.3389/fnhum.2024.1372909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction We discuss event-related power differences (ERPDs) in low- and broadband-γ oscillations as the embedded-clause edge is processed in wh-dependencies such as Which decision regarding/about him/her did Paul say that Lydie rejected without hesitation? in first (L1) and second language (L2) French speakers. Methods The experimental conditions manipulated whether pronouns appeared in modifiers (Mods; regarding him/her) or in noun complements (Comps; about him/her) and whether they matched or mismatched a matrix-clause subject in gender. Results Across L1 and L2 speakers, we found that anaphora-linked ERPDs for Mods vs. Comps in evoked power first arose in low γ and then in broadband γ. Referential elements first seem to be retrieved from working memory by narrowband processes in low γ and then referential identification seems to be computed in broadband-γ output. Interactions between discourse- and syntax-based referential processes for the Mods vs. Comps in these ERPDs furthermore suggest that multidomain γ-band processing enables a range of elementary operations for discourse and semantic interpretation. Discussion We argue that a multidomain mechanism enabling operations conditioned by the syntactic and semantic nature of the elements processed interacts with local brain microcircuits representing features and feature sets that have been established in L1 or L2 acquisition, accounting for a single language epistemology across learning contexts.
Collapse
Affiliation(s)
- Laurent Dekydtspotter
- Department of French & Italian, Indiana University, Bloomington, IN, United States
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - A. Kate Miller
- Department of World Languages and Cultures, Indiana University–Indianapolis, Indianapolis, IN, United States
| | - Kyle Swanson
- Oral English Proficiency Program, Purdue University, West Lafayette, IN, United States
| | - Jih-Ho Cha
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - Yanyu Xiong
- Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States
| | - Jae-Hyun Ahn
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - Jane A. Gilbert
- Department of French & Italian, Indiana University, Bloomington, IN, United States
| | - Decker Pope
- Department of French & Italian, Indiana University, Bloomington, IN, United States
| | - Mike Iverson
- Department of Second Language Studies, Indiana University, Bloomington, IN, United States
| | - Kent Meinert
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Bao Z, Burhan A, Frewen P. Transcranial direct current stimulation over medial prefrontal cortex reduced alpha power and functional connectivity during somatic but not semantic self-referential processing. Neuroscience 2024; 553:185-196. [PMID: 38944148 DOI: 10.1016/j.neuroscience.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Past self-report and cognitive-behavioural studies of the effects of transcranial direct current stimulation (tDCS) targeting the medial prefrontal cortex (mPFC) on semantic self-referential processing (SRP) have yielded mixed results. Meanwhile, electroencephalography (EEG) studies show that alpha oscillation (8-12 Hz) may be involved during both semantic and somatic SRP, although the effect of tDCS on alpha-EEG during SRP remains unknown. The current study assessed the EEG and subjective effects of 2 mA tDCS over the mPFC while participants were SRP either on semantic (life roles, e.g., "friend") or somatic (outer body, e.g., "arms") self-referential stimuli compared to resting state and an external attention memory task in 52 young adults. Results showed that whereas mPFC-tDCS did not yield significant changes in participants' mood or experienced attention or pleasantness levels during the SRP task, EEG source analysis indicated, compared to sham stimulation, that tDCS reduced alpha power during somatic but not semantic SRP in the posterior cingulate cortex (PCC), and the frontal, parietal, temporal, and somatosensory cortex, and reduced the functional connectivity between the left inferior parietal lobule and the ventral PCC, but only when mPFC-tDCS was applied at the second while not the first experimental session. Our results suggest that while mPFC-tDCS may be insufficient to alter immediate subjective experience during SRP, mPFC-tDCS may modulate the power and functional connectivity of the brain's alpha oscillations during somatic SRP. Future research directions are discussed.
Collapse
Affiliation(s)
- Zhongjie Bao
- Interdisciplinary Program in Neuroscience, Western University, London, ON, Canada
| | - Amer Burhan
- Interdisciplinary Program in Neuroscience, Western University, London, ON, Canada; Ontario Shores Centre for Mental Health Sciences, Whitby, ON, Canada; Department of Psychiatry, Temerty School of Medicine, University of Toronto, Whitby, ON, Canada
| | - Paul Frewen
- Interdisciplinary Program in Neuroscience, Western University, London, ON, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, London, ON, Canada.
| |
Collapse
|
4
|
Xu P, Wang S, Yang Y, Guragai B, Zhang Q, Zhang J, Jin Z, Li L. cTBS to Right DLPFC Modulates Physiological Correlates of Conflict Processing: Evidence from a Stroop task. Brain Topogr 2024; 37:37-51. [PMID: 37880501 DOI: 10.1007/s10548-023-01015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Conflict typically occurs when goal-directed processing competes with more automatic responses. Though previous studies have highlighted the importance of the right dorsolateral prefrontal cortex (rDLPFC) in conflict processing, its causal role remains unclear. In the current study, the behavioral experiment, the continuous theta burst stimulation (cTBS), and the electroencephalography (EEG) were combined to explore the effects of behavioral performance and physiological correlates during conflict processing, after the cTBS over the rDLPFC and vertex (the control condition). Twenty-six healthy participants performed the Stroop task which included congruent and incongruent trials. Although the cTBS did not induce significant changes in the behavioral performance, the cTBS over the rDLPFC reduced the Stroop effects of conflict monitoring-related frontal-central N2 component and theta oscillation, and conflict resolution-related parieto-occipital alpha oscillation, compared to the vertex stimulation. Moreover, a significant hemispheric difference in alpha oscillation was exploratively observed after the cTBS over the rDLPFC. Interestingly, we found the rDLPFC stimulation resulted in significantly reduced Stroop effects of theta and gamma oscillation after response, which may reflect the adjustment of cognitive control for the next trial. In conclusion, our study not only demonstrated the critical involvement of the rDLPFC in conflict monitoring, conflict resolution processing, and conflict adaptation but also revealed the electrophysiological mechanism of conflict processing mediated by the rDLPFC.
Collapse
Affiliation(s)
- Ping Xu
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Song Wang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yulu Yang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bishal Guragai
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qiuzhu Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
5
|
Snyder DB, Beardsley SA, Hyngstrom AS, Schmit BD. Cortical effects of wrist tendon vibration during an arm tracking task in chronic stroke survivors: An EEG study. PLoS One 2023; 18:e0266586. [PMID: 38127998 PMCID: PMC10735026 DOI: 10.1371/journal.pone.0266586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The purpose of this study was to characterize changes in cortical activity and connectivity in stroke survivors when vibration is applied to the wrist flexor tendons during a visuomotor tracking task. Data were collected from 10 chronic stroke participants and 10 neurologically-intact controls while tracking a target through a figure-8 pattern in the horizontal plane. Electroencephalography (EEG) was used to measure cortical activity (beta band desynchronization) and connectivity (beta band task-based coherence) with movement kinematics and performance error also being recorded during the task. All participants came into our lab on two separate days and performed three blocks (16 trials each, 48 total trials) of tracking, with the middle block including vibration or sham applied at the wrist flexor tendons. The order of the sessions (Vibe vs. Sham) was counterbalanced across participants to prevent ordering effects. During the Sham session, cortical activity increased as the tracking task progressed (over blocks). This effect was reduced when vibration was applied to controls. In contrast, vibration increased cortical activity during the vibration period in participants with stroke. Cortical connectivity increased during vibration, with larger effect sizes in participants with stroke. Changes in tracking performance, standard deviation of hand speed, were observed in both control and stroke groups. Overall, EEG measures of brain activity and connectivity provided insight into effects of vibration on brain control of a visuomotor task. The increases in cortical activity and connectivity with vibration improved patterns of activity in people with stroke. These findings suggest that reactivation of normal cortical networks via tendon vibration may be useful during physical rehabilitation of stroke patients.
Collapse
Affiliation(s)
- Dylan B. Snyder
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Scott A. Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Allison S. Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
6
|
Lalancette E, Charlebois-Poirier AR, Agbogba K, Knoth IS, Côté V, Perreault S, Lippé S. Time-frequency analyses of repetition suppression and change detection in children with neurofibromatosis type 1. Brain Res 2023; 1818:148512. [PMID: 37499730 DOI: 10.1016/j.brainres.2023.148512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Children with neurofibromatosis type 1 (NF1) are at increased risk of developing cognitive problems, including attention deficits and learning difficulties. Alterations in brain response to repetition and change have been evidenced in other genetic conditions associated with cognitive dysfunctions. Whether the integrity of these fundamental neural responses is compromised in school-aged children with NF1 is still unknown. In this study, we examined the repetition suppression (RS) and change detection responses in children with NF1 (n = 36) and neurotypical controls (n = 41) aged from 4 to 13 years old, using a simple sequence of vowels. We performed time-frequency analyses to compare spectral power and phase synchronization between groups, in the theta, alpha and beta frequency bands. Correlational analyses were performed between the neural responses and the level of intellectual functioning, as well as with behavioral symptoms of comorbid neurodevelopmental disorders measured through parental questionnaires. Children with NF1 showed preserved RS, but increased spectral power in the change detection response. Correlational analyses performed with measures of change detection revealed a negative association between the alpha-band spectral power and symptoms of inattention and hyperactivity. These findings suggest atypical neural response to change in children with NF1. Further studies should be conducted to clarify the interaction with comorbid neurodevelopmental disorders and the possible role of altered inhibitory mechanisms in this enhanced neural response.
Collapse
Affiliation(s)
- Eve Lalancette
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Audrey-Rose Charlebois-Poirier
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Kristian Agbogba
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Inga Sophia Knoth
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Valérie Côté
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Sébastien Perreault
- Department of Neurosciences, Division of Child Neurology, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| |
Collapse
|
7
|
Cabrera-Álvarez J, Sánchez-Claros J, Carrasco-Gómez M, del Cerro-León A, Gómez-Ariza CJ, Maestú F, Mirasso CR, Susi G. Understanding the effects of cortical gyrification in tACS: insights from experiments and computational models. Front Neurosci 2023; 17:1223950. [PMID: 37655010 PMCID: PMC10467425 DOI: 10.3389/fnins.2023.1223950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
The alpha rhythm is often associated with relaxed wakefulness or idling and is altered by various factors. Abnormalities in the alpha rhythm have been linked to several neurological and psychiatric disorders, including Alzheimer's disease. Transcranial alternating current stimulation (tACS) has been proposed as a potential tool to restore a disrupted alpha rhythm in the brain by stimulating at the individual alpha frequency (IAF), although some research has produced contradictory results. In this study, we applied an IAF-tACS protocol over parieto-occipital areas to a sample of healthy subjects and measured its effects over the power spectra. Additionally, we used computational models to get a deeper understanding of the results observed in the experiment. Both experimental and numerical results showed an increase in alpha power of 8.02% with respect to the sham condition in a widespread set of regions in the cortex, excluding some expected parietal regions. This result could be partially explained by taking into account the orientation of the electric field with respect to the columnar structures of the cortex, showing that the gyrification in parietal regions could generate effects in opposite directions (hyper-/depolarization) at the same time in specific brain regions. Additionally, we used a network model of spiking neuronal populations to explore the effects that these opposite polarities could have on neural activity, and we found that the best predictor of alpha power was the average of the normal components of the electric field. To sum up, our study sheds light on the mechanisms underlying tACS brain activity modulation, using both empirical and computational approaches. Non-invasive brain stimulation techniques hold promise for treating brain disorders, but further research is needed to fully understand and control their effects on brain dynamics and cognition. Our findings contribute to this growing body of research and provide a foundation for future studies aimed at optimizing the use of non-invasive brain stimulation in clinical settings.
Collapse
Affiliation(s)
- Jesús Cabrera-Álvarez
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Jaime Sánchez-Claros
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus UIB, Palma de Mallorca, Spain
| | - Martín Carrasco-Gómez
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alberto del Cerro-León
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | | | - Fernando Maestú
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Claudio R. Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus UIB, Palma de Mallorca, Spain
| | - Gianluca Susi
- Centre for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
- Department of Structure of Matter, Thermal Physics and Electronics, School of Physics, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
8
|
Zhong C, Ding Y, Qu Z. Distinct roles of theta and alpha oscillations in the process of contingent attentional capture. Front Hum Neurosci 2023; 17:1220562. [PMID: 37609570 PMCID: PMC10440541 DOI: 10.3389/fnhum.2023.1220562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Visual spatial attention can be captured by a salient color singleton that is contingent on the target feature. A previous study reported that theta (4-7 Hz) and alpha (8-14 Hz) oscillations were related to contingent attentional capture, but the corresponding attentional mechanisms of these oscillations remain unclear. Methods In this study, we analyzed the electroencephalogram data of our previous study to investigate the roles of capture-related theta and alpha oscillation activities. Different from the previous study that used color-changed placeholders as irrelevant cues, the present study adopted abrupt onsets of color singleton cues which tend to elicit phase-locked neural activities. In Experiment 1, participants completed a peripheral visual search task in which spatially uninformative color singleton cues were inside the spatial attentional window and a central rapid serial visual presentation (RSVP) task in which the same cues were outside the spatial attentional window. In Experiment 2, participants completed a color RSVP task and a size RSVP task in which the peripheral color singleton cues were contingent and not contingent on target feature, respectively. Results In Experiment 1, spatially uninformative color singleton cues elicited lateralized theta activities when they were contingent on target feature, irrespective of whether they were inside or outside the spatial attentional window. In contrast, the same color singleton cues elicited alpha lateralization only when they were inside the spatial attentional window. In Experiment 2, we further found that theta lateralization vanished if the color singleton cues were not contingent on target feature. Discussion These results suggest distinct roles of theta and alpha oscillations in the process of contingent attentional capture initiated by abrupt onsets of singleton cues. Theta activities may reflect global enhancement of target feature, while alpha activities may be related to attentional engagement to spatially relevant singleton cues. These lateralized neural oscillations, together with the distractor-elicited N2pc component, might consist of multiple stages of attentional processes during contingent attentional capture.
Collapse
Affiliation(s)
- Chupeng Zhong
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Yulong Ding
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Zhe Qu
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Arnold DH, Saurels BW, Moses E, Hohaia W, Goodale MA. Neural correlates of visual acuity for fine text. Vision Res 2023; 207:108219. [PMID: 36947918 DOI: 10.1016/j.visres.2023.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/22/2023]
Abstract
Human sensitivity to visual input often scales with the magnitude of evoked responses in the brain. Here, we demonstrate an exception. We record electroencephalography (EEG) while people attempt to resolve fine print - similar to people attempting to read eye charts (the world's most popular means of testing vision). We find that the ability to resolve fine print is associated with smaller evoked responses recorded by large clusters of occipital-parietal sensors ∼150 ms after people see words. Moreover, we find that a better ability to resolve fine print is associated with enhanced alpha-band oscillatory brain activity immediately prior to word presentations. These investigations were inspired by psychophysical data, which suggested the ability to resolve fine print can be enhanced by pre-adaptation to flicker, which should encourage a reduced neural response to inputs. We included this manipulation in this study, and our results are broadly consistent with this conjecture. As alpha-band activity has been linked to inhibitory interactions in visual cortex, we regard our data as evidence that smaller neural responses to fine print can be promoted by inhibitory processes that target unhelpful blur-related signals, which thereby sharpen subsequent visual experiences.
Collapse
Affiliation(s)
- Derek H Arnold
- School of Psychology, The University of Queensland, Australia.
| | - Blake W Saurels
- School of Psychology, The University of Queensland, Australia
| | - Eleanor Moses
- School of Psychology, The University of Queensland, Australia
| | - Wiremu Hohaia
- School of Psychology, The University of Queensland, Australia
| | - Melvyn A Goodale
- Western Institute for Neuroscience, Western University, Ontario, Canada
| |
Collapse
|
10
|
Kosachenko AI, Kasanov D, Kotyusov AI, Pavlov YG. EEG and pupillometric signatures of working memory overload. Psychophysiology 2023; 60:e14275. [PMID: 36808118 DOI: 10.1111/psyp.14275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/22/2023]
Abstract
Understanding the physiological correlates of cognitive overload has implications for gauging the limits of human cognition, developing novel methods to define cognitive overload, and mitigating the negative outcomes associated with overload. Most previous psychophysiological studies manipulated verbal working memory load in a narrow range (an average load of 5 items). It is unclear, however, how the nervous system responds to a working memory load exceeding typical capacity limits. The objective of the current study was to characterize the central and autonomic nervous system changes associated with memory overload, by means of combined recording of electroencephalogram (EEG) and pupillometry. Eighty-six participants were presented with a digit span task involving the serial auditory presentation of items. Each trial consisted of sequences of either 5, 9, or 13 digits, each separated by 2 s. Both theta activity and pupil size, after the initial rise, expressed a pattern of a short plateau and a decrease with reaching the state of memory overload, indicating that pupil size and theta possibly have similar neural mechanisms. Based on the described above triphasic pattern of pupil size temporal dynamics, we concluded that cognitive overload causes physiological systems to reset, and release effort. Although memory capacity limits were exceeded and effort was released (as indicated by pupil dilation), alpha continued to decrease with increasing memory load. These results suggest that associating alpha with the focus of attention and distractor suppression is not warranted.
Collapse
Affiliation(s)
- Alexandra I Kosachenko
- Laboratory of Neurotechnology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Dauren Kasanov
- Laboratory of Neurotechnology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Alexander I Kotyusov
- Laboratory of Neurotechnology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Yuri G Pavlov
- Laboratory of Neurotechnology, Ural Federal University, Ekaterinburg, Russian Federation.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Kwasa JA, Noyce AL, Torres LM, Richardson BN, Shinn-Cunningham BG. Top-down auditory attention modulates neural responses more strongly in neurotypical than ADHD young adults. Brain Res 2023; 1798:148144. [PMID: 36328068 PMCID: PMC9749882 DOI: 10.1016/j.brainres.2022.148144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Human cognitive abilities naturally vary along a spectrum, even among those we call "neurotypical". Individuals differ in their ability to selectively attend to goal-relevant auditory stimuli. We sought to characterize this variability in a cohort of people with diverse attentional functioning. We recruited both neurotypical (N = 20) and ADHD (N = 25) young adults, all with normal hearing. Participants listened to one of three concurrent, spatially separated speech streams and reported the order of the syllables in that stream while we recorded electroencephalography (EEG). We tested both the ability to sustain attentional focus on a single "Target" stream and the ability to monitor the Target but flexibly either ignore or switch attention to an unpredictable "Interrupter" stream from another direction that sometimes appeared. Although differences in both stimulus structure and task demands affected behavioral performance, ADHD status did not. In both groups, the Interrupter evoked larger neural responses when it was to be attended compared to when it was irrelevant, including for the P3a "reorienting" response previously described as involuntary. This attentional modulation was weaker in ADHD listeners, even though their behavioral performance was the same. Across the entire cohort, individual performance correlated with the degree of top-down modulation of neural responses. These results demonstrate that listeners differ in their ability to modulate neural representations of sound based on task goals, while suggesting that adults with ADHD may have weaker volitional control of attentional processes than their neurotypical counterparts.
Collapse
Affiliation(s)
- Jasmine A. Kwasa
- Neuroscience Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, United States, Department of Biomedical Engineering, Boston University, 1 Silber Way, Boston, MA, 02215, United States, Corresponding author at: 4825 Frew St, A52A Baker Hall, Pittsburgh, PA 15213, United States. (J.A. Kwasa)
| | - Abigail L. Noyce
- Neuroscience Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, United States
| | - Laura M. Torres
- Department of Biomedical Engineering, Boston University, 1 Silber Way, Boston, MA, 02215, United States
| | - Benjamin N. Richardson
- Neuroscience Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213, United States
| | | |
Collapse
|
12
|
Noyce AL, Kwasa JAC, Shinn-Cunningham BG. Defining attention from an auditory perspective. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1610. [PMID: 35642475 PMCID: PMC9712589 DOI: 10.1002/wcs.1610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 01/17/2023]
Abstract
Attention prioritizes certain information at the expense of other information in ways that are similar across vision, audition, and other sensory modalities. It influences how-and even what-information is represented and processed, affecting brain activity at every level. Much of the core research into cognitive and neural mechanisms of attention has used visual tasks. However, the same top-down, object-based, and bottom-up attentional processes shape auditory perception, largely through the same underlying, cognitive networks. This article is categorized under: Psychology > Attention.
Collapse
|
13
|
Xiu B, Paul BT, Chen JM, Le TN, Lin VY, Dimitrijevic A. Neural responses to naturalistic audiovisual speech are related to listening demand in cochlear implant users. Front Hum Neurosci 2022; 16:1043499. [DOI: 10.3389/fnhum.2022.1043499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
There is a weak relationship between clinical and self-reported speech perception outcomes in cochlear implant (CI) listeners. Such poor correspondence may be due to differences in clinical and “real-world” listening environments and stimuli. Speech in the real world is often accompanied by visual cues, background environmental noise, and is generally in a conversational context, all factors that could affect listening demand. Thus, our objectives were to determine if brain responses to naturalistic speech could index speech perception and listening demand in CI users. Accordingly, we recorded high-density electroencephalogram (EEG) while CI users listened/watched a naturalistic stimulus (i.e., the television show, “The Office”). We used continuous EEG to quantify “speech neural tracking” (i.e., TRFs, temporal response functions) to the show’s soundtrack and 8–12 Hz (alpha) brain rhythms commonly related to listening effort. Background noise at three different signal-to-noise ratios (SNRs), +5, +10, and +15 dB were presented to vary the difficulty of following the television show, mimicking a natural noisy environment. The task also included an audio-only (no video) condition. After each condition, participants subjectively rated listening demand and the degree of words and conversations they felt they understood. Fifteen CI users reported progressively higher degrees of listening demand and less words and conversation with increasing background noise. Listening demand and conversation understanding in the audio-only condition was comparable to that of the highest noise condition (+5 dB). Increasing background noise affected speech neural tracking at a group level, in addition to eliciting strong individual differences. Mixed effect modeling showed that listening demand and conversation understanding were correlated to early cortical speech tracking, such that high demand and low conversation understanding occurred with lower amplitude TRFs. In the high noise condition, greater listening demand was negatively correlated to parietal alpha power, where higher demand was related to lower alpha power. No significant correlations were observed between TRF/alpha and clinical speech perception scores. These results are similar to previous findings showing little relationship between clinical speech perception and quality-of-life in CI users. However, physiological responses to complex natural speech may provide an objective measure of aspects of quality-of-life measures like self-perceived listening demand.
Collapse
|
14
|
Yi L, Sekuler R. Audiovisual interaction with rate-varying signals. Iperception 2022; 13:20416695221116653. [PMID: 36467124 PMCID: PMC9716610 DOI: 10.1177/20416695221116653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/06/2022] [Indexed: 08/18/2023] Open
Abstract
A task-irrelevant, amplitude-modulating sound influences perception of a size-modulating visual stimulus. To probe the limits of this audiovisual interaction we vary the second temporal derivative of object size and of sound amplitude. In the study's first phase subjects see a visual stimulus size-modulating with f ″ ( x ) > 0, 0, or <0, and judge each one's rate as increasing, constant, or decreasing. Visual stimuli are accompanied by a steady, non-modulated auditory stimulus. The novel combination of multiple stimuli and multi-alternative responses allows subjects' similarity space to be estimated from the stimulus-response confusion matrix. In the study's second phase, rate-varying visual stimuli are presented in concert with auditory stimuli whose second derivative also varied. Subjects identified each visual stimuli as one of the three types, while trying to ignore the accompanying sound. Unlike some previous results with f ″ ( x ) fixed at 0, performance benefits relatively little when visual and auditory stimuli share the same directional change in modulation. However, performance does drop when visual and auditory stimului differ in their directions of rate change. Our task's computational demands may make it particularly vulnerable to the effects of a dynamic task-irrelevant stimulus.
Collapse
Affiliation(s)
- Long Yi
- Volen Center for Complex Systems, Brandeis University,
Waltham, MA, USA
| | - Robert Sekuler
- Volen Center for Complex Systems, Brandeis University,
Waltham, MA, USA
| |
Collapse
|
15
|
Parietal Alpha Oscillations: Cognitive Load and Mental Toughness. Brain Sci 2022; 12:brainsci12091135. [PMID: 36138871 PMCID: PMC9496702 DOI: 10.3390/brainsci12091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 12/05/2022] Open
Abstract
Cognitive effort is intrinsically linked to task difficulty, intelligence, and mental toughness. Intelligence reflects an individual’s cognitive aptitude, whereas mental toughness (MT) reflects an individual’s resilience in pursuing success. Research shows that parietal alpha oscillations are associated with changes in task difficulty. Critically, it remains unclear whether parietal alpha oscillations are modulated by intelligence and MT as a personality trait. We examined event-related (de)synchronization (ERD/ERS) of alpha oscillations associated with encoding, retention, and recognition in the Sternberg task in relation to intelligence and mental toughness. Eighty participants completed the Sternberg task with 3, 4, 5 and 6 digits, Raven Standard Progressive Matrices test and an MT questionnaire. A positive dependence on difficulty was observed for all studied oscillatory effects (t = −8.497, p < 0.001; t = 2.806, p < 0.005; t = −2.103, p < 0.05). The influence of Raven intelligence was observed for encoding-related alpha ERD (t = −2.02, p = 0.049). The influence of MT was observed only for difficult conditions in recognition-related alpha ERD (t = −3.282, p < 0.005). Findings indicate that the modulation of alpha rhythm related to encoding, retention and recognition may be interpreted as correlates of cognitive effort modulation. Specifically, results suggest that effort related to encoding depends on intelligence, whereas recognition-related effort level depends on mental toughness.
Collapse
|
16
|
Strang CC, Harris A, Moody EJ, Reed CL. Peak frequency of the sensorimotor mu rhythm varies with autism-spectrum traits. Front Neurosci 2022; 16:950539. [PMID: 35992926 PMCID: PMC9389406 DOI: 10.3389/fnins.2022.950539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations.
Collapse
Affiliation(s)
| | - Alison Harris
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States
- *Correspondence: Alison Harris,
| | - Eric J. Moody
- Wyoming Institute for Disabilities (WIND), University of Wyoming, Laramie, WY, United States
| | - Catherine L. Reed
- Department of Psychological Science, Claremont McKenna College, Claremont, CA, United States
| |
Collapse
|
17
|
Harris A, Hutcherson CA. Temporal dynamics of decision making: A synthesis of computational and neurophysiological approaches. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1586. [PMID: 34854573 DOI: 10.1002/wcs.1586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
As interest in the temporal dynamics of decision-making has grown, researchers have increasingly turned to computational approaches such as the drift diffusion model (DDM) to identify how cognitive processes unfold during choice. At the same time, technological advances in noninvasive neurophysiological methods such as electroencephalography and magnetoencephalography now allow researchers to map the neural time course of decision making with millisecond precision. Combining these approaches can potentially yield important new insights into how choices emerge over time. Here we review recent research on the computational and neurophysiological correlates of perceptual and value-based decision making, from DDM parameters to scalp potentials and oscillatory neural activity. Starting with motor response preparation, the most well-understood aspect of the decision process, we discuss evidence that urgency signals and shifts in baseline activation, rather than shifts in the physiological value of the choice-triggering response threshold, are responsible for adjusting response times under speeded choice scenarios. Research on the neural correlates of starting point bias suggests that prestimulus activity can predict biases in motor choice behavior. Finally, studies examining the time dynamics of evidence construction and evidence accumulation have identified signals at frontocentral and centroparietal electrodes associated respectively with these processes, emerging 300-500 ms after stimulus onset. These findings can inform psychological theories of decision-making, providing empirical support for attribute weighting in value-based choice while suggesting theoretical alternatives to dual-process accounts. Further research combining computational and neurophysiological approaches holds promise for providing greater insight into the moment-by-moment evolution of the decision process. This article is categorized under: Psychology > Reasoning and Decision Making Neuroscience > Cognition Economics > Individual Decision-Making.
Collapse
Affiliation(s)
- Alison Harris
- Claremont McKenna College, Claremont, California, USA
| | | |
Collapse
|
18
|
Mindfulness augmentation for anxiety through concurrent use of transcranial direct current stimulation: a randomized double-blind study. Sci Rep 2021; 11:22734. [PMID: 34815458 PMCID: PMC8610980 DOI: 10.1038/s41598-021-02177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) have revealed the capability to augment various types of behavioural interventions. We aimed to augment the effects of mindfulness, suggested for reducing anxiety, with concurrent use of tDCS. We conducted a double-blind randomized study with 58 healthy individuals. We introduced treadmill walking for focused meditation and active or sham tDCS on the left dorsolateral prefrontal cortex for 20 min. We evaluated outcomes using State-Trait Anxiety Inventory-State Anxiety (STAI) before the intervention as well as immediately, 60 min, and 1 week after the intervention, and current density from electroencephalograms (EEG) before and after the intervention. The linear mixed-effect models demonstrated that STAI-state anxiety showed a significant interaction effect between 1 week after the intervention and tDCS groups. As for alpha-band EEG activity, the current density in the rostral anterior cingulate cortex (rACC) was significantly reduced in the active compared with the sham stimulation group, and a significant correlation was seen between changes in STAI-trait anxiety and the current density of the rACC in the active stimulation group. Our study provided that despite this being a one-shot and short intervention, the reduction in anxiety lasts for one week, and EEG could potentially help predict its anxiolytic effect.
Collapse
|
19
|
Pavlov YG, Kotchoubey B. Temporally distinct oscillatory codes of retention and manipulation of verbal working memory. Eur J Neurosci 2021; 54:6497-6511. [PMID: 34514642 DOI: 10.1111/ejn.15457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022]
Abstract
Most psychophysiological studies of working memory (WM) target only the short-term memory construct, whereas short-term memory is only a part of the WM responsible for the storage of sensory information. Here, we aimed to further investigate oscillatory brain mechanisms supporting the executive components of WM-the part responsible for the manipulation of information. We conducted an exploratory reanalysis of a previously published EEG dataset where 156 participants (82 females) performed tasks requiring either simple retention or retention and manipulation of verbal information in WM. A relatively long delay period (>6 s) was employed to investigate the temporal trajectory of the oscillatory brain activity. Compared with baseline, theta activity was significantly enhanced during encoding and the delay period. Alpha-band power decreased during encoding and switched to an increase in the first part of the delay before returning to the baseline in the second part; beta-band power remained below baseline during encoding and the delay. The difference between the manipulation and retention tasks in spectral power had diverse temporal trajectories in different frequency bands. The difference maintained over encoding and the first part of the delay in theta, during the first part of the delay in beta, and during the whole delay period in alpha. Our results suggest that task-related modulations in theta power co-vary with the demands on the executive control network; beta suppression during mental manipulation can be related to the activation of motor networks; and alpha is likely to reflect the activation of language areas simultaneously with sensory input blockade.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Ekaterinburg, Russia
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Saurels BW, Hohaia W, Yarrow K, Johnston A, Arnold DH. Visual predictions, neural oscillations and naïve physics. Sci Rep 2021; 11:16127. [PMID: 34373486 PMCID: PMC8352981 DOI: 10.1038/s41598-021-95295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/29/2021] [Indexed: 11/09/2022] Open
Abstract
Prediction is a core function of the human visual system. Contemporary research suggests the brain builds predictive internal models of the world to facilitate interactions with our dynamic environment. Here, we wanted to examine the behavioural and neurological consequences of disrupting a core property of peoples’ internal models, using naturalistic stimuli. We had people view videos of basketball and asked them to track the moving ball and predict jump shot outcomes, all while we recorded eye movements and brain activity. To disrupt people’s predictive internal models, we inverted footage on half the trials, so dynamics were inconsistent with how movements should be shaped by gravity. When viewing upright videos people were better at predicting shot outcomes, at tracking the ball position, and they had enhanced alpha-band oscillatory activity in occipital brain regions. The advantage for predicting upright shot outcomes scaled with improvements in ball tracking and occipital alpha-band activity. Occipital alpha-band activity has been linked to selective attention and spatially-mapped inhibitions of visual brain activity. We propose that when people have a more accurate predictive model of the environment, they can more easily parse what is relevant, allowing them to better target irrelevant positions for suppression—resulting in both better predictive performance and in neural markers of inhibited information processing.
Collapse
Affiliation(s)
- Blake W Saurels
- School of Psychology, The University of Queensland, Brisbane, Australia.
| | - Wiremu Hohaia
- School of Psychology, The University of Queensland, Brisbane, Australia
| | - Kielan Yarrow
- Department of Psychology, City, University of London, London, UK
| | - Alan Johnston
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Derek H Arnold
- School of Psychology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
21
|
Momsen J, Gordon J, Wu YC, Coulson S. Event related spectral perturbations of gesture congruity: Visuospatial resources are recruited for multimodal discourse comprehension. BRAIN AND LANGUAGE 2021; 216:104916. [PMID: 33652372 PMCID: PMC11296609 DOI: 10.1016/j.bandl.2021.104916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Here we examine the role of visuospatial working memory (WM) during the comprehension of multimodal discourse with co-speech iconic gestures. EEG was recorded as healthy adults encoded either a sequence of one (low load) or four (high load) dot locations on a grid and rehearsed them until a free recall response was collected later in the trial. During the rehearsal period of the WM task, participants observed videos of a speaker describing objects in which half of the trials included semantically related co-speech gestures (congruent), and the other half included semantically unrelated gestures (incongruent). Discourse processing was indexed by oscillatory EEG activity in the alpha and beta bands during the videos. Across all participants, effects of speech and gesture incongruity were more evident in low load trials than in high load trials. Effects were also modulated by individual differences in visuospatial WM capacity. These data suggest visuospatial WM resources are recruited in the comprehension of multimodal discourse.
Collapse
Affiliation(s)
- Jacob Momsen
- Joint Doctoral Program Language and Communicative Disorders, San Diego State University and UC San Diego, United States
| | - Jared Gordon
- Cognitive Science Department, UC San Diego, United States
| | - Ying Choon Wu
- Swartz Center for Computational Neuroscience, UC San Diego, United States
| | - Seana Coulson
- Joint Doctoral Program Language and Communicative Disorders, San Diego State University and UC San Diego, United States; Cognitive Science Department, UC San Diego, United States.
| |
Collapse
|
22
|
Pavlov YG, Kotchoubey B. Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology 2020; 59:e13735. [PMID: 33278030 DOI: 10.1111/psyp.13735] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Brain oscillations likely play a significant role in the storage of information in working memory (WM). Despite the wide popularity of the topic, current attempts to summarize the research in the field are narrative reviews. We address this gap by providing a descriptive systematic review, in which we investigated oscillatory correlates of maintenance of verbal and visual information in WM. The systematic approach enabled us to challenge some common views popularized by previous research. The identified literature (100 EEG/MEG studies) highlighted the importance of theta oscillations in verbal WM: frontal midline theta enhanced with load in most verbal studies, while more equivocal results have been obtained in visual studies. Increasing WM load affected alpha activity in most studies, but the direction of the effect was inconsistent: the ratio of studies that found alpha increase versus decrease with increasing load was 80/20% in the verbal WM domain and close to 60/40% in the visual domain. Alpha asymmetry (left < right) was a common finding in both verbal and visual WM studies. Beta and gamma activity studies yielded the least convincing data: a diversity in the spatial and frequency distribution of beta activity prevented us from making a coherent conclusion; gamma rhythm was virtually neglected in verbal WM studies with no systematic support for sustained gamma changes during the delay in EEG studies in general.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Characterizing the Time-Varying Brain Networks of Audiovisual Integration across Frequency Bands. Cognit Comput 2020. [DOI: 10.1007/s12559-020-09783-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Salient distractors open the door of perception: alpha desynchronization marks sensory gating in a working memory task. Sci Rep 2020; 10:19179. [PMID: 33154495 PMCID: PMC7645677 DOI: 10.1038/s41598-020-76190-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Focusing attention on relevant information while ignoring distracting stimuli is essential to the efficacy of working memory. Alpha- and theta-band oscillations have been linked to the inhibition of anticipated and attentionally avoidable distractors. However, the neurophysiological background of the rejection of task-irrelevant stimuli appearing in the focus of attention is not fully understood. We aimed to examine whether theta and alpha-band oscillations serve as an indicator of successful distractor rejection. Twenty-four students were enrolled in the study. 64-channel EEG was recorded during a modified Sternberg working memory task where weak and strong (salient) distractors were presented during the retention period. Event-related spectral perturbation in the alpha frequency band was significantly modulated by the saliency of the distracting stimuli, while theta oscillation was modulated by the need for cognitive control. Moreover, stronger alpha desynchronization to strong relative to weak distracting stimuli significantly increased the probability of mistakenly identifying the presented distractor as a member of the memory sequence. Therefore, our results suggest that alpha activity reflects the vulnerability of attention to distracting salient stimuli.
Collapse
|
25
|
Distractor probabilities modulate flanker task performance. Atten Percept Psychophys 2020; 83:866-881. [PMID: 33135099 DOI: 10.3758/s13414-020-02151-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 12/22/2022]
Abstract
Expectations about upcoming events help humans to effectively filter out potential distractors and respond more efficiently to task-relevant inputs. While previous work has emphasized the role of expectations about task-relevant inputs, less is known about the role that expectations play in suppressing specific distractors. To address this question, we manipulated the probabilities of different flanker configurations in the Eriksen flanker task. Across four studies, we found robust evidence for sensitivity to the probability of flankers, with an approximately logarithmic relationship between the likelihood of a particular flanker configuration and the accuracy of subjects' responses. Subjects were also sensitive to length of runs of repeated targets, but minimally sensitive to length of runs of repeated flankers. Two studies used chevron stimuli, and two used letters (confirming that results generalize with greater dissimilarity between stimuli). Expanding the set of stimuli (thus reducing the dominance of any one exemplar) eliminated the effect. Our findings suggest that expectations about distractors form in response to statistical regularities at multiple timescales, and that their effects are strongest when stimuli are geometrically similar and subjects are able to respond to trials quickly. Unexpected distractors could disrupt performance, most likely via a form of attentional capture. This work demonstrates how expectations can influence attention in complex cognitive settings, and illuminates the multiple, nested factors that contribute.
Collapse
|
26
|
Wang S, Megla EE, Woodman GF. Stimulus-induced Alpha Suppression Tracks the Difficulty of Attentional Selection, Not Visual Working Memory Storage. J Cogn Neurosci 2020; 33:536-562. [PMID: 33054550 DOI: 10.1162/jocn_a_01637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Human alpha-band activity (8-12 Hz) has been proposed to index a variety of mechanisms during visual processing. Here, we distinguished between an account in which alpha suppression indexes selective attention versus an account in which it indexes subsequent working memory storage. We manipulated two aspects of the visual stimuli that perceptual attention is believed to mitigate before working memory storage: the potential interference from distractors and the size of the focus of attention. We found that the magnitude of alpha-band suppression tracked both of these aspects of the visual arrays. Thus, alpha-band activity after stimulus onset is clearly related to how the visual system deploys perceptual attention and appears to be distinct from mechanisms that store target representations in working memory.
Collapse
Affiliation(s)
- Sisi Wang
- Vanderbilt University.,Beijing Normal University
| | | | | |
Collapse
|
27
|
Keller AS, Ball TM, Williams LM. Deep phenotyping of attention impairments and the 'Inattention Biotype' in Major Depressive Disorder. Psychol Med 2020; 50:2203-2212. [PMID: 31477195 PMCID: PMC8022888 DOI: 10.1017/s0033291719002290] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Attention impairment is an under-investigated feature and diagnostic criterion of Major Depressive Disorder (MDD) that is associated with poorer outcomes. Despite increasing knowledge regarding mechanisms of attention in healthy adults, we lack a detailed characterization of attention impairments and their neural signatures in MDD. METHODS Here, we focus on selective attention and advance a deep multi-modal characterization of these impairments in MDD, using data acquired from n = 1008 patients and n = 336 age- and sex-matched healthy controls. Selective attention impairments were operationalized and anchored in a behavioral performance measure, assessed within a battery of cognitive tests. We sought to establish the accompanying neural signature using independent measures of functional magnetic resonance imaging (15% of the sample) and electroencephalographic recordings of oscillatory neural activity. RESULTS Greater impairment on the behavioral measure of selective attention was associated with intrinsic hypo-connectivity of the fronto-parietal attention network. Not only was this relationship specific to the fronto-parietal network unlike other large-scale networks; this hypo-connectivity was also specific to selective attention performance unlike other measures of cognition. Selective attention impairment was also associated with lower posterior alpha (8-13 Hz) power at rest and was related to more severe negative bias (frequent misidentifications of neutral faces as sad and lingering attention on sad faces), relevant to clinical features of negative attributions and brooding. Selective attention impairments were independent of overall depression severity and of worrying or sleep problems. CONCLUSIONS These results provide a foundation for the clinical translational development of objective markers and targeted therapeutics for attention impairment in MDD.
Collapse
Affiliation(s)
- Arielle S Keller
- Graduate Program in Neurosciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Tali M Ball
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- MIRECC, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
28
|
Keller AS, Davidesco I, Tanner KD. Attention Matters: How Orchestrating Attention May Relate to Classroom Learning. CBE LIFE SCIENCES EDUCATION 2020; 19:fe5. [PMID: 32870089 PMCID: PMC8711818 DOI: 10.1187/cbe.20-05-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Attention is thought to be the gateway between information and learning, yet there is much we do not understand about how students pay attention in the classroom. Leveraging ideas from cognitive neuroscience and psychology, we explore a framework for understanding attention in the classroom, organized along two key dimensions: internal/external attention and on-topic/off-topic attention. This framework helps us to build new theories for why active-learning strategies are effective teaching tools and how synchronized brain activity across students in a classroom may support learning. These ideas suggest new ways of thinking about how attention functions in the classroom and how different approaches to the same active-learning strategy may vary in how effectively they direct students' attention. We hypothesize that some teaching approaches are more effective than others because they leverage natural fluctuations in students' attention. We conclude by discussing implications for teaching and opportunities for future research.
Collapse
Affiliation(s)
- Arielle S. Keller
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305
| | - Ido Davidesco
- Department of Educational Psychology, Neag School of Education, University of Connecticut, Storrs, CT 06269
| | - Kimberly D. Tanner
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
29
|
Zimmermann J, Ross B, Moscovitch M, Alain C. Neural dynamics supporting auditory long-term memory effects on target detection. Neuroimage 2020; 218:116979. [PMID: 32447014 DOI: 10.1016/j.neuroimage.2020.116979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022] Open
Abstract
Auditory long-term memory has been shown to facilitate signal detection. However, the nature and timing of the cognitive processes supporting such benefits remain equivocal. We measured neuroelectric brain activity while young adults were presented with a contextual memory cue designed to assist with the detection of a faint pure tone target embedded in an audio clip of an everyday environmental scene (e.g., the soundtrack of a restaurant). During an initial familiarization task, participants heard such audio clips, half of which included a target sound (memory cue trials) at a specific time and location (left or right ear), as well as audio clips without a target (neutral trials). Following a 1-h or 24-h retention interval, the same audio clips were presented, but now all included a target. Participants were asked to press a button as soon as they heard the pure tone target. Overall, participants were faster and more accurate during memory than neutral cue trials. The auditory contextual memory effects on performance coincided with three temporally and spatially distinct neural modulations, which encompassed changes in the amplitude of event-related potential as well as changes in theta, alpha, beta and gamma power. Brain electrical source analyses revealed greater source activity in memory than neutral cue trials in the right superior temporal gyrus and left parietal cortex. Conversely, neutral trials were associated with greater source activity than memory cue trials in the left posterior medial temporal lobe. Target detection was associated with increased negativity (N2), and a late positive (P3b) wave at frontal and parietal sites, respectively. The effect of auditory contextual memory on brain activity preceding target onset showed little lateralization. Together, these results are consistent with contextual memory facilitating retrieval of target-context associations and deployment and management of auditory attentional resources to when the target occurred. The results also suggest that the auditory cortices, parietal cortex, and medial temporal lobe may be parts of a neural network enabling memory-guided attention during auditory scene analysis.
Collapse
Affiliation(s)
- Jacqueline Zimmermann
- Rotman Research Institute, Psychology, University of Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Ontario, Canada
| | - Bernhard Ross
- Rotman Research Institute, Psychology, University of Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Ontario, Canada
| | - Morris Moscovitch
- Rotman Research Institute, Psychology, University of Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Ontario, Canada
| | - Claude Alain
- Rotman Research Institute, Psychology, University of Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Ontario, Canada; Faculty of Music, University of Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Bonacci LM, Bressler S, Kwasa JAC, Noyce AL, Shinn-Cunningham BG. Effects of Visual Scene Complexity on Neural Signatures of Spatial Attention. Front Hum Neurosci 2020; 14:91. [PMID: 32265675 PMCID: PMC7105597 DOI: 10.3389/fnhum.2020.00091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/02/2020] [Indexed: 11/28/2022] Open
Abstract
Spatial selective attention greatly affects our processing of complex visual scenes, yet the way in which the brain selects relevant objects while suppressing irrelevant objects is still unclear. Evidence of these processes has been found using non-invasive electroencephalography (EEG). However, few studies have characterized these measures during attention to dynamic stimuli, and little is known regarding how these measures change with increased scene complexity. Here, we compared attentional modulation of the EEG N1 and alpha power (oscillations between 8–14 Hz) across three visual selective attention tasks. The tasks differed in the number of irrelevant stimuli presented, but all required sustained attention to the orientation trajectory of a lateralized stimulus. In scenes with few irrelevant stimuli, top-down control of spatial attention is associated with strong modulation of both the N1 and alpha power across parietal-occipital channels. In scenes with many irrelevant stimuli in both hemifields, however, top-down control is no longer represented by strong modulation of alpha power, and N1 amplitudes are overall weaker. These results suggest that as a scene becomes more complex, requiring suppression in both hemifields, the neural signatures of top-down control degrade, likely reflecting some limitation in EEG to represent this suppression.
Collapse
Affiliation(s)
- Lia M Bonacci
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Scott Bressler
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - Jasmine A C Kwasa
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Abigail L Noyce
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | | |
Collapse
|
31
|
Tarasova IV, Volf NV, Akbirov RM, Kukhareva IN, Barbarash OL. Event-Related Desynchronization/Synchronization of Electrical Brain Activity during Modified Odd-Ball Tasks in Patients with Coronary Artery Disease and Mild Cognitive Impairment. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s0362119719060136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Abstract
I address a recent extension of the generalized context model (GCM), a model which excludes prototypes, to the visual short-term memory (VSTM) literature, which is currently deluged with prototype effects. The paper includes a brief review whose aim is to discuss the background and key findings suggesting that prototypes have an obligatory influence on visual short-term memory responses in the same VSTM task that the GCM's random walk extension, EBRW, was extended to account for: Sternberg scanning. I present a new model that incorporates such "central tendency representations" in memory, as well as several other regularities of the literature, and compare its prediction and postdictions to those of the GCM on some unpublished Sternberg scanning data. The GCM cannot account for the pattern in those data without post hoc modifications but the pattern is predicted nicely by the central tendency representation model. Although the new model is certainly wrong, the review and modeling exercise suggest a reconsideration of prototype models may be warranted, at least in the VSTM literature.
Collapse
|
33
|
de Vries IEJ, Slagter HA, Olivers CNL. Oscillatory Control over Representational States in Working Memory. Trends Cogn Sci 2019; 24:150-162. [PMID: 31791896 DOI: 10.1016/j.tics.2019.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
Abstract
In the visual world, attention is guided by perceptual goals activated in visual working memory (VWM). However, planning multiple-task sequences also requires VWM to store representations for future goals. These future goals need to be prevented from interfering with the current perceptual task. Recent findings have implicated neural oscillations as a control mechanism serving the implementation and switching of different states of prioritization of VWM representations. We review recent evidence that posterior alpha-band oscillations underlie the flexible activation and deactivation of VWM representations and that frontal delta-to-theta-band oscillations play a role in the executive control of this process. That is, frontal delta-to-theta appears to orchestrate posterior alpha through long-range oscillatory networks to flexibly set up and change VWM states during multitask sequences.
Collapse
Affiliation(s)
- Ingmar E J de Vries
- Department of Experimental and Applied Psychology and Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081BT, Amsterdam, The Netherlands.
| | - Heleen A Slagter
- Department of Experimental and Applied Psychology and Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081BT, Amsterdam, The Netherlands
| | - Christian N L Olivers
- Department of Experimental and Applied Psychology and Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081BT, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Agnoli S, Zanon M, Mastria S, Avenanti A, Corazza GE. Predicting response originality through brain activity: An analysis of changes in EEG alpha power during the generation of alternative ideas. Neuroimage 2019; 207:116385. [PMID: 31756520 DOI: 10.1016/j.neuroimage.2019.116385] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/23/2019] [Accepted: 11/18/2019] [Indexed: 01/11/2023] Open
Abstract
Growing neurophysiological evidence points to a role of alpha oscillations in divergent thinking (DT). In particular, studies have shown a consistent EEG alpha synchronization during performance on the Alternative Uses Task (AUT), a well-established DT task. However, there is a need for investigating the brain dynamics underlying the production of a sequence of multiple, alternative ideas at the AUT and their relationship with idea originality. In twenty young adults, we investigated changes in alpha power during performance on a structured version of the AUT, requiring to ideate four alternative uses for conventional objects in distinct and sequentially balanced time periods. Data analysis followed a three-step approach, including behaviour aspects, physiology aspects, and their mutual relationship. At the behavioural level, we observed a typical serial order effect during DT production, with an increase of originality associated with an increase in ideational time and a decrease in response percentage over the four responses. This pattern was paralleled by a shift from alpha desynchronization to alpha synchronization across production of the four alternative ideas. Remarkably, alpha power changes were able to explain response originality, with a differential role of alpha power over different sensor sites. In particular, alpha synchronization over frontal, central, and temporal sites was able to predict the generation of original ideas in the first phases of the DT process, whereas alpha synchronization over centro-parietal sites persistently predicted response originality during the entire DT production. Moreover, a bilateral hemispheric effect in frontal sites and a left-lateralized effect in central, temporal, and parietal sensor sites emerged as predictors of the increase in response originality. These findings highlight the temporal dynamics of DT production across the generation of alternative ideas and support a partially distinct functional role of specific cortical areas during DT.
Collapse
Affiliation(s)
- Sergio Agnoli
- Marconi Institute for Creativity (MIC), Villa Griffone, Via dei Celestini 1, 40037, Sasso Marconi, Italy.
| | - Marco Zanon
- Marconi Institute for Creativity (MIC), Villa Griffone, Via dei Celestini 1, 40037, Sasso Marconi, Italy; IRCCS Fondazione Santa Lucia, Viale Ardeatina, 00179, Roma, Italy
| | - Serena Mastria
- Marconi Institute for Creativity (MIC), Villa Griffone, Via dei Celestini 1, 40037, Sasso Marconi, Italy; Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive (CsrNC), Department of Psychology, University of Bologna, Cesena Campus, Viale Europa 980, 47521, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, 3460000, Talca, Chile
| | - Giovanni Emanuele Corazza
- Marconi Institute for Creativity (MIC), Villa Griffone, Via dei Celestini 1, 40037, Sasso Marconi, Italy; Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy
| |
Collapse
|
35
|
Keller AS, Leikauf JE, Holt-Gosselin B, Staveland BR, Williams LM. Paying attention to attention in depression. Transl Psychiatry 2019; 9:279. [PMID: 31699968 PMCID: PMC6838308 DOI: 10.1038/s41398-019-0616-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 01/05/2023] Open
Abstract
Attention is the gate through which sensory information enters our conscious experiences. Oftentimes, patients with major depressive disorder (MDD) complain of concentration difficulties that negatively impact their day-to-day function, and these attention problems are not alleviated by current first-line treatments. In spite of attention's influence on many aspects of cognitive and emotional functioning, and the inclusion of concentration difficulties in the diagnostic criteria for MDD, the focus of depression as a disease is typically on mood features, with attentional features considered less of an imperative for investigation. Here, we summarize the breadth and depth of findings from the cognitive neurosciences regarding the neural mechanisms supporting goal-directed attention in order to better understand how these might go awry in depression. First, we characterize behavioral impairments in selective, sustained, and divided attention in depressed individuals. We then discuss interactions between goal-directed attention and other aspects of cognition (cognitive control, perception, and decision-making) and emotional functioning (negative biases, internally-focused attention, and interactions of mood and attention). We then review evidence for neurobiological mechanisms supporting attention, including the organization of large-scale neural networks and electrophysiological synchrony. Finally, we discuss the failure of current first-line treatments to alleviate attention impairments in MDD and review evidence for more targeted pharmacological, brain stimulation, and behavioral interventions. By synthesizing findings across disciplines and delineating avenues for future research, we aim to provide a clearer outline of how attention impairments may arise in the context of MDD and how, mechanistically, they may negatively impact daily functioning across various domains.
Collapse
Affiliation(s)
- Arielle S Keller
- Graduate Program in Neurosciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - John E Leikauf
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Bailey Holt-Gosselin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Brooke R Staveland
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
36
|
Transcranial direct current stimulation influences bilingual language control mechanism: evidence from cross-frequency coupling. Cogn Neurodyn 2019; 14:203-214. [PMID: 32226562 DOI: 10.1007/s11571-019-09561-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022] Open
Abstract
How to better suppress the interference from the non-target language when switching from one language to the other in bilingual production? The current study applied transcranial direct current stimulation over the right dorsolateral prefrontal cortex to modulate language control measured by cross-frequency coupling. We found that switching to L2 was more modulated by F4-F3 alpha-beta phase-amplitude compared to switching to L1 after receiving the anodal stimulation at the language task schema phase. These findings suggest that anodal stimulation affects the selection of the target language task schema by enhancing the activation of frontal areas and facilitating the coordination between the left and the right frontal hemispheres.
Collapse
|
37
|
Popescu M, Popescu EA, DeGraba TJ, Fernandez-Fidalgo DJ, Riedy G, Hughes JD. Post-traumatic stress disorder is associated with altered modulation of prefrontal alpha band oscillations during working memory. Clin Neurophysiol 2019; 130:1869-1881. [DOI: 10.1016/j.clinph.2019.06.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/24/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
38
|
de Vries IEJ, Savran E, van Driel J, Olivers CNL. Oscillatory Mechanisms of Preparing for Visual Distraction. J Cogn Neurosci 2019; 31:1873-1894. [PMID: 31418334 DOI: 10.1162/jocn_a_01460] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Evidence shows that observers preactivate a target representation in preparation of a visual selection task. In this study, we addressed the question if and how preparing to ignore an anticipated distractor differs from preparing for an anticipated target. We measured EEG while participants memorized a laterally presented color, which was cued to be either a target or a distractor in two subsequent visual search tasks. Decoding the location of items in the search display from EOG channels revealed that, initially, the anticipated distractor attracted attention and could only be ignored later during the trial. This suggests that distractors could not be suppressed in advance but were represented in an active, attention-guiding format. Consistent with this, lateralized posterior alpha power did not dissociate between target and distractor templates during the delay periods, suggesting similar encoding and maintenance. However, distractor preparation did lead to relatively enhanced nonlateralized posterior alpha power, which appeared to gate sensory processing at search display onset to prevent attentional capture in general. Finally, anticipating distractors also led to enhanced midfrontal theta power during the delay period, a signal that was predictive of how strongly both target and distractor were represented in the search display. Together, our results speak against a distractor-specific advance inhibitory template, thus contrary to the preactivation of specific target templates. Rather, we demonstrate a general selection suppression mechanism, which serves to prevent initial involuntary capture by anticipated distracting input.
Collapse
|
39
|
Yeh LC, Yeh YY, Kuo BC. Spatially Specific Attention Mechanisms Are Sensitive to Competition during Visual Search. J Cogn Neurosci 2019; 31:1248-1259. [DOI: 10.1162/jocn_a_01418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Extensive studies have focused on selection mechanisms during visual search. One important influence on these mechanisms is the perceptual characteristics of the stimuli. We investigated the impact of perceptual similarity between targets and nontargets (T-N similarity) in a visual search task using EEG. Participants searched for a predefined target letter among five nontargets. The T-N similarity was manipulated with three levels: high, middle, and low. We tested for the influences of T-N similarity on an ERP (e.g., N2pc) and alpha oscillations. We observed a significant N2pc effect across all levels of similarity. The N2pc amplitude was reduced and occurred later for high similarity relative to low and middle similarities. We also showed that the N2pc amplitude was inversely correlated with the RTs across all similarities. Importantly, we found a significant alpha phase adjustment about the same time as the N2pc for high similarity; by contrast, no such effect was observed for middle and low similarities. Finally, we showed a positive correlation between the phase-locking value and the N2pc—the stronger the alpha phase-locking value, the larger the N2pc, when the T-N similarity was high. In conclusion, our results provide novel evidence for multiple competitive mechanisms during visual search.
Collapse
|
40
|
Drijvers L, van der Plas M, Özyürek A, Jensen O. Native and non-native listeners show similar yet distinct oscillatory dynamics when using gestures to access speech in noise. Neuroimage 2019; 194:55-67. [DOI: 10.1016/j.neuroimage.2019.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 11/30/2022] Open
|
41
|
Jones R, Cleveland M, Uther M. State and trait neural correlates of the balance between work and nonwork roles. Psychiatry Res Neuroimaging 2019; 287:19-30. [PMID: 30939380 DOI: 10.1016/j.pscychresns.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/15/2019] [Accepted: 03/19/2019] [Indexed: 01/07/2023]
Abstract
Difficulty managing the demands of work and nonwork roles (often referred to in terms of managing balance) can be detrimental to psychological wellbeing and contribute to occupational burnout. The current study investigated the neural correlates of perceived satisfaction with this balance using both trait and state EEG alpha measures. EEG was recorded from 14 participants in full time employment (12 females, aged 35.1 ± 10.1 years) during a resting state and performance of an auditory oddball task; e-mail and messaging alert sounds were used as target stimuli. It was predicted that dissatisfaction with the balance between work and nonwork roles would be associated with increased resting alpha power, consistent with studies of burnout, and diminished alpha response to oddball distractors, consistent with difficulty suppressing automatic responses to work-related stimuli. Significant correlations between self-reported measures of work/nonwork balance and both resting, and task-related alpha responses, supported our predictions. Furthermore, an exploratory partial correlation between work and nonwork balance and resting EEG, controlling for task-related alpha response, suggested that the three variables were interrelated. We propose that dissatisfaction with work/nonwork balance is associated with a state hypervigilance to work-related cues, and a trait neural marker of fatigue, both symptomatic of lowered cognitive capacity.
Collapse
Affiliation(s)
- Rhiannon Jones
- Department of Psychology, University of Winchester, Sparkford Road, Winchester, Hampshire SO22 4NR, UK.
| | - Michelle Cleveland
- Department of Psychology, University of Winchester, Sparkford Road, Winchester, Hampshire SO22 4NR, UK
| | - Maria Uther
- Department of Psychology, University of Winchester, Sparkford Road, Winchester, Hampshire SO22 4NR, UK; Department of Psychology, Institute of Human Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| |
Collapse
|
42
|
Rogers CS, Payne L, Maharjan S, Wingfield A, Sekuler R. Older adults show impaired modulation of attentional alpha oscillations: Evidence from dichotic listening. Psychol Aging 2019; 33:246-258. [PMID: 29658746 DOI: 10.1037/pag0000238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Auditory attention is critical for selectively listening to speech from a single talker in a multitalker environment (e.g., Cherry, 1953). Listening in such situations is notoriously more difficult and more poorly encoded to long-term memory in older than in young adults (Tun, O'Kane, & Wingfield, 2002). Recent work by Payne, Rogers, Wingfield, and Sekuler (2017) in young adults demonstrated a neural correlate of auditory attention in the directed dichotic listening task (DDLT), where listeners attend to one ear while ignoring the other. Measured using electroencephalography, differences in alpha band power (8-14 Hz) between left and right hemisphere parietal regions mark the direction to which auditory attention is focused. Little prior research has been conducted on alpha power modulations in older adults, particularly with regard to auditory attention directed toward speech stimuli. In the current study, an older adult sample was administered the DDLT and delayed recognition procedures used by Payne et al. (2017). Compared to young adults, older adults showed reduced selective attention in the DDLT, evidenced by a higher rate of intrusions from the unattended ear. Moreover, older adults did not exhibit attention-related alpha modulation evidenced by young adults, nor did their event-related potentials (ERPs) to recognition probes differentiate between attended or unattended probes. Older adults' delayed recognition did not reveal a pattern of suppression of unattended items evidenced by young adults. These results serve as evidence for an age-related decline in selective auditory attention, potentially mediated by age-related decline in the ability to modulate alpha oscillations. (PsycINFO Database Record
Collapse
Affiliation(s)
- Chad S Rogers
- Volen National Center for Complex Systems, Brandeis University
| | - Lisa Payne
- Volen National Center for Complex Systems, Brandeis University
| | - Sujala Maharjan
- Volen National Center for Complex Systems, Brandeis University
| | | | - Robert Sekuler
- Volen National Center for Complex Systems, Brandeis University
| |
Collapse
|
43
|
Peterson MA. Past experience and meaning affect object detection: A hierarchical Bayesian approach. PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Thornton D, Harkrider AW, Jenson D, Saltuklaroglu T. Sensorimotor activity measured via oscillations of EEG mu rhythms in speech and non-speech discrimination tasks with and without segmentation demands. BRAIN AND LANGUAGE 2018; 187:62-73. [PMID: 28431691 DOI: 10.1016/j.bandl.2017.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/24/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Better understanding of the role of sensorimotor processing in speech and non-speech segmentation can be achieved with more temporally precise measures. Twenty adults made same/different discriminations of speech and non-speech stimuli pairs, with and without segmentation demands. Independent component analysis of 64-channel EEG data revealed clear sensorimotor mu components, with characteristic alpha and beta peaks, localized to premotor regions in 70% of participants.Time-frequency analyses of mu components from accurate trials showed that (1) segmentation tasks elicited greater event-related synchronization immediately following offset of the first stimulus, suggestive of inhibitory activity; (2) strong late event-related desynchronization in all conditions, suggesting that working memory/covert replay contributed substantially to sensorimotor activity in all conditions; (3) stronger beta desynchronization in speech versus non-speech stimuli during stimulus presentation, suggesting stronger auditory-motor transforms for speech versus non-speech stimuli. Findings support the continued use of oscillatory approaches for helping understand segmentation and other cognitive tasks.
Collapse
Affiliation(s)
- David Thornton
- University of Tennessee Health Science Center, United States.
| | | | - David Jenson
- University of Tennessee Health Science Center, United States
| | | |
Collapse
|
45
|
Foster JJ, Awh E. The role of alpha oscillations in spatial attention: limited evidence for a suppression account. Curr Opin Psychol 2018; 29:34-40. [PMID: 30472541 DOI: 10.1016/j.copsyc.2018.11.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
Covert spatial attention allows us to prioritize visual processing at relevant locations. A fast growing literature suggests that alpha-band (8-12 Hz) oscillations play a key role in this core cognitive process. It is clear that alpha-band activity tracks both the locus and timing of covert spatial orienting. There is limited evidence, however, for the widely embraced view that alpha oscillations suppress irrelevant visual information during spatial selection. Extant evidence is equally compatible with an account in which alpha activity enables spatial selection through signal enhancement rather than distractor suppression. Thus, more work is needed to characterize the computational role of alpha activity in spatial attention.
Collapse
Affiliation(s)
- Joshua J Foster
- Department of Psychology and Institute for Mind and Biology, University of Chicago, 940 E. 57th Street, Chicago, IL 60637, United States.
| | - Edward Awh
- Department of Psychology and Institute for Mind and Biology, University of Chicago, 940 E. 57th Street, Chicago, IL 60637, United States.
| |
Collapse
|
46
|
Hari R, Baillet S, Barnes G, Burgess R, Forss N, Gross J, Hämäläinen M, Jensen O, Kakigi R, Mauguière F, Nakasato N, Puce A, Romani GL, Schnitzler A, Taulu S. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin Neurophysiol 2018; 129:1720-1747. [PMID: 29724661 PMCID: PMC6045462 DOI: 10.1016/j.clinph.2018.03.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 03/18/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022]
Abstract
Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation, stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations. In 2017, about 200 whole-scalp MEG devices were in operation worldwide, many of them located in clinical environments. Yet, the established clinical indications for MEG examinations remain few, mainly restricted to the diagnostics of epilepsy and to preoperative functional evaluation of neurosurgical patients. We are confident that the extensive ongoing basic MEG research indicates potential for the evaluation of neurological and psychiatric syndromes, developmental disorders, and the integrity of cortical brain networks after stroke. Basic and clinical research is, thus, paving way for new clinical applications to be identified by an increasing number of practitioners of MEG.
Collapse
Affiliation(s)
- Riitta Hari
- Department of Art, Aalto University, Helsinki, Finland.
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gareth Barnes
- Wellcome Centre for Human Neuroimaging, University College of London, London, UK
| | - Richard Burgess
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nina Forss
- Clinical Neuroscience, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK; Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Germany
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute of Physiological Sciences, Okazaki, Japan
| | - François Mauguière
- Department of Functional Neurology and Epileptology, Neurological Hospital & University of Lyon, Lyon, France
| | | | - Aina Puce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Gian-Luca Romani
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, and Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Samu Taulu
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Physics, University of Washington, Seattle, WA, USA
| |
Collapse
|
47
|
Moment-to-Moment Fluctuations in Neuronal Excitability Bias Subjective Perception Rather than Strategic Decision-Making. eNeuro 2018; 5:eN-NWR-0430-17. [PMID: 29911179 PMCID: PMC6002263 DOI: 10.1523/eneuro.0430-17.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/24/2018] [Accepted: 04/02/2018] [Indexed: 11/21/2022] Open
Abstract
Perceiving an external stimulus depends not only on the physical features of the stimulus, but also fundamentally on the current state of neuronal excitability, indexed by the power of ongoing alpha-band and beta-band oscillations (8-30 Hz). Recent studies suggest that heightened excitability does not improve perceptual precision, but biases observers to report the presence of a stimulus regardless of its physical presence. It is unknown whether this bias is due to changes in observers' subjective perceptual experience (perceptual bias) or their perception-independent decision-making strategy (decision bias). We tested these alternative interpretations in an EEG experiment in which male and female human participants performed two-interval forced choice (2IFC) detection and discrimination. According to signal detection theory, perceptual bias only affects 2IFC detection, but not discrimination, while interval decision bias should be task independent. We found that correct detection was more likely when excitability before the stimulus-present interval exceeded that before the stimulus-absent interval (i.e., 8-17 Hz power was weaker before the stimulus-present interval), consistent with an effect of excitability on perceptual bias. By contrast, discrimination accuracy was unaffected by excitability fluctuations between intervals, ruling out an effect on interval decision bias. We conclude that the current state of neuronal excitability biases the perceptual experience itself, rather than the decision process.
Collapse
|
48
|
Relationship Between Alpha Rhythm and the Default Mode Network: An EEG-fMRI Study. J Clin Neurophysiol 2018; 34:527-533. [PMID: 28914659 DOI: 10.1097/wnp.0000000000000411] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Reports of the relationship between the default mode network (DMN) and alpha power are conflicting. Our goal was to assess this relationship by analyzing concurrently obtained EEG/functional MRI data using hypothesis-independent methods. METHODS We collected functional MRI and EEG data during eyes-closed rest in 20 participants aged 19 to 37 (10 females) and performed independent component analysis on the functional MRI data and a Hamming-windowed fast Fourier transform on the EEG data. We correlated functional MRI fluctuations in the DMN with alpha power. RESULTS Of the six independent components found to have significant relationships with alpha, four contained DMN-associated regions: One independent component was positively correlated with alpha power, whereas all others were negatively correlated. Furthermore, two independent components with opposite relationships with alpha had overlapping voxels in the medial prefrontal cortex and posterior cingulate cortex, suggesting that subpopulations of neurons within these classic nodes within the DMN may have different relationships to alpha power. CONCLUSIONS Different parts of the DMN exhibit divergent relationships to alpha power. Our results highlight the relationship between DMN activity and alpha power, indicating that networks, such as the DMN, may have subcomponents that exhibit different behaviors.
Collapse
|
49
|
White PA. Is conscious perception a series of discrete temporal frames? Conscious Cogn 2018; 60:98-126. [PMID: 29549714 DOI: 10.1016/j.concog.2018.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
This paper reviews proposals that conscious perception consists, in whole or part, of successive discrete temporal frames on the sub-second time scale, each frame containing information registered as simultaneous or static. Although the idea of discrete frames in conscious perception cannot be regarded as falsified, there are many problems. Evidence does not consistently support any proposed duration or range of durations for frames. EEG waveforms provide evidence of periodicity in brain activity, but not necessarily in conscious perception. Temporal properties of perceptual processes are flexible in response to competing processing demands, which is hard to reconcile with the relative inflexibility of regular frames. There are also problems concerning the definition of frames, the need for informational connections between frames, the means by which boundaries between frames are established, and the apparent requirement for a storage buffer for information awaiting entry to the next frame.
Collapse
Affiliation(s)
- Peter A White
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3YG, Wales, UK.
| |
Collapse
|
50
|
van Ede F. Mnemonic and attentional roles for states of attenuated alpha oscillations in perceptual working memory: a review. Eur J Neurosci 2017; 48:2509-2515. [PMID: 29068095 PMCID: PMC6220786 DOI: 10.1111/ejn.13759] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/07/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023]
Abstract
Alpha oscillations are often reported to be amplified during working memory (WM) retention, serving to disengage sensory areas to protect internal representations from external interference. At the same time, contemporary views of WM postulate that sensory areas may often also be recruited for retention. I here review recent evidence that during such 'perceptual' WM, alpha oscillations in mnemonically relevant sensory areas are not amplified but attenuated instead. I will argue that such attenuated alpha states serve a mnemonic role and, further, that larger attenuation may support item-specific attentional prioritisation within perceptual WM. In critically evaluating this role, I also consider (and argue against) four alternatives to a strictly mnemonic account of the available data that may also prove useful to consider in future research. Finally, I highlight key implications of these data for the study of WM and for our understanding of the functional roles of states of attenuated alpha oscillations in cognition.
Collapse
Affiliation(s)
- Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|